rf_dagdegrd.c revision 1.17 1 /* $NetBSD: rf_dagdegrd.c,v 1.17 2004/01/01 20:39:58 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * rf_dagdegrd.c
31 *
32 * code for creating degraded read DAGs
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.17 2004/01/01 20:39:58 oster Exp $");
37
38 #include <dev/raidframe/raidframevar.h>
39
40 #include "rf_archs.h"
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_debugMem.h"
46 #include "rf_general.h"
47 #include "rf_dagdegrd.h"
48
49
50 /******************************************************************************
51 *
52 * General comments on DAG creation:
53 *
54 * All DAGs in this file use roll-away error recovery. Each DAG has a single
55 * commit node, usually called "Cmt." If an error occurs before the Cmt node
56 * is reached, the execution engine will halt forward execution and work
57 * backward through the graph, executing the undo functions. Assuming that
58 * each node in the graph prior to the Cmt node are undoable and atomic - or -
59 * does not make changes to permanent state, the graph will fail atomically.
60 * If an error occurs after the Cmt node executes, the engine will roll-forward
61 * through the graph, blindly executing nodes until it reaches the end.
62 * If a graph reaches the end, it is assumed to have completed successfully.
63 *
64 * A graph has only 1 Cmt node.
65 *
66 */
67
68
69 /******************************************************************************
70 *
71 * The following wrappers map the standard DAG creation interface to the
72 * DAG creation routines. Additionally, these wrappers enable experimentation
73 * with new DAG structures by providing an extra level of indirection, allowing
74 * the DAG creation routines to be replaced at this single point.
75 */
76
77 void
78 rf_CreateRaidFiveDegradedReadDAG(RF_Raid_t *raidPtr,
79 RF_AccessStripeMap_t *asmap,
80 RF_DagHeader_t *dag_h,
81 void *bp,
82 RF_RaidAccessFlags_t flags,
83 RF_AllocListElem_t *allocList)
84 {
85 rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
86 &rf_xorRecoveryFuncs);
87 }
88
89
90 /******************************************************************************
91 *
92 * DAG creation code begins here
93 */
94
95
96 /******************************************************************************
97 * Create a degraded read DAG for RAID level 1
98 *
99 * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
100 *
101 * The "Rd" node reads data from the surviving disk in the mirror pair
102 * Rpd - read of primary copy
103 * Rsd - read of secondary copy
104 *
105 * Parameters: raidPtr - description of the physical array
106 * asmap - logical & physical addresses for this access
107 * bp - buffer ptr (for holding write data)
108 * flags - general flags (e.g. disk locking)
109 * allocList - list of memory allocated in DAG creation
110 *****************************************************************************/
111
112 void
113 rf_CreateRaidOneDegradedReadDAG(RF_Raid_t *raidPtr,
114 RF_AccessStripeMap_t *asmap,
115 RF_DagHeader_t *dag_h,
116 void *bp,
117 RF_RaidAccessFlags_t flags,
118 RF_AllocListElem_t *allocList)
119 {
120 RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
121 RF_StripeNum_t parityStripeID;
122 RF_ReconUnitNum_t which_ru;
123 RF_PhysDiskAddr_t *pda;
124 int useMirror, i;
125
126 useMirror = 0;
127 parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
128 asmap->raidAddress, &which_ru);
129 if (rf_dagDebug) {
130 printf("[Creating RAID level 1 degraded read DAG]\n");
131 }
132 dag_h->creator = "RaidOneDegradedReadDAG";
133 /* alloc the Wnd nodes and the Wmir node */
134 if (asmap->numDataFailed == 0)
135 useMirror = RF_FALSE;
136 else
137 useMirror = RF_TRUE;
138
139 /* total number of nodes = 1 + (block + commit + terminator) */
140 RF_MallocAndAdd(nodes, 4 * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
141 i = 0;
142 rdNode = &nodes[i];
143 i++;
144 blockNode = &nodes[i];
145 i++;
146 commitNode = &nodes[i];
147 i++;
148 termNode = &nodes[i];
149 i++;
150
151 /* this dag can not commit until the commit node is reached. errors
152 * prior to the commit point imply the dag has failed and must be
153 * retried */
154 dag_h->numCommitNodes = 1;
155 dag_h->numCommits = 0;
156 dag_h->numSuccedents = 1;
157
158 /* initialize the block, commit, and terminator nodes */
159 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
160 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
161 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
162 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
163 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
164 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
165
166 pda = asmap->physInfo;
167 RF_ASSERT(pda != NULL);
168 /* parityInfo must describe entire parity unit */
169 RF_ASSERT(asmap->parityInfo->next == NULL);
170
171 /* initialize the data node */
