Home | History | Annotate | Line # | Download | only in raidframe
rf_dagdegrd.c revision 1.20
      1 /*	$NetBSD: rf_dagdegrd.c,v 1.20 2004/03/18 16:40:05 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagdegrd.c
     31  *
     32  * code for creating degraded read DAGs
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegrd.c,v 1.20 2004/03/18 16:40:05 oster Exp $");
     37 
     38 #include <dev/raidframe/raidframevar.h>
     39 
     40 #include "rf_archs.h"
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_general.h"
     47 #include "rf_dagdegrd.h"
     48 
     49 
     50 /******************************************************************************
     51  *
     52  * General comments on DAG creation:
     53  *
     54  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     55  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     56  * is reached, the execution engine will halt forward execution and work
     57  * backward through the graph, executing the undo functions.  Assuming that
     58  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     59  * does not make changes to permanent state, the graph will fail atomically.
     60  * If an error occurs after the Cmt node executes, the engine will roll-forward
     61  * through the graph, blindly executing nodes until it reaches the end.
     62  * If a graph reaches the end, it is assumed to have completed successfully.
     63  *
     64  * A graph has only 1 Cmt node.
     65  *
     66  */
     67 
     68 
     69 /******************************************************************************
     70  *
     71  * The following wrappers map the standard DAG creation interface to the
     72  * DAG creation routines.  Additionally, these wrappers enable experimentation
     73  * with new DAG structures by providing an extra level of indirection, allowing
     74  * the DAG creation routines to be replaced at this single point.
     75  */
     76 
     77 void
     78 rf_CreateRaidFiveDegradedReadDAG(RF_Raid_t *raidPtr,
     79 				 RF_AccessStripeMap_t *asmap,
     80 				 RF_DagHeader_t *dag_h,
     81 				 void *bp,
     82 				 RF_RaidAccessFlags_t flags,
     83 				 RF_AllocListElem_t *allocList)
     84 {
     85 	rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     86 	    &rf_xorRecoveryFuncs);
     87 }
     88 
     89 
     90 /******************************************************************************
     91  *
     92  * DAG creation code begins here
     93  */
     94 
     95 
     96 /******************************************************************************
     97  * Create a degraded read DAG for RAID level 1
     98  *
     99  * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
    100  *
    101  * The "Rd" node reads data from the surviving disk in the mirror pair
    102  *   Rpd - read of primary copy
    103  *   Rsd - read of secondary copy
    104  *
    105  * Parameters:  raidPtr   - description of the physical array
    106  *              asmap     - logical & physical addresses for this access
    107  *              bp        - buffer ptr (for holding write data)
    108  *              flags     - general flags (e.g. disk locking)
    109  *              allocList - list of memory allocated in DAG creation
    110  *****************************************************************************/
    111 
    112 void
    113 rf_CreateRaidOneDegradedReadDAG(RF_Raid_t *raidPtr,
    114 				RF_AccessStripeMap_t *asmap,
    115 				RF_DagHeader_t *dag_h,
    116 				void *bp,
    117 				RF_RaidAccessFlags_t flags,
    118 				RF_AllocListElem_t *allocList)
    119 {
    120 	RF_DagNode_t *rdNode, *blockNode, *commitNode, *termNode;
    121 	RF_StripeNum_t parityStripeID;
    122 	RF_ReconUnitNum_t which_ru;
    123 	RF_PhysDiskAddr_t *pda;
    124 	int     useMirror;
    125 
    126 	useMirror = 0;
    127 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    128 	    asmap->raidAddress, &which_ru);
    129 #if RF_DEBUG_DAG
    130 	if (rf_dagDebug) {
    131 		printf("[Creating RAID level 1 degraded read DAG]\n");
    132 	}
    133 #endif
    134 	dag_h->creator = "RaidOneDegradedReadDAG";
    135 	/* alloc the Wnd nodes and the Wmir node */
    136 	if (asmap->numDataFailed == 0)
    137 		useMirror = RF_FALSE;
    138 	else
    139 		useMirror = RF_TRUE;
    140 
    141 	/* total number of nodes = 1 + (block + commit + terminator) */
    142 
    143 	rdNode = rf_AllocDAGNode();
    144 	rdNode->list_next = dag_h->nodes;
    145 	dag_h->nodes = rdNode;
    146 
    147 	blockNode = rf_AllocDAGNode();
    148 	blockNode->list_next = dag_h->nodes;
    149 	dag_h->nodes = blockNode;
    150 
    151 	commitNode = rf_AllocDAGNode();
    152 	commitNode->list_next = dag_h->nodes;
    153 	dag_h->nodes = commitNode;
    154 
    155 	termNode = rf_AllocDAGNode();
    156 	termNode->list_next = dag_h->nodes;
    157 	dag_h->nodes = termNode;
    158 
    159 	/* this dag can not commit until the commit node is reached.   errors
    160 	 * prior to the commit point imply the dag has failed and must be
    161 	 * retried */
    162 	dag_h->numCommitNodes = 1;
    163 	dag_h->numCommits = 0;
    164 	dag_h->numSuccedents = 1;
    165 
    166 	/* initialize the block, commit, and terminator nodes */
    167 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    168 	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    169 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    170 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    171 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    172 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    173 
    174 	pda = asmap->physInfo;
    175 	RF_ASSERT(pda != NULL);
    176 	/* parityInfo must describe entire parity unit */
    177 	RF_ASSERT(asmap->parityInfo->next == NULL);
    178 
    179 	/* initialize the data node */
    180 	if (!useMirror) {
    181 		/* read primary copy of data */
    182 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    183 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
    184 		rdNode->params[0].p = pda;
