Home | History | Annotate | Line # | Download | only in raidframe
      1  1.37     oster /*	$NetBSD: rf_dagdegwr.c,v 1.37 2023/10/15 18:15:19 oster Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.1     oster /*
     30   1.1     oster  * rf_dagdegwr.c
     31   1.1     oster  *
     32   1.1     oster  * code for creating degraded write DAGs
     33   1.1     oster  *
     34   1.1     oster  */
     35   1.9     lukem 
     36   1.9     lukem #include <sys/cdefs.h>
     37  1.37     oster __KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.37 2023/10/15 18:15:19 oster Exp $");
     38   1.1     oster 
     39   1.8     oster #include <dev/raidframe/raidframevar.h>
     40   1.8     oster 
     41   1.1     oster #include "rf_raid.h"
     42   1.1     oster #include "rf_dag.h"
     43   1.1     oster #include "rf_dagutils.h"
     44   1.1     oster #include "rf_dagfuncs.h"
     45   1.1     oster #include "rf_debugMem.h"
     46   1.1     oster #include "rf_general.h"
     47   1.1     oster #include "rf_dagdegwr.h"
     48  1.19     oster #include "rf_map.h"
     49   1.1     oster 
     50   1.1     oster 
     51   1.1     oster /******************************************************************************
     52   1.1     oster  *
     53   1.1     oster  * General comments on DAG creation:
     54   1.3     oster  *
     55   1.1     oster  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     56   1.1     oster  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     57   1.1     oster  * is reached, the execution engine will halt forward execution and work
     58   1.1     oster  * backward through the graph, executing the undo functions.  Assuming that
     59   1.1     oster  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     60   1.1     oster  * does not make changes to permanent state, the graph will fail atomically.
     61   1.1     oster  * If an error occurs after the Cmt node executes, the engine will roll-forward
     62   1.1     oster  * through the graph, blindly executing nodes until it reaches the end.
     63   1.1     oster  * If a graph reaches the end, it is assumed to have completed successfully.
     64   1.1     oster  *
     65   1.1     oster  * A graph has only 1 Cmt node.
     66   1.1     oster  *
     67   1.1     oster  */
     68   1.1     oster 
     69   1.1     oster 
     70   1.1     oster /******************************************************************************
     71   1.1     oster  *
     72   1.1     oster  * The following wrappers map the standard DAG creation interface to the
     73   1.1     oster  * DAG creation routines.  Additionally, these wrappers enable experimentation
     74   1.1     oster  * with new DAG structures by providing an extra level of indirection, allowing
     75   1.1     oster  * the DAG creation routines to be replaced at this single point.
     76   1.1     oster  */
     77   1.1     oster 
     78  1.25     perry static
     79   1.3     oster RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
     80   1.1     oster {
     81   1.3     oster 	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
     82   1.3     oster 	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
     83   1.1     oster }
     84   1.1     oster 
     85  1.25     perry void
     86  1.14     oster rf_CreateDegradedWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
     87  1.25     perry 			  RF_DagHeader_t *dag_h, void *bp,
     88  1.25     perry 			  RF_RaidAccessFlags_t flags,
     89  1.14     oster 			  RF_AllocListElem_t *allocList)
     90   1.1     oster {
     91   1.3     oster 
     92   1.3     oster 	RF_ASSERT(asmap->numDataFailed == 1);
     93   1.3     oster 	dag_h->creator = "DegradedWriteDAG";
     94   1.3     oster 
     95   1.7   thorpej 	/*
     96   1.7   thorpej 	 * if the access writes only a portion of the failed unit, and also
     97   1.3     oster 	 * writes some portion of at least one surviving unit, we create two
     98   1.3     oster 	 * DAGs, one for the failed component and one for the non-failed
     99   1.3     oster 	 * component, and do them sequentially.  Note that the fact that we're
    100   1.3     oster 	 * accessing only a portion of the failed unit indicates that the
    101   1.3     oster 	 * access either starts or ends in the failed unit, and hence we need
    102   1.3     oster 	 * create only two dags.  This is inefficient in that the same data or
    103   1.3     oster 	 * parity can get read and written twice using this structure.  I need
    104   1.7   thorpej 	 * to fix this to do the access all at once.
    105   1.7   thorpej 	 */
    106   1.7   thorpej 	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
    107   1.7   thorpej 		    asmap->failedPDAs[0]->numSector !=
    108   1.7   thorpej 			raidPtr->Layout.sectorsPerStripeUnit));
    109   1.7   thorpej 	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    110   1.7   thorpej 	    allocList);
    111   1.1     oster }
    112   1.1     oster 
    113   1.1     oster 
    114   1.1     oster 
    115   1.1     oster /******************************************************************************
    116   1.1     oster  *
    117   1.1     oster  * DAG creation code begins here
    118   1.1     oster  */
    119  1.34  christos #define BUF_ALLOC(num) \
    120  1.34  christos   RF_MallocAndAdd(rf_RaidAddressToByte(raidPtr, num), allocList)
    121   1.1     oster 
    122   1.1     oster 
    123   1.1     oster 
    124   1.1     oster /******************************************************************************
    125   1.1     oster  *
    126   1.1     oster  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
    127   1.1     oster  * write, which is as follows
    128   1.1     oster  *
    129   1.1     oster  *                                        / {Wnq} --\
    130   1.1     oster  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
    131   1.1     oster  *                  \  {Rod} /            \  Wnd ---/
    132   1.1     oster  *                                        \ {Wnd} -/
    133   1.1     oster  *
    134   1.1     oster  * commit nodes: Xor, Wnd
    135   1.1     oster  *
    136   1.1     oster  * IMPORTANT:
    137   1.1     oster  * This DAG generator does not work for double-degraded archs since it does not
    138   1.1     oster  * generate Q
    139   1.1     oster  *
    140   1.1     oster  * This dag is essentially identical to the large-write dag, except that the
    141   1.1     oster  * write to the failed data unit is suppressed.