172 if (!useMirror) {
173 /* read primary copy of data */
174 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
175 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
176 rdNode->params[0].p = pda;
177 rdNode->params[1].p = pda->bufPtr;
178 rdNode->params[2].v = parityStripeID;
179 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
180 } else {
181 /* read secondary copy of data */
182 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
183 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
184 rdNode->params[0].p = asmap->parityInfo;
185 rdNode->params[1].p = pda->bufPtr;
186 rdNode->params[2].v = parityStripeID;
187 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
188 }
189
190 /* connect header to block node */
191 RF_ASSERT(dag_h->numSuccedents == 1);
192 RF_ASSERT(blockNode->numAntecedents == 0);
193 dag_h->succedents[0] = blockNode;
194
195 /* connect block node to rdnode */
196 RF_ASSERT(blockNode->numSuccedents == 1);
197 RF_ASSERT(rdNode->numAntecedents == 1);
198 blockNode->succedents[0] = rdNode;
199 rdNode->antecedents[0] = blockNode;
200 rdNode->antType[0] = rf_control;
201
202 /* connect rdnode to commit node */
203 RF_ASSERT(rdNode->numSuccedents == 1);
204 RF_ASSERT(commitNode->numAntecedents == 1);
205 rdNode->succedents[0] = commitNode;
206 commitNode->antecedents[0] = rdNode;
207 commitNode->antType[0] = rf_control;
208
209 /* connect commit node to terminator */
210 RF_ASSERT(commitNode->numSuccedents == 1);
211 RF_ASSERT(termNode->numAntecedents == 1);
212 RF_ASSERT(termNode->numSuccedents == 0);
213 commitNode->succedents[0] = termNode;
214 termNode->antecedents[0] = commitNode;
215 termNode->antType[0] = rf_control;
216 }
217
218
219
220 /******************************************************************************
221 *
222 * creates a DAG to perform a degraded-mode read of data within one stripe.
223 * This DAG is as follows:
224 *
225 * Hdr -> Block -> Rud -> Xor -> Cmt -> T
226 * -> Rrd ->
227 * -> Rp -->
228 *
229 * Each R node is a successor of the L node
230 * One successor arc from each R node goes to C, and the other to X
231 * There is one Rud for each chunk of surviving user data requested by the
232 * user, and one Rrd for each chunk of surviving user data _not_ being read by
233 * the user
234 * R = read, ud = user data, rd = recovery (surviving) data, p = parity
235 * X = XOR, C = Commit, T = terminate
236 *
237 * The block node guarantees a single source node.
238 *
239 * Note: The target buffer for the XOR node is set to the actual user buffer
240 * where the failed data is supposed to end up. This buffer is zero'd by the
241 * code here. Thus, if you create a degraded read dag, use it, and then
242 * re-use, you have to be sure to zero the target buffer prior to the re-use.
243 *
244 * The recfunc argument at the end specifies the name and function used for
245 * the redundancy
246 * recovery function.
247 *
248 *****************************************************************************/
249
250 void
251 rf_CreateDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
252 RF_DagHeader_t *dag_h, void *bp,
253 RF_RaidAccessFlags_t flags,
254 RF_AllocListElem_t *allocList,
255 const RF_RedFuncs_t *recFunc)
256 {
257 RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
258 RF_DagNode_t *commitNode, *rpNode, *termNode;
259 int nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
260 int j, paramNum;
261 RF_SectorCount_t sectorsPerSU;
262 RF_ReconUnitNum_t which_ru;
263 char *overlappingPDAs;/* a temporary array of flags */
264 RF_AccessStripeMapHeader_t *new_asm_h[2];
265 RF_PhysDiskAddr_t *pda, *parityPDA;
266 RF_StripeNum_t parityStripeID;
267 RF_PhysDiskAddr_t *failedPDA;
268 RF_RaidLayout_t *layoutPtr;
269 char *rpBuf;
270
271 layoutPtr = &(raidPtr->Layout);
272 /* failedPDA points to the pda within the asm that targets the failed
273 * disk */
274 failedPDA = asmap->failedPDAs[0];
275 parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
276 asmap->raidAddress, &which_ru);
277 sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
278
279 if (rf_dagDebug) {
280 printf("[Creating degraded read DAG]\n");
281 }
282 RF_ASSERT(asmap->numDataFailed == 1);
283 dag_h->creator = "DegradedReadDAG";
284
285 /*
286 * generate two ASMs identifying the surviving data we need
287 * in order to recover the lost data
288 */
289
290 /* overlappingPDAs array must be zero'd */
291 RF_Malloc(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char), (char *));
292 rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
293 &rpBuf, overlappingPDAs, allocList);
294
295 /*
296 * create all the nodes at once
297 *
298 * -1 because no access is generated for the failed pda
299 */
300 nRudNodes = asmap->numStripeUnitsAccessed - 1;
301 nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
302 ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