    185 		rdNode->params[1].p = pda->bufPtr;
    186 		rdNode->params[2].v = parityStripeID;
    187 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    188 						       which_ru);
    189 	} else {
    190 		/* read secondary copy of data */
    191 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    192 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
    193 		rdNode->params[0].p = asmap->parityInfo;
    194 		rdNode->params[1].p = pda->bufPtr;
    195 		rdNode->params[2].v = parityStripeID;
    196 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    197 						       which_ru);
    198 	}
    199 
    200 	/* connect header to block node */
    201 	RF_ASSERT(dag_h->numSuccedents == 1);
    202 	RF_ASSERT(blockNode->numAntecedents == 0);
    203 	dag_h->succedents[0] = blockNode;
    204 
    205 	/* connect block node to rdnode */
    206 	RF_ASSERT(blockNode->numSuccedents == 1);
    207 	RF_ASSERT(rdNode->numAntecedents == 1);
    208 	blockNode->succedents[0] = rdNode;
    209 	rdNode->antecedents[0] = blockNode;
    210 	rdNode->antType[0] = rf_control;
    211 
    212 	/* connect rdnode to commit node */
    213 	RF_ASSERT(rdNode->numSuccedents == 1);
    214 	RF_ASSERT(commitNode->numAntecedents == 1);
    215 	rdNode->succedents[0] = commitNode;
    216 	commitNode->antecedents[0] = rdNode;
    217 	commitNode->antType[0] = rf_control;
    218 
    219 	/* connect commit node to terminator */
    220 	RF_ASSERT(commitNode->numSuccedents == 1);
    221 	RF_ASSERT(termNode->numAntecedents == 1);
    222 	RF_ASSERT(termNode->numSuccedents == 0);
    223 	commitNode->succedents[0] = termNode;
    224 	termNode->antecedents[0] = commitNode;
    225 	termNode->antType[0] = rf_control;
    226 }
    227 
    228 
    229 
    230 /******************************************************************************
    231  *
    232  * creates a DAG to perform a degraded-mode read of data within one stripe.
    233  * This DAG is as follows:
    234  *
    235  * Hdr -> Block -> Rud -> Xor -> Cmt -> T
    236  *              -> Rrd ->
    237  *              -> Rp -->
    238  *
    239  * Each R node is a successor of the L node
    240  * One successor arc from each R node goes to C, and the other to X
    241  * There is one Rud for each chunk of surviving user data requested by the
    242  * user, and one Rrd for each chunk of surviving user data _not_ being read by
    243  * the user
    244  * R = read, ud = user data, rd = recovery (surviving) data, p = parity
    245  * X = XOR, C = Commit, T = terminate
    246  *
    247  * The block node guarantees a single source node.
    248  *
    249  * Note:  The target buffer for the XOR node is set to the actual user buffer
    250  * where the failed data is supposed to end up.  This buffer is zero'd by the
    251  * code here.  Thus, if you create a degraded read dag, use it, and then
    252  * re-use, you have to be sure to zero the target buffer prior to the re-use.
    253  *
    254  * The recfunc argument at the end specifies the name and function used for
    255  * the redundancy
    256  * recovery function.
    257  *
    258  *****************************************************************************/
    259 
    260 void
    261 rf_CreateDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    262 			 RF_DagHeader_t *dag_h, void *bp,
    263 			 RF_RaidAccessFlags_t flags,
    264 			 RF_AllocListElem_t *allocList,
    265 			 const RF_RedFuncs_t *recFunc)
    266 {
    267 	RF_DagNode_t *rudNodes, *rrdNodes, *xorNode, *blockNode;
    268 	RF_DagNode_t *commitNode, *rpNode, *termNode;
    269 	RF_DagNode_t *tmpNode, *tmprudNode, *tmprrdNode;
    270 	int     nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
    271 	int     j, paramNum;
    272 	RF_SectorCount_t sectorsPerSU;
    273 	RF_ReconUnitNum_t which_ru;
    274 	char   *overlappingPDAs;/* a temporary array of flags */
    275 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    276 	RF_PhysDiskAddr_t *pda, *parityPDA;
    277 	RF_StripeNum_t parityStripeID;
    278 	RF_PhysDiskAddr_t *failedPDA;
    279 	RF_RaidLayout_t *layoutPtr;
    280 	char   *rpBuf;
    281 
    282 	layoutPtr = &(raidPtr->Layout);
    283 	/* failedPDA points to the pda within the asm that targets the failed
    284 	 * disk */
    285 	failedPDA = asmap->failedPDAs[0];
    286 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
    287 	    asmap->raidAddress, &which_ru);
    288 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    289 
    290 #if RF_DEBUG_DAG
    291 	if (rf_dagDebug) {
    292 		printf("[Creating degraded read DAG]\n");
    293 	}
    294 #endif
    295 	RF_ASSERT(asmap->numDataFailed == 1);
    296 	dag_h->creator = "DegradedReadDAG";
    297 
    298 	/*
    299          * generate two ASMs identifying the surviving data we need
    300          * in order to recover the lost data
    301          */
    302 
    303 	/* overlappingPDAs array must be zero'd */
    304 	RF_Malloc(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char), (char *));
    305 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
    306 	    &rpBuf, overlappingPDAs, allocList);
    307 
    308 	/*
    309          * create all the nodes at once
    310          *
    311          * -1 because no access is generated for the failed pda
    312          */
    313 	nRudNodes = asmap->numStripeUnitsAccessed - 1;
    314 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    315 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    316 	nNodes = 5 + nRudNodes + nRrdNodes;	/* lock, unlock, xor, Rp, Rud,
    317 						 * Rrd */
    318 
    319 	blockNode = rf_AllocDAGNode();
    320 	blockNode->list_next = dag_h->nodes;
    321 	dag_h->nodes = blockNode;
    322 
    323 	commitNode = rf_AllocDAGNode();
    324 	commitNode->list_next = dag_h->nodes;
    325 	dag_h->nodes = commitNode;
    326 
    327 	xorNode = rf_AllocDAGNode();
    328 	xorNode->list_next = dag_h->nodes;
    329 	dag_h->nodes = xorNode;
    330 
    331 	rpNode = rf_AllocDAGNode();
    332 	rpNode->list_next = dag_h->nodes;
