Home | History | Annotate | Line # | Download | only in raidframe
rf_dagdegwr.c revision 1.13
      1  1.13    oster /*	$NetBSD: rf_dagdegwr.c,v 1.13 2003/12/29 03:33:47 oster Exp $	*/
      2   1.1    oster /*
      3   1.1    oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1    oster  * All rights reserved.
      5   1.1    oster  *
      6   1.1    oster  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7   1.1    oster  *
      8   1.1    oster  * Permission to use, copy, modify and distribute this software and
      9   1.1    oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1    oster  * notice and this permission notice appear in all copies of the
     11   1.1    oster  * software, derivative works or modified versions, and any portions
     12   1.1    oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1    oster  *
     14   1.1    oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1    oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1    oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1    oster  *
     18   1.1    oster  * Carnegie Mellon requests users of this software to return to
     19   1.1    oster  *
     20   1.1    oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1    oster  *  School of Computer Science
     22   1.1    oster  *  Carnegie Mellon University
     23   1.1    oster  *  Pittsburgh PA 15213-3890
     24   1.1    oster  *
     25   1.1    oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1    oster  * rights to redistribute these changes.
     27   1.1    oster  */
     28   1.1    oster 
     29   1.1    oster /*
     30   1.1    oster  * rf_dagdegwr.c
     31   1.1    oster  *
     32   1.1    oster  * code for creating degraded write DAGs
     33   1.1    oster  *
     34   1.1    oster  */
     35   1.9    lukem 
     36   1.9    lukem #include <sys/cdefs.h>
     37  1.13    oster __KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.13 2003/12/29 03:33:47 oster Exp $");
     38   1.1    oster 
     39   1.8    oster #include <dev/raidframe/raidframevar.h>
     40   1.8    oster 
     41   1.1    oster #include "rf_raid.h"
     42   1.1    oster #include "rf_dag.h"
     43   1.1    oster #include "rf_dagutils.h"
     44   1.1    oster #include "rf_dagfuncs.h"
     45   1.1    oster #include "rf_debugMem.h"
     46   1.1    oster #include "rf_general.h"
     47   1.1    oster #include "rf_dagdegwr.h"
     48   1.1    oster 
     49   1.1    oster 
     50   1.1    oster /******************************************************************************
     51   1.1    oster  *
     52   1.1    oster  * General comments on DAG creation:
     53   1.3    oster  *
     54   1.1    oster  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     55   1.1    oster  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     56   1.1    oster  * is reached, the execution engine will halt forward execution and work
     57   1.1    oster  * backward through the graph, executing the undo functions.  Assuming that
     58   1.1    oster  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     59   1.1    oster  * does not make changes to permanent state, the graph will fail atomically.
     60   1.1    oster  * If an error occurs after the Cmt node executes, the engine will roll-forward
     61   1.1    oster  * through the graph, blindly executing nodes until it reaches the end.
     62   1.1    oster  * If a graph reaches the end, it is assumed to have completed successfully.
     63   1.1    oster  *
     64   1.1    oster  * A graph has only 1 Cmt node.
     65   1.1    oster  *
     66   1.1    oster  */
     67   1.1    oster 
     68   1.1    oster 
     69   1.1    oster /******************************************************************************
     70   1.1    oster  *
     71   1.1    oster  * The following wrappers map the standard DAG creation interface to the
     72   1.1    oster  * DAG creation routines.  Additionally, these wrappers enable experimentation
     73   1.1    oster  * with new DAG structures by providing an extra level of indirection, allowing
     74   1.1    oster  * the DAG creation routines to be replaced at this single point.