    142   1.1     oster  *
    143   1.1     oster  * IMPORTANT:  this dag does not work in the case where the access writes only
    144   1.1     oster  * a portion of the failed unit, and also writes some portion of at least one
    145   1.1     oster  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
    146   1.1     oster  *
    147   1.1     oster  * The block & unblock nodes are leftovers from a previous version.  They
    148   1.1     oster  * do nothing, but I haven't deleted them because it would be a tremendous
    149   1.1     oster  * effort to put them back in.
    150   1.1     oster  *
    151   1.1     oster  * This dag is used whenever a one of the data units in a write has failed.
    152   1.1     oster  * If it is the parity unit that failed, the nonredundant write dag (below)
    153   1.1     oster  * is used.
    154   1.1     oster  *****************************************************************************/
    155   1.1     oster 
    156  1.25     perry void
    157  1.25     perry rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t *raidPtr,
    158  1.14     oster 				      RF_AccessStripeMap_t *asmap,
    159  1.30  christos 				      RF_DagHeader_t *dag_h, void *bp,
    160  1.30  christos 				      RF_RaidAccessFlags_t flags,
    161  1.14     oster 				      RF_AllocListElem_t *allocList,
    162  1.14     oster 				      int nfaults,
    163  1.35  christos 				      void (*redFunc) (RF_DagNode_t *),
    164  1.14     oster 				      int allowBufferRecycle)
    165   1.1     oster {
    166  1.32    martin 	int     nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
    167   1.3     oster 	        rdnodesFaked;
    168  1.32    martin 	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *termNode;
    169  1.32    martin #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    170  1.32    martin 	RF_DagNode_t *wnqNode;
    171  1.32    martin #endif
    172  1.18     oster 	RF_DagNode_t *wndNodes, *rrdNodes, *xorNode, *commitNode;
    173  1.18     oster 	RF_DagNode_t *tmpNode, *tmpwndNode, *tmprrdNode;
    174   1.3     oster 	RF_SectorCount_t sectorsPerSU;
    175   1.3     oster 	RF_ReconUnitNum_t which_ru;
    176   1.3     oster 	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
    177   1.3     oster 					 * operation */
    178  1.19     oster 	char   overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
    179   1.3     oster 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    180   1.3     oster 	RF_PhysDiskAddr_t *pda, *parityPDA;
    181   1.3     oster 	RF_StripeNum_t parityStripeID;
    182   1.3     oster 	RF_PhysDiskAddr_t *failedPDA;
    183   1.3     oster 	RF_RaidLayout_t *layoutPtr;
    184   1.3     oster 
    185   1.3     oster 	layoutPtr = &(raidPtr->Layout);
    186   1.3     oster 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    187   1.3     oster 	    &which_ru);
    188   1.3     oster 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    189   1.3     oster 	/* failedPDA points to the pda within the asm that targets the failed
    190   1.3     oster 	 * disk */
    191   1.3     oster 	failedPDA = asmap->failedPDAs[0];
    192   1.3     oster 
    193  1.16     oster #if RF_DEBUG_DAG
    194   1.3     oster 	if (rf_dagDebug)
    195   1.3     oster 		printf("[Creating degraded-write DAG]\n");
    196  1.16     oster #endif
    197   1.3     oster 
    198   1.3     oster 	RF_ASSERT(asmap->numDataFailed == 1);
    199   1.3     oster 	dag_h->creator = "SimpleDegradedWriteDAG";
    200   1.3     oster 
    201   1.3     oster 	/*
    202   1.3     oster          * Generate two ASMs identifying the surviving data
    203   1.3     oster          * we need in order to recover the lost data.
    204   1.3     oster          */
    205   1.3     oster 	/* overlappingPDAs array must be zero'd */
    206  1.19     oster 	memset(overlappingPDAs, 0, RF_MAXCOL);
    207   1.3     oster 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
    208   1.3     oster 	    &nXorBufs, NULL, overlappingPDAs, allocList);
    209   1.3     oster 
    210   1.3     oster 	/* create all the nodes at once */
    211   1.3     oster 	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
    212   1.3     oster 							 * generated for the
    213   1.3     oster 							 * failed pda */
    214   1.3     oster 
    215   1.3     oster 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    216   1.3     oster 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    217   1.3     oster 	/*
    218   1.3     oster          * XXX
    219   1.3     oster          *
    220   1.3     oster          * There's a bug with a complete stripe overwrite- that means 0 reads
    221   1.3     oster          * of old data, and the rest of the DAG generation code doesn't like
    222   1.3     oster          * that. A release is coming, and I don't wanna risk breaking a critical
    223   1.3     oster          * DAG generator, so here's what I'm gonna do- if there's no read nodes,
    224   1.3     oster          * I'm gonna fake there being a read node, and I'm gonna swap in a
    225   1.3     oster          * no-op node in its place (to make all the link-up code happy).