    333 	dag_h->nodes = rpNode;
    334 
    335 	termNode = rf_AllocDAGNode();
    336 	termNode->list_next = dag_h->nodes;
    337 	dag_h->nodes = termNode;
    338 
    339 	for (i = 0; i < nRudNodes; i++) {
    340 		tmpNode = rf_AllocDAGNode();
    341 		tmpNode->list_next = dag_h->nodes;
    342 		dag_h->nodes = tmpNode;
    343 	}
    344 	rudNodes = dag_h->nodes;
    345 
    346 	for (i = 0; i < nRrdNodes; i++) {
    347 		tmpNode = rf_AllocDAGNode();
    348 		tmpNode->list_next = dag_h->nodes;
    349 		dag_h->nodes = tmpNode;
    350 	}
    351 	rrdNodes = dag_h->nodes;
    352 
    353 	/* initialize nodes */
    354 	dag_h->numCommitNodes = 1;
    355 	dag_h->numCommits = 0;
    356 	/* this dag can not commit until the commit node is reached errors
    357 	 * prior to the commit point imply the dag has failed */
    358 	dag_h->numSuccedents = 1;
    359 
    360 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    361 	    NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
    362 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    363 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    364 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    365 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    366 	rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
    367 	    NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
    368 	    recFunc->SimpleName, allocList);
    369 
    370 	/* fill in the Rud nodes */
    371 	tmprudNode = rudNodes;
    372 	for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
    373 		if (pda == failedPDA) {
    374 			i--;
    375 			continue;
    376 		}
    377 		rf_InitNode(tmprudNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
    378 		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    379 		    "Rud", allocList);
    380 		RF_ASSERT(pda);
    381 		tmprudNode->params[0].p = pda;
    382 		tmprudNode->params[1].p = pda->bufPtr;
    383 		tmprudNode->params[2].v = parityStripeID;
    384 		tmprudNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    385 		tmprudNode = tmprudNode->list_next;
    386 	}
    387 
    388 	/* fill in the Rrd nodes */
    389 	i = 0;
    390 	tmprrdNode = rrdNodes;
    391 	if (new_asm_h[0]) {
    392 		for (pda = new_asm_h[0]->stripeMap->physInfo;
    393 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    394 		    i++, pda = pda->next) {
    395 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
    396 			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
    397 			    dag_h, "Rrd", allocList);
    398 			RF_ASSERT(pda);
    399 			tmprrdNode->params[0].p = pda;
    400 			tmprrdNode->params[1].p = pda->bufPtr;
    401 			tmprrdNode->params[2].v = parityStripeID;
    402 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    403 			tmprrdNode = tmprrdNode->list_next;
    404 		}
    405 	}
    406 	if (new_asm_h[1]) {
    407 		/* tmprrdNode = rrdNodes; */ /* don't set this here -- old code was using i+j, which means
    408 		   we need to just continue using tmprrdNode for the next 'j' elements. */
    409 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    410 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    411 		    j++, pda = pda->next) {
    412 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc,
    413 			    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
    414 			    dag_h, "Rrd", allocList);
    415 			RF_ASSERT(pda);
    416 			tmprrdNode->params[0].p = pda;
    417 			tmprrdNode->params[1].p = pda->bufPtr;
    418 			tmprrdNode->params[2].v = parityStripeID;
    419 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    420 			tmprrdNode = tmprrdNode->list_next;
    421 		}
    422 	}
    423 	/* make a PDA for the parity unit */
    424 	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    425 	parityPDA->col = asmap->parityInfo->col;
    426 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    427 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    428 	parityPDA->numSector = failedPDA->numSector;
    429 
    430 	/* initialize the Rp node */
    431 	rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    432 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
    433 	rpNode->params[0].p = parityPDA;
    434 	rpNode->params[1].p = rpBuf;
    435 	rpNode->params[2].v = parityStripeID;
    436 	rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    437 
    438 	/*
    439          * the last and nastiest step is to assign all
    440          * the parameters of the Xor node
    441          */
    442 	paramNum = 0;
    443 	tmprrdNode = rrdNodes;
    444 	for (i = 0; i < nRrdNodes; i++) {
    445 		/* all the Rrd nodes need to be xored together */
    446 		xorNode->params[paramNum++] = tmprrdNode->params[0];
    447 		xorNode->params[paramNum++] = tmprrdNode->params[1];
    448 		tmprrdNode = tmprrdNode->list_next;
    449 	}
    450 	tmprudNode = rudNodes;
    451 	for (i = 0; i < nRudNodes; i++) {
    452 		/* any Rud nodes that overlap the failed access need to be
    453 		 * xored in */
    454 		if (overlappingPDAs[i]) {
    455 			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    456 			memcpy((char *) pda, (char *) tmprudNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
    457 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    458 			xorNode->params[paramNum++].p = pda;
    459 			xorNode->params[paramNum++].p = pda->bufPtr;
    460 		}
    461 		tmprudNode = tmprudNode->list_next;
    462 	}
    463 	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
    464 
    465 	/* install parity pda as last set of params to be xor'd */
    466 	xorNode->params[paramNum++].p = parityPDA;
    467 	xorNode->params[paramNum++].p = rpBuf;
    468 
    469 	/*
    470          * the last 2 params to the recovery xor node are
    471          * the failed PDA and the raidPtr
    472          */
    473 	xorNode->params[paramNum++].p = failedPDA;
    474 	xorNode->params[paramNum++].p = raidPtr;
    475 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    476 
    477 	/*
    478          * The xor node uses results[0] as the target buffer.
