Home | History | Annotate | Line # | Download | only in raidframe
rf_dagdegrd.c revision 1.19
      1 /*	$NetBSD: rf_dagdegrd.c,v 1.19 2004/03/05 03:22:05 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagdegrd.c
     31  *
     32  * code for creating degraded read DAGs
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.19 2004/03/05 03:22:05 oster Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_general.h"
     47 #include "rf_dagdegrd.h"
     48 
     49 
     50 /******************************************************************************
     51  *
     52  * General comments on DAG creation:
     53  *
     54  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     55  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     56  * is reached, the execution engine will halt forward execution and work
     57  * backward through the graph, executing the undo functions.  Assuming that
     58  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     59  * does not make changes to permanent state, the graph will fail atomically.
     60  * If an error occurs after the Cmt node executes, the engine will roll-forward
     61  * through the graph, blindly executing nodes until it reaches the end.
     62  * If a graph reaches the end, it is assumed to have completed successfully.
     63  *
     64  * A graph has only 1 Cmt node.
     65  *
     66  */
     67 
     68 
     69 /******************************************************************************
     70  *
     71  * The following wrappers map the standard DAG creation interface to the
     72  * DAG creation routines.  Additionally, these wrappers enable experimentation
     73  * with new DAG structures by providing an extra level of indirection, allowing
     74  * the DAG creation routines to be replaced at this single point.
     75  */
     76 
     77 void
     78 rf_CreateRaidFiveDegradedReadDAG(RF_Raid_t *raidPtr,
     79 				 RF_AccessStripeMap_t *asmap,
     80 				 RF_DagHeader_t *dag_h,
     81 				 void *bp,
     82 				 RF_RaidAccessFlags_t flags,
     83 				 RF_AllocListElem_t *allocList)
     84 {
     85 	rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     86 	    &rf_xorRecoveryFuncs);
     87 }
     88 
     89 
     90 /******************************************************************************
     91  *
     92  * DAG creation code begins here
     93  */
     94 
     95 
     96 /******************************************************************************
     97  * Create a degraded read DAG for RAID level 1
     98  *
     99  * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
    100  *
    101  * The "Rd" node reads data from the surviving disk in the mirror pair
    102  *   Rpd - read of primary copy
    103  *   Rsd - read of secondary copy
    104  *
    105  * Parameters:  raidPtr   - description of the physical array
    106  *              asmap     - logical & physical addresses for this access
    107  *              bp        - buffer ptr (for holding write data)
    108  *              flags     - general flags (e.g. disk locking)
    109  *              allocList - list of memory allocated in DAG creation
    110  *****************************************************************************/
    111 
    112 void
    113 rf_CreateRaidOneDegradedReadDAG(RF_Raid_t *raidPtr,
    114 				RF_AccessStripeMap_t *asmap,
    115 				RF_DagHeader_t *dag_h,
    116 				void *bp,
    117 				RF_RaidAccessFlags_t flags,
    118 				RF_AllocListElem_t *allocList)
    119 {
    120 	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
    121 	RF_StripeNum_t parityStripeID;
    122 	RF_ReconUnitNum_t which_ru;
    123 	RF_PhysDiskAddr_t *pda;
    124 	int     useMirror, i;
    125 
    126 	useMirror = 0;
    127 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    128 	    asmap->raidAddress, &which_ru);
    129 #if RF_DEBUG_DAG
    130 	if (rf_dagDebug) {
    131 		printf("[Creating RAID level 1 degraded read DAG]\n");
    132 	}
    133 #endif
    134 	dag_h->creator = "RaidOneDegradedReadDAG";
    135 	/* alloc the Wnd nodes and the Wmir node */
    136 	if (asmap->numDataFailed == 0)
    137 		useMirror = RF_FALSE;
    138 	else
    139 		useMirror = RF_TRUE;
    140 
    141 	/* total number of nodes = 1 + (block + commit + terminator) */
    142 	RF_MallocAndAdd(nodes, 4 * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    143 	i = 0;
    144 	rdNode = &nodes[i];
    145 	i++;
    146 	blockNode = &nodes[i];
    147 	i++;
    148 	commitNode = &nodes[i];
    149 	i++;
    150 	termNode = &nodes[i];
    151 	i++;
    152 
    153 	/* this dag can not commit until the commit node is reached.   errors
    154 	 * prior to the commit point imply the dag has failed and must be
    155 	 * retried */
    156 	dag_h->numCommitNodes = 1;
    157 	dag_h->numCommits = 0;
    158 	dag_h->numSuccedents = 1;
    159 
    160 	/* initialize the block, commit, and terminator nodes */
    161 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    162 	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    163 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    164 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    165 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    166 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    167 
    168 	pda = asmap->physInfo;
    169 	RF_ASSERT(pda != NULL);
    170 	/* parityInfo must describe entire parity unit */
    171 	RF_ASSERT(asmap->parityInfo->next == NULL);
    172 
    173 	/* initialize the data node */
    174 	if (!useMirror) {
    175 		/* read primary copy of data */
