Home | History | Annotate | Line # | Download | only in raidframe
rf_dagdegrd.c revision 1.18
      1 /*	$NetBSD: rf_dagdegrd.c,v 1.18 2004/01/10 00:56:27 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagdegrd.c
     31  *
     32  * code for creating degraded read DAGs
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.18 2004/01/10 00:56:27 oster Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_general.h"
     47 #include "rf_dagdegrd.h"
     48 
     49 
     50 /******************************************************************************
     51  *
     52  * General comments on DAG creation:
     53  *
     54  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     55  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     56  * is reached, the execution engine will halt forward execution and work
     57  * backward through the graph, executing the undo functions.  Assuming that
     58  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     59  * does not make changes to permanent state, the graph will fail atomically.
     60  * If an error occurs after the Cmt node executes, the engine will roll-forward
     61  * through the graph, blindly executing nodes until it reaches the end.
     62  * If a graph reaches the end, it is assumed to have completed successfully.
     63  *
     64  * A graph has only 1 Cmt node.
     65  *
     66  */
     67 
     68 
     69 /******************************************************************************
     70  *
     71  * The following wrappers map the standard DAG creation interface to the
     72  * DAG creation routines.  Additionally, these wrappers enable experimentation
     73  * with new DAG structures by providing an extra level of indirection, allowing
     74  * the DAG creation routines to be replaced at this single point.
     75  */
     76 
     77 void
     78 rf_CreateRaidFiveDegradedReadDAG(RF_Raid_t *raidPtr,
     79 				 RF_AccessStripeMap_t *asmap,
     80 				 RF_DagHeader_t *dag_h,
     81 				 void *bp,
     82 				 RF_RaidAccessFlags_t flags,
     83 				 RF_AllocListElem_t *allocList)
     84 {
     85 	rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     86 	    &rf_xorRecoveryFuncs);
     87 }
     88 
     89 
     90 /******************************************************************************
     91  *
     92  * DAG creation code begins here
     93  */
     94 
     95 
     96 /******************************************************************************
     97  * Create a degraded read DAG for RAID level 1
     98  *
     99  * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
    100  *
    101  * The "Rd" node reads data from the surviving disk in the mirror pair
    102  *   Rpd - read of primary copy
    103  *   Rsd - read of secondary copy
    104  *
    105  * Parameters:  raidPtr   - description of the physical array
    106  *              asmap     - logical & physical addresses for this access
    107  *              bp        - buffer ptr (for holding write data)
    108  *              flags     - general flags (e.g. disk locking)
    109  *              allocList - list of memory allocated in DAG creation
    110  *****************************************************************************/
    111 
    112 void
    113 rf_CreateRaidOneDegradedReadDAG(RF_Raid_t *raidPtr,
    114 				RF_AccessStripeMap_t *asmap,
    115 				RF_DagHeader_t *dag_h,
    116 				void *bp,
    117 				RF_RaidAccessFlags_t flags,
    118 				RF_AllocListElem_t *allocList)
    119 {
    120 	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
    121 	RF_StripeNum_t parityStripeID;
    122 	RF_ReconUnitNum_t which_ru;
    123 	RF_PhysDiskAddr_t *pda;
    124 	int     useMirror, i;
    125 
    126 	useMirror = 0;
    127 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    128 	    asmap->raidAddress, &which_ru);
    129 	if (rf_dagDebug) {
    130 		printf("[Creating RAID level 1 degraded read DAG]\n");
    131 	}
    132 	dag_h->creator = "RaidOneDegradedReadDAG";
    133 	/* alloc the Wnd nodes and the Wmir node */
    134 	if (asmap->numDataFailed == 0)
    135 		useMirror = RF_FALSE;
    136 	else
    137 		useMirror = RF_TRUE;
    138 
    139 	/* total number of nodes = 1 + (block + commit + terminator) */
    140 	RF_MallocAndAdd(nodes, 4 * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    141 	i = 0;
    142 	rdNode = &nodes[i];
    143 	i++;
    144 	blockNode = &nodes[i];
    145 	i++;
    146 	commitNode = &nodes[i];
    147 	i++;
    148 	termNode = &nodes[i];
    149 	i++;
    150 
    151 	/* this dag can not commit until the commit node is reached.   errors
    152 	 * prior to the commit point imply the dag has failed and must be
    153 	 * retried */
    154 	dag_h->numCommitNodes = 1;
    155 	dag_h->numCommits = 0;
    156 	dag_h->numSuccedents = 1;
    157 
    158 	/* initialize the block, commit, and terminator nodes */
    159 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    160 	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    161 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    162 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    163 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    164 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    165 
    166 	pda = asmap->physInfo;
    167 	RF_ASSERT(pda != NULL);
    168 	/* parityInfo must describe entire parity unit */
    169 	RF_ASSERT(asmap->parityInfo->next == NULL);
    170 
    171 	/* initialize the data node */
    172 	if (!useMirror) {
    173 		/* read primary copy of data */