303 nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud,
304 * Rrd */
305 RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *),
306 allocList);
307 i = 0;
308 blockNode = &nodes[i];
309 i++;
310 commitNode = &nodes[i];
311 i++;
312 xorNode = &nodes[i];
313 i++;
314 rpNode = &nodes[i];
315 i++;
316 termNode = &nodes[i];
317 i++;
318 rudNodes = &nodes[i];
319 i += nRudNodes;
320 rrdNodes = &nodes[i];
321 i += nRrdNodes;
322 RF_ASSERT(i == nNodes);
323
324 /* initialize nodes */
325 dag_h->numCommitNodes = 1;
326 dag_h->numCommits = 0;
327 /* this dag can not commit until the commit node is reached errors
328 * prior to the commit point imply the dag has failed */
329 dag_h->numSuccedents = 1;
330
331 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
332 NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
333 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
334 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
335 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
336 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
337 rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
338 NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
339 recFunc->SimpleName, allocList);
340
341 /* fill in the Rud nodes */
342 for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
343 if (pda == failedPDA) {
344 i--;
345 continue;
346 }
347 rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
348 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
349 "Rud", allocList);
350 RF_ASSERT(pda);
351 rudNodes[i].params[0].p = pda;
352 rudNodes[i].params[1].p = pda->bufPtr;
353 rudNodes[i].params[2].v = parityStripeID;
354 rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
355 }
356
357 /* fill in the Rrd nodes */
358 i = 0;
359 if (new_asm_h[0]) {
360 for (pda = new_asm_h[0]->stripeMap->physInfo;
361 i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
362 i++, pda = pda->next) {
363 rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
364 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
365 dag_h, "Rrd", allocList);
366 RF_ASSERT(pda);
367 rrdNodes[i].params[0].p = pda;
368 rrdNodes[i].params[1].p = pda->bufPtr;
369 rrdNodes[i].params[2].v = parityStripeID;
370 rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
371 }
372 }
373 if (new_asm_h[1]) {
374 for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
375 j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
376 j++, pda = pda->next) {
377 rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
378 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
379 dag_h, "Rrd", allocList);
380 RF_ASSERT(pda);
381 rrdNodes[i + j].params[0].p = pda;
382 rrdNodes[i + j].params[1].p = pda->bufPtr;
383 rrdNodes[i + j].params[2].v = parityStripeID;
384 rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
385 }
386 }
387 /* make a PDA for the parity unit */
388 RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
389 parityPDA->col = asmap->parityInfo->col;
390 parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
391 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
392 parityPDA->numSector = failedPDA->numSector;
393
394 /* initialize the Rp node */
395 rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
396 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
397 rpNode->params[0].p = parityPDA;
398 rpNode->params[1].p = rpBuf;
399 rpNode->params[2].v = parityStripeID;
400 rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
401
402 /*
403 * the last and nastiest step is to assign all
404 * the parameters of the Xor node
405 */
406 paramNum = 0;
407 for (i = 0; i < nRrdNodes; i++) {
408 /* all the Rrd nodes need to be xored together */
409 xorNode->params[paramNum++] = rrdNodes[i].params[0];
410 xorNode->params[paramNum++] = rrdNodes[i].params[1];
411 }
412 for (i = 0; i < nRudNodes; i++) {
413 /* any Rud nodes that overlap the failed access need to be
414 * xored in */
415 if (overlappingPDAs[i]) {
416 RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
417 memcpy((char *) pda, (char *) rudNodes[i].params[0].p, sizeof(RF_PhysDiskAddr_t));
418 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
419 xorNode->params[paramNum++].p = pda;
420 xorNode->params[paramNum++].p = pda->bufPtr;
421 }
422 }
423 RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
424
425 /* install parity pda as last set of params to be xor'd */
426 xorNode->params[paramNum++].p = parityPDA;
427 xorNode->params[paramNum++].p = rpBuf;
428
429 /*
430 * the last 2 params to the recovery xor node are
431 * the failed PDA and the raidPtr
432 */
433 xorNode->params[paramNum++].p = failedPDA;
434 xorNode->params[paramNum++].p = raidPtr;
435 RF_ASSERT(paramNum == 2 * nXorBufs + 2);
436
437 /*
438 * The xor node uses results[0] as the target buffer.
439 * Set pointer and zero the buffer. In the kernel, this
440 * may be a user buffer in which case we have to remap it.
