rf_dagdegrd.c revision 1.13 1 /* $NetBSD: rf_dagdegrd.c,v 1.13 2003/02/09 10:04:32 jdolecek Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * rf_dagdegrd.c
31 *
32 * code for creating degraded read DAGs
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.13 2003/02/09 10:04:32 jdolecek Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_debugMem.h"
46 #include "rf_general.h"
47 #include "rf_dagdegrd.h"
48
49
50 /******************************************************************************
51 *
52 * General comments on DAG creation:
53 *
54 * All DAGs in this file use roll-away error recovery. Each DAG has a single
55 * commit node, usually called "Cmt." If an error occurs before the Cmt node
56 * is reached, the execution engine will halt forward execution and work
57 * backward through the graph, executing the undo functions. Assuming that
58 * each node in the graph prior to the Cmt node are undoable and atomic - or -
59 * does not make changes to permanent state, the graph will fail atomically.
60 * If an error occurs after the Cmt node executes, the engine will roll-forward
61 * through the graph, blindly executing nodes until it reaches the end.
62 * If a graph reaches the end, it is assumed to have completed successfully.
63 *
64 * A graph has only 1 Cmt node.
65 *
66 */
67
68
69 /******************************************************************************
70 *
71 * The following wrappers map the standard DAG creation interface to the
72 * DAG creation routines. Additionally, these wrappers enable experimentation
73 * with new DAG structures by providing an extra level of indirection, allowing
74 * the DAG creation routines to be replaced at this single point.
75 */
76
77 void
78 rf_CreateRaidFiveDegradedReadDAG(
79 RF_Raid_t * raidPtr,
80 RF_AccessStripeMap_t * asmap,
81 RF_DagHeader_t * dag_h,
82 void *bp,
83 RF_RaidAccessFlags_t flags,
84 RF_AllocListElem_t * allocList)
85 {
86 rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
87 &rf_xorRecoveryFuncs);
88 }
89
90
91 /******************************************************************************
92 *
93 * DAG creation code begins here
94 */
95
96
97 /******************************************************************************
98 * Create a degraded read DAG for RAID level 1
99 *
100 * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
101 *
102 * The "Rd" node reads data from the surviving disk in the mirror pair
103 * Rpd - read of primary copy
104 * Rsd - read of secondary copy
105 *
106 * Parameters: raidPtr - description of the physical array
107 * asmap - logical & physical addresses for this access
108 * bp - buffer ptr (for holding write data)
109 * flags - general flags (e.g. disk locking)
110 * allocList - list of memory allocated in DAG creation
111 *****************************************************************************/
112
113 void
114 rf_CreateRaidOneDegradedReadDAG(
115 RF_Raid_t * raidPtr,
116 RF_AccessStripeMap_t * asmap,
117 RF_DagHeader_t * dag_h,
118 void *bp,
119 RF_RaidAccessFlags_t flags,
120 RF_AllocListElem_t * allocList)
121 {
122 RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
123 RF_StripeNum_t parityStripeID;
124 RF_ReconUnitNum_t which_ru;
125 RF_PhysDiskAddr_t *pda;
126 int useMirror, i;
127
128 useMirror = 0;
129 parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
130 asmap->raidAddress, &which_ru);
131 if (rf_dagDebug) {
132 printf("[Creating RAID level 1 degraded read DAG]\n");
133 }
134 dag_h->creator = "RaidOneDegradedReadDAG";
135 /* alloc the Wnd nodes and the Wmir node */
136 if (asmap->numDataFailed == 0)
137 useMirror = RF_FALSE;
138 else
139 useMirror = RF_TRUE;
140
141 /* total number of nodes = 1 + (block + commit + terminator) */
142 RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
143 i = 0;
144 rdNode = &nodes[i];
145 i++;
146 blockNode = &nodes[i];
147 i++;
148 commitNode = &nodes[i];
149 i++;
150 termNode = &nodes[i];
151 i++;
152
153 /* this dag can not commit until the commit node is reached. errors
154 * prior to the commit point imply the dag has failed and must be
155 * retried */
156 dag_h->numCommitNodes = 1;
157 dag_h->numCommits = 0;
158 dag_h->numSuccedents = 1;
159
160 /* initialize the block, commit, and terminator nodes */
161 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
162 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
163 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
164 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
165 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
166 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
167
168 pda = asmap->physInfo;
169 RF_ASSERT(pda != NULL);
170 /* parityInfo must describe entire parity unit */
171 RF_ASSERT(asmap->parityInfo->next == NULL);
172
173 /* initialize the data node */
174 if (!useMirror) {
175 /* read primary copy of data */