    479          * Set pointer and zero the buffer. In the kernel, this
    480          * may be a user buffer in which case we have to remap it.
    481          */
    482 	xorNode->results[0] = failedPDA->bufPtr;
    483 	memset(failedPDA->bufPtr, 0, rf_RaidAddressToByte(raidPtr,
    484 		failedPDA->numSector));
    485 
    486 	/* connect nodes to form graph */
    487 	/* connect the header to the block node */
    488 	RF_ASSERT(dag_h->numSuccedents == 1);
    489 	RF_ASSERT(blockNode->numAntecedents == 0);
    490 	dag_h->succedents[0] = blockNode;
    491 
    492 	/* connect the block node to the read nodes */
    493 	RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
    494 	RF_ASSERT(rpNode->numAntecedents == 1);
    495 	blockNode->succedents[0] = rpNode;
    496 	rpNode->antecedents[0] = blockNode;
    497 	rpNode->antType[0] = rf_control;
    498 	tmprrdNode = rrdNodes;
    499 	for (i = 0; i < nRrdNodes; i++) {
    500 		RF_ASSERT(tmprrdNode->numSuccedents == 1);
    501 		blockNode->succedents[1 + i] = tmprrdNode;
    502 		tmprrdNode->antecedents[0] = blockNode;
    503 		tmprrdNode->antType[0] = rf_control;
    504 		tmprrdNode = tmprrdNode->list_next;
    505 	}
    506 	tmprudNode = rudNodes;
    507 	for (i = 0; i < nRudNodes; i++) {
    508 		RF_ASSERT(tmprudNode->numSuccedents == 1);
    509 		blockNode->succedents[1 + nRrdNodes + i] = tmprudNode;
    510 		tmprudNode->antecedents[0] = blockNode;
    511 		tmprudNode->antType[0] = rf_control;
    512 		tmprudNode = tmprudNode->list_next;
    513 	}
    514 
    515 	/* connect the read nodes to the xor node */
    516 	RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
    517 	RF_ASSERT(rpNode->numSuccedents == 1);
    518 	rpNode->succedents[0] = xorNode;
    519 	xorNode->antecedents[0] = rpNode;
    520 	xorNode->antType[0] = rf_trueData;
    521 	tmprrdNode = rrdNodes;
    522 	for (i = 0; i < nRrdNodes; i++) {
    523 		RF_ASSERT(rrdNode->numSuccedents == 1);
    524 		tmprrdNode->succedents[0] = xorNode;
    525 		xorNode->antecedents[1 + i] = tmprrdNode;
    526 		xorNode->antType[1 + i] = rf_trueData;
    527 		tmprrdNode = tmprrdNode->list_next;
    528 	}
    529 	tmprudNode = rudNodes;
    530 	for (i = 0; i < nRudNodes; i++) {
    531 		RF_ASSERT(tmprudNode->numSuccedents == 1);
    532 		tmprudNode->succedents[0] = xorNode;
    533 		xorNode->antecedents[1 + nRrdNodes + i] = tmprudNode;
    534 		xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
    535 		tmprudNode = tmprudNode->list_next;
    536 	}
    537 
    538 	/* connect the xor node to the commit node */
    539 	RF_ASSERT(xorNode->numSuccedents == 1);
    540 	RF_ASSERT(commitNode->numAntecedents == 1);
    541 	xorNode->succedents[0] = commitNode;
    542 	commitNode->antecedents[0] = xorNode;
    543 	commitNode->antType[0] = rf_control;
    544 
    545 	/* connect the termNode to the commit node */
    546 	RF_ASSERT(commitNode->numSuccedents == 1);
    547 	RF_ASSERT(termNode->numAntecedents == 1);
    548 	RF_ASSERT(termNode->numSuccedents == 0);
    549 	commitNode->succedents[0] = termNode;
    550 	termNode->antType[0] = rf_control;
    551 	termNode->antecedents[0] = commitNode;
    552 }
    553 
    554 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
    555 /******************************************************************************
    556  * Create a degraded read DAG for Chained Declustering
    557  *
    558  * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
    559  *
    560  * The "Rd" node reads data from the surviving disk in the mirror pair
    561  *   Rpd - read of primary copy
    562  *   Rsd - read of secondary copy
    563  *
    564  * Parameters:  raidPtr   - description of the physical array
    565  *              asmap     - logical & physical addresses for this access
    566  *              bp        - buffer ptr (for holding write data)
    567  *              flags     - general flags (e.g. disk locking)
    568  *              allocList - list of memory allocated in DAG creation
    569  *****************************************************************************/
    570 
    571 void
    572 rf_CreateRaidCDegradedReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    573 			      RF_DagHeader_t *dag_h, void *bp,
    574 			      RF_RaidAccessFlags_t flags,
    575 			      RF_AllocListElem_t *allocList)
    576 {
    577 	RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
    578 	RF_StripeNum_t parityStripeID;
    579 	int     useMirror, i, shiftable;
    580 	RF_ReconUnitNum_t which_ru;
    581 	RF_PhysDiskAddr_t *pda;
    582 
    583 	if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
    584 		shiftable = RF_TRUE;
    585 	} else {
    586 		shiftable = RF_FALSE;
    587 	}
    588 	useMirror = 0;
    589 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    590 	    asmap->raidAddress, &which_ru);
    591 
    592 #if RF_DEBUG_DAG
    593 	if (rf_dagDebug) {
    594 		printf("[Creating RAID C degraded read DAG]\n");
    595 	}
    596 #endif
    597 	dag_h->creator = "RaidCDegradedReadDAG";
    598 	/* alloc the Wnd nodes and the Wmir node */
    599 	if (asmap->numDataFailed == 0)
    600 		useMirror = RF_FALSE;
    601 	else
    602 		useMirror = RF_TRUE;
    603 
    604 	/* total number of nodes = 1 + (block + commit + terminator) */
    605 	RF_MallocAndAdd(nodes, 4 * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    606 	i = 0;
    607 	rdNode = &nodes[i];
    608 	i++;
    609 	blockNode = &nodes[i];
    610 	i++;
    611 	commitNode = &nodes[i];
    612 	i++;
    613 	termNode = &nodes[i];
    614 	i++;
    615 
    616 	/*
    617          * This dag can not commit until the commit node is reached.