441 */
442 xorNode->results[0] = failedPDA->bufPtr;
443 memset(failedPDA->bufPtr, 0, rf_RaidAddressToByte(raidPtr,
444 failedPDA->numSector));
445
446 /* connect nodes to form graph */
447 /* connect the header to the block node */
448 RF_ASSERT(dag_h->numSuccedents == 1);
449 RF_ASSERT(blockNode->numAntecedents == 0);
450 dag_h->succedents[0] = blockNode;
451
452 /* connect the block node to the read nodes */
453 RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
454 RF_ASSERT(rpNode->numAntecedents == 1);
455 blockNode->succedents[0] = rpNode;
456 rpNode->antecedents[0] = blockNode;
457 rpNode->antType[0] = rf_control;
458 for (i = 0; i < nRrdNodes; i++) {
459 RF_ASSERT(rrdNodes[i].numSuccedents == 1);
460 blockNode->succedents[1 + i] = &rrdNodes[i];
461 rrdNodes[i].antecedents[0] = blockNode;
462 rrdNodes[i].antType[0] = rf_control;
463 }
464 for (i = 0; i < nRudNodes; i++) {
465 RF_ASSERT(rudNodes[i].numSuccedents == 1);
466 blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
467 rudNodes[i].antecedents[0] = blockNode;
468 rudNodes[i].antType[0] = rf_control;
469 }
470
471 /* connect the read nodes to the xor node */
472 RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
473 RF_ASSERT(rpNode->numSuccedents == 1);
474 rpNode->succedents[0] = xorNode;
475 xorNode->antecedents[0] = rpNode;
476 xorNode->antType[0] = rf_trueData;
477 for (i = 0; i < nRrdNodes; i++) {
478 RF_ASSERT(rrdNodes[i].numSuccedents == 1);
479 rrdNodes[i].succedents[0] = xorNode;
480 xorNode->antecedents[1 + i] = &rrdNodes[i];
481 xorNode->antType[1 + i] = rf_trueData;
482 }
483 for (i = 0; i < nRudNodes; i++) {
484 RF_ASSERT(rudNodes[i].numSuccedents == 1);
485 rudNodes[i].succedents[0] = xorNode;
486 xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
487 xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
488 }
489
490 /* connect the xor node to the commit node */
491 RF_ASSERT(xorNode->numSuccedents == 1);
492 RF_ASSERT(commitNode->numAntecedents == 1);
493 xorNode->succedents[0] = commitNode;
494 commitNode->antecedents[0] = xorNode;
495 commitNode->antType[0] = rf_control;
496
497 /* connect the termNode to the commit node */
498 RF_ASSERT(commitNode->numSuccedents == 1);
499 RF_ASSERT(termNode->numAntecedents == 1);
500 RF_ASSERT(termNode->numSuccedents == 0);
501 commitNode->succedents[0] = termNode;
502 termNode->antType[0] = rf_control;
503 termNode->antecedents[0] = commitNode;
504 }
505
506 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
507 /******************************************************************************
508 * Create a degraded read DAG for Chained Declustering
509 *
510 * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
511 *
512 * The "Rd" node reads data from the surviving disk in the mirror pair
513 * Rpd - read of primary copy
514 * Rsd - read of secondary copy
515 *
516 * Parameters: raidPtr - description of the physical array
517 * asmap - logical & physical addresses for this access
518 * bp - buffer ptr (for holding write data)
519 * flags - general flags (e.g. disk locking)
520 * allocList - list of memory allocated in DAG creation
521 *****************************************************************************/
522
523 void
524 rf_CreateRaidCDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
525 RF_DagHeader_t *dag_h, void *bp,
526 RF_RaidAccessFlags_t flags,
527 RF_AllocListElem_t *allocList)
528 {
529 RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
530 RF_StripeNum_t parityStripeID;
531 int useMirror, i, shiftable;
532 RF_ReconUnitNum_t which_ru;
533 RF_PhysDiskAddr_t *pda;
534
535 if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
536 shiftable = RF_TRUE;
537 } else {
538 shiftable = RF_FALSE;
539 }
540 useMirror = 0;
541 parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
542 asmap->raidAddress, &which_ru);
543
544 if (rf_dagDebug) {
545 printf("[Creating RAID C degraded read DAG]\n");
546 }
547 dag_h->creator = "RaidCDegradedReadDAG";
548 /* alloc the Wnd nodes and the Wmir node */
549 if (asmap->numDataFailed == 0)
550 useMirror = RF_FALSE;
551 else
552 useMirror = RF_TRUE;
553
554 /* total number of nodes = 1 + (block + commit + terminator) */
555 RF_MallocAndAdd(nodes, 4 * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
556 i = 0;
557 rdNode = &nodes[i];
558 i++;
559 blockNode = &nodes[i];
560 i++;
561 commitNode = &nodes[i];
562 i++;
563 termNode = &nodes[i];
564 i++;
565
566 /*
567 * This dag can not commit until the commit node is reached.
