rf_dagdegrd.c revision 1.7 1 /* $NetBSD: rf_dagdegrd.c,v 1.7 2001/01/26 14:06:16 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * rf_dagdegrd.c
31 *
32 * code for creating degraded read DAGs
33 */
34
35 #include "rf_archs.h"
36 #include "rf_types.h"
37 #include "rf_raid.h"
38 #include "rf_dag.h"
39 #include "rf_dagutils.h"
40 #include "rf_dagfuncs.h"
41 #include "rf_debugMem.h"
42 #include "rf_memchunk.h"
43 #include "rf_general.h"
44 #include "rf_dagdegrd.h"
45
46
47 /******************************************************************************
48 *
49 * General comments on DAG creation:
50 *
51 * All DAGs in this file use roll-away error recovery. Each DAG has a single
52 * commit node, usually called "Cmt." If an error occurs before the Cmt node
53 * is reached, the execution engine will halt forward execution and work
54 * backward through the graph, executing the undo functions. Assuming that
55 * each node in the graph prior to the Cmt node are undoable and atomic - or -
56 * does not make changes to permanent state, the graph will fail atomically.
57 * If an error occurs after the Cmt node executes, the engine will roll-forward
58 * through the graph, blindly executing nodes until it reaches the end.
59 * If a graph reaches the end, it is assumed to have completed successfully.
60 *
61 * A graph has only 1 Cmt node.
62 *
63 */
64
65
66 /******************************************************************************
67 *
68 * The following wrappers map the standard DAG creation interface to the
69 * DAG creation routines. Additionally, these wrappers enable experimentation
70 * with new DAG structures by providing an extra level of indirection, allowing
71 * the DAG creation routines to be replaced at this single point.
72 */
73
74 void
75 rf_CreateRaidFiveDegradedReadDAG(
76 RF_Raid_t * raidPtr,
77 RF_AccessStripeMap_t * asmap,
78 RF_DagHeader_t * dag_h,
79 void *bp,
80 RF_RaidAccessFlags_t flags,
81 RF_AllocListElem_t * allocList)
82 {
83 rf_CreateDegradedReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
84 &rf_xorRecoveryFuncs);
85 }
86
87
88 /******************************************************************************
89 *
90 * DAG creation code begins here
91 */
92
93
94 /******************************************************************************
95 * Create a degraded read DAG for RAID level 1
96 *
97 * Hdr -> Nil -> R(p/s)d -> Commit -> Trm
98 *
99 * The "Rd" node reads data from the surviving disk in the mirror pair
100 * Rpd - read of primary copy
101 * Rsd - read of secondary copy
102 *
103 * Parameters: raidPtr - description of the physical array
104 * asmap - logical & physical addresses for this access
105 * bp - buffer ptr (for holding write data)
106 * flags - general flags (e.g. disk locking)
107 * allocList - list of memory allocated in DAG creation
108 *****************************************************************************/
109
110 void
111 rf_CreateRaidOneDegradedReadDAG(
112 RF_Raid_t * raidPtr,
113 RF_AccessStripeMap_t * asmap,
114 RF_DagHeader_t * dag_h,
115 void *bp,
116 RF_RaidAccessFlags_t flags,
117 RF_AllocListElem_t * allocList)
118 {
119 RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
120 RF_StripeNum_t parityStripeID;
121 RF_ReconUnitNum_t which_ru;
122 RF_PhysDiskAddr_t *pda;
123 int useMirror, i;
124
125 useMirror = 0;
126 parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
127 asmap->raidAddress, &which_ru);
128 if (rf_dagDebug) {
129 printf("[Creating RAID level 1 degraded read DAG]\n");
130 }
131 dag_h->creator = "RaidOneDegradedReadDAG";
132 /* alloc the Wnd nodes and the Wmir node */
133 if (asmap->numDataFailed == 0)
134 useMirror = RF_FALSE;
135 else
136 useMirror = RF_TRUE;
137
138 /* total number of nodes = 1 + (block + commit + terminator) */
139 RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
140 i = 0;
141 rdNode = &nodes[i];
142 i++;
143 blockNode = &nodes[i];
144 i++;
145 commitNode = &nodes[i];
146 i++;
147 termNode = &nodes[i];
148 i++;
149
150 /* this dag can not commit until the commit node is reached. errors
151 * prior to the commit point imply the dag has failed and must be
152 * retried */
153 dag_h->numCommitNodes = 1;
154 dag_h->numCommits = 0;
155 dag_h->numSuccedents = 1;
156
157 /* initialize the block, commit, and terminator nodes */
158 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
159 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
160 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
161 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
162 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
163 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
164
165 pda = asmap->physInfo;
166 RF_ASSERT(pda != NULL);
167 /* parityInfo must describe entire parity unit */
168 RF_ASSERT(asmap->parityInfo->next == NULL);
169
170 /* initialize the data node */
171 if (!useMirror) {
172 /* read primary copy of data */