    176 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    177 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
    178 		rdNode->params[0].p = pda;
    179 		rdNode->params[1].p = pda->bufPtr;
    180 		rdNode->params[2].v = parityStripeID;
    181 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    182 						       which_ru);
    183 	} else {
    184 		/* read secondary copy of data */
    185 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    186 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
    187 		rdNode->params[0].p = asmap->parityInfo;
    188 		rdNode->params[1].p = pda->bufPtr;
    189 		rdNode->params[2].v = parityStripeID;
    190 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    191 						       which_ru);
    192 	}
    193 
    194 	/* connect header to block node */
    195 	RF_ASSERT(dag_h->numSuccedents == 1);
    196 	RF_ASSERT(blockNode->numAntecedents == 0);
    197 	dag_h->succedents[0] = blockNode;
    198 
    199 	/* connect block node to rdnode */
    200 	RF_ASSERT(blockNode->numSuccedents == 1);
    201 	RF_ASSERT(rdNode->numAntecedents == 1);
    202 	blockNode->succedents[0] = rdNode;
    203 	rdNode->antecedents[0] = blockNode;
    204 	rdNode->antType[0] = rf_control;
    205 
    206 	/* connect rdnode to commit node */
    207 	RF_ASSERT(rdNode->numSuccedents == 1);
    208 	RF_ASSERT(commitNode->numAntecedents == 1);
    209 	rdNode->succedents[0] = commitNode;
    210 	commitNode->antecedents[0] = rdNode;
    211 	commitNode->antType[0] = rf_control;
    212 
    213 	/* connect commit node to terminator */
    214 	RF_ASSERT(commitNode->numSuccedents == 1);
    215 	RF_ASSERT(termNode->numAntecedents == 1);
    216 	RF_ASSERT(termNode->numSuccedents == 0);
    217 	commitNode->succedents[0] = termNode;
    218 	termNode->antecedents[0] = commitNode;
    219 	termNode->antType[0] = rf_control;
    220 }
    221 
    222 
    223 
    224 /******************************************************************************
    225  *
    226  * creates a DAG to perform a degraded-mode read of data within one stripe.
    227  * This DAG is as follows:
    228  *
    229  * Hdr -> Block -> Rud -> Xor -> Cmt -> T
    230  *              -> Rrd ->
    231  *              -> Rp -->
    232  *
    233  * Each R node is a successor of the L node
    234  * One successor arc from each R node goes to C, and the other to X
    235  * There is one Rud for each chunk of surviving user data requested by the
    236  * user, and one Rrd for each chunk of surviving user data _not_ being read by
    237  * the user
    238  * R = read, ud = user data, rd = recovery (surviving) data, p = parity
    239  * X = XOR, C = Commit, T = terminate
    240  *
    241  * The block node guarantees a single source node.
    242  *
    243  * Note:  The target buffer for the XOR node is set to the actual user buffer
    244  * where the failed data is supposed to end up.  This buffer is zero'd by the
    245  * code here.  Thus, if you create a degraded read dag, use it, and then
    246  * re-use, you have to be sure to zero the target buffer prior to the re-use.
    247  *
    248  * The recfunc argument at the end specifies the name and function used for
    249  * the redundancy
    250  * recovery function.
    251  *
    252  *****************************************************************************/
    253 
    254 void
    255 rf_CreateDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    256 			 RF_DagHeader_t *dag_h, void *bp,
    257 			 RF_RaidAccessFlags_t flags,
    258 			 RF_AllocListElem_t *allocList,
    259 			 const RF_RedFuncs_t *recFunc)
    260 {
    261 	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
    262 	RF_DagNode_t *commitNode, *rpNode, *termNode;
    263 	int     nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
    264 	int     j, paramNum;
    265 	RF_SectorCount_t sectorsPerSU;
    266 	RF_ReconUnitNum_t which_ru;
    267 	char   *overlappingPDAs;/* a temporary array of flags */
    268 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    269 	RF_PhysDiskAddr_t *pda, *parityPDA;
    270 	RF_StripeNum_t parityStripeID;
    271 	RF_PhysDiskAddr_t *failedPDA;
    272 	RF_RaidLayout_t *layoutPtr;
    273 	char   *rpBuf;
    274 
    275 	layoutPtr = &(raidPtr->Layout);
    276 	/* failedPDA points to the pda within the asm that targets the failed
    277 	 * disk */
    278 	failedPDA = asmap->failedPDAs[0];
    279 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
    280 	    asmap->raidAddress, &which_ru);
    281 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    282 
    283 #if RF_DEBUG_DAG
    284 	if (rf_dagDebug) {
    285 		printf("[Creating degraded read DAG]\n");
    286 	}
    287 #endif
    288 	RF_ASSERT(asmap->numDataFailed == 1);
    289 	dag_h->creator = "DegradedReadDAG";
    290 
    291 	/*
    292          * generate two ASMs identifying the surviving data we need
    293          * in order to recover the lost data
    294          */
    295 
    296 	/* overlappingPDAs array must be zero'd */
    297 	RF_Malloc(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char), (char *));
    298 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
    299 	    &rpBuf, overlappingPDAs, allocList);
    300 
    301 	/*
    302          * create all the nodes at once
    303          *
    304          * -1 because no access is generated for the failed pda
    305          */
    306 	nRudNodes = asmap->numStripeUnitsAccessed - 1;
    307 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    308 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    309 	nNodes = 5 + nRudNodes + nRrdNodes;	/* lock, unlock, xor, Rp, Rud,