176 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
177 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
178 rdNode->params[0].p = pda;
179 rdNode->params[1].p = pda->bufPtr;
180 rdNode->params[2].v = parityStripeID;
181 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
182 } else {
183 /* read secondary copy of data */
184 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
185 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
186 rdNode->params[0].p = asmap->parityInfo;
187 rdNode->params[1].p = pda->bufPtr;
188 rdNode->params[2].v = parityStripeID;
189 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
190 }
191
192 /* connect header to block node */
193 RF_ASSERT(dag_h->numSuccedents == 1);
194 RF_ASSERT(blockNode->numAntecedents == 0);
195 dag_h->succedents[0] = blockNode;
196
197 /* connect block node to rdnode */
198 RF_ASSERT(blockNode->numSuccedents == 1);
199 RF_ASSERT(rdNode->numAntecedents == 1);
200 blockNode->succedents[0] = rdNode;
201 rdNode->antecedents[0] = blockNode;
202 rdNode->antType[0] = rf_control;
203
204 /* connect rdnode to commit node */
205 RF_ASSERT(rdNode->numSuccedents == 1);
206 RF_ASSERT(commitNode->numAntecedents == 1);
207 rdNode->succedents[0] = commitNode;
208 commitNode->antecedents[0] = rdNode;
209 commitNode->antType[0] = rf_control;
210
211 /* connect commit node to terminator */
212 RF_ASSERT(commitNode->numSuccedents == 1);
213 RF_ASSERT(termNode->numAntecedents == 1);
214 RF_ASSERT(termNode->numSuccedents == 0);
215 commitNode->succedents[0] = termNode;
216 termNode->antecedents[0] = commitNode;
217 termNode->antType[0] = rf_control;
218 }
219
220
221
222 /******************************************************************************
223 *
224 * creates a DAG to perform a degraded-mode read of data within one stripe.
225 * This DAG is as follows:
226 *
227 * Hdr -> Block -> Rud -> Xor -> Cmt -> T
228 * -> Rrd ->
229 * -> Rp -->
230 *
231 * Each R node is a successor of the L node
232 * One successor arc from each R node goes to C, and the other to X
233 * There is one Rud for each chunk of surviving user data requested by the
234 * user, and one Rrd for each chunk of surviving user data _not_ being read by
235 * the user
236 * R = read, ud = user data, rd = recovery (surviving) data, p = parity
237 * X = XOR, C = Commit, T = terminate
238 *
239 * The block node guarantees a single source node.
240 *
241 * Note: The target buffer for the XOR node is set to the actual user buffer
242 * where the failed data is supposed to end up. This buffer is zero'd by the
243 * code here. Thus, if you create a degraded read dag, use it, and then
244 * re-use, you have to be sure to zero the target buffer prior to the re-use.
245 *
246 * The recfunc argument at the end specifies the name and function used for
247 * the redundancy
248 * recovery function.
249 *
250 *****************************************************************************/
251
252 void
253 rf_CreateDegradedReadDAG(
254 RF_Raid_t * raidPtr,
255 RF_AccessStripeMap_t * asmap,
256 RF_DagHeader_t * dag_h,
257 void *bp,
258 RF_RaidAccessFlags_t flags,
259 RF_AllocListElem_t * allocList,
260 const RF_RedFuncs_t * recFunc)
261 {
262 RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
263 RF_DagNode_t *commitNode, *rpNode, *termNode;
264 int nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
265 int j, paramNum;
266 RF_SectorCount_t sectorsPerSU;
267 RF_ReconUnitNum_t which_ru;
268 char *overlappingPDAs;/* a temporary array of flags */
269 RF_AccessStripeMapHeader_t *new_asm_h[2];
270 RF_PhysDiskAddr_t *pda, *parityPDA;
271 RF_StripeNum_t parityStripeID;
272 RF_PhysDiskAddr_t *failedPDA;
273 RF_RaidLayout_t *layoutPtr;
274 char *rpBuf;
275
276 layoutPtr = &(raidPtr->Layout);
277 /* failedPDA points to the pda within the asm that targets the failed
278 * disk */
279 failedPDA = asmap->failedPDAs[0];
280 parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
281 asmap->raidAddress, &which_ru);
282 sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
283
284 if (rf_dagDebug) {
285 printf("[Creating degraded read DAG]\n");
286 }
287 RF_ASSERT(asmap->numDataFailed == 1);
288 dag_h->creator = "DegradedReadDAG";
289
290 /*
291 * generate two ASMs identifying the surviving data we need
292 * in order to recover the lost data
293 */
294
295 /* overlappingPDAs array must be zero'd */
296 RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
297 rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
298 &rpBuf, overlappingPDAs, allocList);
299
300 /*
301 * create all the nodes at once
302 *
303 * -1 because no access is generated for the failed pda
304 */
305 nRudNodes = asmap->numStripeUnitsAccessed - 1;
306 nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
307 ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
308 nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud,
309 * Rrd */