173 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
174 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
175 rdNode->params[0].p = pda;
176 rdNode->params[1].p = pda->bufPtr;
177 rdNode->params[2].v = parityStripeID;
178 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
179 } else {
180 /* read secondary copy of data */
181 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
182 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
183 rdNode->params[0].p = asmap->parityInfo;
184 rdNode->params[1].p = pda->bufPtr;
185 rdNode->params[2].v = parityStripeID;
186 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
187 }
188
189 /* connect header to block node */
190 RF_ASSERT(dag_h->numSuccedents == 1);
191 RF_ASSERT(blockNode->numAntecedents == 0);
192 dag_h->succedents[0] = blockNode;
193
194 /* connect block node to rdnode */
195 RF_ASSERT(blockNode->numSuccedents == 1);
196 RF_ASSERT(rdNode->numAntecedents == 1);
197 blockNode->succedents[0] = rdNode;
198 rdNode->antecedents[0] = blockNode;
199 rdNode->antType[0] = rf_control;
200
201 /* connect rdnode to commit node */
202 RF_ASSERT(rdNode->numSuccedents == 1);
203 RF_ASSERT(commitNode->numAntecedents == 1);
204 rdNode->succedents[0] = commitNode;
205 commitNode->antecedents[0] = rdNode;
206 commitNode->antType[0] = rf_control;
207
208 /* connect commit node to terminator */
209 RF_ASSERT(commitNode->numSuccedents == 1);
210 RF_ASSERT(termNode->numAntecedents == 1);
211 RF_ASSERT(termNode->numSuccedents == 0);
212 commitNode->succedents[0] = termNode;
213 termNode->antecedents[0] = commitNode;
214 termNode->antType[0] = rf_control;
215 }
216
217
218
219 /******************************************************************************
220 *
221 * creates a DAG to perform a degraded-mode read of data within one stripe.
222 * This DAG is as follows:
223 *
224 * Hdr -> Block -> Rud -> Xor -> Cmt -> T
225 * -> Rrd ->
226 * -> Rp -->
227 *
228 * Each R node is a successor of the L node
229 * One successor arc from each R node goes to C, and the other to X
230 * There is one Rud for each chunk of surviving user data requested by the
231 * user, and one Rrd for each chunk of surviving user data _not_ being read by
232 * the user
233 * R = read, ud = user data, rd = recovery (surviving) data, p = parity
234 * X = XOR, C = Commit, T = terminate
235 *
236 * The block node guarantees a single source node.
237 *
238 * Note: The target buffer for the XOR node is set to the actual user buffer
239 * where the failed data is supposed to end up. This buffer is zero'd by the
240 * code here. Thus, if you create a degraded read dag, use it, and then
241 * re-use, you have to be sure to zero the target buffer prior to the re-use.
242 *
243 * The recfunc argument at the end specifies the name and function used for
244 * the redundancy
245 * recovery function.
246 *
247 *****************************************************************************/
248
249 void
250 rf_CreateDegradedReadDAG(
251 RF_Raid_t * raidPtr,
252 RF_AccessStripeMap_t * asmap,
253 RF_DagHeader_t * dag_h,
254 void *bp,
255 RF_RaidAccessFlags_t flags,
256 RF_AllocListElem_t * allocList,
257 RF_RedFuncs_t * recFunc)
258 {
259 RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *xorNode, *blockNode;
260 RF_DagNode_t *commitNode, *rpNode, *termNode;
261 int nNodes, nRrdNodes, nRudNodes, nXorBufs, i;
262 int j, paramNum;
263 RF_SectorCount_t sectorsPerSU;
264 RF_ReconUnitNum_t which_ru;
265 char *overlappingPDAs;/* a temporary array of flags */
266 RF_AccessStripeMapHeader_t *new_asm_h[2];
267 RF_PhysDiskAddr_t *pda, *parityPDA;
268 RF_StripeNum_t parityStripeID;
269 RF_PhysDiskAddr_t *failedPDA;
270 RF_RaidLayout_t *layoutPtr;
271 char *rpBuf;
272
273 layoutPtr = &(raidPtr->Layout);
274 /* failedPDA points to the pda within the asm that targets the failed
275 * disk */
276 failedPDA = asmap->failedPDAs[0];
277 parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
278 asmap->raidAddress, &which_ru);
279 sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
280
281 if (rf_dagDebug) {
282 printf("[Creating degraded read DAG]\n");
283 }
284 RF_ASSERT(asmap->numDataFailed == 1);
285 dag_h->creator = "DegradedReadDAG";
286
287 /*
288 * generate two ASMs identifying the surviving data we need
289 * in order to recover the lost data
290 */
291
292 /* overlappingPDAs array must be zero'd */
293 RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
294 rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h, &nXorBufs,
295 &rpBuf, overlappingPDAs, allocList);
296
297 /*
298 * create all the nodes at once
299 *
300 * -1 because no access is generated for the failed pda
301 */
302 nRudNodes = asmap->numStripeUnitsAccessed - 1;
303 nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
304 ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
305 nNodes = 5 + nRudNodes + nRrdNodes; /* lock, unlock, xor, Rp, Rud,
306 * Rrd */
307 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *),