    310 						 * Rrd */
    311 	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *),
    312 	    allocList);
    313 	i = 0;
    314 	blockNode = &nodes[i];
    315 	i++;
    316 	commitNode = &nodes[i];
    317 	i++;
    318 	xorNode = &nodes[i];
    319 	i++;
    320 	rpNode = &nodes[i];
    321 	i++;
    322 	termNode = &nodes[i];
    323 	i++;
    324 	rudNodes = &nodes[i];
    325 	i += nRudNodes;
    326 	rrdNodes = &nodes[i];
    327 	i += nRrdNodes;
    328 	RF_ASSERT(i == nNodes);
    329 
    330 	/* initialize nodes */
    331 	dag_h->numCommitNodes = 1;
    332 	dag_h->numCommits = 0;
    333 	/* this dag can not commit until the commit node is reached errors
    334 	 * prior to the commit point imply the dag has failed */
    335 	dag_h->numSuccedents = 1;
    336 
    337 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    338 	    NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
    339 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    340 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    341 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    342 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    343 	rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
    344 	    NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
    345 	    recFunc->SimpleName, allocList);
    346 
    347 	/* fill in the Rud nodes */
    348 	for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
    349 		if (pda == failedPDA) {
    350 			i--;
    351 			continue;
    352 		}
    353 		rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
    354 		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    355 		    "Rud", allocList);
    356 		RF_ASSERT(pda);
    357 		rudNodes[i].params[0].p = pda;
    358 		rudNodes[i].params[1].p = pda->bufPtr;
    359 		rudNodes[i].params[2].v = parityStripeID;
    360 		rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    361 	}
    362 
    363 	/* fill in the Rrd nodes */
    364 	i = 0;
    365 	if (new_asm_h[0]) {
    366 		for (pda = new_asm_h[0]->stripeMap->physInfo;
    367 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    368 		    i++, pda = pda->next) {
    369 			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
    370 			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
    371 			    dag_h, "Rrd", allocList);
    372 			RF_ASSERT(pda);
    373 			rrdNodes[i].params[0].p = pda;
    374 			rrdNodes[i].params[1].p = pda->bufPtr;
    375 			rrdNodes[i].params[2].v = parityStripeID;
    376 			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    377 		}
    378 	}
    379 	if (new_asm_h[1]) {
    380 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    381 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    382 		    j++, pda = pda->next) {
    383 			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
    384 			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
    385 			    dag_h, "Rrd", allocList);
    386 			RF_ASSERT(pda);
    387 			rrdNodes[i + j].params[0].p = pda;
    388 			rrdNodes[i + j].params[1].p = pda->bufPtr;
    389 			rrdNodes[i + j].params[2].v = parityStripeID;
    390 			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    391 		}
    392 	}
    393 	/* make a PDA for the parity unit */
    394 	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    395 	parityPDA->col = asmap->parityInfo->col;
    396 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    397 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    398 	parityPDA->numSector = failedPDA->numSector;
    399 
    400 	/* initialize the Rp node */
    401 	rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    402 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
    403 	rpNode->params[0].p = parityPDA;
    404 	rpNode->params[1].p = rpBuf;
    405 	rpNode->params[2].v = parityStripeID;
    406 	rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    407 
    408 	/*
    409          * the last and nastiest step is to assign all
    410          * the parameters of the Xor node
    411          */
    412 	paramNum = 0;
    413 	for (i = 0; i < nRrdNodes; i++) {
    414 		/* all the Rrd nodes need to be xored together */
    415 		xorNode->params[paramNum++] = rrdNodes[i].params[0];
    416 		xorNode->params[paramNum++] = rrdNodes[i].params[1];
    417 	}
    418 	for (i = 0; i < nRudNodes; i++) {
    419 		/* any Rud nodes that overlap the failed access need to be
    420 		 * xored in */
    421 		if (overlappingPDAs[i]) {
    422 			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    423 			memcpy((char *) pda, (char *) rudNodes[i].params[0].p, sizeof(RF_PhysDiskAddr_t));
    424 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    425 			xorNode->params[paramNum++].p = pda;
    426 			xorNode->params[paramNum++].p = pda->bufPtr;
    427 		}
    428 	}
    429 	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
    430 
    431 	/* install parity pda as last set of params to be xor'd */
    432 	xorNode->params[paramNum++].p = parityPDA;
    433 	xorNode->params[paramNum++].p = rpBuf;
    434 
    435 	/*
    436          * the last 2 params to the recovery xor node are
    437          * the failed PDA and the raidPtr
    438          */
    439 	xorNode->params[paramNum++].p = failedPDA;
    440 	xorNode->params[paramNum++].p = raidPtr;
    441 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    442 
    443 	/*
    444          * The xor node uses results[0] as the target buffer.
    445          * Set pointer and zero the buffer. In the kernel, this
    446          * may be a user buffer in which case we have to remap it.