     75   1.1    oster  */
     76   1.1    oster 
     77   1.3    oster static
     78   1.3    oster RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
     79   1.1    oster {
     80   1.3    oster 	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
     81   1.3    oster 	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
     82   1.1    oster }
     83   1.1    oster 
     84   1.3    oster void
     85   1.3    oster rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
     86   1.3    oster 	RF_Raid_t *raidPtr;
     87   1.3    oster 	RF_AccessStripeMap_t *asmap;
     88   1.3    oster 	RF_DagHeader_t *dag_h;
     89   1.3    oster 	void   *bp;
     90   1.3    oster 	RF_RaidAccessFlags_t flags;
     91   1.3    oster 	RF_AllocListElem_t *allocList;
     92   1.1    oster {
     93   1.3    oster 
     94   1.3    oster 	RF_ASSERT(asmap->numDataFailed == 1);
     95   1.3    oster 	dag_h->creator = "DegradedWriteDAG";
     96   1.3    oster 
     97   1.7  thorpej 	/*
     98   1.7  thorpej 	 * if the access writes only a portion of the failed unit, and also
     99   1.3    oster 	 * writes some portion of at least one surviving unit, we create two
    100   1.3    oster 	 * DAGs, one for the failed component and one for the non-failed
    101   1.3    oster 	 * component, and do them sequentially.  Note that the fact that we're
    102   1.3    oster 	 * accessing only a portion of the failed unit indicates that the
    103   1.3    oster 	 * access either starts or ends in the failed unit, and hence we need
    104   1.3    oster 	 * create only two dags.  This is inefficient in that the same data or
    105   1.3    oster 	 * parity can get read and written twice using this structure.  I need
    106   1.7  thorpej 	 * to fix this to do the access all at once.
    107   1.7  thorpej 	 */
    108   1.7  thorpej 	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
    109   1.7  thorpej 		    asmap->failedPDAs[0]->numSector !=
    110   1.7  thorpej 			raidPtr->Layout.sectorsPerStripeUnit));
    111   1.7  thorpej 	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    112   1.7  thorpej 	    allocList);
    113   1.1    oster }
    114   1.1    oster 
    115   1.1    oster 
    116   1.1    oster 
    117   1.1    oster /******************************************************************************
    118   1.1    oster  *
    119   1.1    oster  * DAG creation code begins here
    120   1.1    oster  */
    121   1.1    oster 
    122   1.1    oster 
    123   1.1    oster 
    124   1.1    oster /******************************************************************************
    125   1.1    oster  *
    126   1.1    oster  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
    127   1.1    oster  * write, which is as follows
    128   1.1    oster  *
    129   1.1    oster  *                                        / {Wnq} --\
    130   1.1    oster  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
    131   1.1    oster  *                  \  {Rod} /            \  Wnd ---/
    132   1.1    oster  *                                        \ {Wnd} -/
    133   1.1    oster  *
    134   1.1    oster  * commit nodes: Xor, Wnd
    135   1.1    oster  *
    136   1.1    oster  * IMPORTANT:
    137   1.1    oster  * This DAG generator does not work for double-degraded archs since it does not
    138   1.1    oster  * generate Q
    139   1.1    oster  *
    140   1.1    oster  * This dag is essentially identical to the large-write dag, except that the
    141   1.1    oster  * write to the failed data unit is suppressed.
    142   1.1    oster  *
    143   1.1    oster  * IMPORTANT:  this dag does not work in the case where the access writes only
    144   1.1    oster  * a portion of the failed unit, and also writes some portion of at least one
    145   1.1    oster  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
    146   1.1    oster  *
    147   1.1    oster  * The block & unblock nodes are leftovers from a previous version.  They
    148   1.1    oster  * do nothing, but I haven't deleted them because it would be a tremendous
    149   1.1    oster  * effort to put them back in.
    150   1.1    oster  *
    151   1.1    oster  * This dag is used whenever a one of the data units in a write has failed.
    152   1.1    oster  * If it is the parity unit that failed, the nonredundant write dag (below)
    153   1.1    oster  * is used.