    226   1.3     oster          * This should be fixed at some point.  --jimz
    227   1.3     oster          */
    228   1.3     oster 	if (nRrdNodes == 0) {
    229   1.3     oster 		nRrdNodes = 1;
    230   1.3     oster 		rdnodesFaked = 1;
    231   1.3     oster 	} else {
    232   1.3     oster 		rdnodesFaked = 0;
    233   1.3     oster 	}
    234  1.18     oster 
    235  1.36     oster 	blockNode = rf_AllocDAGNode(raidPtr);
    236  1.18     oster 	blockNode->list_next = dag_h->nodes;
    237  1.18     oster 	dag_h->nodes = blockNode;
    238  1.18     oster 
    239  1.36     oster 	commitNode = rf_AllocDAGNode(raidPtr);
    240  1.18     oster 	commitNode->list_next = dag_h->nodes;
    241  1.18     oster 	dag_h->nodes = commitNode;
    242  1.18     oster 
    243  1.36     oster 	unblockNode = rf_AllocDAGNode(raidPtr);
    244  1.18     oster 	unblockNode->list_next = dag_h->nodes;
    245  1.18     oster 	dag_h->nodes = unblockNode;
    246  1.18     oster 
    247  1.36     oster 	termNode = rf_AllocDAGNode(raidPtr);
    248  1.18     oster 	termNode->list_next = dag_h->nodes;
    249  1.18     oster 	dag_h->nodes = termNode;
    250  1.18     oster 
    251  1.36     oster 	xorNode = rf_AllocDAGNode(raidPtr);
    252  1.18     oster 	xorNode->list_next = dag_h->nodes;
    253  1.18     oster 	dag_h->nodes = xorNode;
    254  1.18     oster 
    255  1.36     oster 	wnpNode = rf_AllocDAGNode(raidPtr);
    256  1.18     oster 	wnpNode->list_next = dag_h->nodes;
    257  1.18     oster 	dag_h->nodes = wnpNode;
    258  1.18     oster 
    259  1.18     oster 	for (i = 0; i < nWndNodes; i++) {
    260  1.36     oster 		tmpNode = rf_AllocDAGNode(raidPtr);
    261  1.18     oster 		tmpNode->list_next = dag_h->nodes;
    262  1.18     oster 		dag_h->nodes = tmpNode;
    263  1.18     oster 	}
    264  1.25     perry 	wndNodes = dag_h->nodes;
    265  1.18     oster 
    266  1.18     oster 	for (i = 0; i < nRrdNodes; i++) {
    267  1.36     oster 		tmpNode = rf_AllocDAGNode(raidPtr);
    268  1.18     oster 		tmpNode->list_next = dag_h->nodes;
    269  1.18     oster 		dag_h->nodes = tmpNode;
    270  1.18     oster 	}
    271  1.18     oster 	rrdNodes = dag_h->nodes;
    272  1.18     oster 
    273  1.17     oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    274   1.3     oster 	if (nfaults == 2) {
    275  1.36     oster 		wnqNode = rf_AllocDAGNode(raidPtr);
    276  1.18     oster 		wnqNode->list_next = dag_h->nodes;
    277  1.18     oster 		dag_h->nodes = wnqNode;
    278   1.3     oster 	} else {
    279   1.3     oster 		wnqNode = NULL;
    280   1.3     oster 	}
    281  1.17     oster #endif
    282   1.3     oster 
    283   1.3     oster 	/* this dag can not commit until all rrd and xor Nodes have completed */
    284   1.3     oster 	dag_h->numCommitNodes = 1;
    285   1.3     oster 	dag_h->numCommits = 0;
    286   1.3     oster 	dag_h->numSuccedents = 1;
    287   1.3     oster 
    288   1.3     oster 	RF_ASSERT(nRrdNodes > 0);
    289   1.3     oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    290   1.3     oster 	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
    291   1.3     oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    292   1.3     oster 	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    293   1.3     oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    294   1.3     oster 	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
    295   1.3     oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    296   1.3     oster 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    297   1.3     oster 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    298   1.3     oster 	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
    299   1.3     oster 
    300   1.3     oster 	/*
    301   1.3     oster          * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
    302   1.3     oster          * the failed buffer, save a pointer to it so we can use it as the target
    303   1.3     oster          * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
    304   1.3     oster          * a buffer is the same size as the failed buffer, it must also be at the
    305   1.3     oster          * same alignment within the SU.
    306   1.3     oster          */
    307   1.3     oster 	i = 0;
    308  1.18     oster 	tmprrdNode = rrdNodes;
    309   1.3     oster 	if (new_asm_h[0]) {
    310   1.3     oster 		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
    311   1.3     oster 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    312   1.3     oster 		    i++, pda = pda->next) {
    313  1.18     oster 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    314   1.3     oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    315   1.3     oster 			RF_ASSERT(pda);
    316  1.18     oster 			tmprrdNode->params[0].p = pda;
    317  1.18     oster 			tmprrdNode->params[1].p = pda->bufPtr;
    318  1.18     oster 			tmprrdNode->params[2].v = parityStripeID;
    319  1.18     oster 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    320  1.18     oster 			tmprrdNode = tmprrdNode->list_next;
    321   1.3     oster 		}
    322   1.3     oster 	}
    323   1.3     oster 	/* i now equals the number of stripe units accessed in new_asm_h[0] */
    324  1.25     perry 	/* Note that for tmprrdNode, this means a continuation from above, so no need to
    325  1.18     oster 	   assign it anything.. */
    326   1.3     oster 	if (new_asm_h[1]) {
    327   1.3     oster 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    328   1.3     oster 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    329   1.3     oster 		    j++, pda = pda->next) {
    330  1.18     oster 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    331   1.3     oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    332   1.3     oster 			RF_ASSERT(pda);
    333  1.18     oster 			tmprrdNode->params[0].p = pda;
    334  1.18     oster 			tmprrdNode->params[1].p = pda->bufPtr;
    335  1.18     oster 			tmprrdNode->params[2].v = parityStripeID;
    336  1.18     oster 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    337   1.3     oster 			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
    338   1.3     oster 				xorTargetBuf = pda->bufPtr;
    339  1.18     oster 			tmprrdNode = tmprrdNode->list_next;
    340   1.3     oster 		}
    341   1.3     oster 	}
    342   1.3     oster 	if (rdnodesFaked) {
    343   1.3     oster 		/*
    344   1.3     oster 	         * This is where we'll init that fake noop read node
    345   1.3     oster 	         * (XXX should the wakeup func be different?)
    346   1.3     oster 	         */
    347  1.18     oster 		/* node that rrdNodes will just be a single node... */
    348  1.18     oster 		rf_InitNode(rrdNodes, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    349   1.3     oster 		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
    350   1.3     oster 	}
    351   1.3     oster 	/*
    352   1.3     oster          * Make a PDA for the parity unit.  The parity PDA should start at
    353   1.3     oster          * the same offset into the SU as the failed PDA.
    354   1.3     oster          */
    355   1.3     oster 	/* Danner comment: I don't think this copy is really necessary. We are
    356   1.3     oster 	 * in one of two cases here. (1) The entire failed unit is written.