    618          * Errors prior to the commit point imply the dag has failed
    619          * and must be retried.
    620          */
    621 	dag_h->numCommitNodes = 1;
    622 	dag_h->numCommits = 0;
    623 	dag_h->numSuccedents = 1;
    624 
    625 	/* initialize the block, commit, and terminator nodes */
    626 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    627 	    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    628 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    629 	    NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
    630 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    631 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    632 
    633 	pda = asmap->physInfo;
    634 	RF_ASSERT(pda != NULL);
    635 	/* parityInfo must describe entire parity unit */
    636 	RF_ASSERT(asmap->parityInfo->next == NULL);
    637 
    638 	/* initialize the data node */
    639 	if (!useMirror) {
    640 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    641 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
    642 		if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
    643 			/* shift this read to the next disk in line */
    644 			rdNode->params[0].p = asmap->parityInfo;
    645 			rdNode->params[1].p = pda->bufPtr;
    646 			rdNode->params[2].v = parityStripeID;
    647 			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    648 		} else {
    649 			/* read primary copy */
    650 			rdNode->params[0].p = pda;
    651 			rdNode->params[1].p = pda->bufPtr;
    652 			rdNode->params[2].v = parityStripeID;
    653 			rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    654 		}
    655 	} else {
    656 		/* read secondary copy of data */
    657 		rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    658 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
    659 		rdNode->params[0].p = asmap->parityInfo;
    660 		rdNode->params[1].p = pda->bufPtr;
    661 		rdNode->params[2].v = parityStripeID;
    662 		rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    663 	}
    664 
    665 	/* connect header to block node */
    666 	RF_ASSERT(dag_h->numSuccedents == 1);
    667 	RF_ASSERT(blockNode->numAntecedents == 0);
    668 	dag_h->succedents[0] = blockNode;
    669 
    670 	/* connect block node to rdnode */
    671 	RF_ASSERT(blockNode->numSuccedents == 1);
    672 	RF_ASSERT(rdNode->numAntecedents == 1);
    673 	blockNode->succedents[0] = rdNode;
    674 	rdNode->antecedents[0] = blockNode;
    675 	rdNode->antType[0] = rf_control;
    676 
    677 	/* connect rdnode to commit node */
    678 	RF_ASSERT(rdNode->numSuccedents == 1);
    679 	RF_ASSERT(commitNode->numAntecedents == 1);
    680 	rdNode->succedents[0] = commitNode;
    681 	commitNode->antecedents[0] = rdNode;
    682 	commitNode->antType[0] = rf_control;
    683 
    684 	/* connect commit node to terminator */
    685 	RF_ASSERT(commitNode->numSuccedents == 1);
    686 	RF_ASSERT(termNode->numAntecedents == 1);
    687 	RF_ASSERT(termNode->numSuccedents == 0);
    688 	commitNode->succedents[0] = termNode;
    689 	termNode->antecedents[0] = commitNode;
    690 	termNode->antType[0] = rf_control;
    691 }
    692 #endif /* (RF_INCLUDE_CHAINDECLUSTER > 0) */
    693 
    694 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
    695 /*
    696  * XXX move this elsewhere?