308 allocList);
309 i = 0;
310 blockNode = &nodes[i];
311 i++;
312 commitNode = &nodes[i];
313 i++;
314 xorNode = &nodes[i];
315 i++;
316 rpNode = &nodes[i];
317 i++;
318 termNode = &nodes[i];
319 i++;
320 rudNodes = &nodes[i];
321 i += nRudNodes;
322 rrdNodes = &nodes[i];
323 i += nRrdNodes;
324 RF_ASSERT(i == nNodes);
325
326 /* initialize nodes */
327 dag_h->numCommitNodes = 1;
328 dag_h->numCommits = 0;
329 /* this dag can not commit until the commit node is reached errors
330 * prior to the commit point imply the dag has failed */
331 dag_h->numSuccedents = 1;
332
333 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
334 NULL, nRudNodes + nRrdNodes + 1, 0, 0, 0, dag_h, "Nil", allocList);
335 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
336 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
337 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
338 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
339 rf_InitNode(xorNode, rf_wait, RF_FALSE, recFunc->simple, rf_NullNodeUndoFunc,
340 NULL, 1, nRudNodes + nRrdNodes + 1, 2 * nXorBufs + 2, 1, dag_h,
341 recFunc->SimpleName, allocList);
342
343 /* fill in the Rud nodes */
344 for (pda = asmap->physInfo, i = 0; i < nRudNodes; i++, pda = pda->next) {
345 if (pda == failedPDA) {
346 i--;
347 continue;
348 }
349 rf_InitNode(&rudNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
350 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
351 "Rud", allocList);
352 RF_ASSERT(pda);
353 rudNodes[i].params[0].p = pda;
354 rudNodes[i].params[1].p = pda->bufPtr;
355 rudNodes[i].params[2].v = parityStripeID;
356 rudNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
357 }
358
359 /* fill in the Rrd nodes */
360 i = 0;
361 if (new_asm_h[0]) {
362 for (pda = new_asm_h[0]->stripeMap->physInfo;
363 i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
364 i++, pda = pda->next) {
365 rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
366 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
367 dag_h, "Rrd", allocList);
368 RF_ASSERT(pda);
369 rrdNodes[i].params[0].p = pda;
370 rrdNodes[i].params[1].p = pda->bufPtr;
371 rrdNodes[i].params[2].v = parityStripeID;
372 rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
373 }
374 }
375 if (new_asm_h[1]) {
376 for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
377 j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
378 j++, pda = pda->next) {
379 rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc,
380 rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
381 dag_h, "Rrd", allocList);
382 RF_ASSERT(pda);
383 rrdNodes[i + j].params[0].p = pda;
384 rrdNodes[i + j].params[1].p = pda->bufPtr;
385 rrdNodes[i + j].params[2].v = parityStripeID;
386 rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
387 }
388 }
389 /* make a PDA for the parity unit */
390 RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
391 parityPDA->row = asmap->parityInfo->row;
392 parityPDA->col = asmap->parityInfo->col;
393 parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
394 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
395 parityPDA->numSector = failedPDA->numSector;
396
397 /* initialize the Rp node */
398 rf_InitNode(rpNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
399 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rp ", allocList);
400 rpNode->params[0].p = parityPDA;
401 rpNode->params[1].p = rpBuf;
402 rpNode->params[2].v = parityStripeID;
403 rpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
404
405 /*
406 * the last and nastiest step is to assign all
407 * the parameters of the Xor node
408 */
409 paramNum = 0;
410 for (i = 0; i < nRrdNodes; i++) {
411 /* all the Rrd nodes need to be xored together */
412 xorNode->params[paramNum++] = rrdNodes[i].params[0];
413 xorNode->params[paramNum++] = rrdNodes[i].params[1];
414 }
415 for (i = 0; i < nRudNodes; i++) {
416 /* any Rud nodes that overlap the failed access need to be
417 * xored in */
418 if (overlappingPDAs[i]) {
419 RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
420 bcopy((char *) rudNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
421 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
422 xorNode->params[paramNum++].p = pda;
423 xorNode->params[paramNum++].p = pda->bufPtr;
424 }
425 }
426 RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
427
428 /* install parity pda as last set of params to be xor'd */
429 xorNode->params[paramNum++].p = parityPDA;
430 xorNode->params[paramNum++].p = rpBuf;
431
432 /*
433 * the last 2 params to the recovery xor node are
434 * the failed PDA and the raidPtr
435 */
436 xorNode->params[paramNum++].p = failedPDA;
437 xorNode->params[paramNum++].p = raidPtr;
438 RF_ASSERT(paramNum == 2 * nXorBufs + 2);
439
440 /*
441 * The xor node uses results[0] as the target buffer.
442 * Set pointer and zero the buffer. In the kernel, this
443 * may be a user buffer in which case we have to remap it.