    174 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    175 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
    176 		rdNode->params[0].p = pda;
    177 		rdNode->params[1].p = pda->bufPtr;
    178 		rdNode->params[2].v = parityStripeID;
    179 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    180 						       which_ru);
    181 	} else {
    182 		/* read secondary copy of data */
    183 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    184 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
    185 		rdNode->params[0].p = asmap->parityInfo;
    186 		rdNode->params[1].p = pda->bufPtr;
    187 		rdNode->params[2].v = parityStripeID;
    188 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    189 						       which_ru);
    190 	}
    191 
    192 	/* connect header to block node */
    193 	RF_ASSERT(dag_h->numSuccedents == 1);
    194 	RF_ASSERT(blockNode->numAntecedents == 0);
    195 	dag_h->succedents[0] = blockNode;
    196 
    197 	/* connect block node to rdnode */
    198 	RF_ASSERT(blockNode->numSuccedents == 1);
    199 	RF_ASSERT(rdNode->numAntecedents == 1);
    200 	blockNode->succedents[0] = rdNode;
    201 	rdNode->antecedents[0] = blockNode;
    202 	rdNode->antType[0] = rf_control;
    203 
    204 	/* connect rdnode to commit node */
    205 	RF_ASSERT(rdNode->numSuccedents == 1);
    206 	RF_ASSERT(commitNode->numAntecedents == 1);
    207 	rdNode->succedents[0] = commitNode;
    208 	commitNode->antecedents[0] = rdNode;
    209 	commitNode->antType[0] = rf_control;
    210 
    211 	/* connect commit node to terminator */
    212 	RF_ASSERT(commitNode->numSuccedents == 1);
    213 	RF_ASSERT(termNode->numAntecedents == 1);
    214 	RF_ASSERT(termNode->numSuccedents == 0);
    215 	commitNode->succedents[0] = termNode;
    216 	termNode->antecedents[0] = commitNode;
    217 	termNode->antType[0] = rf_control;
    218 }
    219 
    220 
    221 
    222 /******************************************************************************
    223  *
    224  * creates a DAG to perform a degraded-mode read of data within one stripe.
    225  * This DAG is as follows:
    226  *
    227  * Hdr -> Block -> Rud -> Xor -> Cmt -> T
    228  *              -> Rrd ->
    229  *              -> Rp -->
    230  *
    231  * Each R node is a successor of the L node
    232  * One successor arc from each R node goes to C, and the other to X
    233  * There is one Rud for each chunk of surviving user data requested by the
    234  * user, and one Rrd for each chunk of surviving user data _not_ being read by
    235  * the user
    236  * R = read, ud = user data, rd = recovery (surviving) data, p = parity
    237  * X = XOR, C = Commit, T = terminate
    238  *
    239  * The block node guarantees a single source node.
    240  *
    241  * Note:  The target buffer for the XOR node is set to the actual user buffer
    242  * where the failed data is supposed to end up.  This buffer is zero'd by the
    243  * code here.  Thus, if you create a degraded read dag, use it, and then
    244  * re-use, you have to be sure to zero the target buffer prior to the re-use.
    245  *
    246  * The recfunc argument at the end specifies the name and function used for
    247  * the redundancy
    248  * recovery function.
    249  *
    250  *****************************************************************************/
    251 
    252 void
    253 rf_CreateDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    254 			 RF_DagHeader_t *dag_h, void *bp,
    255 			 RF_RaidAccessFlags_t flags,
    256 			 RF_AllocListElem_t *allocList,
    257 			 const RF_RedFuncs_t *recFunc)
    258 {
    259 	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
    260 	RF_DagNode_t *commitNode, *rpNode, *termNode;
    261 	int     nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
    262 	int     j, paramNum;
    263 	RF_SectorCount_t sectorsPerSU;
    264 	RF_ReconUnitNum_t which_ru;
    265 	char   *overlappingPDAs;/* a temporary array of flags */
    266 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    267 	RF_PhysDiskAddr_t *pda, *parityPDA;
    268 	RF_StripeNum_t parityStripeID;
    269 	RF_PhysDiskAddr_t *failedPDA;
    270 	RF_RaidLayout_t *layoutPtr;
    271 	char   *rpBuf;
    272 
    273 	layoutPtr = &(raidPtr->Layout);
    274 	/* failedPDA points to the pda within the asm that targets the failed
    275 	 * disk */
    276 	failedPDA = asmap->failedPDAs[0];
    277 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
    278 	    asmap->raidAddress, &which_ru);
    279 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    280 
    281 	if (rf_dagDebug) {
    282 		printf("[Creating degraded read DAG]\n");
    283 	}
    284 	RF_ASSERT(asmap->numDataFailed == 1);
    285 	dag_h->creator = "DegradedReadDAG";
    286 
    287 	/*
    288          * generate two ASMs identifying the surviving data we need
    289          * in order to recover the lost data
    290          */
    291 
    292 	/* overlappingPDAs array must be zero'd */
    293 	RF_Malloc(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char), (char *));
    294 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
    295 	    &rpBuf, overlappingPDAs, allocList);
    296 
    297 	/*
    298          * create all the nodes at once
    299          *
    300          * -1 because no access is generated for the failed pda
    301          */
    302 	nRudNodes = asmap->numStripeUnitsAccessed - 1;
    303 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    304 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    305 	nNodes = 5 + nRudNodes + nRrdNodes;	/* lock, unlock, xor, Rp, Rud,