    697  */
    698 void
    699 rf_DD_GenerateFailedAccessASMs(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    700 			       RF_PhysDiskAddr_t **pdap, int *nNodep,
    701 			       RF_PhysDiskAddr_t **pqpdap, int *nPQNodep,
    702 			       RF_AllocListElem_t *allocList)
    703 {
    704 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    705 	int     PDAPerDisk, i;
    706 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    707 	int     numDataCol = layoutPtr->numDataCol;
    708 	int     state;
    709 	RF_SectorNum_t suoff, suend;
    710 	unsigned firstDataCol, napdas, count;
    711 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
    712 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    713 	RF_PhysDiskAddr_t *pda_p;
    714 	RF_PhysDiskAddr_t *phys_p;
    715 	RF_RaidAddr_t sosAddr;
    716 
    717 	/* determine how many pda's we will have to generate per unaccess
    718 	 * stripe. If there is only one failed data unit, it is one; if two,
    719 	 * possibly two, depending wether they overlap. */
    720 
    721 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    722 	fone_end = fone_start + fone->numSector;
    723 
    724 #define CONS_PDA(if,start,num) \
    725   pda_p->col = asmap->if->col; \
    726   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    727   pda_p->numSector = num; \
    728   pda_p->next = NULL; \
    729   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
    730 
    731 	if (asmap->numDataFailed == 1) {
    732 		PDAPerDisk = 1;
    733 		state = 1;
    734 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    735 		pda_p = *pqpdap;
    736 		/* build p */
    737 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    738 		pda_p->type = RF_PDA_TYPE_PARITY;
    739 		pda_p++;
    740 		/* build q */
    741 		CONS_PDA(qInfo, fone_start, fone->numSector);
    742 		pda_p->type = RF_PDA_TYPE_Q;
    743 	} else {
    744 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    745 		ftwo_end = ftwo_start + ftwo->numSector;
    746 		if (fone->numSector + ftwo->numSector > secPerSU) {
    747 			PDAPerDisk = 1;
    748 			state = 2;
    749 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    750 			pda_p = *pqpdap;
    751 			CONS_PDA(parityInfo, 0, secPerSU);
    752 			pda_p->type = RF_PDA_TYPE_PARITY;
    753 			pda_p++;
    754 			CONS_PDA(qInfo, 0, secPerSU);
    755 			pda_p->type = RF_PDA_TYPE_Q;
    756 		} else {
    757 			PDAPerDisk = 2;
    758 			state = 3;
    759 			/* four of them, fone, then ftwo */
    760 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    761 			pda_p = *pqpdap;
    762 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    763 			pda_p->type = RF_PDA_TYPE_PARITY;
    764 			pda_p++;
    765 			CONS_PDA(qInfo, fone_start, fone->numSector);
    766 			pda_p->type = RF_PDA_TYPE_Q;
    767 			pda_p++;
    768 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    769 			pda_p->type = RF_PDA_TYPE_PARITY;
    770 			pda_p++;
    771 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    772 			pda_p->type = RF_PDA_TYPE_Q;
    773 		}
    774 	}
    775 	/* figure out number of nonaccessed pda */
    776 	napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
    777 	*nPQNodep = PDAPerDisk;
    778 
    779 	/* sweep over the over accessed pda's, figuring out the number of
    780 	 * additional pda's to generate. Of course, skip the failed ones */
    781 
    782 	count = 0;
    783 	for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
    784 		if ((pda_p == fone) || (pda_p == ftwo))
    785 			continue;
    786 		suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
    787 		suend = suoff + pda_p->numSector;
    788 		switch (state) {
    789 		case 1:	/* one failed PDA to overlap */
    790 			/* if a PDA doesn't contain the failed unit, it can
    791 			 * only miss the start or end, not both */
    792 			if ((suoff > fone_start) || (suend < fone_end))
    793 				count++;
    794 			break;
    795 		case 2:	/* whole stripe */
    796 			if (suoff)	/* leak at begining */
    797 				count++;
    798 			if (suend < numDataCol)	/* leak at end */
    799 				count++;
    800 			break;
    801 		case 3:	/* two disjoint units */
    802 			if ((suoff > fone_start) || (suend < fone_end))
    803 				count++;
    804 			if ((suoff > ftwo_start) || (suend < ftwo_end))
    805 				count++;
    806 			break;
    807 		default:
    808 			RF_PANIC();
    809 		}
    810 	}
    811 
    812 	napdas += count;
    813 	*nNodep = napdas;
    814 	if (napdas == 0)
    815 		return;		/* short circuit */
    816 
    817 	/* allocate up our list of pda's */
    818 
    819 	RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
    820 			(RF_PhysDiskAddr_t *), allocList);
    821 	*pdap = pda_p;
    822 
    823 	/* linkem together */
    824 	for (i = 0; i < (napdas - 1); i++)
    825 		pda_p[i].next = pda_p + (i + 1);
    826 
    827 	/* march through the one's up to the first accessed disk */
    828 	firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
    829 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    830 	for (i = 0; i < firstDataCol; i++) {
    831 		if ((pda_p - (*pdap)) == napdas)
    832 			continue;
    833 		pda_p->type = RF_PDA_TYPE_DATA;
    834 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    835 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    836 		/* skip over dead disks */
    837 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    838 			continue;
    839 		switch (state) {
    840 		case 1:	/* fone */
    841 			pda_p->numSector = fone->numSector;
    842 			pda_p->raidAddress += fone_start;
    843 			pda_p->startSector += fone_start;
    844 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    845 			break;
    846 		case 2:	/* full stripe */
    847 			pda_p->numSector = secPerSU;
    848 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    849 			break;
    850 		case 3:	/* two slabs */
    851 			pda_p->numSector = fone->numSector;
    852 			pda_p->raidAddress += fone_start;
    853 			pda_p->startSector += fone_start;
    854 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    855 			pda_p++;