    357   1.3     oster 	 * Then asmap->parityInfo will describe the entire parity. (2) We are
    358   1.3     oster 	 * only writing a subset of the failed unit and nothing else. Then the
    359   1.3     oster 	 * asmap->parityInfo describes the failed unit and the copy can also
    360   1.3     oster 	 * be avoided. */
    361   1.3     oster 
    362  1.36     oster 	parityPDA = rf_AllocPhysDiskAddr(raidPtr);
    363  1.19     oster 	parityPDA->next = dag_h->pda_cleanup_list;
    364  1.19     oster 	dag_h->pda_cleanup_list = parityPDA;
    365   1.3     oster 	parityPDA->col = asmap->parityInfo->col;
    366   1.3     oster 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    367   1.3     oster 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    368   1.3     oster 	parityPDA->numSector = failedPDA->numSector;
    369   1.3     oster 
    370   1.3     oster 	if (!xorTargetBuf) {
    371  1.24     oster 		xorTargetBuf = rf_AllocBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
    372   1.3     oster 	}
    373   1.3     oster 	/* init the Wnp node */
    374   1.3     oster 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    375   1.3     oster 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    376   1.3     oster 	wnpNode->params[0].p = parityPDA;
    377   1.3     oster 	wnpNode->params[1].p = xorTargetBuf;
    378   1.3     oster 	wnpNode->params[2].v = parityStripeID;
    379  1.15     oster 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    380   1.3     oster 
    381  1.17     oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    382   1.3     oster 	/* fill in the Wnq Node */
    383   1.3     oster 	if (nfaults == 2) {
    384   1.3     oster 		{
    385  1.37     oster 			parityPDA = RF_MallocAndAdd(sizeof(*parityPDA), allocList);
    386   1.3     oster 			parityPDA->col = asmap->qInfo->col;
    387   1.3     oster 			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
    388   1.3     oster 			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    389   1.3     oster 			parityPDA->numSector = failedPDA->numSector;
    390   1.3     oster 
    391   1.3     oster 			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    392   1.3     oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    393   1.3     oster 			wnqNode->params[0].p = parityPDA;
    394  1.34  christos 			xorNode->results[1] = BUF_ALLOC(failedPDA->numSector);
    395   1.3     oster 			wnqNode->params[1].p = xorNode->results[1];
    396   1.3     oster 			wnqNode->params[2].v = parityStripeID;
    397  1.15     oster 			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    398   1.3     oster 		}
    399   1.3     oster 	}
    400  1.17     oster #endif
    401   1.3     oster 	/* fill in the Wnd nodes */
    402  1.18     oster 	tmpwndNode = wndNodes;
    403   1.3     oster 	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
    404   1.3     oster 		if (pda == failedPDA) {
    405   1.3     oster 			i--;
    406   1.3     oster 			continue;
    407   1.3     oster 		}
    408  1.18     oster 		rf_InitNode(tmpwndNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    409   1.3     oster 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    410   1.3     oster 		RF_ASSERT(pda);
    411  1.18     oster 		tmpwndNode->params[0].p = pda;
    412  1.18     oster 		tmpwndNode->params[1].p = pda->bufPtr;
    413  1.18     oster 		tmpwndNode->params[2].v = parityStripeID;
    414  1.18     oster 		tmpwndNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    415  1.18     oster 		tmpwndNode = tmpwndNode->list_next;
    416   1.3     oster 	}
    417   1.3     oster 
    418   1.3     oster 	/* fill in the results of the xor node */
    419   1.3     oster 	xorNode->results[0] = xorTargetBuf;
    420   1.3     oster 
    421   1.3     oster 	/* fill in the params of the xor node */
    422   1.3     oster 
    423   1.3     oster 	paramNum = 0;
    424   1.3     oster 	if (rdnodesFaked == 0) {
    425  1.18     oster 		tmprrdNode = rrdNodes;
    426   1.3     oster 		for (i = 0; i < nRrdNodes; i++) {
    427   1.3     oster 			/* all the Rrd nodes need to be xored together */
    428  1.18     oster 			xorNode->params[paramNum++] = tmprrdNode->params[0];
    429  1.18     oster 			xorNode->params[paramNum++] = tmprrdNode->params[1];
    430  1.18     oster 			tmprrdNode = tmprrdNode->list_next;
    431   1.3     oster 		}
    432   1.3     oster 	}
    433  1.18     oster 	tmpwndNode = wndNodes;
    434   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
    435   1.3     oster 		/* any Wnd nodes that overlap the failed access need to be
    436   1.3     oster 		 * xored in */
    437   1.3     oster 		if (overlappingPDAs[i]) {
    438  1.36     oster 			pda = rf_AllocPhysDiskAddr(raidPtr);
    439  1.18     oster 			memcpy((char *) pda, (char *) tmpwndNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
    440  1.19     oster 			/* add it into the pda_cleanup_list *after* the copy, TYVM */
    441  1.19     oster 			pda->next = dag_h->pda_cleanup_list;
    442  1.19     oster 			dag_h->pda_cleanup_list = pda;
    443   1.3     oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    444   1.3     oster 			xorNode->params[paramNum++].p = pda;
    445   1.3     oster 			xorNode->params[paramNum++].p = pda->bufPtr;
    446   1.3     oster 		}
    447  1.18     oster 		tmpwndNode = tmpwndNode->list_next;
    448   1.3     oster 	}
    449   1.3     oster 
    450   1.3     oster 	/*
    451   1.3     oster          * Install the failed PDA into the xor param list so that the
    452   1.3     oster          * new data gets xor'd in.
    453   1.3     oster          */
    454   1.3     oster 	xorNode->params[paramNum++].p = failedPDA;
    455   1.3     oster 	xorNode->params[paramNum++].p = failedPDA->bufPtr;
    456   1.3     oster 
    457   1.3     oster 	/*
    458   1.3     oster          * The last 2 params to the recovery xor node are always the failed
    459   1.3     oster          * PDA and the raidPtr. install the failedPDA even though we have just
    460   1.3     oster          * done so above. This allows us to use the same XOR function for both
    461   1.3     oster          * degraded reads and degraded writes.