310 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *),
311 allocList);
312 i = 0;
313 blockNode = &nodes[i];
314 i++;
315 commitNode = &nodes[i];
316 i++;
317 xorNode = &nodes[i];
318 i++;
319 rpNode = &nodes[i];
320 i++;
321 termNode = &nodes[i];
322 i++;
323 rudNodes = &nodes[i];
324 i += nRudNodes;
325 rrdNodes = &nodes[i];
326 i += nRrdNodes;
327 RF_ASSERT(i == nNodes);
328
329 /* initialize nodes */
330 dag_h->numCommitNodes = 1;
331 dag_h->numCommits = 0;
332 /* this dag can not commit until the commit node is reached errors
333 * prior to the commit point imply the dag has failed */
334 dag_h->numSuccedents = 1;
335
336 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
337 NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
338 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
339 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
340 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
341 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
342 rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
343 NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
344 recFunc->SimpleName, allocList);
345
346 /* fill in the Rud nodes */
347 for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
348 if (pda == failedPDA) {
349 i--;
350 continue;
351 }
352 rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
353 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
354 "Rud", allocList);
355 RF_ASSERT(pda);
356 rudNodes[i].params[0].p = pda;
357 rudNodes[i].params[1].p = pda->bufPtr;
358 rudNodes[i].params[2].v = parityStripeID;
359 rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
360 }
361
362 /* fill in the Rrd nodes */
363 i = 0;
364 if (new_asm_h[0]) {
365 for (pda = new_asm_h[0]->stripeMap->physInfo;
366 i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
367 i++, pda = pda->next) {
368 rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
369 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
370 dag_h, "Rrd", allocList);
371 RF_ASSERT(pda);
372 rrdNodes[i].params[0].p = pda;
373 rrdNodes[i].params[1].p = pda->bufPtr;
374 rrdNodes[i].params[2].v = parityStripeID;
375 rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
376 }
377 }
378 if (new_asm_h[1]) {
379 for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
380 j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
381 j++, pda = pda->next) {
382 rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
383 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
384 dag_h, "Rrd", allocList);
385 RF_ASSERT(pda);
386 rrdNodes[i + j].params[0].p = pda;
387 rrdNodes[i + j].params[1].p = pda->bufPtr;
388 rrdNodes[i + j].params[2].v = parityStripeID;
389 rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
390 }
391 }
392 /* make a PDA for the parity unit */
393 RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
394 parityPDA->row = asmap->parityInfo->row;
395 parityPDA->col = asmap->parityInfo->col;
396 parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
397 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
398 parityPDA->numSector = failedPDA->numSector;
399
400 /* initialize the Rp node */
401 rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
402 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
403 rpNode->params[0].p = parityPDA;
404 rpNode->params[1].p = rpBuf;
405 rpNode->params[2].v = parityStripeID;
406 rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
407
408 /*
409 * the last and nastiest step is to assign all
410 * the parameters of the Xor node
411 */
412 paramNum = 0;
413 for (i = 0; i < nRrdNodes; i++) {
414 /* all the Rrd nodes need to be xored together */
415 xorNode->params[paramNum++] = rrdNodes[i].params[0];
416 xorNode->params[paramNum++] = rrdNodes[i].params[1];
417 }
418 for (i = 0; i < nRudNodes; i++) {
419 /* any Rud nodes that overlap the failed access need to be
420 * xored in */
421 if (overlappingPDAs[i]) {
422 RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
423 memcpy((char *) pda, (char *) rudNodes[i].params[0].p, sizeof(RF_PhysDiskAddr_t));
424 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
425 xorNode->params[paramNum++].p = pda;
426 xorNode->params[paramNum++].p = pda->bufPtr;
427 }
428 }
429 RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
430
431 /* install parity pda as last set of params to be xor'd */
432 xorNode->params[paramNum++].p = parityPDA;
433 xorNode->params[paramNum++].p = rpBuf;
434
435 /*
436 * the last 2 params to the recovery xor node are
437 * the failed PDA and the raidPtr
438 */
439 xorNode->params[paramNum++].p = failedPDA;
440 xorNode->params[paramNum++].p = raidPtr;
441 RF_ASSERT(paramNum == 2 * nXorBufs + 2);
442
443 /*
444 * The xor node uses results[0] as the target buffer.
445 * Set pointer and zero the buffer. In the kernel, this
446 * may be a user buffer in which case we have to remap it.