    306 						 * Rrd */
    307 	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *),
    308 	    allocList);
    309 	i = 0;
    310 	blockNode = &nodes[i];
    311 	i++;
    312 	commitNode = &nodes[i];
    313 	i++;
    314 	xorNode = &nodes[i];
    315 	i++;
    316 	rpNode = &nodes[i];
    317 	i++;
    318 	termNode = &nodes[i];
    319 	i++;
    320 	rudNodes = &nodes[i];
    321 	i += nRudNodes;
    322 	rrdNodes = &nodes[i];
    323 	i += nRrdNodes;
    324 	RF_ASSERT(i == nNodes);
    325 
    326 	/* initialize nodes */
    327 	dag_h->numCommitNodes = 1;
    328 	dag_h->numCommits = 0;
    329 	/* this dag can not commit until the commit node is reached errors
    330 	 * prior to the commit point imply the dag has failed */
    331 	dag_h->numSuccedents = 1;
    332 
    333 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    334 	    NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
    335 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    336 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    337 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    338 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    339 	rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
    340 	    NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
    341 	    recFunc->SimpleName, allocList);
    342 
    343 	/* fill in the Rud nodes */
    344 	for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
    345 		if (pda == failedPDA) {
    346 			i--;
    347 			continue;
    348 		}
    349 		rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
    350 		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    351 		    "Rud", allocList);
    352 		RF_ASSERT(pda);
    353 		rudNodes[i].params[0].p = pda;
    354 		rudNodes[i].params[1].p = pda->bufPtr;
    355 		rudNodes[i].params[2].v = parityStripeID;
    356 		rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    357 	}
    358 
    359 	/* fill in the Rrd nodes */
    360 	i = 0;
    361 	if (new_asm_h[0]) {
    362 		for (pda = new_asm_h[0]->stripeMap->physInfo;
    363 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    364 		    i++, pda = pda->next) {
    365 			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
    366 			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
    367 			    dag_h, "Rrd", allocList);
    368 			RF_ASSERT(pda);
    369 			rrdNodes[i].params[0].p = pda;
    370 			rrdNodes[i].params[1].p = pda->bufPtr;
    371 			rrdNodes[i].params[2].v = parityStripeID;
    372 			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    373 		}
    374 	}
    375 	if (new_asm_h[1]) {
    376 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    377 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    378 		    j++, pda = pda->next) {
    379 			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
    380 			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
    381 			    dag_h, "Rrd", allocList);
    382 			RF_ASSERT(pda);
    383 			rrdNodes[i + j].params[0].p = pda;
    384 			rrdNodes[i + j].params[1].p = pda->bufPtr;
    385 			rrdNodes[i + j].params[2].v = parityStripeID;
    386 			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    387 		}
    388 	}
    389 	/* make a PDA for the parity unit */
    390 	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    391 	parityPDA->col = asmap->parityInfo->col;
    392 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    393 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    394 	parityPDA->numSector = failedPDA->numSector;
    395 
    396 	/* initialize the Rp node */
    397 	rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    398 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
    399 	rpNode->params[0].p = parityPDA;
    400 	rpNode->params[1].p = rpBuf;
    401 	rpNode->params[2].v = parityStripeID;
    402 	rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    403 
    404 	/*
    405          * the last and nastiest step is to assign all
    406          * the parameters of the Xor node
    407          */
    408 	paramNum = 0;
    409 	for (i = 0; i < nRrdNodes; i++) {
    410 		/* all the Rrd nodes need to be xored together */
    411 		xorNode->params[paramNum++] = rrdNodes[i].params[0];
    412 		xorNode->params[paramNum++] = rrdNodes[i].params[1];
    413 	}
    414 	for (i = 0; i < nRudNodes; i++) {
    415 		/* any Rud nodes that overlap the failed access need to be
    416 		 * xored in */
    417 		if (overlappingPDAs[i]) {
    418 			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    419 			memcpy((char *) pda, (char *) rudNodes[i].params[0].p, sizeof(RF_PhysDiskAddr_t));
    420 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    421 			xorNode->params[paramNum++].p = pda;
    422 			xorNode->params[paramNum++].p = pda->bufPtr;
    423 		}
    424 	}
    425 	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
    426 
    427 	/* install parity pda as last set of params to be xor'd */
    428 	xorNode->params[paramNum++].p = parityPDA;
    429 	xorNode->params[paramNum++].p = rpBuf;
    430 
    431 	/*
    432          * the last 2 params to the recovery xor node are
    433          * the failed PDA and the raidPtr
    434          */
    435 	xorNode->params[paramNum++].p = failedPDA;
    436 	xorNode->params[paramNum++].p = raidPtr;
    437 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    438 
    439 	/*
    440          * The xor node uses results[0] as the target buffer.
    441          * Set pointer and zero the buffer. In the kernel, this
    442          * may be a user buffer in which case we have to remap it.