    462   1.3     oster          */
    463   1.3     oster 	xorNode->params[paramNum++].p = failedPDA;
    464   1.3     oster 	xorNode->params[paramNum++].p = raidPtr;
    465   1.3     oster 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    466   1.3     oster 
    467   1.3     oster 	/*
    468   1.3     oster          * Code to link nodes begins here
    469   1.3     oster          */
    470   1.3     oster 
    471   1.3     oster 	/* link header to block node */
    472   1.3     oster 	RF_ASSERT(blockNode->numAntecedents == 0);
    473   1.3     oster 	dag_h->succedents[0] = blockNode;
    474   1.3     oster 
    475   1.3     oster 	/* link block node to rd nodes */
    476   1.3     oster 	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
    477  1.18     oster 	tmprrdNode = rrdNodes;
    478   1.3     oster 	for (i = 0; i < nRrdNodes; i++) {
    479  1.18     oster 		RF_ASSERT(tmprrdNode->numAntecedents == 1);
    480  1.18     oster 		blockNode->succedents[i] = tmprrdNode;
    481  1.18     oster 		tmprrdNode->antecedents[0] = blockNode;
    482  1.18     oster 		tmprrdNode->antType[0] = rf_control;
    483  1.18     oster 		tmprrdNode = tmprrdNode->list_next;
    484   1.3     oster 	}
    485   1.3     oster 
    486   1.3     oster 	/* link read nodes to xor node */
    487   1.3     oster 	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
    488  1.18     oster 	tmprrdNode = rrdNodes;
    489   1.3     oster 	for (i = 0; i < nRrdNodes; i++) {
    490  1.18     oster 		RF_ASSERT(tmprrdNode->numSuccedents == 1);
    491  1.18     oster 		tmprrdNode->succedents[0] = xorNode;
    492  1.18     oster 		xorNode->antecedents[i] = tmprrdNode;
    493   1.3     oster 		xorNode->antType[i] = rf_trueData;
    494  1.18     oster 		tmprrdNode = tmprrdNode->list_next;
    495   1.3     oster 	}
    496   1.3     oster 
    497   1.3     oster 	/* link xor node to commit node */
    498   1.3     oster 	RF_ASSERT(xorNode->numSuccedents == 1);
    499   1.3     oster 	RF_ASSERT(commitNode->numAntecedents == 1);
    500   1.3     oster 	xorNode->succedents[0] = commitNode;
    501   1.3     oster 	commitNode->antecedents[0] = xorNode;
    502   1.3     oster 	commitNode->antType[0] = rf_control;
    503   1.3     oster 
    504   1.3     oster 	/* link commit node to wnd nodes */
    505   1.3     oster 	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
    506  1.18     oster 	tmpwndNode = wndNodes;
    507   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
    508  1.18     oster 		RF_ASSERT(tmpwndNode->numAntecedents == 1);
    509  1.18     oster 		commitNode->succedents[i] = tmpwndNode;
    510  1.18     oster 		tmpwndNode->antecedents[0] = commitNode;
    511  1.18     oster 		tmpwndNode->antType[0] = rf_control;
    512  1.22     oster 		tmpwndNode = tmpwndNode->list_next;
    513   1.3     oster 	}
    514   1.3     oster 
    515   1.3     oster 	/* link the commit node to wnp, wnq nodes */
    516   1.3     oster 	RF_ASSERT(wnpNode->numAntecedents == 1);
    517   1.3     oster 	commitNode->succedents[nWndNodes] = wnpNode;
    518   1.3     oster 	wnpNode->antecedents[0] = commitNode;
    519   1.3     oster 	wnpNode->antType[0] = rf_control;
    520  1.17     oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    521   1.3     oster 	if (nfaults == 2) {
    522   1.3     oster 		RF_ASSERT(wnqNode->numAntecedents == 1);
    523   1.3     oster 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    524   1.3     oster 		wnqNode->antecedents[0] = commitNode;
    525   1.3     oster 		wnqNode->antType[0] = rf_control;
    526   1.3     oster 	}
    527  1.17     oster #endif
    528   1.3     oster 	/* link write new data nodes to unblock node */
    529   1.3     oster 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
    530  1.18     oster 	tmpwndNode = wndNodes;
    531   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
    532  1.18     oster 		RF_ASSERT(tmpwndNode->numSuccedents == 1);
    533  1.18     oster 		tmpwndNode->succedents[0] = unblockNode;
    534  1.18     oster 		unblockNode->antecedents[i] = tmpwndNode;
    535   1.3     oster 		unblockNode->antType[i] = rf_control;
    536  1.22     oster 		tmpwndNode = tmpwndNode->list_next;
    537   1.3     oster 	}
    538   1.3     oster 
    539   1.3     oster 	/* link write new parity node to unblock node */
    540   1.3     oster 	RF_ASSERT(wnpNode->numSuccedents == 1);
    541   1.3     oster 	wnpNode->succedents[0] = unblockNode;
    542   1.3     oster 	unblockNode->antecedents[nWndNodes] = wnpNode;
    543   1.3     oster 	unblockNode->antType[nWndNodes] = rf_control;
    544   1.3     oster 
    545  1.17     oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    546   1.3     oster 	/* link write new q node to unblock node */
    547   1.3     oster 	if (nfaults == 2) {
    548   1.3     oster 		RF_ASSERT(wnqNode->numSuccedents == 1);
    549   1.3     oster 		wnqNode->succedents[0] = unblockNode;
    550   1.3     oster 		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
    551   1.3     oster 		unblockNode->antType[nWndNodes + 1] = rf_control;
    552   1.3     oster 	}
    553  1.17     oster #endif
    554   1.3     oster 	/* link unblock node to term node */
    555   1.3     oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
    556   1.3     oster 	RF_ASSERT(termNode->numAntecedents == 1);
    557   1.3     oster 	RF_ASSERT(termNode->numSuccedents == 0);
    558   1.3     oster 	unblockNode->succedents[0] = termNode;
    559   1.3     oster 	termNode->antecedents[0] = unblockNode;
    560   1.3     oster 	termNode->antType[0] = rf_control;
    561   1.1     oster }
    562   1.1     oster #define CONS_PDA(if,start,num) \
    563  1.12     oster   pda_p->col = asmap->if->col; \
    564   1.1     oster   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    565   1.1     oster   pda_p->numSector = num; \