    447          */
    448 	xorNode->results[0] = failedPDA->bufPtr;
    449 	memset(failedPDA->bufPtr, 0, rf_RaidAddressToByte(raidPtr,
    450 		failedPDA->numSector));
    451 
    452 	/* connect nodes to form graph */
    453 	/* connect the header to the block node */
    454 	RF_ASSERT(dag_h->numSuccedents == 1);
    455 	RF_ASSERT(blockNode->numAntecedents == 0);
    456 	dag_h->succedents[0] = blockNode;
    457 
    458 	/* connect the block node to the read nodes */
    459 	RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
    460 	RF_ASSERT(rpNode->numAntecedents == 1);
    461 	blockNode->succedents[0] = rpNode;
    462 	rpNode->antecedents[0] = blockNode;
    463 	rpNode->antType[0] = rf_control;
    464 	for (i = 0; i < nRrdNodes; i++) {
    465 		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
    466 		blockNode->succedents[1 + i] = &rrdNodes[i];
    467 		rrdNodes[i].antecedents[0] = blockNode;
    468 		rrdNodes[i].antType[0] = rf_control;
    469 	}
    470 	for (i = 0; i < nRudNodes; i++) {
    471 		RF_ASSERT(rudNodes[i].numSuccedents == 1);
    472 		blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
    473 		rudNodes[i].antecedents[0] = blockNode;
    474 		rudNodes[i].antType[0] = rf_control;
    475 	}
    476 
    477 	/* connect the read nodes to the xor node */
    478 	RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
    479 	RF_ASSERT(rpNode->numSuccedents == 1);
    480 	rpNode->succedents[0] = xorNode;
    481 	xorNode->antecedents[0] = rpNode;
    482 	xorNode->antType[0] = rf_trueData;
    483 	for (i = 0; i < nRrdNodes; i++) {
    484 		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
    485 		rrdNodes[i].succedents[0] = xorNode;
    486 		xorNode->antecedents[1 + i] = &rrdNodes[i];
    487 		xorNode->antType[1 + i] = rf_trueData;
    488 	}
    489 	for (i = 0; i < nRudNodes; i++) {
    490 		RF_ASSERT(rudNodes[i].numSuccedents == 1);
    491 		rudNodes[i].succedents[0] = xorNode;
    492 		xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
    493 		xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
    494 	}
    495 
    496 	/* connect the xor node to the commit node */
    497 	RF_ASSERT(xorNode->numSuccedents == 1);
    498 	RF_ASSERT(commitNode->numAntecedents == 1);
    499 	xorNode->succedents[0] = commitNode;
    500 	commitNode->antecedents[0] = xorNode;
    501 	commitNode->antType[0] = rf_control;
    502 
    503 	/* connect the termNode to the commit node */
    504 	RF_ASSERT(commitNode->numSuccedents == 1);
    505 	RF_ASSERT(termNode->numAntecedents == 1);
    506 	RF_ASSERT(termNode->numSuccedents == 0);
    507 	commitNode->succedents[0] = termNode;
    508 	termNode->antType[0] = rf_control;
    509 	termNode->antecedents[0] = commitNode;
    510 }
    511 
    512 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
    513 /******************************************************************************
    514  * Create a degraded read DAG for Chained Declustering
    515  *
    516  * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
    517  *
    518  * The "Rd" node reads data from the surviving disk in the mirror pair
    519  *   Rpd - read of primary copy
    520  *   Rsd - read of secondary copy
    521  *
    522  * Parameters:  raidPtr   - description of the physical array
    523  *              asmap     - logical & physical addresses for this access
    524  *              bp        - buffer ptr (for holding write data)
    525  *              flags     - general flags (e.g. disk locking)
    526  *              allocList - list of memory allocated in DAG creation
    527  *****************************************************************************/
    528 
    529 void
    530 rf_CreateRaidCDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    531 			      RF_DagHeader_t *dag_h, void *bp,
    532 			      RF_RaidAccessFlags_t flags,
    533 			      RF_AllocListElem_t *allocList)
    534 {
    535 	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
    536 	RF_StripeNum_t parityStripeID;
    537 	int     useMirror, i, shiftable;
    538 	RF_ReconUnitNum_t which_ru;
    539 	RF_PhysDiskAddr_t *pda;
    540 
    541 	if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
    542 		shiftable = RF_TRUE;
    543 	} else {
    544 		shiftable = RF_FALSE;
    545 	}
    546 	useMirror = 0;
    547 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    548 	    asmap->raidAddress, &which_ru);
    549 
    550 #if RF_DEBUG_DAG
    551 	if (rf_dagDebug) {
    552 		printf("[Creating RAID C degraded read DAG]\n");
    553 	}
    554 #endif
    555 	dag_h->creator = "RaidCDegradedReadDAG";
    556 	/* alloc the Wnd nodes and the Wmir node */
    557 	if (asmap->numDataFailed == 0)
    558 		useMirror = RF_FALSE;
    559 	else
    560 		useMirror = RF_TRUE;
    561 
    562 	/* total number of nodes = 1 + (block + commit + terminator) */
    563 	RF_MallocAndAdd(nodes, 4 * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    564 	i = 0;
    565 	rdNode = &nodes[i];
    566 	i++;
    567 	blockNode = &nodes[i];
    568 	i++;
    569 	commitNode = &nodes[i];
    570 	i++;
    571 	termNode = &nodes[i];
    572 	i++;
    573 
    574 	/*
    575          * This dag can not commit until the commit node is reached.