    443          */
    444 	xorNode->results[0] = failedPDA->bufPtr;
    445 	memset(failedPDA->bufPtr, 0, rf_RaidAddressToByte(raidPtr,
    446 		failedPDA->numSector));
    447 
    448 	/* connect nodes to form graph */
    449 	/* connect the header to the block node */
    450 	RF_ASSERT(dag_h->numSuccedents == 1);
    451 	RF_ASSERT(blockNode->numAntecedents == 0);
    452 	dag_h->succedents[0] = blockNode;
    453 
    454 	/* connect the block node to the read nodes */
    455 	RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
    456 	RF_ASSERT(rpNode->numAntecedents == 1);
    457 	blockNode->succedents[0] = rpNode;
    458 	rpNode->antecedents[0] = blockNode;
    459 	rpNode->antType[0] = rf_control;
    460 	for (i = 0; i < nRrdNodes; i++) {
    461 		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
    462 		blockNode->succedents[1 + i] = &rrdNodes[i];
    463 		rrdNodes[i].antecedents[0] = blockNode;
    464 		rrdNodes[i].antType[0] = rf_control;
    465 	}
    466 	for (i = 0; i < nRudNodes; i++) {
    467 		RF_ASSERT(rudNodes[i].numSuccedents == 1);
    468 		blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
    469 		rudNodes[i].antecedents[0] = blockNode;
    470 		rudNodes[i].antType[0] = rf_control;
    471 	}
    472 
    473 	/* connect the read nodes to the xor node */
    474 	RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
    475 	RF_ASSERT(rpNode->numSuccedents == 1);
    476 	rpNode->succedents[0] = xorNode;
    477 	xorNode->antecedents[0] = rpNode;
    478 	xorNode->antType[0] = rf_trueData;
    479 	for (i = 0; i < nRrdNodes; i++) {
    480 		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
    481 		rrdNodes[i].succedents[0] = xorNode;
    482 		xorNode->antecedents[1 + i] = &rrdNodes[i];
    483 		xorNode->antType[1 + i] = rf_trueData;
    484 	}
    485 	for (i = 0; i < nRudNodes; i++) {
    486 		RF_ASSERT(rudNodes[i].numSuccedents == 1);
    487 		rudNodes[i].succedents[0] = xorNode;
    488 		xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
    489 		xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
    490 	}
    491 
    492 	/* connect the xor node to the commit node */
    493 	RF_ASSERT(xorNode->numSuccedents == 1);
    494 	RF_ASSERT(commitNode->numAntecedents == 1);
    495 	xorNode->succedents[0] = commitNode;
    496 	commitNode->antecedents[0] = xorNode;
    497 	commitNode->antType[0] = rf_control;
    498 
    499 	/* connect the termNode to the commit node */
    500 	RF_ASSERT(commitNode->numSuccedents == 1);
    501 	RF_ASSERT(termNode->numAntecedents == 1);
    502 	RF_ASSERT(termNode->numSuccedents == 0);
    503 	commitNode->succedents[0] = termNode;
    504 	termNode->antType[0] = rf_control;
    505 	termNode->antecedents[0] = commitNode;
    506 }
    507 
    508 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
    509 /******************************************************************************
    510  * Create a degraded read DAG for Chained Declustering
    511  *
    512  * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
    513  *
    514  * The "Rd" node reads data from the surviving disk in the mirror pair
    515  *   Rpd - read of primary copy
    516  *   Rsd - read of secondary copy
    517  *
    518  * Parameters:  raidPtr   - description of the physical array
    519  *              asmap     - logical & physical addresses for this access
    520  *              bp        - buffer ptr (for holding write data)
    521  *              flags     - general flags (e.g. disk locking)
    522  *              allocList - list of memory allocated in DAG creation
    523  *****************************************************************************/
    524 
    525 void
    526 rf_CreateRaidCDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    527 			      RF_DagHeader_t *dag_h, void *bp,
    528 			      RF_RaidAccessFlags_t flags,
    529 			      RF_AllocListElem_t *allocList)
    530 {
    531 	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
    532 	RF_StripeNum_t parityStripeID;
    533 	int     useMirror, i, shiftable;
    534 	RF_ReconUnitNum_t which_ru;
    535 	RF_PhysDiskAddr_t *pda;
    536 
    537 	if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
    538 		shiftable = RF_TRUE;
    539 	} else {
    540 		shiftable = RF_FALSE;
    541 	}
    542 	useMirror = 0;
    543 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    544 	    asmap->raidAddress, &which_ru);
    545 
    546 	if (rf_dagDebug) {
    547 		printf("[Creating RAID C degraded read DAG]\n");
    548 	}
    549 	dag_h->creator = "RaidCDegradedReadDAG";
    550 	/* alloc the Wnd nodes and the Wmir node */
    551 	if (asmap->numDataFailed == 0)
    552 		useMirror = RF_FALSE;
    553 	else
    554 		useMirror = RF_TRUE;
    555 
    556 	/* total number of nodes = 1 + (block + commit + terminator) */
    557 	RF_MallocAndAdd(nodes, 4 * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    558 	i = 0;
    559 	rdNode = &nodes[i];
    560 	i++;
    561 	blockNode = &nodes[i];
    562 	i++;
    563 	commitNode = &nodes[i];
    564 	i++;
    565 	termNode = &nodes[i];
    566 	i++;
    567 
    568 	/*
    569          * This dag can not commit until the commit node is reached.