    566   1.1     oster   pda_p->next = NULL; \
    567  1.34  christos   pda_p->bufPtr = BUF_ALLOC(num)
    568  1.37     oster #if (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
    569  1.25     perry void
    570   1.3     oster rf_WriteGenerateFailedAccessASMs(
    571   1.3     oster     RF_Raid_t * raidPtr,
    572   1.3     oster     RF_AccessStripeMap_t * asmap,
    573   1.3     oster     RF_PhysDiskAddr_t ** pdap,
    574   1.3     oster     int *nNodep,
    575   1.3     oster     RF_PhysDiskAddr_t ** pqpdap,
    576   1.3     oster     int *nPQNodep,
    577   1.3     oster     RF_AllocListElem_t * allocList)
    578   1.1     oster {
    579   1.3     oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    580   1.3     oster 	int     PDAPerDisk, i;
    581   1.3     oster 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    582   1.3     oster 	int     numDataCol = layoutPtr->numDataCol;
    583   1.3     oster 	int     state;
    584   1.3     oster 	unsigned napdas;
    585  1.33  christos 	RF_SectorNum_t fone_start, ftwo_start = 0;
    586   1.3     oster 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    587   1.3     oster 	RF_PhysDiskAddr_t *pda_p;
    588   1.3     oster 	RF_RaidAddr_t sosAddr;
    589   1.3     oster 
    590   1.3     oster 	/* determine how many pda's we will have to generate per unaccess
    591   1.3     oster 	 * stripe. If there is only one failed data unit, it is one; if two,
    592  1.31   mbalmer 	 * possibly two, depending whether they overlap. */
    593   1.3     oster 
    594   1.3     oster 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    595   1.3     oster 
    596   1.3     oster 	if (asmap->numDataFailed == 1) {
    597   1.3     oster 		PDAPerDisk = 1;
    598   1.3     oster 		state = 1;
    599  1.34  christos 		*pqpdap = RF_MallocAndAdd(2 * sizeof(**pqpdap), allocList);
    600   1.3     oster 		pda_p = *pqpdap;
    601   1.3     oster 		/* build p */
    602   1.3     oster 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    603   1.3     oster 		pda_p->type = RF_PDA_TYPE_PARITY;
    604   1.3     oster 		pda_p++;
    605   1.3     oster 		/* build q */
    606   1.3     oster 		CONS_PDA(qInfo, fone_start, fone->numSector);
    607   1.3     oster 		pda_p->type = RF_PDA_TYPE_Q;
    608   1.3     oster 	} else {
    609   1.3     oster 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    610   1.3     oster 		if (fone->numSector + ftwo->numSector > secPerSU) {
    611   1.3     oster 			PDAPerDisk = 1;
    612   1.3     oster 			state = 2;
    613  1.34  christos 			*pqpdap = RF_MallocAndAdd(2 * sizeof(**pqpdap),
    614  1.34  christos 			    allocList);
    615   1.3     oster 			pda_p = *pqpdap;
    616   1.3     oster 			CONS_PDA(parityInfo, 0, secPerSU);
    617   1.3     oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    618   1.3     oster 			pda_p++;
    619   1.3     oster 			CONS_PDA(qInfo, 0, secPerSU);
    620   1.3     oster 			pda_p->type = RF_PDA_TYPE_Q;
    621   1.3     oster 		} else {
    622   1.3     oster 			PDAPerDisk = 2;
    623   1.3     oster 			state = 3;
    624   1.3     oster 			/* four of them, fone, then ftwo */
    625  1.34  christos 			*pqpdap = RF_MallocAndAdd(4 * sizeof(*pqpdap),
    626  1.34  christos 			    allocList);
    627   1.3     oster 			pda_p = *pqpdap;
    628   1.3     oster 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    629   1.3     oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    630   1.3     oster 			pda_p++;
    631   1.3     oster 			CONS_PDA(qInfo, fone_start, fone->numSector);
    632   1.3     oster 			pda_p->type = RF_PDA_TYPE_Q;
    633   1.3     oster 			pda_p++;
    634   1.3     oster 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    635   1.3     oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    636   1.3     oster 			pda_p++;
    637   1.3     oster 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    638   1.3     oster 			pda_p->type = RF_PDA_TYPE_Q;
    639   1.3     oster 		}
    640   1.3     oster 	}
    641   1.3     oster 	/* figure out number of nonaccessed pda */
    642   1.3     oster 	napdas = PDAPerDisk * (numDataCol - 2);
    643   1.3     oster 	*nPQNodep = PDAPerDisk;
    644   1.3     oster 
    645   1.3     oster 	*nNodep = napdas;
    646   1.3     oster 	if (napdas == 0)
    647   1.3     oster 		return;		/* short circuit */
    648   1.3     oster 
    649   1.3     oster 	/* allocate up our list of pda's */
    650   1.3     oster 
    651  1.34  christos 	pda_p = RF_MallocAndAdd(napdas * sizeof(*pda_p), allocList);
    652   1.3     oster 	*pdap = pda_p;
    653   1.3     oster 
    654   1.3     oster 	/* linkem together */
    655   1.3     oster 	for (i = 0; i < (napdas - 1); i++)
    656   1.3     oster 		pda_p[i].next = pda_p + (i + 1);
    657   1.3     oster 
    658   1.3     oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    659   1.3     oster 	for (i = 0; i < numDataCol; i++) {
    660   1.3     oster 		if ((pda_p - (*pdap)) == napdas)
    661   1.3     oster 			continue;
    662   1.3     oster 		pda_p->type = RF_PDA_TYPE_DATA;
    663   1.3     oster 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    664  1.12     oster 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    665   1.3     oster 		/* skip over dead disks */
    666  1.12     oster 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    667   1.3     oster 			continue;
    668   1.3     oster 		switch (state) {
    669   1.3     oster 		case 1:	/* fone */
    670   1.3     oster 			pda_p->numSector = fone->numSector;
    671   1.3     oster 			pda_p->raidAddress += fone_start;
    672   1.3     oster 			pda_p->startSector += fone_start;
    673  1.34  christos 			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    674   1.3     oster 			break;
    675   1.3     oster 		case 2:	/* full stripe */