    576          * Errors prior to the commit point imply the dag has failed
    577          * and must be retried.
    578          */
    579 	dag_h->numCommitNodes = 1;
    580 	dag_h->numCommits = 0;
    581 	dag_h->numSuccedents = 1;
    582 
    583 	/* initialize the block, commit, and terminator nodes */
    584 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    585 	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    586 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    587 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    588 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    589 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    590 
    591 	pda = asmap->physInfo;
    592 	RF_ASSERT(pda != NULL);
    593 	/* parityInfo must describe entire parity unit */
    594 	RF_ASSERT(asmap->parityInfo->next == NULL);
    595 
    596 	/* initialize the data node */
    597 	if (!useMirror) {
    598 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    599 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
    600 		if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
    601 			/* shift this read to the next disk in line */
    602 			rdNode->params[0].p = asmap->parityInfo;
    603 			rdNode->params[1].p = pda->bufPtr;
    604 			rdNode->params[2].v = parityStripeID;
    605 			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    606 		} else {
    607 			/* read primary copy */
    608 			rdNode->params[0].p = pda;
    609 			rdNode->params[1].p = pda->bufPtr;
    610 			rdNode->params[2].v = parityStripeID;
    611 			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    612 		}
    613 	} else {
    614 		/* read secondary copy of data */
    615 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    616 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
    617 		rdNode->params[0].p = asmap->parityInfo;
    618 		rdNode->params[1].p = pda->bufPtr;
    619 		rdNode->params[2].v = parityStripeID;
    620 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    621 	}
    622 
    623 	/* connect header to block node */
    624 	RF_ASSERT(dag_h->numSuccedents == 1);
    625 	RF_ASSERT(blockNode->numAntecedents == 0);
    626 	dag_h->succedents[0] = blockNode;
    627 
    628 	/* connect block node to rdnode */
    629 	RF_ASSERT(blockNode->numSuccedents == 1);
    630 	RF_ASSERT(rdNode->numAntecedents == 1);
    631 	blockNode->succedents[0] = rdNode;
    632 	rdNode->antecedents[0] = blockNode;
    633 	rdNode->antType[0] = rf_control;
    634 
    635 	/* connect rdnode to commit node */
    636 	RF_ASSERT(rdNode->numSuccedents == 1);
    637 	RF_ASSERT(commitNode->numAntecedents == 1);
    638 	rdNode->succedents[0] = commitNode;
    639 	commitNode->antecedents[0] = rdNode;
    640 	commitNode->antType[0] = rf_control;
    641 
    642 	/* connect commit node to terminator */
    643 	RF_ASSERT(commitNode->numSuccedents == 1);
    644 	RF_ASSERT(termNode->numAntecedents == 1);
    645 	RF_ASSERT(termNode->numSuccedents == 0);
    646 	commitNode->succedents[0] = termNode;
    647 	termNode->antecedents[0] = commitNode;
    648 	termNode->antType[0] = rf_control;
    649 }
    650 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
    651 
    652 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
    653 /*
    654  * XXX move this elsewhere?
    655  */
    656 void
    657 rf_DD_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    658 			       RF_PhysDiskAddr_t **pdap, int *nNodep,
    659 			       RF_PhysDiskAddr_t **pqpdap, int *nPQNodep,
    660 			       RF_AllocListElem_t *allocList)
    661 {
    662 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    663 	int     PDAPerDisk, i;
    664 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    665 	int     numDataCol = layoutPtr->numDataCol;
    666 	int     state;
    667 	RF_SectorNum_t suoff, suend;
    668 	unsigned firstDataCol, napdas, count;
    669 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
    670 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    671 	RF_PhysDiskAddr_t *pda_p;
    672 	RF_PhysDiskAddr_t *phys_p;
    673 	RF_RaidAddr_t sosAddr;
    674 
    675 	/* determine how many pda's we will have to generate per unaccess
    676 	 * stripe. If there is only one failed data unit, it is one; if two,
    677 	 * possibly two, depending wether they overlap. */
    678 
    679 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    680 	fone_end = fone_start + fone->numSector;
    681 
    682 #define CONS_PDA(if,start,num) \
    683   pda_p->col = asmap->if->col; \
    684   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    685   pda_p->numSector = num; \
    686   pda_p->next = NULL; \
    687   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
    688 
    689 	if (asmap->numDataFailed == 1) {
    690 		PDAPerDisk = 1;
    691 		state = 1;
    692 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    693 		pda_p = *pqpdap;
    694 		/* build p */
    695 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    696 		pda_p->type = RF_PDA_TYPE_PARITY;
    697 		pda_p++;
    698 		/* build q */
    699 		CONS_PDA(qInfo, fone_start, fone->numSector);
    700 		pda_p->type = RF_PDA_TYPE_Q;
    701 	} else {
    702 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    703 		ftwo_end = ftwo_start + ftwo->numSector;
    704 		if (fone->numSector + ftwo->numSector > secPerSU) {
    705 			PDAPerDisk = 1;