568 * Errors prior to the commit point imply the dag has failed
569 * and must be retried.
570 */
571 dag_h->numCommitNodes = 1;
572 dag_h->numCommits = 0;
573 dag_h->numSuccedents = 1;
574
575 /* initialize the block, commit, and terminator nodes */
576 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
577 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
578 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
579 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
580 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
581 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
582
583 pda = asmap->physInfo;
584 RF_ASSERT(pda != NULL);
585 /* parityInfo must describe entire parity unit */
586 RF_ASSERT(asmap->parityInfo->next == NULL);
587
588 /* initialize the data node */
589 if (!useMirror) {
590 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
591 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
592 if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
593 /* shift this read to the next disk in line */
594 rdNode->params[0].p = asmap->parityInfo;
595 rdNode->params[1].p = pda->bufPtr;
596 rdNode->params[2].v = parityStripeID;
597 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
598 } else {
599 /* read primary copy */
600 rdNode->params[0].p = pda;
601 rdNode->params[1].p = pda->bufPtr;
602 rdNode->params[2].v = parityStripeID;
603 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
604 }
605 } else {
606 /* read secondary copy of data */
607 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
608 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
609 rdNode->params[0].p = asmap->parityInfo;
610 rdNode->params[1].p = pda->bufPtr;
611 rdNode->params[2].v = parityStripeID;
612 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
613 }
614
615 /* connect header to block node */
616 RF_ASSERT(dag_h->numSuccedents == 1);
617 RF_ASSERT(blockNode->numAntecedents == 0);
618 dag_h->succedents[0] = blockNode;
619
620 /* connect block node to rdnode */
621 RF_ASSERT(blockNode->numSuccedents == 1);
622 RF_ASSERT(rdNode->numAntecedents == 1);
623 blockNode->succedents[0] = rdNode;
624 rdNode->antecedents[0] = blockNode;
625 rdNode->antType[0] = rf_control;
626
627 /* connect rdnode to commit node */
628 RF_ASSERT(rdNode->numSuccedents == 1);
629 RF_ASSERT(commitNode->numAntecedents == 1);
630 rdNode->succedents[0] = commitNode;
631 commitNode->antecedents[0] = rdNode;
632 commitNode->antType[0] = rf_control;
633
634 /* connect commit node to terminator */
635 RF_ASSERT(commitNode->numSuccedents == 1);
636 RF_ASSERT(termNode->numAntecedents == 1);
637 RF_ASSERT(termNode->numSuccedents == 0);
638 commitNode->succedents[0] = termNode;
639 termNode->antecedents[0] = commitNode;
640 termNode->antType[0] = rf_control;
641 }
642 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
643
644 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
645 /*
646 * XXX move this elsewhere?
647 */
648 void
649 rf_DD_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
650 RF_PhysDiskAddr_t **pdap, int *nNodep,
651 RF_PhysDiskAddr_t **pqpdap, int *nPQNodep,
652 RF_AllocListElem_t *allocList)
653 {
654 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
655 int PDAPerDisk, i;
656 RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
657 int numDataCol = layoutPtr->numDataCol;
658 int state;
659 RF_SectorNum_t suoff, suend;
660 unsigned firstDataCol, napdas, count;
661 RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
662 RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
663 RF_PhysDiskAddr_t *pda_p;
664 RF_PhysDiskAddr_t *phys_p;
665 RF_RaidAddr_t sosAddr;
666
667 /* determine how many pda's we will have to generate per unaccess
668 * stripe. If there is only one failed data unit, it is one; if two,
669 * possibly two, depending wether they overlap. */
670
671 fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
672 fone_end = fone_start + fone->numSector;
673
674 #define CONS_PDA(if,start,num) \
675 pda_p->col = asmap->if->col; \
676 pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
677 pda_p->numSector = num; \
678 pda_p->next = NULL; \
679 RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
680
681 if (asmap->numDataFailed == 1) {
682 PDAPerDisk = 1;
683 state = 1;
684 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
685 pda_p = *pqpdap;
686 /* build p */
687 CONS_PDA(parityInfo, fone_start, fone->numSector);
688 pda_p->type = RF_PDA_TYPE_PARITY;
689 pda_p++;
690 /* build q */
691 CONS_PDA(qInfo, fone_start, fone->numSector);
692 pda_p->type = RF_PDA_TYPE_Q;
693 } else {
694 ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
695 ftwo_end = ftwo_start + ftwo->numSector;