444 */
445 xorNode->results[0] = failedPDA->bufPtr;
446 RF_BZERO(bp, failedPDA->bufPtr, rf_RaidAddressToByte(raidPtr,
447 failedPDA->numSector));
448
449 /* connect nodes to form graph */
450 /* connect the header to the block node */
451 RF_ASSERT(dag_h->numSuccedents == 1);
452 RF_ASSERT(blockNode->numAntecedents == 0);
453 dag_h->succedents[0] = blockNode;
454
455 /* connect the block node to the read nodes */
456 RF_ASSERT(blockNode->numSuccedents == (1 + nRrdNodes + nRudNodes));
457 RF_ASSERT(rpNode->numAntecedents == 1);
458 blockNode->succedents[0] = rpNode;
459 rpNode->antecedents[0] = blockNode;
460 rpNode->antType[0] = rf_control;
461 for (i = 0; i < nRrdNodes; i++) {
462 RF_ASSERT(rrdNodes[i].numSuccedents == 1);
463 blockNode->succedents[1 + i] = &rrdNodes[i];
464 rrdNodes[i].antecedents[0] = blockNode;
465 rrdNodes[i].antType[0] = rf_control;
466 }
467 for (i = 0; i < nRudNodes; i++) {
468 RF_ASSERT(rudNodes[i].numSuccedents == 1);
469 blockNode->succedents[1 + nRrdNodes + i] = &rudNodes[i];
470 rudNodes[i].antecedents[0] = blockNode;
471 rudNodes[i].antType[0] = rf_control;
472 }
473
474 /* connect the read nodes to the xor node */
475 RF_ASSERT(xorNode->numAntecedents == (1 + nRrdNodes + nRudNodes));
476 RF_ASSERT(rpNode->numSuccedents == 1);
477 rpNode->succedents[0] = xorNode;
478 xorNode->antecedents[0] = rpNode;
479 xorNode->antType[0] = rf_trueData;
480 for (i = 0; i < nRrdNodes; i++) {
481 RF_ASSERT(rrdNodes[i].numSuccedents == 1);
482 rrdNodes[i].succedents[0] = xorNode;
483 xorNode->antecedents[1 + i] = &rrdNodes[i];
484 xorNode->antType[1 + i] = rf_trueData;
485 }
486 for (i = 0; i < nRudNodes; i++) {
487 RF_ASSERT(rudNodes[i].numSuccedents == 1);
488 rudNodes[i].succedents[0] = xorNode;
489 xorNode->antecedents[1 + nRrdNodes + i] = &rudNodes[i];
490 xorNode->antType[1 + nRrdNodes + i] = rf_trueData;
491 }
492
493 /* connect the xor node to the commit node */
494 RF_ASSERT(xorNode->numSuccedents == 1);
495 RF_ASSERT(commitNode->numAntecedents == 1);
496 xorNode->succedents[0] = commitNode;
497 commitNode->antecedents[0] = xorNode;
498 commitNode->antType[0] = rf_control;
499
500 /* connect the termNode to the commit node */
501 RF_ASSERT(commitNode->numSuccedents == 1);
502 RF_ASSERT(termNode->numAntecedents == 1);
503 RF_ASSERT(termNode->numSuccedents == 0);
504 commitNode->succedents[0] = termNode;
505 termNode->antType[0] = rf_control;
506 termNode->antecedents[0] = commitNode;
507 }
508
509 #if (RF_INCLUDE_CHAINDECLUSTER > 0)
510 /******************************************************************************
511 * Create a degraded read DAG for Chained Declustering
512 *
513 * Hdr -> Nil -> R(p/s)d -> Cmt -> Trm
514 *
515 * The "Rd" node reads data from the surviving disk in the mirror pair
516 * Rpd - read of primary copy
517 * Rsd - read of secondary copy
518 *
519 * Parameters: raidPtr - description of the physical array
520 * asmap - logical & physical addresses for this access
521 * bp - buffer ptr (for holding write data)
522 * flags - general flags (e.g. disk locking)
523 * allocList - list of memory allocated in DAG creation
524 *****************************************************************************/
525
526 void
527 rf_CreateRaidCDegradedReadDAG(
528 RF_Raid_t * raidPtr,
529 RF_AccessStripeMap_t * asmap,
530 RF_DagHeader_t * dag_h,
531 void *bp,
532 RF_RaidAccessFlags_t flags,
533 RF_AllocListElem_t * allocList)
534 {
535 RF_DagNode_t *nodes, *rdNode, *blockNode, *commitNode, *termNode;
536 RF_StripeNum_t parityStripeID;
537 int useMirror, i, shiftable;
538 RF_ReconUnitNum_t which_ru;
539 RF_PhysDiskAddr_t *pda;
540
541 if ((asmap->numDataFailed + asmap->numParityFailed) == 0) {
542 shiftable = RF_TRUE;
543 } else {
544 shiftable = RF_FALSE;
545 }
546 useMirror = 0;
547 parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
548 asmap->raidAddress, &which_ru);
549
550 if (rf_dagDebug) {
551 printf("[Creating RAID C degraded read DAG]\n");
552 }
553 dag_h->creator = "RaidCDegradedReadDAG";
554 /* alloc the Wnd nodes and the Wmir node */
555 if (asmap->numDataFailed == 0)
556 useMirror = RF_FALSE;
557 else
558 useMirror = RF_TRUE;
559
560 /* total number of nodes = 1 + (block + commit + terminator) */
561 RF_CallocAndAdd(nodes, 4, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
562 i = 0;
563 rdNode = &nodes[i];
564 i++;
565 blockNode = &nodes[i];
566 i++;
567 commitNode = &nodes[i];
568 i++;
569 termNode = &nodes[i];
570 i++;
571
572 /*
573 * This dag can not commit until the commit node is reached.