447 */
448 xorNode->results[0] = failedPDA->bufPtr;
449 RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr,
450 failedPDA->numSector));
451
452 /* connect nodes to form graph */
453 /* connect the header to the block node */
454 RF_ASSERT(dag_h->numSuccedents == 1);
455 RF_ASSERT(blockNode->numAntecedents == 0);
456 dag_h->succedents[0] = blockNode;
457
458 /* connect the block node to the read nodes */
459 RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
460 RF_ASSERT(rpNode->numAntecedents == 1);
461 blockNode->succedents[0] = rpNode;
462 rpNode->antecedents[0] = blockNode;
463 rpNode->antType[0] = rf_control;
464 for (i = 0; i < nRrdNodes; i++) {
465 RF_ASSERT(rrdNodes[i].numSuccedents == 1);
466 blockNode->succedents[1 + i] = &rrdNodes[i];
467 rrdNodes[i].antecedents[0] = blockNode;
468 rrdNodes[i].antType[0] = rf_control;
469 }
470 for (i = 0; i < nRudNodes; i++) {
471 RF_ASSERT(rudNodes[i].numSuccedents == 1);
472 blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
473 rudNodes[i].antecedents[0] = blockNode;
474 rudNodes[i].antType[0] = rf_control;
475 }
476
477 /* connect the read nodes to the xor node */
478 RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
479 RF_ASSERT(rpNode->numSuccedents == 1);
480 rpNode->succedents[0] = xorNode;
481 xorNode->antecedents[0] = rpNode;
482 xorNode->antType[0] = rf_trueData;
483 for (i = 0; i < nRrdNodes; i++) {
484 RF_ASSERT(rrdNodes[i].numSuccedents == 1);
485 rrdNodes[i].succedents[0] = xorNode;
486 xorNode->antecedents[1 + i] = &rrdNodes[i];
487 xorNode->antType[1 + i] = rf_trueData;
488 }
489 for (i = 0; i < nRudNodes; i++) {
490 RF_ASSERT(rudNodes[i].numSuccedents == 1);
491 rudNodes[i].succedents[0] = xorNode;
492 xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
493 xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
494 }
495
496 /* connect the xor node to the commit node */
497 RF_ASSERT(xorNode->numSuccedents == 1);
498 RF_ASSERT(commitNode->numAntecedents == 1);
499 xorNode->succedents[0] = commitNode;
500 commitNode->antecedents[0] = xorNode;
501 commitNode->antType[0] = rf_control;
502
503 /* connect the termNode to the commit node */
504 RF_ASSERT(commitNode->numSuccedents == 1);
505 RF_ASSERT(termNode->numAntecedents == 1);
506 RF_ASSERT(termNode->numSuccedents == 0);
507 commitNode->succedents[0] = termNode;
508 termNode->antType[0] = rf_control;
509 termNode->antecedents[0] = commitNode;
510 }
511
512 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
513 /******************************************************************************
514 * Create a degraded read DAG for Chained Declustering
515 *
516 * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
517 *
518 * The "Rd" node reads data from the surviving disk in the mirror pair
519 * Rpd - read of primary copy
520 * Rsd - read of secondary copy
521 *
522 * Parameters: raidPtr - description of the physical array
523 * asmap - logical & physical addresses for this access
524 * bp - buffer ptr (for holding write data)
525 * flags - general flags (e.g. disk locking)
526 * allocList - list of memory allocated in DAG creation
527 *****************************************************************************/
528
529 void
530 rf_CreateRaidCDegradedReadDAG(
531 RF_Raid_t * raidPtr,
532 RF_AccessStripeMap_t * asmap,
533 RF_DagHeader_t * dag_h,
534 void *bp,
535 RF_RaidAccessFlags_t flags,
536 RF_AllocListElem_t * allocList)
537 {
538 RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
539 RF_StripeNum_t parityStripeID;
540 int useMirror, i, shiftable;
541 RF_ReconUnitNum_t which_ru;
542 RF_PhysDiskAddr_t *pda;
543
544 if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
545 shiftable = RF_TRUE;
546 } else {
547 shiftable = RF_FALSE;
548 }
549 useMirror = 0;
550 parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
551 asmap->raidAddress, &which_ru);
552
553 if (rf_dagDebug) {
554 printf("[Creating RAID C degraded read DAG]\n");
555 }
556 dag_h->creator = "RaidCDegradedReadDAG";
557 /* alloc the Wnd nodes and the Wmir node */
558 if (asmap->numDataFailed == 0)
559 useMirror = RF_FALSE;
560 else
561 useMirror = RF_TRUE;
562
563 /* total number of nodes = 1 + (block + commit + terminator) */
564 RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
565 i = 0;
566 rdNode = &nodes[i];
567 i++;
568 blockNode = &nodes[i];
569 i++;
570 commitNode = &nodes[i];
571 i++;
572 termNode = &nodes[i];
573 i++;
574
575 /*
576 * This dag can not commit until the commit node is reached.