    706 			state = 2;
    707 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    708 			pda_p = *pqpdap;
    709 			CONS_PDA(parityInfo, 0, secPerSU);
    710 			pda_p->type = RF_PDA_TYPE_PARITY;
    711 			pda_p++;
    712 			CONS_PDA(qInfo, 0, secPerSU);
    713 			pda_p->type = RF_PDA_TYPE_Q;
    714 		} else {
    715 			PDAPerDisk = 2;
    716 			state = 3;
    717 			/* four of them, fone, then ftwo */
    718 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    719 			pda_p = *pqpdap;
    720 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    721 			pda_p->type = RF_PDA_TYPE_PARITY;
    722 			pda_p++;
    723 			CONS_PDA(qInfo, fone_start, fone->numSector);
    724 			pda_p->type = RF_PDA_TYPE_Q;
    725 			pda_p++;
    726 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    727 			pda_p->type = RF_PDA_TYPE_PARITY;
    728 			pda_p++;
    729 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    730 			pda_p->type = RF_PDA_TYPE_Q;
    731 		}
    732 	}
    733 	/* figure out number of nonaccessed pda */
    734 	napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
    735 	*nPQNodep = PDAPerDisk;
    736 
    737 	/* sweep over the over accessed pda's, figuring out the number of
    738 	 * additional pda's to generate. Of course, skip the failed ones */
    739 
    740 	count = 0;
    741 	for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
    742 		if ((pda_p == fone) || (pda_p == ftwo))
    743 			continue;
    744 		suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
    745 		suend = suoff + pda_p->numSector;
    746 		switch (state) {
    747 		case 1:	/* one failed PDA to overlap */
    748 			/* if a PDA doesn't contain the failed unit, it can
    749 			 * only miss the start or end, not both */
    750 			if ((suoff > fone_start) || (suend < fone_end))
    751 				count++;
    752 			break;
    753 		case 2:	/* whole stripe */
    754 			if (suoff)	/* leak at begining */
    755 				count++;
    756 			if (suend < numDataCol)	/* leak at end */
    757 				count++;
    758 			break;
    759 		case 3:	/* two disjoint units */
    760 			if ((suoff > fone_start) || (suend < fone_end))
    761 				count++;
    762 			if ((suoff > ftwo_start) || (suend < ftwo_end))
    763 				count++;
    764 			break;
    765 		default:
    766 			RF_PANIC();
    767 		}
    768 	}
    769 
    770 	napdas += count;
    771 	*nNodep = napdas;
    772 	if (napdas == 0)
    773 		return;		/* short circuit */
    774 
    775 	/* allocate up our list of pda's */
    776 
    777 	RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
    778 			(RF_PhysDiskAddr_t *), allocList);
    779 	*pdap = pda_p;
    780 
    781 	/* linkem together */
    782 	for (i = 0; i < (napdas - 1); i++)
    783 		pda_p[i].next = pda_p + (i + 1);
    784 
    785 	/* march through the one's up to the first accessed disk */
    786 	firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
    787 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    788 	for (i = 0; i < firstDataCol; i++) {
    789 		if ((pda_p - (*pdap)) == napdas)
    790 			continue;
    791 		pda_p->type = RF_PDA_TYPE_DATA;
    792 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    793 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    794 		/* skip over dead disks */
    795 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    796 			continue;
    797 		switch (state) {
    798 		case 1:	/* fone */
    799 			pda_p->numSector = fone->numSector;
    800 			pda_p->raidAddress += fone_start;
    801 			pda_p->startSector += fone_start;
    802 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    803 			break;
    804 		case 2:	/* full stripe */
    805 			pda_p->numSector = secPerSU;
    806 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    807 			break;
    808 		case 3:	/* two slabs */
    809 			pda_p->numSector = fone->numSector;
    810 			pda_p->raidAddress += fone_start;
    811 			pda_p->startSector += fone_start;
    812 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    813 			pda_p++;
    814 			pda_p->type = RF_PDA_TYPE_DATA;
    815 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    816 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    817 			pda_p->numSector = ftwo->numSector;
    818 			pda_p->raidAddress += ftwo_start;
    819 			pda_p->startSector += ftwo_start;
    820 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    821 			break;
    822 		default:
    823 			RF_PANIC();
    824 		}
    825 		pda_p++;
    826 	}
    827 
    828 	/* march through the touched stripe units */
    829 	for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
    830 		if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
    831 			continue;
    832 		suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
    833 		suend = suoff + phys_p->numSector;
    834 		switch (state) {
    835 		case 1:	/* single buffer */
    836 			if (suoff > fone_start) {
    837 				RF_ASSERT(suend >= fone_end);
    838 				/* The data read starts after the mapped
    839 				 * access, snip off the begining */
    840 				pda_p->numSector = suoff - fone_start;
    841 				pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
    842 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    843 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    844 				pda_p++;
    845 			}
    846 			if (suend < fone_end) {
    847 				RF_ASSERT(suoff <= fone_start);