574 * Errors prior to the commit point imply the dag has failed
575 * and must be retried.
576 */
577 dag_h->numCommitNodes = 1;
578 dag_h->numCommits = 0;
579 dag_h->numSuccedents = 1;
580
581 /* initialize the block, commit, and terminator nodes */
582 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
583 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
584 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
585 NULL, 1, 1, 0, 0, dag_h, "Cmt", allocList);
586 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
587 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
588
589 pda = asmap->physInfo;
590 RF_ASSERT(pda != NULL);
591 /* parityInfo must describe entire parity unit */
592 RF_ASSERT(asmap->parityInfo->next == NULL);
593
594 /* initialize the data node */
595 if (!useMirror) {
596 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
597 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rpd", allocList);
598 if (shiftable && rf_compute_workload_shift(raidPtr, pda)) {
599 /* shift this read to the next disk in line */
600 rdNode->params[0].p = asmap->parityInfo;
601 rdNode->params[1].p = pda->bufPtr;
602 rdNode->params[2].v = parityStripeID;
603 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
604 } else {
605 /* read primary copy */
606 rdNode->params[0].p = pda;
607 rdNode->params[1].p = pda->bufPtr;
608 rdNode->params[2].v = parityStripeID;
609 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
610 }
611 } else {
612 /* read secondary copy of data */
613 rf_InitNode(rdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
614 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rsd", allocList);
615 rdNode->params[0].p = asmap->parityInfo;
616 rdNode->params[1].p = pda->bufPtr;
617 rdNode->params[2].v = parityStripeID;
618 rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
619 }
620
621 /* connect header to block node */
622 RF_ASSERT(dag_h->numSuccedents == 1);
623 RF_ASSERT(blockNode->numAntecedents == 0);
624 dag_h->succedents[0] = blockNode;
625
626 /* connect block node to rdnode */
627 RF_ASSERT(blockNode->numSuccedents == 1);
628 RF_ASSERT(rdNode->numAntecedents == 1);
629 blockNode->succedents[0] = rdNode;
630 rdNode->antecedents[0] = blockNode;
631 rdNode->antType[0] = rf_control;
632
633 /* connect rdnode to commit node */
634 RF_ASSERT(rdNode->numSuccedents == 1);
635 RF_ASSERT(commitNode->numAntecedents == 1);
636 rdNode->succedents[0] = commitNode;
637 commitNode->antecedents[0] = rdNode;
638 commitNode->antType[0] = rf_control;
639
640 /* connect commit node to terminator */
641 RF_ASSERT(commitNode->numSuccedents == 1);
642 RF_ASSERT(termNode->numAntecedents == 1);
643 RF_ASSERT(termNode->numSuccedents == 0);
644 commitNode->succedents[0] = termNode;
645 termNode->antecedents[0] = commitNode;
646 termNode->antType[0] = rf_control;
647 }
648 #endif (RF_INCLUDE_CHAINDECLUSTER > 0)
649
650 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0)
651 /*
652 * XXX move this elsewhere?
653 */
654 void
655 rf_DD_GenerateFailedAccessASMs(
656 RF_Raid_t * raidPtr,
657 RF_AccessStripeMap_t * asmap,
658 RF_PhysDiskAddr_t ** pdap,
659 int *nNodep,
660 RF_PhysDiskAddr_t ** pqpdap,
661 int *nPQNodep,
662 RF_AllocListElem_t * allocList)
663 {
664 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
665 int PDAPerDisk, i;
666 RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
667 int numDataCol = layoutPtr->numDataCol;
668 int state;
669 RF_SectorNum_t suoff, suend;
670 unsigned firstDataCol, napdas, count;
671 RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end = 0;
672 RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
673 RF_PhysDiskAddr_t *pda_p;
674 RF_PhysDiskAddr_t *phys_p;
675 RF_RaidAddr_t sosAddr;
676
677 /* determine how many pda's we will have to generate per unaccess
678 * stripe. If there is only one failed data unit, it is one; if two,
679 * possibly two, depending wether they overlap. */
680
681 fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
682 fone_end = fone_start + fone->numSector;
683
684 #define CONS_PDA(if,start,num) \
685 pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
686 pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
687 pda_p->numSector = num; \
688 pda_p->next = NULL; \
689 RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
690
691 if (asmap->numDataFailed == 1) {
692 PDAPerDisk = 1;
693 state = 1;
694 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
695 pda_p = *pqpdap;
696 /* build p */
697 CONS_PDA(parityInfo, fone_start, fone->numSector);
698 pda_p->type = RF_PDA_TYPE_PARITY;
699 pda_p++;
700 /* build q */
701 CONS_PDA(qInfo, fone_start, fone->numSector);
702 pda_p->type = RF_PDA_TYPE_Q;
703 } else {
704 ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
705 ftwo_end = ftwo_start + ftwo->numSector;