577 * Errors prior to the commit point imply the dag has failed
578 * and must be retried.
579 */
580 dag_h->numCommitNodes = 1;
581 dag_h->numCommits = 0;
582 dag_h->numSuccedents = 1;
583
584 /* initialize the block, commit, and terminator nodes */
585 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
586 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
587 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
588 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
589 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
590 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
591
592 pda = asmap->physInfo;
593 RF_ASSERT(pda != NULL);
594 /* parityInfo must describe entire parity unit */
595 RF_ASSERT(asmap->parityInfo->next == NULL);
596
597 /* initialize the data node */
598 if (!useMirror) {
599 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
600 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
601 if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
602 /* shift this read to the next disk in line */
603 rdNode->params[0].p = asmap->parityInfo;
604 rdNode->params[1].p = pda->bufPtr;
605 rdNode->params[2].v = parityStripeID;
606 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
607 } else {
608 /* read primary copy */
609 rdNode->params[0].p = pda;
610 rdNode->params[1].p = pda->bufPtr;
611 rdNode->params[2].v = parityStripeID;
612 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
613 }
614 } else {
615 /* read secondary copy of data */
616 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
617 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
618 rdNode->params[0].p = asmap->parityInfo;
619 rdNode->params[1].p = pda->bufPtr;
620 rdNode->params[2].v = parityStripeID;
621 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
622 }
623
624 /* connect header to block node */
625 RF_ASSERT(dag_h->numSuccedents == 1);
626 RF_ASSERT(blockNode->numAntecedents == 0);
627 dag_h->succedents[0] = blockNode;
628
629 /* connect block node to rdnode */
630 RF_ASSERT(blockNode->numSuccedents == 1);
631 RF_ASSERT(rdNode->numAntecedents == 1);
632 blockNode->succedents[0] = rdNode;
633 rdNode->antecedents[0] = blockNode;
634 rdNode->antType[0] = rf_control;
635
636 /* connect rdnode to commit node */
637 RF_ASSERT(rdNode->numSuccedents == 1);
638 RF_ASSERT(commitNode->numAntecedents == 1);
639 rdNode->succedents[0] = commitNode;
640 commitNode->antecedents[0] = rdNode;
641 commitNode->antType[0] = rf_control;
642
643 /* connect commit node to terminator */
644 RF_ASSERT(commitNode->numSuccedents == 1);
645 RF_ASSERT(termNode->numAntecedents == 1);
646 RF_ASSERT(termNode->numSuccedents == 0);
647 commitNode->succedents[0] = termNode;
648 termNode->antecedents[0] = commitNode;
649 termNode->antType[0] = rf_control;
650 }
651 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
652
653 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
654 /*
655 * XXX move this elsewhere?
656 */
657 void
658 rf_DD_GenerateFailedAccessASMs(
659 RF_Raid_t * raidPtr,
660 RF_AccessStripeMap_t * asmap,
661 RF_PhysDiskAddr_t ** pdap,
662 int *nNodep,
663 RF_PhysDiskAddr_t ** pqpdap,
664 int *nPQNodep,
665 RF_AllocListElem_t * allocList)
666 {
667 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
668 int PDAPerDisk, i;
669 RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
670 int numDataCol = layoutPtr->numDataCol;
671 int state;
672 RF_SectorNum_t suoff, suend;
673 unsigned firstDataCol, napdas, count;
674 RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
675 RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
676 RF_PhysDiskAddr_t *pda_p;
677 RF_PhysDiskAddr_t *phys_p;
678 RF_RaidAddr_t sosAddr;
679
680 /* determine how many pda's we will have to generate per unaccess
681 * stripe. If there is only one failed data unit, it is one; if two,
682 * possibly two, depending wether they overlap. */
683
684 fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
685 fone_end = fone_start + fone->numSector;
686
687 #define CONS_PDA(if,start,num) \
688 pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
689 pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
690 pda_p->numSector = num; \
691 pda_p->next = NULL; \
692 RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
693
694 if (asmap->numDataFailed == 1) {
695 PDAPerDisk = 1;
696 state = 1;
697 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
698 pda_p = *pqpdap;
699 /* build p */
700 CONS_PDA(parityInfo, fone_start, fone->numSector);
701 pda_p->type = RF_PDA_TYPE_PARITY;
702 pda_p++;
703 /* build q */
704 CONS_PDA(qInfo, fone_start, fone->numSector);
705 pda_p->type = RF_PDA_TYPE_Q;
706 } else {
707 ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