    676   1.3     oster 			pda_p->numSector = secPerSU;
    677  1.34  christos 			pda_p->bufPtr = BUF_ALLOC(secPerSU);
    678   1.3     oster 			break;
    679   1.3     oster 		case 3:	/* two slabs */
    680   1.3     oster 			pda_p->numSector = fone->numSector;
    681   1.3     oster 			pda_p->raidAddress += fone_start;
    682   1.3     oster 			pda_p->startSector += fone_start;
    683  1.34  christos 			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    684   1.3     oster 			pda_p++;
    685   1.3     oster 			pda_p->type = RF_PDA_TYPE_DATA;
    686   1.3     oster 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    687  1.12     oster 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    688   1.3     oster 			pda_p->numSector = ftwo->numSector;
    689   1.3     oster 			pda_p->raidAddress += ftwo_start;
    690   1.3     oster 			pda_p->startSector += ftwo_start;
    691  1.34  christos 			pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
    692   1.3     oster 			break;
    693   1.3     oster 		default:
    694   1.3     oster 			RF_PANIC();
    695   1.3     oster 		}
    696   1.3     oster 		pda_p++;
    697   1.1     oster 	}
    698   1.1     oster 
    699   1.3     oster 	RF_ASSERT(pda_p - *pdap == napdas);
    700   1.3     oster 	return;
    701   1.1     oster }
    702   1.1     oster #define DISK_NODE_PDA(node)  ((node)->params[0].p)
    703   1.1     oster 
    704   1.1     oster #define DISK_NODE_PARAMS(_node_,_p_) \
    705   1.1     oster   (_node_).params[0].p = _p_ ; \
    706   1.1     oster   (_node_).params[1].p = (_p_)->bufPtr; \
    707   1.1     oster   (_node_).params[2].v = parityStripeID; \
    708  1.15     oster   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
    709   1.1     oster 
    710  1.25     perry void
    711  1.14     oster rf_DoubleDegSmallWrite(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    712  1.30  christos 		       RF_DagHeader_t *dag_h, void *bp,
    713  1.30  christos 		       RF_RaidAccessFlags_t flags,
    714  1.14     oster 		       RF_AllocListElem_t *allocList,
    715  1.28     oster 		       const char *redundantReadNodeName,
    716  1.30  christos 		       const char *redundantWriteNodeName,
    717  1.28     oster 		       const char *recoveryNodeName,
    718  1.35  christos 		       void (*recovFunc) (RF_DagNode_t *))
    719   1.1     oster {
    720   1.3     oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    721   1.3     oster 	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
    722   1.3     oster 	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
    723   1.3     oster 	RF_PhysDiskAddr_t *pda, *pqPDAs;
    724   1.3     oster 	RF_PhysDiskAddr_t *npdas;
    725   1.3     oster 	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
    726   1.3     oster 	RF_ReconUnitNum_t which_ru;
    727   1.3     oster 	int     nPQNodes;
    728   1.3     oster 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
    729   1.3     oster 
    730   1.3     oster 	/* simple small write case - First part looks like a reconstruct-read
    731   1.3     oster 	 * of the failed data units. Then a write of all data units not
    732   1.3     oster 	 * failed. */
    733   1.3     oster 
    734   1.3     oster 
    735   1.3     oster 	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
    736   1.3     oster 	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
    737   1.3     oster 	 * --Unblock- | T
    738  1.25     perry 	 *
    739   1.3     oster 	 * Rrd = read recovery data  (potentially none) Wud = write user data
    740   1.3     oster 	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
    741   1.3     oster 	 * (could be two)
    742  1.25     perry 	 *
    743   1.3     oster 	 */
    744   1.3     oster 
    745   1.3     oster 	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
    746   1.3     oster 
    747   1.3     oster 	RF_ASSERT(asmap->numDataFailed == 1);
    748   1.3     oster 
    749   1.3     oster 	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
    750   1.3     oster 	nReadNodes = nRrdNodes + 2 * nPQNodes;
    751   1.3     oster 	nWriteNodes = nWudNodes + 2 * nPQNodes;
    752   1.3     oster 	nNodes = 4 + nReadNodes + nWriteNodes;
    753   1.3     oster 
    754  1.34  christos 	nodes = RF_MallocAndAdd(nNodes * sizeof(*nodes), allocList);
    755   1.3     oster 	blockNode = nodes;
    756   1.3     oster 	unblockNode = blockNode + 1;
    757   1.3     oster 	termNode = unblockNode + 1;
    758   1.3     oster 	recoveryNode = termNode + 1;
    759   1.3     oster 	rrdNodes = recoveryNode + 1;
    760   1.3     oster 	rpNodes = rrdNodes + nRrdNodes;
    761   1.3     oster 	rqNodes = rpNodes + nPQNodes;
    762   1.3     oster 	wudNodes = rqNodes + nPQNodes;
    763   1.3     oster 	wpNodes = wudNodes + nWudNodes;
    764   1.3     oster 	wqNodes = wpNodes + nPQNodes;
    765   1.3     oster 
    766   1.3     oster 	dag_h->creator = "PQ_DDSimpleSmallWrite";
    767   1.3     oster 	dag_h->numSuccedents = 1;
    768   1.3     oster 	dag_h->succedents[0] = blockNode;
    769   1.3     oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    770   1.3     oster 	termNode->antecedents[0] = unblockNode;
    771   1.3     oster 	termNode->antType[0] = rf_control;
    772   1.3     oster 
    773   1.3     oster 	/* init the block and unblock nodes */
    774   1.3     oster 	/* The block node has all the read nodes as successors */
    775   1.3     oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
    776   1.3     oster 	for (i = 0; i < nReadNodes; i++)
    777   1.3     oster 		blockNode->succedents[i] = rrdNodes + i;
    778   1.3     oster 
    779   1.3     oster 	/* The unblock node has all the writes as successors */
    780   1.3     oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
    781   1.3     oster 	for (i = 0; i < nWriteNodes; i++) {