706 if (fone->numSector + ftwo->numSector > secPerSU) {
707 PDAPerDisk = 1;
708 state = 2;
709 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
710 pda_p = *pqpdap;
711 CONS_PDA(parityInfo, 0, secPerSU);
712 pda_p->type = RF_PDA_TYPE_PARITY;
713 pda_p++;
714 CONS_PDA(qInfo, 0, secPerSU);
715 pda_p->type = RF_PDA_TYPE_Q;
716 } else {
717 PDAPerDisk = 2;
718 state = 3;
719 /* four of them, fone, then ftwo */
720 RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
721 pda_p = *pqpdap;
722 CONS_PDA(parityInfo, fone_start, fone->numSector);
723 pda_p->type = RF_PDA_TYPE_PARITY;
724 pda_p++;
725 CONS_PDA(qInfo, fone_start, fone->numSector);
726 pda_p->type = RF_PDA_TYPE_Q;
727 pda_p++;
728 CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
729 pda_p->type = RF_PDA_TYPE_PARITY;
730 pda_p++;
731 CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
732 pda_p->type = RF_PDA_TYPE_Q;
733 }
734 }
735 /* figure out number of nonaccessed pda */
736 napdas = PDAPerDisk * (numDataCol - asmap->numStripeUnitsAccessed - (ftwo == NULL ? 1 : 0));
737 *nPQNodep = PDAPerDisk;
738
739 /* sweep over the over accessed pda's, figuring out the number of
740 * additional pda's to generate. Of course, skip the failed ones */
741
742 count = 0;
743 for (pda_p = asmap->physInfo; pda_p; pda_p = pda_p->next) {
744 if ((pda_p == fone) || (pda_p == ftwo))
745 continue;
746 suoff = rf_StripeUnitOffset(layoutPtr, pda_p->startSector);
747 suend = suoff + pda_p->numSector;
748 switch (state) {
749 case 1: /* one failed PDA to overlap */
750 /* if a PDA doesn't contain the failed unit, it can
751 * only miss the start or end, not both */
752 if ((suoff > fone_start) || (suend < fone_end))
753 count++;
754 break;
755 case 2: /* whole stripe */
756 if (suoff) /* leak at begining */
757 count++;
758 if (suend < numDataCol) /* leak at end */
759 count++;
760 break;
761 case 3: /* two disjoint units */
762 if ((suoff > fone_start) || (suend < fone_end))
763 count++;
764 if ((suoff > ftwo_start) || (suend < ftwo_end))
765 count++;
766 break;
767 default:
768 RF_PANIC();
769 }
770 }
771
772 napdas += count;
773 *nNodep = napdas;
774 if (napdas == 0)
775 return; /* short circuit */
776
777 /* allocate up our list of pda's */
778
779 RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
780 *pdap = pda_p;
781
782 /* linkem together */
783 for (i = 0; i < (napdas - 1); i++)
784 pda_p[i].next = pda_p + (i + 1);
785
786 /* march through the one's up to the first accessed disk */
787 firstDataCol = rf_RaidAddressToStripeUnitID(&(raidPtr->Layout), asmap->physInfo->raidAddress) % numDataCol;
788 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
789 for (i = 0; i < firstDataCol; i++) {
790 if ((pda_p - (*pdap)) == napdas)
791 continue;
792 pda_p->type = RF_PDA_TYPE_DATA;
793 pda_p->raidAddress = sosAddr + (i * secPerSU);
794 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
795 /* skip over dead disks */
796 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
797 continue;
798 switch (state) {
799 case 1: /* fone */
800 pda_p->numSector = fone->numSector;
801 pda_p->raidAddress += fone_start;
802 pda_p->startSector += fone_start;
803 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
804 break;
805 case 2: /* full stripe */
806 pda_p->numSector = secPerSU;
807 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
808 break;
809 case 3: /* two slabs */
810 pda_p->numSector = fone->numSector;
811 pda_p->raidAddress += fone_start;
812 pda_p->startSector += fone_start;
813 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
814 pda_p++;
815 pda_p->type = RF_PDA_TYPE_DATA;
816 pda_p->raidAddress = sosAddr + (i * secPerSU);
817 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
818 pda_p->numSector = ftwo->numSector;
819 pda_p->raidAddress += ftwo_start;
820 pda_p->startSector += ftwo_start;
821 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
822 break;
823 default:
824 RF_PANIC();
825 }
826 pda_p++;
827 }
828
829 /* march through the touched stripe units */
830 for (phys_p = asmap->physInfo; phys_p; phys_p = phys_p->next, i++) {
831 if ((phys_p == asmap->failedPDAs[0]) || (phys_p == asmap->failedPDAs[1]))
832 continue;
833 suoff = rf_StripeUnitOffset(layoutPtr, phys_p->startSector);
834 suend = suoff + phys_p->numSector;
835 switch (state) {
836 case 1: /* single buffer */
837 if (suoff > fone_start) {
838 RF_ASSERT(suend >= fone_end);
839 /* The data read starts after the mapped
840 * access, snip off the begining */
841 pda_p->numSector = suoff - fone_start;
842 pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
843 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
844 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
845 pda_p++;
846 }
847 if (suend < fone_end) {
848 RF_ASSERT(suoff <= fone_start);
849 /* The data read stops before the end of the