708 ftwo_end = ftwo_start + ftwo->numSector;
709 if (fone->numSector + ftwo->numSector > secPerSU) {
710 PDAPerDisk = 1;
711 state = 2;
712 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
713 pda_p = *pqpdap;
714 CONS_PDA(parityInfo, 0, secPerSU);
715 pda_p->type = RF_PDA_TYPE_PARITY;
716 pda_p++;
717 CONS_PDA(qInfo, 0, secPerSU);
718 pda_p->type = RF_PDA_TYPE_Q;
719 } else {
720 PDAPerDisk = 2;
721 state = 3;
722 /* four of them, fone, then ftwo */
723 RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
724 pda_p = *pqpdap;
725 CONS_PDA(parityInfo, fone_start, fone->numSector);
726 pda_p->type = RF_PDA_TYPE_PARITY;
727 pda_p++;
728 CONS_PDA(qInfo, fone_start, fone->numSector);
729 pda_p->type = RF_PDA_TYPE_Q;
730 pda_p++;
731 CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
732 pda_p->type = RF_PDA_TYPE_PARITY;
733 pda_p++;
734 CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
735 pda_p->type = RF_PDA_TYPE_Q;
736 }
737 }
738 /* figure out number of nonaccessed pda */
739 napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
740 *nPQNodep = PDAPerDisk;
741
742 /* sweep over the over accessed pda's, figuring out the number of
743 * additional pda's to generate. Of course, skip the failed ones */
744
745 count = 0;
746 for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
747 if ((pda_p == fone) || (pda_p == ftwo))
748 continue;
749 suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
750 suend = suoff + pda_p->numSector;
751 switch (state) {
752 case 1: /* one failed PDA to overlap */
753 /* if a PDA doesn't contain the failed unit, it can
754 * only miss the start or end, not both */
755 if ((suoff > fone_start) || (suend < fone_end))
756 count++;
757 break;
758 case 2: /* whole stripe */
759 if (suoff) /* leak at begining */
760 count++;
761 if (suend < numDataCol) /* leak at end */
762 count++;
763 break;
764 case 3: /* two disjoint units */
765 if ((suoff > fone_start) || (suend < fone_end))
766 count++;
767 if ((suoff > ftwo_start) || (suend < ftwo_end))
768 count++;
769 break;
770 default:
771 RF_PANIC();
772 }
773 }
774
775 napdas += count;
776 *nNodep = napdas;
777 if (napdas == 0)
778 return; /* short circuit */
779
780 /* allocate up our list of pda's */
781
782 RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
783 *pdap = pda_p;
784
785 /* linkem together */
786 for (i = 0; i < (napdas - 1); i++)
787 pda_p[i].next = pda_p + (i + 1);
788
789 /* march through the one's up to the first accessed disk */
790 firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
791 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
792 for (i = 0; i < firstDataCol; i++) {
793 if ((pda_p - (*pdap)) == napdas)
794 continue;
795 pda_p->type = RF_PDA_TYPE_DATA;
796 pda_p->raidAddress = sosAddr + (i * secPerSU);
797 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
798 /* skip over dead disks */
799 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
800 continue;
801 switch (state) {
802 case 1: /* fone */
803 pda_p->numSector = fone->numSector;
804 pda_p->raidAddress += fone_start;
805 pda_p->startSector += fone_start;
806 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
807 break;
808 case 2: /* full stripe */
809 pda_p->numSector = secPerSU;
810 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
811 break;
812 case 3: /* two slabs */
813 pda_p->numSector = fone->numSector;
814 pda_p->raidAddress += fone_start;
815 pda_p->startSector += fone_start;
816 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
817 pda_p++;
818 pda_p->type = RF_PDA_TYPE_DATA;
819 pda_p->raidAddress = sosAddr + (i * secPerSU);
820 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
821 pda_p->numSector = ftwo->numSector;
822 pda_p->raidAddress += ftwo_start;
823 pda_p->startSector += ftwo_start;
824 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
825 break;
826 default:
827 RF_PANIC();
828 }
829 pda_p++;
830 }
831
832 /* march through the touched stripe units */
833 for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
834 if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
835 continue;
836 suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
837 suend = suoff + phys_p->numSector;
838 switch (state) {
839 case 1: /* single buffer */
840 if (suoff > fone_start) {
841 RF_ASSERT(suend >= fone_end);
842 /* The data read starts after the mapped
843 * access, snip off the begining */
844 pda_p->numSector = suoff - fone_start;
845 pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
846 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
847 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
848 pda_p++;
849 }
850 if (suend < fone_end) {
851 RF_ASSERT(suoff <= fone_start);
852 /* The data read stops before the end of the