    570          * Errors prior to the commit point imply the dag has failed
    571          * and must be retried.
    572          */
    573 	dag_h->numCommitNodes = 1;
    574 	dag_h->numCommits = 0;
    575 	dag_h->numSuccedents = 1;
    576 
    577 	/* initialize the block, commit, and terminator nodes */
    578 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    579 	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    580 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    581 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    582 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    583 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    584 
    585 	pda = asmap->physInfo;
    586 	RF_ASSERT(pda != NULL);
    587 	/* parityInfo must describe entire parity unit */
    588 	RF_ASSERT(asmap->parityInfo->next == NULL);
    589 
    590 	/* initialize the data node */
    591 	if (!useMirror) {
    592 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    593 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
    594 		if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
    595 			/* shift this read to the next disk in line */
    596 			rdNode->params[0].p = asmap->parityInfo;
    597 			rdNode->params[1].p = pda->bufPtr;
    598 			rdNode->params[2].v = parityStripeID;
    599 			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    600 		} else {
    601 			/* read primary copy */
    602 			rdNode->params[0].p = pda;
    603 			rdNode->params[1].p = pda->bufPtr;
    604 			rdNode->params[2].v = parityStripeID;
    605 			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    606 		}
    607 	} else {
    608 		/* read secondary copy of data */
    609 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    610 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
    611 		rdNode->params[0].p = asmap->parityInfo;
    612 		rdNode->params[1].p = pda->bufPtr;
    613 		rdNode->params[2].v = parityStripeID;
    614 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    615 	}
    616 
    617 	/* connect header to block node */
    618 	RF_ASSERT(dag_h->numSuccedents == 1);
    619 	RF_ASSERT(blockNode->numAntecedents == 0);
    620 	dag_h->succedents[0] = blockNode;
    621 
    622 	/* connect block node to rdnode */
    623 	RF_ASSERT(blockNode->numSuccedents == 1);
    624 	RF_ASSERT(rdNode->numAntecedents == 1);
    625 	blockNode->succedents[0] = rdNode;
    626 	rdNode->antecedents[0] = blockNode;
    627 	rdNode->antType[0] = rf_control;
    628 
    629 	/* connect rdnode to commit node */
    630 	RF_ASSERT(rdNode->numSuccedents == 1);
    631 	RF_ASSERT(commitNode->numAntecedents == 1);
    632 	rdNode->succedents[0] = commitNode;
    633 	commitNode->antecedents[0] = rdNode;
    634 	commitNode->antType[0] = rf_control;
    635 
    636 	/* connect commit node to terminator */
    637 	RF_ASSERT(commitNode->numSuccedents == 1);
    638 	RF_ASSERT(termNode->numAntecedents == 1);
    639 	RF_ASSERT(termNode->numSuccedents == 0);
    640 	commitNode->succedents[0] = termNode;
    641 	termNode->antecedents[0] = commitNode;
    642 	termNode->antType[0] = rf_control;
    643 }
    644 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
    645 
    646 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
    647 /*
    648  * XXX move this elsewhere?
    649  */
    650 void
    651 rf_DD_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    652 			       RF_PhysDiskAddr_t **pdap, int *nNodep,
    653 			       RF_PhysDiskAddr_t **pqpdap, int *nPQNodep,
    654 			       RF_AllocListElem_t *allocList)
    655 {
    656 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    657 	int     PDAPerDisk, i;
    658 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    659 	int     numDataCol = layoutPtr->numDataCol;
    660 	int     state;
    661 	RF_SectorNum_t suoff, suend;
    662 	unsigned firstDataCol, napdas, count;
    663 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
    664 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    665 	RF_PhysDiskAddr_t *pda_p;
    666 	RF_PhysDiskAddr_t *phys_p;
    667 	RF_RaidAddr_t sosAddr;
    668 
    669 	/* determine how many pda's we will have to generate per unaccess
    670 	 * stripe. If there is only one failed data unit, it is one; if two,
    671 	 * possibly two, depending wether they overlap. */
    672 
    673 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    674 	fone_end = fone_start + fone->numSector;
    675 
    676 #define CONS_PDA(if,start,num) \
    677   pda_p->col = asmap->if->col; \
    678   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    679   pda_p->numSector = num; \
    680   pda_p->next = NULL; \
    681   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
    682 
    683 	if (asmap->numDataFailed == 1) {
    684 		PDAPerDisk = 1;
    685 		state = 1;
    686 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    687 		pda_p = *pqpdap;
    688 		/* build p */
    689 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    690 		pda_p->type = RF_PDA_TYPE_PARITY;
    691 		pda_p++;
    692 		/* build q */
    693 		CONS_PDA(qInfo, fone_start, fone->numSector);
    694 		pda_p->type = RF_PDA_TYPE_Q;
    695 	} else {
    696 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    697 		ftwo_end = ftwo_start + ftwo->numSector;
    698 		if (fone->numSector + ftwo->numSector > secPerSU) {
    699 			PDAPerDisk = 1;