850 * failed access, extend */
851 pda_p->numSector = fone_end - suend;
852 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
853 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
854 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
855 pda_p++;
856 }
857 break;
858 case 2: /* whole stripe unit */
859 RF_ASSERT((suoff == 0) || (suend == secPerSU));
860 if (suend < secPerSU) { /* short read, snip from end
861 * on */
862 pda_p->numSector = secPerSU - suend;
863 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
864 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
865 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
866 pda_p++;
867 } else
868 if (suoff > 0) { /* short at front */
869 pda_p->numSector = suoff;
870 pda_p->raidAddress = sosAddr + (i * secPerSU);
871 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
872 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
873 pda_p++;
874 }
875 break;
876 case 3: /* two nonoverlapping failures */
877 if ((suoff > fone_start) || (suend < fone_end)) {
878 if (suoff > fone_start) {
879 RF_ASSERT(suend >= fone_end);
880 /* The data read starts after the
881 * mapped access, snip off the
882 * begining */
883 pda_p->numSector = suoff - fone_start;
884 pda_p->raidAddress = sosAddr + (i * secPerSU) + fone_start;
885 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
886 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
887 pda_p++;
888 }
889 if (suend < fone_end) {
890 RF_ASSERT(suoff <= fone_start);
891 /* The data read stops before the end
892 * of the failed access, extend */
893 pda_p->numSector = fone_end - suend;
894 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
895 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
896 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
897 pda_p++;
898 }
899 }
900 if ((suoff > ftwo_start) || (suend < ftwo_end)) {
901 if (suoff > ftwo_start) {
902 RF_ASSERT(suend >= ftwo_end);
903 /* The data read starts after the
904 * mapped access, snip off the
905 * begining */
906 pda_p->numSector = suoff - ftwo_start;
907 pda_p->raidAddress = sosAddr + (i * secPerSU) + ftwo_start;
908 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
909 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
910 pda_p++;
911 }
912 if (suend < ftwo_end) {
913 RF_ASSERT(suoff <= ftwo_start);
914 /* The data read stops before the end
915 * of the failed access, extend */
916 pda_p->numSector = ftwo_end - suend;
917 pda_p->raidAddress = sosAddr + (i * secPerSU) + suend; /* off by one? */
918 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
919 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
920 pda_p++;
921 }
922 }
923 break;
924 default:
925 RF_PANIC();
926 }
927 }
928
929 /* after the last accessed disk */
930 for (; i < numDataCol; i++) {
931 if ((pda_p - (*pdap)) == napdas)
932 continue;
933 pda_p->type = RF_PDA_TYPE_DATA;
934 pda_p->raidAddress = sosAddr + (i * secPerSU);
935 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
936 /* skip over dead disks */
937 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
938 continue;
939 switch (state) {
940 case 1: /* fone */
941 pda_p->numSector = fone->numSector;
942 pda_p->raidAddress += fone_start;
943 pda_p->startSector += fone_start;
944 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
945 break;
946 case 2: /* full stripe */
947 pda_p->numSector = secPerSU;
948 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
949 break;
950 case 3: /* two slabs */
951 pda_p->numSector = fone->numSector;
952 pda_p->raidAddress += fone_start;
953 pda_p->startSector += fone_start;
954 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
955 pda_p++;
956 pda_p->type = RF_PDA_TYPE_DATA;
957 pda_p->raidAddress = sosAddr + (i * secPerSU);
958 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
959 pda_p->numSector = ftwo->numSector;
960 pda_p->raidAddress += ftwo_start;
961 pda_p->startSector += ftwo_start;
962 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
963 break;
964 default:
965 RF_PANIC();
966 }
967 pda_p++;
968 }
969
970 RF_ASSERT(pda_p - *pdap == napdas);
971 return;
972 }
973 #define INIT_DISK_NODE(node,name) \
974 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 2,1,4,0, dag_h, name, allocList); \
975 (node)->succedents[0] = unblockNode; \
976 (node)->succedents[1] = recoveryNode; \
977 (node)->antecedents[0] = blockNode; \
978 (node)->antType[0] = rf_control
979
980 #define DISK_NODE_PARAMS(_node_,_p_) \
981 (_node_).params[0].p = _p_ ; \
982 (_node_).params[1].p = (_p_)->bufPtr; \
983 (_node_).params[2].v = parityStripeID; \
984 (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
985
986 void
987 rf_DoubleDegRead(
988 RF_Raid_t * raidPtr,
989 RF_AccessStripeMap_t * asmap,
990 RF_DagHeader_t * dag_h,
991 void *bp,
992 RF_RaidAccessFlags_t flags,