    848 				/* The data read stops before the end of the
    849 				 * failed access, extend */
    850 				pda_p->numSector = fone_end - suend;
    851 				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    852 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    853 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    854 				pda_p++;
    855 			}
    856 			break;
    857 		case 2:	/* whole stripe unit */
    858 			RF_ASSERT((suoff == 0) || (suend == secPerSU));
    859 			if (suend < secPerSU) {	/* short read, snip from end
    860 						 * on */
    861 				pda_p->numSector = secPerSU - suend;
    862 				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    863 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    864 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    865 				pda_p++;
    866 			} else
    867 				if (suoff > 0) {	/* short at front */
    868 					pda_p->numSector = suoff;
    869 					pda_p->raidAddress = sosAddr + (i * secPerSU);
    870 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    871 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    872 					pda_p++;
    873 				}
    874 			break;
    875 		case 3:	/* two nonoverlapping failures */
    876 			if ((suoff > fone_start) || (suend < fone_end)) {
    877 				if (suoff > fone_start) {
    878 					RF_ASSERT(suend >= fone_end);
    879 					/* The data read starts after the
    880 					 * mapped access, snip off the
    881 					 * begining */
    882 					pda_p->numSector = suoff - fone_start;
    883 					pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
    884 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    885 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    886 					pda_p++;
    887 				}
    888 				if (suend < fone_end) {
    889 					RF_ASSERT(suoff <= fone_start);
    890 					/* The data read stops before the end
    891 					 * of the failed access, extend */
    892 					pda_p->numSector = fone_end - suend;
    893 					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    894 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    895 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    896 					pda_p++;
    897 				}
    898 			}
    899 			if ((suoff > ftwo_start) || (suend < ftwo_end)) {
    900 				if (suoff > ftwo_start) {
    901 					RF_ASSERT(suend >= ftwo_end);
    902 					/* The data read starts after the
    903 					 * mapped access, snip off the
    904 					 * begining */
    905 					pda_p->numSector = suoff - ftwo_start;
    906 					pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
    907 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    908 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    909 					pda_p++;
    910 				}
    911 				if (suend < ftwo_end) {
    912 					RF_ASSERT(suoff <= ftwo_start);
    913 					/* The data read stops before the end
    914 					 * of the failed access, extend */
    915 					pda_p->numSector = ftwo_end - suend;
    916 					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    917 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    918 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    919 					pda_p++;
    920 				}
    921 			}
    922 			break;
    923 		default:
    924 			RF_PANIC();
    925 		}
    926 	}
    927 
    928 	/* after the last accessed disk */
    929 	for (; i < numDataCol; i++) {
    930 		if ((pda_p - (*pdap)) == napdas)
    931 			continue;
    932 		pda_p->type = RF_PDA_TYPE_DATA;
    933 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    934 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    935 		/* skip over dead disks */
    936 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    937 			continue;
    938 		switch (state) {
    939 		case 1:	/* fone */
    940 			pda_p->numSector = fone->numSector;
    941 			pda_p->raidAddress += fone_start;
    942 			pda_p->startSector += fone_start;
    943 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    944 			break;
    945 		case 2:	/* full stripe */
    946 			pda_p->numSector = secPerSU;
    947 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    948 			break;
    949 		case 3:	/* two slabs */
    950 			pda_p->numSector = fone->numSector;
    951 			pda_p->raidAddress += fone_start;
    952 			pda_p->startSector += fone_start;
    953 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    954 			pda_p++;
    955 			pda_p->type = RF_PDA_TYPE_DATA;
    956 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    957 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    958 			pda_p->numSector = ftwo->numSector;
    959 			pda_p->raidAddress += ftwo_start;
    960 			pda_p->startSector += ftwo_start;
    961 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    962 			break;
    963 		default:
    964 			RF_PANIC();
    965 		}
    966 		pda_p++;
    967 	}
    968 
    969 	RF_ASSERT(pda_p - *pdap == napdas);
    970 	return;
    971 }
    972 #define INIT_DISK_NODE(node,name) \
    973 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
    974 (node)->succedents[0] = unblockNode; \
    975 (node)->succedents[1] = recoveryNode; \
    976 (node)->antecedents[0] = blockNode; \
    977 (node)->antType[0] = rf_control
    978 
    979 #define DISK_NODE_PARAMS(_node_,_p_) \
    980   (_node_).params[0].p = _p_ ; \
    981   (_node_).params[1].p = (_p_)->bufPtr; \
    982   (_node_).params[2].v = parityStripeID; \
    983   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