    700 			state = 2;
    701 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    702 			pda_p = *pqpdap;
    703 			CONS_PDA(parityInfo, 0, secPerSU);
    704 			pda_p->type = RF_PDA_TYPE_PARITY;
    705 			pda_p++;
    706 			CONS_PDA(qInfo, 0, secPerSU);
    707 			pda_p->type = RF_PDA_TYPE_Q;
    708 		} else {
    709 			PDAPerDisk = 2;
    710 			state = 3;
    711 			/* four of them, fone, then ftwo */
    712 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    713 			pda_p = *pqpdap;
    714 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    715 			pda_p->type = RF_PDA_TYPE_PARITY;
    716 			pda_p++;
    717 			CONS_PDA(qInfo, fone_start, fone->numSector);
    718 			pda_p->type = RF_PDA_TYPE_Q;
    719 			pda_p++;
    720 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    721 			pda_p->type = RF_PDA_TYPE_PARITY;
    722 			pda_p++;
    723 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    724 			pda_p->type = RF_PDA_TYPE_Q;
    725 		}
    726 	}
    727 	/* figure out number of nonaccessed pda */
    728 	napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
    729 	*nPQNodep = PDAPerDisk;
    730 
    731 	/* sweep over the over accessed pda's, figuring out the number of
    732 	 * additional pda's to generate. Of course, skip the failed ones */
    733 
    734 	count = 0;
    735 	for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
    736 		if ((pda_p == fone) || (pda_p == ftwo))
    737 			continue;
    738 		suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
    739 		suend = suoff + pda_p->numSector;
    740 		switch (state) {
    741 		case 1:	/* one failed PDA to overlap */
    742 			/* if a PDA doesn't contain the failed unit, it can
    743 			 * only miss the start or end, not both */
    744 			if ((suoff > fone_start) || (suend < fone_end))
    745 				count++;
    746 			break;
    747 		case 2:	/* whole stripe */
    748 			if (suoff)	/* leak at begining */
    749 				count++;
    750 			if (suend < numDataCol)	/* leak at end */
    751 				count++;
    752 			break;
    753 		case 3:	/* two disjoint units */
    754 			if ((suoff > fone_start) || (suend < fone_end))
    755 				count++;
    756 			if ((suoff > ftwo_start) || (suend < ftwo_end))
    757 				count++;
    758 			break;
    759 		default:
    760 			RF_PANIC();
    761 		}
    762 	}
    763 
    764 	napdas += count;
    765 	*nNodep = napdas;
    766 	if (napdas == 0)
    767 		return;		/* short circuit */
    768 
    769 	/* allocate up our list of pda's */
    770 
    771 	RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
    772 			(RF_PhysDiskAddr_t *), allocList);
    773 	*pdap = pda_p;
    774 
    775 	/* linkem together */
    776 	for (i = 0; i < (napdas - 1); i++)
    777 		pda_p[i].next = pda_p + (i + 1);
    778 
    779 	/* march through the one's up to the first accessed disk */
    780 	firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
    781 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    782 	for (i = 0; i < firstDataCol; i++) {
    783 		if ((pda_p - (*pdap)) == napdas)
    784 			continue;
    785 		pda_p->type = RF_PDA_TYPE_DATA;
    786 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    787 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    788 		/* skip over dead disks */
    789 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    790 			continue;
    791 		switch (state) {
    792 		case 1:	/* fone */
    793 			pda_p->numSector = fone->numSector;
    794 			pda_p->raidAddress += fone_start;
    795 			pda_p->startSector += fone_start;
    796 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    797 			break;
    798 		case 2:	/* full stripe */
    799 			pda_p->numSector = secPerSU;
    800 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    801 			break;
    802 		case 3:	/* two slabs */
    803 			pda_p->numSector = fone->numSector;
    804 			pda_p->raidAddress += fone_start;
    805 			pda_p->startSector += fone_start;
    806 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    807 			pda_p++;
    808 			pda_p->type = RF_PDA_TYPE_DATA;
    809 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    810 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    811 			pda_p->numSector = ftwo->numSector;
    812 			pda_p->raidAddress += ftwo_start;
    813 			pda_p->startSector += ftwo_start;
    814 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    815 			break;
    816 		default:
    817 			RF_PANIC();
    818 		}
    819 		pda_p++;
    820 	}
    821 
    822 	/* march through the touched stripe units */
    823 	for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
    824 		if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
    825 			continue;
    826 		suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
    827 		suend = suoff + phys_p->numSector;
    828 		switch (state) {
    829 		case 1:	/* single buffer */
    830 			if (suoff > fone_start) {
    831 				RF_ASSERT(suend >= fone_end);
    832 				/* The data read starts after the mapped
    833 				 * access, snip off the begining */
    834 				pda_p->numSector = suoff - fone_start;
    835 				pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
    836 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    837 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    838 				pda_p++;
    839 			}
    840 			if (suend < fone_end) {
    841 				RF_ASSERT(suoff <= fone_start);