    154   1.1    oster  *****************************************************************************/
    155   1.1    oster 
    156   1.3    oster void
    157   1.3    oster rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    158   1.3    oster     allocList, nfaults, redFunc, allowBufferRecycle)
    159   1.3    oster 	RF_Raid_t *raidPtr;
    160   1.3    oster 	RF_AccessStripeMap_t *asmap;
    161   1.3    oster 	RF_DagHeader_t *dag_h;
    162   1.3    oster 	void   *bp;
    163   1.3    oster 	RF_RaidAccessFlags_t flags;
    164   1.3    oster 	RF_AllocListElem_t *allocList;
    165   1.3    oster 	int     nfaults;
    166   1.3    oster 	int     (*redFunc) (RF_DagNode_t *);
    167   1.3    oster 	int     allowBufferRecycle;
    168   1.1    oster {
    169   1.3    oster 	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
    170   1.3    oster 	        rdnodesFaked;
    171   1.3    oster 	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
    172   1.3    oster 	RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
    173   1.3    oster 	RF_SectorCount_t sectorsPerSU;
    174   1.3    oster 	RF_ReconUnitNum_t which_ru;
    175   1.3    oster 	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
    176   1.3    oster 					 * operation */
    177   1.3    oster 	char   *overlappingPDAs;/* a temporary array of flags */
    178   1.3    oster 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    179   1.3    oster 	RF_PhysDiskAddr_t *pda, *parityPDA;
    180   1.3    oster 	RF_StripeNum_t parityStripeID;
    181   1.3    oster 	RF_PhysDiskAddr_t *failedPDA;
    182   1.3    oster 	RF_RaidLayout_t *layoutPtr;
    183   1.3    oster 
    184   1.3    oster 	layoutPtr = &(raidPtr->Layout);
    185   1.3    oster 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    186   1.3    oster 	    &which_ru);
    187   1.3    oster 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    188   1.3    oster 	/* failedPDA points to the pda within the asm that targets the failed
    189   1.3    oster 	 * disk */
    190   1.3    oster 	failedPDA = asmap->failedPDAs[0];
    191   1.3    oster 
    192   1.3    oster 	if (rf_dagDebug)
    193   1.3    oster 		printf("[Creating degraded-write DAG]\n");
    194   1.3    oster 
    195   1.3    oster 	RF_ASSERT(asmap->numDataFailed == 1);
    196   1.3    oster 	dag_h->creator = "SimpleDegradedWriteDAG";
    197   1.3    oster 
    198   1.3    oster 	/*
    199   1.3    oster          * Generate two ASMs identifying the surviving data
    200   1.3    oster          * we need in order to recover the lost data.
    201   1.3    oster          */
    202   1.3    oster 	/* overlappingPDAs array must be zero'd */
    203  1.13    oster 	RF_Malloc(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char), (char *));
    204   1.3    oster 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
    205   1.3    oster 	    &nXorBufs, NULL, overlappingPDAs, allocList);
    206   1.3    oster 
    207   1.3    oster 	/* create all the nodes at once */
    208   1.3    oster 	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
    209   1.3    oster 							 * generated for the
    210   1.3    oster 							 * failed pda */
    211   1.3    oster 
    212   1.3    oster 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    213   1.3    oster 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    214   1.3    oster 	/*
    215   1.3    oster          * XXX
    216   1.3    oster          *
    217   1.3    oster          * There's a bug with a complete stripe overwrite- that means 0 reads
    218   1.3    oster          * of old data, and the rest of the DAG generation code doesn't like
    219   1.3    oster          * that. A release is coming, and I don't wanna risk breaking a critical
    220   1.3    oster          * DAG generator, so here's what I'm gonna do- if there's no read nodes,
    221   1.3    oster          * I'm gonna fake there being a read node, and I'm gonna swap in a
    222   1.3    oster          * no-op node in its place (to make all the link-up code happy).