853 * failed access, extend */
854 pda_p->numSector = fone_end - suend;
855 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
856 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
857 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
858 pda_p++;
859 }
860 break;
861 case 2: /* whole stripe unit */
862 RF_ASSERT((suoff == 0) || (suend == secPerSU));
863 if (suend < secPerSU) { /* short read, snip from end
864 * on */
865 pda_p->numSector = secPerSU - suend;
866 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
867 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
868 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
869 pda_p++;
870 } else
871 if (suoff > 0) { /* short at front */
872 pda_p->numSector = suoff;
873 pda_p->raidAddress = sosAddr + (i * secPerSU);
874 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
875 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
876 pda_p++;
877 }
878 break;
879 case 3: /* two nonoverlapping failures */
880 if ((suoff > fone_start) || (suend < fone_end)) {
881 if (suoff > fone_start) {
882 RF_ASSERT(suend >= fone_end);
883 /* The data read starts after the
884 * mapped access, snip off the
885 * begining */
886 pda_p->numSector = suoff - fone_start;
887 pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
888 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
889 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
890 pda_p++;
891 }
892 if (suend < fone_end) {
893 RF_ASSERT(suoff <= fone_start);
894 /* The data read stops before the end
895 * of the failed access, extend */
896 pda_p->numSector = fone_end - suend;
897 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
898 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
899 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
900 pda_p++;
901 }
902 }
903 if ((suoff > ftwo_start) || (suend < ftwo_end)) {
904 if (suoff > ftwo_start) {
905 RF_ASSERT(suend >= ftwo_end);
906 /* The data read starts after the
907 * mapped access, snip off the
908 * begining */
909 pda_p->numSector = suoff - ftwo_start;
910 pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
911 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
912 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
913 pda_p++;
914 }
915 if (suend < ftwo_end) {
916 RF_ASSERT(suoff <= ftwo_start);
917 /* The data read stops before the end
918 * of the failed access, extend */
919 pda_p->numSector = ftwo_end - suend;
920 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
921 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
922 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
923 pda_p++;
924 }
925 }
926 break;
927 default:
928 RF_PANIC();
929 }
930 }
931
932 /* after the last accessed disk */
933 for (; i < numDataCol; i++) {
934 if ((pda_p - (*pdap)) == napdas)
935 continue;
936 pda_p->type = RF_PDA_TYPE_DATA;
937 pda_p->raidAddress = sosAddr + (i * secPerSU);
938 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
939 /* skip over dead disks */
940 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
941 continue;
942 switch (state) {
943 case 1: /* fone */
944 pda_p->numSector = fone->numSector;
945 pda_p->raidAddress += fone_start;
946 pda_p->startSector += fone_start;
947 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
948 break;
949 case 2: /* full stripe */
950 pda_p->numSector = secPerSU;
951 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
952 break;
953 case 3: /* two slabs */
954 pda_p->numSector = fone->numSector;
955 pda_p->raidAddress += fone_start;
956 pda_p->startSector += fone_start;
957 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
958 pda_p++;
959 pda_p->type = RF_PDA_TYPE_DATA;
960 pda_p->raidAddress = sosAddr + (i * secPerSU);
961 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
962 pda_p->numSector = ftwo->numSector;
963 pda_p->raidAddress += ftwo_start;
964 pda_p->startSector += ftwo_start;
965 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
966 break;
967 default:
968 RF_PANIC();
969 }
970 pda_p++;
971 }
972
973 RF_ASSERT(pda_p - *pdap == napdas);
974 return;
975 }
976 #define INIT_DISK_NODE(node,name) \
977 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
978 (node)->succedents[0] = unblockNode; \
979 (node)->succedents[1] = recoveryNode; \
980 (node)->antecedents[0] = blockNode; \
981 (node)->antType[0] = rf_control
982
983 #define DISK_NODE_PARAMS(_node_,_p_) \
984 (_node_).params[0].p = _p_ ; \
985 (_node_).params[1].p = (_p_)->bufPtr; \
986 (_node_).params[2].v = parityStripeID; \
987 (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
988
989 void
990 rf_DoubleDegRead(
991 RF_Raid_t * raidPtr,
992 RF_AccessStripeMap_t * asmap,
993 RF_DagHeader_t * dag_h,