993 RF_AllocListElem_t * allocList,
994 char *redundantReadNodeName,
995 char *recoveryNodeName,
996 int (*recovFunc) (RF_DagNode_t *))
997 {
998 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
999 RF_DagNode_t *nodes, *rudNodes, *rrdNodes, *recoveryNode, *blockNode,
1000 *unblockNode, *rpNodes, *rqNodes, *termNode;
1001 RF_PhysDiskAddr_t *pda, *pqPDAs;
1002 RF_PhysDiskAddr_t *npdas;
1003 int nNodes, nRrdNodes, nRudNodes, i;
1004 RF_ReconUnitNum_t which_ru;
1005 int nReadNodes, nPQNodes;
1006 RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
1007 RF_PhysDiskAddr_t *failedPDAtwo = asmap->failedPDAs[1];
1008 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
1009
1010 if (rf_dagDebug)
1011 printf("[Creating Double Degraded Read DAG]\n");
1012 rf_DD_GenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
1013
1014 nRudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
1015 nReadNodes = nRrdNodes + nRudNodes + 2 * nPQNodes;
1016 nNodes = 4 /* block, unblock, recovery, term */ + nReadNodes;
1017
1018 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
1019 i = 0;
1020 blockNode = &nodes[i];
1021 i += 1;
1022 unblockNode = &nodes[i];
1023 i += 1;
1024 recoveryNode = &nodes[i];
1025 i += 1;
1026 termNode = &nodes[i];
1027 i += 1;
1028 rudNodes = &nodes[i];
1029 i += nRudNodes;
1030 rrdNodes = &nodes[i];
1031 i += nRrdNodes;
1032 rpNodes = &nodes[i];
1033 i += nPQNodes;
1034 rqNodes = &nodes[i];
1035 i += nPQNodes;
1036 RF_ASSERT(i == nNodes);
1037
1038 dag_h->numSuccedents = 1;
1039 dag_h->succedents[0] = blockNode;
1040 dag_h->creator = "DoubleDegRead";
1041 dag_h->numCommits = 0;
1042 dag_h->numCommitNodes = 1; /* unblock */
1043
1044 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 2, 0, 0, dag_h, "Trm", allocList);
1045 termNode->antecedents[0] = unblockNode;
1046 termNode->antType[0] = rf_control;
1047 termNode->antecedents[1] = recoveryNode;
1048 termNode->antType[1] = rf_control;
1049
1050 /* init the block and unblock nodes */
1051 /* The block node has all nodes except itself, unblock and recovery as
1052 * successors. Similarly for predecessors of the unblock. */
1053 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
1054 rf_InitNode(unblockNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nReadNodes, 0, 0, dag_h, "Nil", allocList);
1055
1056 for (i = 0; i < nReadNodes; i++) {
1057 blockNode->succedents[i] = rudNodes + i;
1058 unblockNode->antecedents[i] = rudNodes + i;
1059 unblockNode->antType[i] = rf_control;
1060 }
1061 unblockNode->succedents[0] = termNode;
1062
1063 /* The recovery node has all the reads as predecessors, and the term
1064 * node as successors. It gets a pda as a param from each of the read
1065 * nodes plus the raidPtr. For each failed unit is has a result pda. */
1066 rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
1067 1, /* succesors */
1068 nReadNodes, /* preds */
1069 nReadNodes + 2, /* params */
1070 asmap->numDataFailed, /* results */
1071 dag_h, recoveryNodeName, allocList);
1072
1073 recoveryNode->succedents[0] = termNode;
1074 for (i = 0; i < nReadNodes; i++) {
1075 recoveryNode->antecedents[i] = rudNodes + i;
1076 recoveryNode->antType[i] = rf_trueData;
1077 }
1078
1079 /* build the read nodes, then come back and fill in recovery params
1080 * and results */
1081 pda = asmap->physInfo;
1082 for (i = 0; i < nRudNodes; pda = pda->next) {
1083 if ((pda == failedPDA) || (pda == failedPDAtwo))
1084 continue;
1085 INIT_DISK_NODE(rudNodes + i, "Rud");
1086 RF_ASSERT(pda);
1087 DISK_NODE_PARAMS(rudNodes[i], pda);
1088 i++;
1089 }
1090
1091 pda = npdas;
1092 for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
1093 INIT_DISK_NODE(rrdNodes + i, "Rrd");
1094 RF_ASSERT(pda);
1095 DISK_NODE_PARAMS(rrdNodes[i], pda);
1096 }
1097
1098 /* redundancy pdas */
1099 pda = pqPDAs;
1100 INIT_DISK_NODE(rpNodes, "Rp");
1101 RF_ASSERT(pda);
1102 DISK_NODE_PARAMS(rpNodes[0], pda);
1103 pda++;
1104 INIT_DISK_NODE(rqNodes, redundantReadNodeName);
1105 RF_ASSERT(pda);
1106 DISK_NODE_PARAMS(rqNodes[0], pda);
1107 if (nPQNodes == 2) {
1108 pda++;
1109 INIT_DISK_NODE(rpNodes + 1, "Rp");
1110 RF_ASSERT(pda);
1111 DISK_NODE_PARAMS(rpNodes[1], pda);
1112 pda++;
1113 INIT_DISK_NODE(rqNodes + 1, redundantReadNodeName);
1114 RF_ASSERT(pda);
1115 DISK_NODE_PARAMS(rqNodes[1], pda);
1116 }
1117 /* fill in recovery node params */
1118 for (i = 0; i < nReadNodes; i++)
1119 recoveryNode->params[i] = rudNodes[i].params[0]; /* pda */
1120 recoveryNode->params[i++].p = (void *) raidPtr;
1121 recoveryNode->params[i++].p = (void *) asmap;
1122 recoveryNode->results[0] = failedPDA;
1123 if (asmap->numDataFailed == 2)
1124 recoveryNode->results[1] = failedPDAtwo;
1125
1126 /* zero fill the target data buffers? */
1127 }
1128
1129 #endif /* (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD > 0) */
1130