    842 				/* The data read stops before the end of the
    843 				 * failed access, extend */
    844 				pda_p->numSector = fone_end - suend;
    845 				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    846 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    847 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    848 				pda_p++;
    849 			}
    850 			break;
    851 		case 2:	/* whole stripe unit */
    852 			RF_ASSERT((suoff == 0) || (suend == secPerSU));
    853 			if (suend < secPerSU) {	/* short read, snip from end
    854 						 * on */
    855 				pda_p->numSector = secPerSU - suend;
    856 				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    857 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    858 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    859 				pda_p++;
    860 			} else
    861 				if (suoff > 0) {	/* short at front */
    862 					pda_p->numSector = suoff;
    863 					pda_p->raidAddress = sosAddr + (i * secPerSU);
    864 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    865 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    866 					pda_p++;
    867 				}
    868 			break;
    869 		case 3:	/* two nonoverlapping failures */
    870 			if ((suoff > fone_start) || (suend < fone_end)) {
    871 				if (suoff > fone_start) {
    872 					RF_ASSERT(suend >= fone_end);
    873 					/* The data read starts after the
    874 					 * mapped access, snip off the
    875 					 * begining */
    876 					pda_p->numSector = suoff - fone_start;
    877 					pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
    878 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    879 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    880 					pda_p++;
    881 				}
    882 				if (suend < fone_end) {
    883 					RF_ASSERT(suoff <= fone_start);
    884 					/* The data read stops before the end
    885 					 * of the failed access, extend */
    886 					pda_p->numSector = fone_end - suend;
    887 					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    888 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    889 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    890 					pda_p++;
    891 				}
    892 			}
    893 			if ((suoff > ftwo_start) || (suend < ftwo_end)) {
    894 				if (suoff > ftwo_start) {
    895 					RF_ASSERT(suend >= ftwo_end);
    896 					/* The data read starts after the
    897 					 * mapped access, snip off the
    898 					 * begining */
    899 					pda_p->numSector = suoff - ftwo_start;
    900 					pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
    901 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    902 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    903 					pda_p++;
    904 				}
    905 				if (suend < ftwo_end) {
    906 					RF_ASSERT(suoff <= ftwo_start);
    907 					/* The data read stops before the end
    908 					 * of the failed access, extend */
    909 					pda_p->numSector = ftwo_end - suend;
    910 					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    911 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    912 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    913 					pda_p++;
    914 				}
    915 			}
    916 			break;
    917 		default:
    918 			RF_PANIC();
    919 		}
    920 	}
    921 
    922 	/* after the last accessed disk */
    923 	for (; i < numDataCol; i++) {
    924 		if ((pda_p - (*pdap)) == napdas)
    925 			continue;
    926 		pda_p->type = RF_PDA_TYPE_DATA;
    927 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    928 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    929 		/* skip over dead disks */
    930 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    931 			continue;
    932 		switch (state) {
    933 		case 1:	/* fone */
    934 			pda_p->numSector = fone->numSector;
    935 			pda_p->raidAddress += fone_start;
    936 			pda_p->startSector += fone_start;
    937 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    938 			break;
    939 		case 2:	/* full stripe */
    940 			pda_p->numSector = secPerSU;
    941 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    942 			break;
    943 		case 3:	/* two slabs */
    944 			pda_p->numSector = fone->numSector;
    945 			pda_p->raidAddress += fone_start;
    946 			pda_p->startSector += fone_start;
    947 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    948 			pda_p++;
    949 			pda_p->type = RF_PDA_TYPE_DATA;
    950 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    951 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    952 			pda_p->numSector = ftwo->numSector;
    953 			pda_p->raidAddress += ftwo_start;
    954 			pda_p->startSector += ftwo_start;
    955 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    956 			break;
    957 		default:
    958 			RF_PANIC();
    959 		}
    960 		pda_p++;
    961 	}
    962 
    963 	RF_ASSERT(pda_p - *pdap == napdas);
    964 	return;
    965 }
    966 #define INIT_DISK_NODE(node,name) \
    967 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
    968 (node)->succedents[0] = unblockNode; \
    969 (node)->succedents[1] = recoveryNode; \
    970 (node)->antecedents[0] = blockNode; \
    971 (node)->antType[0] = rf_control
    972 
    973 #define DISK_NODE_PARAMS(_node_,_p_) \
    974   (_node_).params[0].p = _p_ ; \
    975   (_node_).params[1].p = (_p_)->bufPtr; \
    976   (_node_).params[2].v = parityStripeID; \