    984 
    985 void
    986 rf_DoubleDegRead(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    987 		 RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags,
    988 		 RF_AllocListElem_t *allocList,
    989 		 char *redundantReadNodeName, char *recoveryNodeName,
    990 		 int (*recovFunc) (RF_DagNode_t *))
    991 {
    992 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    993 	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
    994 	       *unblockNode, *rpNodes, *rqNodes, *termNode;
    995 	RF_PhysDiskAddr_t *pda, *pqPDAs;
    996 	RF_PhysDiskAddr_t *npdas;
    997 	int     nNodes, nRrdNodes, nRudNodes, i;
    998 	RF_ReconUnitNum_t which_ru;
    999 	int     nReadNodes, nPQNodes;
   1000 	RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
   1001 	RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
   1002 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
   1003 
   1004 #if RF_DEBUG_DAG
   1005 	if (rf_dagDebug)
   1006 		printf("[Creating Double Degraded Read DAG]\n");
   1007 #endif
   1008 	rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
   1009 
   1010 	nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
   1011 	nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
   1012 	nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
   1013 
   1014 	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1015 	i = 0;
   1016 	blockNode = &nodes[i];
   1017 	i += 1;
   1018 	unblockNode = &nodes[i];
   1019 	i += 1;
   1020 	recoveryNode = &nodes[i];
   1021 	i += 1;
   1022 	termNode = &nodes[i];
   1023 	i += 1;
   1024 	rudNodes = &nodes[i];
   1025 	i += nRudNodes;
   1026 	rrdNodes = &nodes[i];
   1027 	i += nRrdNodes;
   1028 	rpNodes = &nodes[i];
   1029 	i += nPQNodes;
   1030 	rqNodes = &nodes[i];
   1031 	i += nPQNodes;
   1032 	RF_ASSERT(i == nNodes);
   1033 
   1034 	dag_h->numSuccedents = 1;
   1035 	dag_h->succedents[0] = blockNode;
   1036 	dag_h->creator = "DoubleDegRead";
   1037 	dag_h->numCommits = 0;
   1038 	dag_h->numCommitNodes = 1;	/* unblock */
   1039 
   1040 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
   1041 	termNode->antecedents[0] = unblockNode;
   1042 	termNode->antType[0] = rf_control;
   1043 	termNode->antecedents[1] = recoveryNode;
   1044 	termNode->antType[1] = rf_control;
   1045 
   1046 	/* init the block and unblock nodes */
   1047 	/* The block node has all nodes except itself, unblock and recovery as
   1048 	 * successors. Similarly for predecessors of the unblock. */
   1049 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1050 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
   1051 
   1052 	for (i = 0; i < nReadNodes; i++) {
   1053 		blockNode->succedents[i] = rudNodes + i;
   1054 		unblockNode->antecedents[i] = rudNodes + i;
   1055 		unblockNode->antType[i] = rf_control;
   1056 	}
   1057 	unblockNode->succedents[0] = termNode;
   1058 
   1059 	/* The recovery node has all the reads as predecessors, and the term
   1060 	 * node as successors. It gets a pda as a param from each of the read
   1061 	 * nodes plus the raidPtr. For each failed unit is has a result pda. */
   1062 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
   1063 	    1,			/* succesors */
   1064 	    nReadNodes,		/* preds */
   1065 	    nReadNodes + 2,	/* params */
   1066 	    asmap->numDataFailed,	/* results */
   1067 	    dag_h, recoveryNodeName, allocList);
   1068 
   1069 	recoveryNode->succedents[0] = termNode;
   1070 	for (i = 0; i < nReadNodes; i++) {
   1071 		recoveryNode->antecedents[i] = rudNodes + i;
   1072 		recoveryNode->antType[i] = rf_trueData;
   1073 	}
   1074 
   1075 	/* build the read nodes, then come back and fill in recovery params
   1076 	 * and results */
   1077 	pda = asmap->physInfo;
   1078 	for (i = 0; i < nRudNodes; pda = pda->next) {
   1079 		if ((pda == failedPDA) || (pda == failedPDAtwo))
   1080 			continue;
   1081 		INIT_DISK_NODE(rudNodes + i, "Rud");
   1082 		RF_ASSERT(pda);
   1083 		DISK_NODE_PARAMS(rudNodes[i], pda);
   1084 		i++;
   1085 	}
   1086 
   1087 	pda = npdas;
   1088 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
   1089 		INIT_DISK_NODE(rrdNodes + i, "Rrd");
   1090 		RF_ASSERT(pda);
   1091 		DISK_NODE_PARAMS(rrdNodes[i], pda);
   1092 	}
   1093 
   1094 	/* redundancy pdas */
   1095 	pda = pqPDAs;
   1096 	INIT_DISK_NODE(rpNodes, "Rp");
   1097 	RF_ASSERT(pda);
   1098 	DISK_NODE_PARAMS(rpNodes[0], pda);
   1099 	pda++;
   1100 	INIT_DISK_NODE(rqNodes, redundantReadNodeName);
   1101 	RF_ASSERT(pda);
   1102 	DISK_NODE_PARAMS(rqNodes[0], pda);
   1103 	if (nPQNodes == 2) {
   1104 		pda++;
   1105 		INIT_DISK_NODE(rpNodes + 1, "Rp");
   1106 		RF_ASSERT(pda);
   1107 		DISK_NODE_PARAMS(rpNodes[1], pda);
   1108 		pda++;
   1109 		INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
   1110 		RF_ASSERT(pda);
   1111 		DISK_NODE_PARAMS(rqNodes[1], pda);
   1112 	}
   1113 	/* fill in recovery node params */
   1114 	for (i = 0; i < nReadNodes; i++)
   1115 		recoveryNode->params[i] = rudNodes[i].params[0];	/* pda */
   1116 	recoveryNode->params[i++].p = (void *) raidPtr;
   1117 	recoveryNode->params[i++].p = (void *) asmap;
   1118 	recoveryNode->results[0] = failedPDA;
   1119 	if (asmap->numDataFailed == 2)
   1120 		recoveryNode->results[1] = failedPDAtwo;
   1121 
   1122 	/* zero fill the target data buffers? */
   1123 }
   1124 
   1125 #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
   1126