696 if (fone->numSector + ftwo->numSector > secPerSU) {
697 PDAPerDisk = 1;
698 state = 2;
699 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
700 pda_p = *pqpdap;
701 CONS_PDA(parityInfo, 0, secPerSU);
702 pda_p->type = RF_PDA_TYPE_PARITY;
703 pda_p++;
704 CONS_PDA(qInfo, 0, secPerSU);
705 pda_p->type = RF_PDA_TYPE_Q;
706 } else {
707 PDAPerDisk = 2;
708 state = 3;
709 /* four of them, fone, then ftwo */
710 RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
711 pda_p = *pqpdap;
712 CONS_PDA(parityInfo, fone_start, fone->numSector);
713 pda_p->type = RF_PDA_TYPE_PARITY;
714 pda_p++;
715 CONS_PDA(qInfo, fone_start, fone->numSector);
716 pda_p->type = RF_PDA_TYPE_Q;
717 pda_p++;
718 CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
719 pda_p->type = RF_PDA_TYPE_PARITY;
720 pda_p++;
721 CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
722 pda_p->type = RF_PDA_TYPE_Q;
723 }
724 }
725 /* figure out number of nonaccessed pda */
726 napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
727 *nPQNodep = PDAPerDisk;
728
729 /* sweep over the over accessed pda's, figuring out the number of
730 * additional pda's to generate. Of course, skip the failed ones */
731
732 count = 0;
733 for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
734 if ((pda_p == fone) || (pda_p == ftwo))
735 continue;
736 suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
737 suend = suoff + pda_p->numSector;
738 switch (state) {
739 case 1: /* one failed PDA to overlap */
740 /* if a PDA doesn't contain the failed unit, it can
741 * only miss the start or end, not both */
742 if ((suoff > fone_start) || (suend < fone_end))
743 count++;
744 break;
745 case 2: /* whole stripe */
746 if (suoff) /* leak at begining */
747 count++;
748 if (suend < numDataCol) /* leak at end */
749 count++;
750 break;
751 case 3: /* two disjoint units */
752 if ((suoff > fone_start) || (suend < fone_end))
753 count++;
754 if ((suoff > ftwo_start) || (suend < ftwo_end))
755 count++;
756 break;
757 default:
758 RF_PANIC();
759 }
760 }
761
762 napdas += count;
763 *nNodep = napdas;
764 if (napdas == 0)
765 return; /* short circuit */
766
767 /* allocate up our list of pda's */
768
769 RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
770 (RF_PhysDiskAddr_t *), allocList);
771 *pdap = pda_p;
772
773 /* linkem together */
774 for (i = 0; i < (napdas - 1); i++)
775 pda_p[i].next = pda_p + (i + 1);
776
777 /* march through the one's up to the first accessed disk */
778 firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
779 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
780 for (i = 0; i < firstDataCol; i++) {
781 if ((pda_p - (*pdap)) == napdas)
782 continue;
783 pda_p->type = RF_PDA_TYPE_DATA;
784 pda_p->raidAddress = sosAddr + (i * secPerSU);
785 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
786 /* skip over dead disks */
787 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
788 continue;
789 switch (state) {
790 case 1: /* fone */
791 pda_p->numSector = fone->numSector;
792 pda_p->raidAddress += fone_start;
793 pda_p->startSector += fone_start;
794 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
795 break;
796 case 2: /* full stripe */
797 pda_p->numSector = secPerSU;
798 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
799 break;
800 case 3: /* two slabs */
801 pda_p->numSector = fone->numSector;
802 pda_p->raidAddress += fone_start;
803 pda_p->startSector += fone_start;
804 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
805 pda_p++;
806 pda_p->type = RF_PDA_TYPE_DATA;
807 pda_p->raidAddress = sosAddr + (i * secPerSU);
808 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
809 pda_p->numSector = ftwo->numSector;
810 pda_p->raidAddress += ftwo_start;
811 pda_p->startSector += ftwo_start;
812 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
813 break;
814 default:
815 RF_PANIC();
816 }
817 pda_p++;
818 }
819
820 /* march through the touched stripe units */
821 for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
822 if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
823 continue;
824 suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
825 suend = suoff + phys_p->numSector;
826 switch (state) {
827 case 1: /* single buffer */
828 if (suoff > fone_start) {
829 RF_ASSERT(suend >= fone_end);
830 /* The data read starts after the mapped
831 * access, snip off the begining */
832 pda_p->numSector = suoff - fone_start;
833 pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
834 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
835 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
836 pda_p++;
837 }
838 if (suend < fone_end) {
839 RF_ASSERT(suoff <= fone_start);
840 /* The data read stops before the end of the