994 void *bp,
995 RF_RaidAccessFlags_t flags,
996 RF_AllocListElem_t * allocList,
997 char *redundantReadNodeName,
998 char *recoveryNodeName,
999 int (*recovFunc) (RF_DagNode_t *))
1000 {
1001 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
1002 RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
1003 *unblockNode, *rpNodes, *rqNodes, *termNode;
1004 RF_PhysDiskAddr_t *pda, *pqPDAs;
1005 RF_PhysDiskAddr_t *npdas;
1006 int nNodes, nRrdNodes, nRudNodes, i;
1007 RF_ReconUnitNum_t which_ru;
1008 int nReadNodes, nPQNodes;
1009 RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
1010 RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
1011 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
1012
1013 if (rf_dagDebug)
1014 printf("[Creating Double Degraded Read DAG]\n");
1015 rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
1016
1017 nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
1018 nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
1019 nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
1020
1021 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
1022 i = 0;
1023 blockNode = &nodes[i];
1024 i += 1;
1025 unblockNode = &nodes[i];
1026 i += 1;
1027 recoveryNode = &nodes[i];
1028 i += 1;
1029 termNode = &nodes[i];
1030 i += 1;
1031 rudNodes = &nodes[i];
1032 i += nRudNodes;
1033 rrdNodes = &nodes[i];
1034 i += nRrdNodes;
1035 rpNodes = &nodes[i];
1036 i += nPQNodes;
1037 rqNodes = &nodes[i];
1038 i += nPQNodes;
1039 RF_ASSERT(i == nNodes);
1040
1041 dag_h->numSuccedents = 1;
1042 dag_h->succedents[0] = blockNode;
1043 dag_h->creator = "DoubleDegRead";
1044 dag_h->numCommits = 0;
1045 dag_h->numCommitNodes = 1; /* unblock */
1046
1047 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
1048 termNode->antecedents[0] = unblockNode;
1049 termNode->antType[0] = rf_control;
1050 termNode->antecedents[1] = recoveryNode;
1051 termNode->antType[1] = rf_control;
1052
1053 /* init the block and unblock nodes */
1054 /* The block node has all nodes except itself, unblock and recovery as
1055 * successors. Similarly for predecessors of the unblock. */
1056 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
1057 rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
1058
1059 for (i = 0; i < nReadNodes; i++) {
1060 blockNode->succedents[i] = rudNodes + i;
1061 unblockNode->antecedents[i] = rudNodes + i;
1062 unblockNode->antType[i] = rf_control;
1063 }
1064 unblockNode->succedents[0] = termNode;
1065
1066 /* The recovery node has all the reads as predecessors, and the term
1067 * node as successors. It gets a pda as a param from each of the read
1068 * nodes plus the raidPtr. For each failed unit is has a result pda. */
1069 rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1070 1, /* succesors */
1071 nReadNodes, /* preds */
1072 nReadNodes + 2, /* params */
1073 asmap->numDataFailed, /* results */
1074 dag_h, recoveryNodeName, allocList);
1075
1076 recoveryNode->succedents[0] = termNode;
1077 for (i = 0; i < nReadNodes; i++) {
1078 recoveryNode->antecedents[i] = rudNodes + i;
1079 recoveryNode->antType[i] = rf_trueData;
1080 }
1081
1082 /* build the read nodes, then come back and fill in recovery params
1083 * and results */
1084 pda = asmap->physInfo;
1085 for (i = 0; i < nRudNodes; pda = pda->next) {
1086 if ((pda == failedPDA) || (pda == failedPDAtwo))
1087 continue;
1088 INIT_DISK_NODE(rudNodes + i, "Rud");
1089 RF_ASSERT(pda);
1090 DISK_NODE_PARAMS(rudNodes[i], pda);
1091 i++;
1092 }
1093
1094 pda = npdas;
1095 for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
1096 INIT_DISK_NODE(rrdNodes + i, "Rrd");
1097 RF_ASSERT(pda);
1098 DISK_NODE_PARAMS(rrdNodes[i], pda);
1099 }
1100
1101 /* redundancy pdas */
1102 pda = pqPDAs;
1103 INIT_DISK_NODE(rpNodes, "Rp");
1104 RF_ASSERT(pda);
1105 DISK_NODE_PARAMS(rpNodes[0], pda);
1106 pda++;
1107 INIT_DISK_NODE(rqNodes, redundantReadNodeName);
1108 RF_ASSERT(pda);
1109 DISK_NODE_PARAMS(rqNodes[0], pda);
1110 if (nPQNodes == 2) {
1111 pda++;
1112 INIT_DISK_NODE(rpNodes + 1, "Rp");
1113 RF_ASSERT(pda);
1114 DISK_NODE_PARAMS(rpNodes[1], pda);
1115 pda++;
1116 INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
1117 RF_ASSERT(pda);
1118 DISK_NODE_PARAMS(rqNodes[1], pda);
1119 }
1120 /* fill in recovery node params */
1121 for (i = 0; i < nReadNodes; i++)
1122 recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */
1123 recoveryNode->params[i++].p = (void *) raidPtr;
1124 recoveryNode->params[i++].p = (void *) asmap;
1125 recoveryNode->results[0] = failedPDA;
1126 if (asmap->numDataFailed == 2)
1127 recoveryNode->results[1] = failedPDAtwo;
1128
1129 /* zero fill the target data buffers? */
1130 }
1131
1132 #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
1133