    782   1.3     oster 		unblockNode->antecedents[i] = wudNodes + i;
    783   1.3     oster 		unblockNode->antType[i] = rf_control;
    784   1.3     oster 	}
    785   1.3     oster 	unblockNode->succedents[0] = termNode;
    786   1.1     oster 
    787   1.1     oster #define INIT_READ_NODE(node,name) \
    788   1.1     oster   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    789   1.1     oster   (node)->succedents[0] = recoveryNode; \
    790   1.1     oster   (node)->antecedents[0] = blockNode; \
    791   1.1     oster   (node)->antType[0] = rf_control;
    792   1.1     oster 
    793   1.3     oster 	/* build the read nodes */
    794   1.3     oster 	pda = npdas;
    795   1.3     oster 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
    796   1.3     oster 		INIT_READ_NODE(rrdNodes + i, "rrd");
    797   1.3     oster 		DISK_NODE_PARAMS(rrdNodes[i], pda);
    798   1.3     oster 	}
    799   1.3     oster 
    800   1.3     oster 	/* read redundancy pdas */
    801   1.3     oster 	pda = pqPDAs;
    802   1.3     oster 	INIT_READ_NODE(rpNodes, "Rp");
    803   1.3     oster 	RF_ASSERT(pda);
    804   1.3     oster 	DISK_NODE_PARAMS(rpNodes[0], pda);
    805   1.3     oster 	pda++;
    806   1.3     oster 	INIT_READ_NODE(rqNodes, redundantReadNodeName);
    807   1.3     oster 	RF_ASSERT(pda);
    808   1.3     oster 	DISK_NODE_PARAMS(rqNodes[0], pda);
    809   1.3     oster 	if (nPQNodes == 2) {
    810   1.3     oster 		pda++;
    811   1.3     oster 		INIT_READ_NODE(rpNodes + 1, "Rp");
    812   1.3     oster 		RF_ASSERT(pda);
    813   1.3     oster 		DISK_NODE_PARAMS(rpNodes[1], pda);
    814   1.3     oster 		pda++;
    815   1.3     oster 		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
    816   1.3     oster 		RF_ASSERT(pda);
    817   1.3     oster 		DISK_NODE_PARAMS(rqNodes[1], pda);
    818   1.3     oster 	}
    819   1.3     oster 	/* the recovery node has all reads as precedessors and all writes as
    820   1.3     oster 	 * successors. It generates a result for every write P or write Q
    821   1.3     oster 	 * node. As parameters, it takes a pda per read and a pda per stripe
    822   1.3     oster 	 * of user data written. It also takes as the last params the raidPtr
    823   1.3     oster 	 * and asm. For results, it takes PDA for P & Q. */
    824   1.3     oster 
    825   1.3     oster 
    826   1.3     oster 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
    827   1.3     oster 	    nWriteNodes,	/* succesors */
    828   1.3     oster 	    nReadNodes,		/* preds */
    829   1.3     oster 	    nReadNodes + nWudNodes + 3,	/* params */
    830   1.3     oster 	    2 * nPQNodes,	/* results */
    831   1.3     oster 	    dag_h, recoveryNodeName, allocList);
    832   1.3     oster 
    833   1.3     oster 
    834   1.3     oster 
    835   1.3     oster 	for (i = 0; i < nReadNodes; i++) {
    836   1.3     oster 		recoveryNode->antecedents[i] = rrdNodes + i;
    837   1.3     oster 		recoveryNode->antType[i] = rf_control;
    838   1.3     oster 		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
    839   1.3     oster 	}
    840   1.3     oster 	for (i = 0; i < nWudNodes; i++) {
    841   1.3     oster 		recoveryNode->succedents[i] = wudNodes + i;
    842   1.3     oster 	}
    843   1.3     oster 	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
    844   1.3     oster 	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
    845   1.3     oster 	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
    846   1.3     oster 
    847   1.3     oster 	for (; i < nWriteNodes; i++)
    848   1.3     oster 		recoveryNode->succedents[i] = wudNodes + i;
    849   1.3     oster 
    850   1.3     oster 	pda = pqPDAs;
    851   1.3     oster 	recoveryNode->results[0] = pda;
    852   1.3     oster 	pda++;
    853   1.3     oster 	recoveryNode->results[1] = pda;
    854   1.3     oster 	if (nPQNodes == 2) {
    855   1.3     oster 		pda++;
    856   1.3     oster 		recoveryNode->results[2] = pda;
    857   1.3     oster 		pda++;
    858   1.3     oster 		recoveryNode->results[3] = pda;
    859   1.3     oster 	}
    860   1.3     oster 	/* fill writes */
    861   1.1     oster #define INIT_WRITE_NODE(node,name) \
    862   1.1     oster   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    863   1.1     oster     (node)->succedents[0] = unblockNode; \
    864   1.1     oster     (node)->antecedents[0] = recoveryNode; \
    865   1.1     oster     (node)->antType[0] = rf_control;
    866   1.1     oster 
    867   1.3     oster 	pda = asmap->physInfo;
    868   1.3     oster 	for (i = 0; i < nWudNodes; i++) {
    869   1.3     oster 		INIT_WRITE_NODE(wudNodes + i, "Wd");
    870   1.3     oster 		DISK_NODE_PARAMS(wudNodes[i], pda);
    871   1.3     oster 		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
    872   1.3     oster 		pda = pda->next;
    873   1.3     oster 	}
    874   1.3     oster 	/* write redundancy pdas */
    875   1.3     oster 	pda = pqPDAs;
    876   1.3     oster 	INIT_WRITE_NODE(wpNodes, "Wp");
    877   1.3     oster 	RF_ASSERT(pda);
    878   1.3     oster 	DISK_NODE_PARAMS(wpNodes[0], pda);
    879   1.3     oster 	pda++;
    880   1.3     oster 	INIT_WRITE_NODE(wqNodes, "Wq");
    881   1.3     oster 	RF_ASSERT(pda);
    882   1.3     oster 	DISK_NODE_PARAMS(wqNodes[0], pda);
    883   1.3     oster 	if (nPQNodes == 2) {
    884   1.3     oster 		pda++;
    885   1.3     oster 		INIT_WRITE_NODE(wpNodes + 1, "Wp");
    886   1.3     oster 		RF_ASSERT(pda);
    887   1.3     oster 		DISK_NODE_PARAMS(wpNodes[1], pda);
    888   1.3     oster 		pda++;
    889   1.3     oster 		INIT_WRITE_NODE(wqNodes + 1, "Wq");
    890   1.3     oster 		RF_ASSERT(pda);
    891   1.3     oster 		DISK_NODE_PARAMS(wqNodes[1], pda);
    892   1.3     oster 	}
    893   1.1     oster }
    894   1.6     oster #endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
    895