841 * failed access, extend */
842 pda_p->numSector = fone_end - suend;
843 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
844 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
845 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
846 pda_p++;
847 }
848 break;
849 case 2: /* whole stripe unit */
850 RF_ASSERT((suoff == 0) || (suend == secPerSU));
851 if (suend < secPerSU) { /* short read, snip from end
852 * on */
853 pda_p->numSector = secPerSU - suend;
854 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
855 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
856 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
857 pda_p++;
858 } else
859 if (suoff > 0) { /* short at front */
860 pda_p->numSector = suoff;
861 pda_p->raidAddress = sosAddr + (i * secPerSU);
862 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
863 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
864 pda_p++;
865 }
866 break;
867 case 3: /* two nonoverlapping failures */
868 if ((suoff > fone_start) || (suend < fone_end)) {
869 if (suoff > fone_start) {
870 RF_ASSERT(suend >= fone_end);
871 /* The data read starts after the
872 * mapped access, snip off the
873 * begining */
874 pda_p->numSector = suoff - fone_start;
875 pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
876 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
877 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
878 pda_p++;
879 }
880 if (suend < fone_end) {
881 RF_ASSERT(suoff <= fone_start);
882 /* The data read stops before the end
883 * of the failed access, extend */
884 pda_p->numSector = fone_end - suend;
885 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
886 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
887 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
888 pda_p++;
889 }
890 }
891 if ((suoff > ftwo_start) || (suend < ftwo_end)) {
892 if (suoff > ftwo_start) {
893 RF_ASSERT(suend >= ftwo_end);
894 /* The data read starts after the
895 * mapped access, snip off the
896 * begining */
897 pda_p->numSector = suoff - ftwo_start;
898 pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
899 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
900 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
901 pda_p++;
902 }
903 if (suend < ftwo_end) {
904 RF_ASSERT(suoff <= ftwo_start);
905 /* The data read stops before the end
906 * of the failed access, extend */
907 pda_p->numSector = ftwo_end - suend;
908 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
909 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
910 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
911 pda_p++;
912 }
913 }
914 break;
915 default:
916 RF_PANIC();
917 }
918 }
919
920 /* after the last accessed disk */
921 for (; i < numDataCol; i++) {
922 if ((pda_p - (*pdap)) == napdas)
923 continue;
924 pda_p->type = RF_PDA_TYPE_DATA;
925 pda_p->raidAddress = sosAddr + (i * secPerSU);
926 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
927 /* skip over dead disks */
928 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
929 continue;
930 switch (state) {
931 case 1: /* fone */
932 pda_p->numSector = fone->numSector;
933 pda_p->raidAddress += fone_start;
934 pda_p->startSector += fone_start;
935 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
936 break;
937 case 2: /* full stripe */
938 pda_p->numSector = secPerSU;
939 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
940 break;
941 case 3: /* two slabs */
942 pda_p->numSector = fone->numSector;
943 pda_p->raidAddress += fone_start;
944 pda_p->startSector += fone_start;
945 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
946 pda_p++;
947 pda_p->type = RF_PDA_TYPE_DATA;
948 pda_p->raidAddress = sosAddr + (i * secPerSU);
949 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
950 pda_p->numSector = ftwo->numSector;
951 pda_p->raidAddress += ftwo_start;
952 pda_p->startSector += ftwo_start;
953 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
954 break;
955 default:
956 RF_PANIC();
957 }
958 pda_p++;
959 }
960
961 RF_ASSERT(pda_p - *pdap == napdas);
962 return;
963 }
964 #define INIT_DISK_NODE(node,name) \
965 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
966 (node)->succedents[0] = unblockNode; \
967 (node)->succedents[1] = recoveryNode; \
968 (node)->antecedents[0] = blockNode; \
969 (node)->antType[0] = rf_control
970
971 #define DISK_NODE_PARAMS(_node_,_p_) \
972 (_node_).params[0].p = _p_ ; \
973 (_node_).params[1].p = (_p_)->bufPtr; \
974 (_node_).params[2].v = parityStripeID; \
975 (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
976
977 void
978 rf_DoubleDegRead(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