    856 			pda_p->type = RF_PDA_TYPE_DATA;
    857 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    858 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    859 			pda_p->numSector = ftwo->numSector;
    860 			pda_p->raidAddress += ftwo_start;
    861 			pda_p->startSector += ftwo_start;
    862 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    863 			break;
    864 		default:
    865 			RF_PANIC();
    866 		}
    867 		pda_p++;
    868 	}
    869 
    870 	/* march through the touched stripe units */
    871 	for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
    872 		if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
    873 			continue;
    874 		suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
    875 		suend = suoff + phys_p->numSector;
    876 		switch (state) {
    877 		case 1:	/* single buffer */
    878 			if (suoff > fone_start) {
    879 				RF_ASSERT(suend >= fone_end);
    880 				/* The data read starts after the mapped
    881 				 * access, snip off the begining */
    882 				pda_p->numSector = suoff - fone_start;
    883 				pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
    884 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    885 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    886 				pda_p++;
    887 			}
    888 			if (suend < fone_end) {
    889 				RF_ASSERT(suoff <= fone_start);
    890 				/* The data read stops before the end of the
    891 				 * failed access, extend */
    892 				pda_p->numSector = fone_end - suend;
    893 				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    894 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    895 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    896 				pda_p++;
    897 			}
    898 			break;
    899 		case 2:	/* whole stripe unit */
    900 			RF_ASSERT((suoff == 0) || (suend == secPerSU));
    901 			if (suend < secPerSU) {	/* short read, snip from end
    902 						 * on */
    903 				pda_p->numSector = secPerSU - suend;
    904 				pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    905 				(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    906 				RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    907 				pda_p++;
    908 			} else
    909 				if (suoff > 0) {	/* short at front */
    910 					pda_p->numSector = suoff;
    911 					pda_p->raidAddress = sosAddr + (i * secPerSU);
    912 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    913 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    914 					pda_p++;
    915 				}
    916 			break;
    917 		case 3:	/* two nonoverlapping failures */
    918 			if ((suoff > fone_start) || (suend < fone_end)) {
    919 				if (suoff > fone_start) {
    920 					RF_ASSERT(suend >= fone_end);
    921 					/* The data read starts after the
    922 					 * mapped access, snip off the
    923 					 * begining */
    924 					pda_p->numSector = suoff - fone_start;
    925 					pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
    926 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    927 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    928 					pda_p++;
    929 				}
    930 				if (suend < fone_end) {
    931 					RF_ASSERT(suoff <= fone_start);
    932 					/* The data read stops before the end
    933 					 * of the failed access, extend */
    934 					pda_p->numSector = fone_end - suend;
    935 					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    936 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    937 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    938 					pda_p++;
    939 				}
    940 			}
    941 			if ((suoff > ftwo_start) || (suend < ftwo_end)) {
    942 				if (suoff > ftwo_start) {
    943 					RF_ASSERT(suend >= ftwo_end);
    944 					/* The data read starts after the
    945 					 * mapped access, snip off the
    946 					 * begining */
    947 					pda_p->numSector = suoff - ftwo_start;
    948 					pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
    949 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    950 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    951 					pda_p++;
    952 				}
    953 				if (suend < ftwo_end) {
    954 					RF_ASSERT(suoff <= ftwo_start);
    955 					/* The data read stops before the end
    956 					 * of the failed access, extend */
    957 					pda_p->numSector = ftwo_end - suend;
    958 					pda_p->raidAddress = sosAddr + (i * secPerSU) + suend;	/* off by one? */
    959 					(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    960 					RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    961 					pda_p++;
    962 				}
    963 			}
    964 			break;
    965 		default:
    966 			RF_PANIC();
    967 		}
    968 	}
    969 
    970 	/* after the last accessed disk */
    971 	for (; i < numDataCol; i++) {
    972 		if ((pda_p - (*pdap)) == napdas)
    973 			continue;
    974 		pda_p->type = RF_PDA_TYPE_DATA;
    975 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    976 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    977 		/* skip over dead disks */
    978 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    979 			continue;
    980 		switch (state) {
    981 		case 1:	/* fone */
    982 			pda_p->numSector = fone->numSector;
    983 			pda_p->raidAddress += fone_start;
    984 			pda_p->startSector += fone_start;
    985 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    986 			break;
    987 		case 2:	/* full stripe */
    988 			pda_p->numSector = secPerSU;
    989 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    990 			break;
    991 		case 3:	/* two slabs */
    992 			pda_p->numSector = fone->numSector;
    993 			pda_p->raidAddress += fone_start;
    994 			pda_p->startSector += fone_start;
    995 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    996 			pda_p++;
    997 			pda_p->type = RF_PDA_TYPE_DATA;
    998 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    999 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
   1000 			pda_p->numSector = ftwo->numSector;
   1001 			pda_p->raidAddress += ftwo_start;
   1002 			pda_p->startSector += ftwo_start;
   1003 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