    977   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
    978 
    979 void
    980 rf_DoubleDegRead(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    981 		 RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags,
    982 		 RF_AllocListElem_t *allocList,
    983 		 char *redundantReadNodeName, char *recoveryNodeName,
    984 		 int (*recovFunc) (RF_DagNode_t *))
    985 {
    986 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    987 	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
    988 	       *unblockNode, *rpNodes, *rqNodes, *termNode;
    989 	RF_PhysDiskAddr_t *pda, *pqPDAs;
    990 	RF_PhysDiskAddr_t *npdas;
    991 	int     nNodes, nRrdNodes, nRudNodes, i;
    992 	RF_ReconUnitNum_t which_ru;
    993 	int     nReadNodes, nPQNodes;
    994 	RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
    995 	RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
    996 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
    997 
    998 	if (rf_dagDebug)
    999 		printf("[Creating Double Degraded Read DAG]\n");
   1000 	rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
   1001 
   1002 	nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
   1003 	nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
   1004 	nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
   1005 
   1006 	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1007 	i = 0;
   1008 	blockNode = &nodes[i];
   1009 	i += 1;
   1010 	unblockNode = &nodes[i];
   1011 	i += 1;
   1012 	recoveryNode = &nodes[i];
   1013 	i += 1;
   1014 	termNode = &nodes[i];
   1015 	i += 1;
   1016 	rudNodes = &nodes[i];
   1017 	i += nRudNodes;
   1018 	rrdNodes = &nodes[i];
   1019 	i += nRrdNodes;
   1020 	rpNodes = &nodes[i];
   1021 	i += nPQNodes;
   1022 	rqNodes = &nodes[i];
   1023 	i += nPQNodes;
   1024 	RF_ASSERT(i == nNodes);
   1025 
   1026 	dag_h->numSuccedents = 1;
   1027 	dag_h->succedents[0] = blockNode;
   1028 	dag_h->creator = "DoubleDegRead";
   1029 	dag_h->numCommits = 0;
   1030 	dag_h->numCommitNodes = 1;	/* unblock */
   1031 
   1032 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
   1033 	termNode->antecedents[0] = unblockNode;
   1034 	termNode->antType[0] = rf_control;
   1035 	termNode->antecedents[1] = recoveryNode;
   1036 	termNode->antType[1] = rf_control;
   1037 
   1038 	/* init the block and unblock nodes */
   1039 	/* The block node has all nodes except itself, unblock and recovery as
   1040 	 * successors. Similarly for predecessors of the unblock. */
   1041 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1042 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
   1043 
   1044 	for (i = 0; i < nReadNodes; i++) {
   1045 		blockNode->succedents[i] = rudNodes + i;
   1046 		unblockNode->antecedents[i] = rudNodes + i;
   1047 		unblockNode->antType[i] = rf_control;
   1048 	}
   1049 	unblockNode->succedents[0] = termNode;
   1050 
   1051 	/* The recovery node has all the reads as predecessors, and the term
   1052 	 * node as successors. It gets a pda as a param from each of the read
   1053 	 * nodes plus the raidPtr. For each failed unit is has a result pda. */
   1054 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
   1055 	    1,			/* succesors */
   1056 	    nReadNodes,		/* preds */
   1057 	    nReadNodes + 2,	/* params */
   1058 	    asmap->numDataFailed,	/* results */
   1059 	    dag_h, recoveryNodeName, allocList);
   1060 
   1061 	recoveryNode->succedents[0] = termNode;
   1062 	for (i = 0; i < nReadNodes; i++) {
   1063 		recoveryNode->antecedents[i] = rudNodes + i;
   1064 		recoveryNode->antType[i] = rf_trueData;
   1065 	}
   1066 
   1067 	/* build the read nodes, then come back and fill in recovery params
   1068 	 * and results */
   1069 	pda = asmap->physInfo;
   1070 	for (i = 0; i < nRudNodes; pda = pda->next) {
   1071 		if ((pda == failedPDA) || (pda == failedPDAtwo))
   1072 			continue;
   1073 		INIT_DISK_NODE(rudNodes + i, "Rud");
   1074 		RF_ASSERT(pda);
   1075 		DISK_NODE_PARAMS(rudNodes[i], pda);
   1076 		i++;
   1077 	}
   1078 
   1079 	pda = npdas;
   1080 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
   1081 		INIT_DISK_NODE(rrdNodes + i, "Rrd");
   1082 		RF_ASSERT(pda);
   1083 		DISK_NODE_PARAMS(rrdNodes[i], pda);
   1084 	}
   1085 
   1086 	/* redundancy pdas */
   1087 	pda = pqPDAs;
   1088 	INIT_DISK_NODE(rpNodes, "Rp");
   1089 	RF_ASSERT(pda);
   1090 	DISK_NODE_PARAMS(rpNodes[0], pda);
   1091 	pda++;
   1092 	INIT_DISK_NODE(rqNodes, redundantReadNodeName);
   1093 	RF_ASSERT(pda);
   1094 	DISK_NODE_PARAMS(rqNodes[0], pda);
   1095 	if (nPQNodes == 2) {
   1096 		pda++;
   1097 		INIT_DISK_NODE(rpNodes + 1, "Rp");
   1098 		RF_ASSERT(pda);
   1099 		DISK_NODE_PARAMS(rpNodes[1], pda);
   1100 		pda++;
   1101 		INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
   1102 		RF_ASSERT(pda);
   1103 		DISK_NODE_PARAMS(rqNodes[1], pda);
   1104 	}
   1105 	/* fill in recovery node params */
   1106 	for (i = 0; i < nReadNodes; i++)
   1107 		recoveryNode->params[i] = rudNodes[i].params[0];	/* pda */
   1108 	recoveryNode->params[i++].p = (void *) raidPtr;
   1109 	recoveryNode->params[i++].p = (void *) asmap;
   1110 	recoveryNode->results[0] = failedPDA;
   1111 	if (asmap->numDataFailed == 2)
   1112 		recoveryNode->results[1] = failedPDAtwo;
   1113 
   1114 	/* zero fill the target data buffers? */
   1115 }
   1116 
   1117 #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
   1118