979 RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags,
980 RF_AllocListElem_t *allocList,
981 char *redundantReadNodeName, char *recoveryNodeName,
982 int (*recovFunc) (RF_DagNode_t *))
983 {
984 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
985 RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
986 *unblockNode, *rpNodes, *rqNodes, *termNode;
987 RF_PhysDiskAddr_t *pda, *pqPDAs;
988 RF_PhysDiskAddr_t *npdas;
989 int nNodes, nRrdNodes, nRudNodes, i;
990 RF_ReconUnitNum_t which_ru;
991 int nReadNodes, nPQNodes;
992 RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
993 RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
994 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
995
996 if (rf_dagDebug)
997 printf("[Creating Double Degraded Read DAG]\n");
998 rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
999
1000 nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
1001 nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
1002 nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
1003
1004 RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
1005 i = 0;
1006 blockNode = &nodes[i];
1007 i += 1;
1008 unblockNode = &nodes[i];
1009 i += 1;
1010 recoveryNode = &nodes[i];
1011 i += 1;
1012 termNode = &nodes[i];
1013 i += 1;
1014 rudNodes = &nodes[i];
1015 i += nRudNodes;
1016 rrdNodes = &nodes[i];
1017 i += nRrdNodes;
1018 rpNodes = &nodes[i];
1019 i += nPQNodes;
1020 rqNodes = &nodes[i];
1021 i += nPQNodes;
1022 RF_ASSERT(i == nNodes);
1023
1024 dag_h->numSuccedents = 1;
1025 dag_h->succedents[0] = blockNode;
1026 dag_h->creator = "DoubleDegRead";
1027 dag_h->numCommits = 0;
1028 dag_h->numCommitNodes = 1; /* unblock */
1029
1030 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
1031 termNode->antecedents[0] = unblockNode;
1032 termNode->antType[0] = rf_control;
1033 termNode->antecedents[1] = recoveryNode;
1034 termNode->antType[1] = rf_control;
1035
1036 /* init the block and unblock nodes */
1037 /* The block node has all nodes except itself, unblock and recovery as
1038 * successors. Similarly for predecessors of the unblock. */
1039 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
1040 rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
1041
1042 for (i = 0; i < nReadNodes; i++) {
1043 blockNode->succedents[i] = rudNodes + i;
1044 unblockNode->antecedents[i] = rudNodes + i;
1045 unblockNode->antType[i] = rf_control;
1046 }
1047 unblockNode->succedents[0] = termNode;
1048
1049 /* The recovery node has all the reads as predecessors, and the term
1050 * node as successors. It gets a pda as a param from each of the read
1051 * nodes plus the raidPtr. For each failed unit is has a result pda. */
1052 rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1053 1, /* succesors */
1054 nReadNodes, /* preds */
1055 nReadNodes + 2, /* params */
1056 asmap->numDataFailed, /* results */
1057 dag_h, recoveryNodeName, allocList);
1058
1059 recoveryNode->succedents[0] = termNode;
1060 for (i = 0; i < nReadNodes; i++) {
1061 recoveryNode->antecedents[i] = rudNodes + i;
1062 recoveryNode->antType[i] = rf_trueData;
1063 }
1064
1065 /* build the read nodes, then come back and fill in recovery params
1066 * and results */
1067 pda = asmap->physInfo;
1068 for (i = 0; i < nRudNodes; pda = pda->next) {
1069 if ((pda == failedPDA) || (pda == failedPDAtwo))
1070 continue;
1071 INIT_DISK_NODE(rudNodes + i, "Rud");
1072 RF_ASSERT(pda);
1073 DISK_NODE_PARAMS(rudNodes[i], pda);
1074 i++;
1075 }
1076
1077 pda = npdas;
1078 for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
1079 INIT_DISK_NODE(rrdNodes + i, "Rrd");
1080 RF_ASSERT(pda);
1081 DISK_NODE_PARAMS(rrdNodes[i], pda);
1082 }
1083
1084 /* redundancy pdas */
1085 pda = pqPDAs;
1086 INIT_DISK_NODE(rpNodes, "Rp");
1087 RF_ASSERT(pda);
1088 DISK_NODE_PARAMS(rpNodes[0], pda);
1089 pda++;
1090 INIT_DISK_NODE(rqNodes, redundantReadNodeName);
1091 RF_ASSERT(pda);
1092 DISK_NODE_PARAMS(rqNodes[0], pda);
1093 if (nPQNodes == 2) {
1094 pda++;
1095 INIT_DISK_NODE(rpNodes + 1, "Rp");
1096 RF_ASSERT(pda);
1097 DISK_NODE_PARAMS(rpNodes[1], pda);
1098 pda++;
1099 INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
1100 RF_ASSERT(pda);
1101 DISK_NODE_PARAMS(rqNodes[1], pda);
1102 }
1103 /* fill in recovery node params */
1104 for (i = 0; i < nReadNodes; i++)
1105 recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */
1106 recoveryNode->params[i++].p = (void *) raidPtr;
1107 recoveryNode->params[i++].p = (void *) asmap;
1108 recoveryNode->results[0] = failedPDA;
1109 if (asmap->numDataFailed == 2)
1110 recoveryNode->results[1] = failedPDAtwo;
1111
1112 /* zero fill the target data buffers? */
1113 }
1114
1115 #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
1116