   1004 			break;
   1005 		default:
   1006 			RF_PANIC();
   1007 		}
   1008 		pda_p++;
   1009 	}
   1010 
   1011 	RF_ASSERT(pda_p - *pdap == napdas);
   1012 	return;
   1013 }
   1014 #define INIT_DISK_NODE(node,name) \
   1015 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
   1016 (node)->succedents[0] = unblockNode; \
   1017 (node)->succedents[1] = recoveryNode; \
   1018 (node)->antecedents[0] = blockNode; \
   1019 (node)->antType[0] = rf_control
   1020 
   1021 #define DISK_NODE_PARAMS(_node_,_p_) \
   1022   (_node_).params[0].p = _p_ ; \
   1023   (_node_).params[1].p = (_p_)->bufPtr; \
   1024   (_node_).params[2].v = parityStripeID; \
   1025   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
   1026 
   1027 void
   1028 rf_DoubleDegRead(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1029 		 RF_DagHeader_t *dag_h, void *bp, RF_RaidAccessFlags_t flags,
   1030 		 RF_AllocListElem_t *allocList,
   1031 		 char *redundantReadNodeName, char *recoveryNodeName,
   1032 		 int (*recovFunc) (RF_DagNode_t *))
   1033 {
   1034 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
   1035 	RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
   1036 	       *unblockNode, *rpNodes, *rqNodes, *termNode;
   1037 	RF_PhysDiskAddr_t *pda, *pqPDAs;
   1038 	RF_PhysDiskAddr_t *npdas;
   1039 	int     nNodes, nRrdNodes, nRudNodes, i;
   1040 	RF_ReconUnitNum_t which_ru;
   1041 	int     nReadNodes, nPQNodes;
   1042 	RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
   1043 	RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
   1044 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
   1045 
   1046 #if RF_DEBUG_DAG
   1047 	if (rf_dagDebug)
   1048 		printf("[Creating Double Degraded Read DAG]\n");
   1049 #endif
   1050 	rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
   1051 
   1052 	nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
   1053 	nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
   1054 	nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
   1055 
   1056 	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1057 	i = 0;
   1058 	blockNode = &nodes[i];
   1059 	i += 1;
   1060 	unblockNode = &nodes[i];
   1061 	i += 1;
   1062 	recoveryNode = &nodes[i];
   1063 	i += 1;
   1064 	termNode = &nodes[i];
   1065 	i += 1;
   1066 	rudNodes = &nodes[i];
   1067 	i += nRudNodes;
   1068 	rrdNodes = &nodes[i];
   1069 	i += nRrdNodes;
   1070 	rpNodes = &nodes[i];
   1071 	i += nPQNodes;
   1072 	rqNodes = &nodes[i];
   1073 	i += nPQNodes;
   1074 	RF_ASSERT(i == nNodes);
   1075 
   1076 	dag_h->numSuccedents = 1;
   1077 	dag_h->succedents[0] = blockNode;
   1078 	dag_h->creator = "DoubleDegRead";
   1079 	dag_h->numCommits = 0;
   1080 	dag_h->numCommitNodes = 1;	/* unblock */
   1081 
   1082 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
   1083 	termNode->antecedents[0] = unblockNode;
   1084 	termNode->antType[0] = rf_control;
   1085 	termNode->antecedents[1] = recoveryNode;
   1086 	termNode->antType[1] = rf_control;
   1087 
   1088 	/* init the block and unblock nodes */
   1089 	/* The block node has all nodes except itself, unblock and recovery as
   1090 	 * successors. Similarly for predecessors of the unblock. */
   1091 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1092 	rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
   1093 
   1094 	for (i = 0; i < nReadNodes; i++) {
   1095 		blockNode->succedents[i] = rudNodes + i;
   1096 		unblockNode->antecedents[i] = rudNodes + i;
   1097 		unblockNode->antType[i] = rf_control;
   1098 	}
   1099 	unblockNode->succedents[0] = termNode;
   1100 
   1101 	/* The recovery node has all the reads as predecessors, and the term
   1102 	 * node as successors. It gets a pda as a param from each of the read
   1103 	 * nodes plus the raidPtr. For each failed unit is has a result pda. */
   1104 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
   1105 	    1,			/* succesors */
   1106 	    nReadNodes,		/* preds */
   1107 	    nReadNodes + 2,	/* params */
   1108 	    asmap->numDataFailed,	/* results */
   1109 	    dag_h, recoveryNodeName, allocList);
   1110 
   1111 	recoveryNode->succedents[0] = termNode;
   1112 	for (i = 0; i < nReadNodes; i++) {
   1113 		recoveryNode->antecedents[i] = rudNodes + i;
   1114 		recoveryNode->antType[i] = rf_trueData;
   1115 	}
   1116 
   1117 	/* build the read nodes, then come back and fill in recovery params
   1118 	 * and results */
   1119 	pda = asmap->physInfo;
   1120 	for (i = 0; i < nRudNodes; pda = pda->next) {
   1121 		if ((pda == failedPDA) || (pda == failedPDAtwo))
   1122 			continue;
   1123 		INIT_DISK_NODE(rudNodes + i, "Rud");
   1124 		RF_ASSERT(pda);
   1125 		DISK_NODE_PARAMS(rudNodes[i], pda);
   1126 		i++;
   1127 	}
   1128 
   1129 	pda = npdas;
   1130 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
   1131 		INIT_DISK_NODE(rrdNodes + i, "Rrd");
   1132 		RF_ASSERT(pda);
   1133 		DISK_NODE_PARAMS(rrdNodes[i], pda);
   1134 	}
   1135 
   1136 	/* redundancy pdas */
   1137 	pda = pqPDAs;
   1138 	INIT_DISK_NODE(rpNodes, "Rp");
   1139 	RF_ASSERT(pda);
   1140 	DISK_NODE_PARAMS(rpNodes[0], pda);
   1141 	pda++;
   1142 	INIT_DISK_NODE(rqNodes, redundantReadNodeName);
   1143 	RF_ASSERT(pda);
   1144 	DISK_NODE_PARAMS(rqNodes[0], pda);
   1145 	if (nPQNodes == 2) {
   1146 		pda++;
   1147 		INIT_DISK_NODE(rpNodes + 1, "Rp");
   1148 		RF_ASSERT(pda);
   1149 		DISK_NODE_PARAMS(rpNodes[1], pda);
   1150 		pda++;
   1151 		INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
   1152 		RF_ASSERT(pda);
   1153 		DISK_NODE_PARAMS(rqNodes[1], pda);
   1154 	}
   1155 	/* fill in recovery node params */
   1156 	for (i = 0; i < nReadNodes; i++)
   1157 		recoveryNode->params[i] = rudNodes[i].params[0];	/* pda */
   1158 	recoveryNode->params[i++].p = (void *) raidPtr;
   1159 	recoveryNode->params[i++].p = (void *) asmap;
   1160 	recoveryNode->results[0] = failedPDA;
   1161 	if (asmap->numDataFailed == 2)
   1162 		recoveryNode->results[1] = failedPDAtwo;
   1163 
   1164 	/* zero fill the target data buffers? */
   1165 }
   1166 
   1167 #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
   1168