    223   1.3    oster          * This should be fixed at some point.  --jimz
    224   1.3    oster          */
    225   1.3    oster 	if (nRrdNodes == 0) {
    226   1.3    oster 		nRrdNodes = 1;
    227   1.3    oster 		rdnodesFaked = 1;
    228   1.3    oster 	} else {
    229   1.3    oster 		rdnodesFaked = 0;
    230   1.3    oster 	}
    231   1.3    oster 	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
    232   1.3    oster 	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
    233  1.13    oster 	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t),
    234   1.3    oster 	    (RF_DagNode_t *), allocList);
    235   1.3    oster 	i = 0;
    236   1.3    oster 	blockNode = &nodes[i];
    237   1.3    oster 	i += 1;
    238   1.3    oster 	commitNode = &nodes[i];
    239   1.3    oster 	i += 1;
    240   1.3    oster 	unblockNode = &nodes[i];
    241   1.3    oster 	i += 1;
    242   1.3    oster 	termNode = &nodes[i];
    243   1.3    oster 	i += 1;
    244   1.3    oster 	xorNode = &nodes[i];
    245   1.3    oster 	i += 1;
    246   1.3    oster 	wnpNode = &nodes[i];
    247   1.3    oster 	i += 1;
    248   1.3    oster 	wndNodes = &nodes[i];
    249   1.3    oster 	i += nWndNodes;
    250   1.3    oster 	rrdNodes = &nodes[i];
    251   1.3    oster 	i += nRrdNodes;
    252   1.3    oster 	if (nfaults == 2) {
    253   1.3    oster 		wnqNode = &nodes[i];
    254   1.3    oster 		i += 1;
    255   1.3    oster 	} else {
    256   1.3    oster 		wnqNode = NULL;
    257   1.3    oster 	}
    258   1.3    oster 	RF_ASSERT(i == nNodes);
    259   1.3    oster 
    260   1.3    oster 	/* this dag can not commit until all rrd and xor Nodes have completed */
    261   1.3    oster 	dag_h->numCommitNodes = 1;
    262   1.3    oster 	dag_h->numCommits = 0;
    263   1.3    oster 	dag_h->numSuccedents = 1;
    264   1.3    oster 
    265   1.3    oster 	RF_ASSERT(nRrdNodes > 0);
    266   1.3    oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    267   1.3    oster 	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
    268   1.3    oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    269   1.3    oster 	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    270   1.3    oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    271   1.3    oster 	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
    272   1.3    oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    273   1.3    oster 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    274   1.3    oster 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    275   1.3    oster 	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
    276   1.3    oster 
    277   1.3    oster 	/*
    278   1.3    oster          * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
    279   1.3    oster          * the failed buffer, save a pointer to it so we can use it as the target
    280   1.3    oster          * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
    281   1.3    oster          * a buffer is the same size as the failed buffer, it must also be at the
    282   1.3    oster          * same alignment within the SU.
    283   1.3    oster          */
    284   1.3    oster 	i = 0;
    285   1.3    oster 	if (new_asm_h[0]) {
    286   1.3    oster 		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
    287   1.3    oster 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    288   1.3    oster 		    i++, pda = pda->next) {
    289   1.3    oster 			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    290   1.3    oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    291   1.3    oster 			RF_ASSERT(pda);
    292   1.3    oster 			rrdNodes[i].params[0].p = pda;
    293   1.3    oster 			rrdNodes[i].params[1].p = pda->bufPtr;
    294   1.3    oster 			rrdNodes[i].params[2].v = parityStripeID;
    295   1.3    oster 			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    296   1.3    oster 		}
    297   1.3    oster 	}
    298   1.3    oster 	/* i now equals the number of stripe units accessed in new_asm_h[0] */
    299   1.3    oster 	if (new_asm_h[1]) {
    300   1.3    oster 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    301   1.3    oster 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    302   1.3    oster 		    j++, pda = pda->next) {
    303   1.3    oster 			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    304   1.3    oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    305   1.3    oster 			RF_ASSERT(pda);
    306   1.3    oster 			rrdNodes[i + j].params[0].p = pda;
    307   1.3    oster 			rrdNodes[i + j].params[1].p = pda->bufPtr;
    308   1.3    oster 			rrdNodes[i + j].params[2].v = parityStripeID;
    309   1.3    oster 			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    310   1.3    oster 			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
    311   1.3    oster 				xorTargetBuf = pda->bufPtr;
    312   1.3    oster 		}
    313   1.3    oster 	}
    314   1.3    oster 	if (rdnodesFaked) {
    315   1.3    oster 		/*
    316   1.3    oster 	         * This is where we'll init that fake noop read node
    317   1.3    oster 	         * (XXX should the wakeup func be different?)
    318   1.3    oster 	         */
    319   1.3    oster 		rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    320   1.3    oster 		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
    321   1.3    oster 	}
    322   1.3    oster 	/*
    323   1.3    oster          * Make a PDA for the parity unit.  The parity PDA should start at
    324   1.3    oster          * the same offset into the SU as the failed PDA.
    325   1.3    oster          */
    326   1.3    oster 	/* Danner comment: I don't think this copy is really necessary. We are
    327   1.3    oster 	 * in one of two cases here. (1) The entire failed unit is written.
    328   1.3    oster 	 * Then asmap->parityInfo will describe the entire parity. (2) We are
    329   1.3    oster 	 * only writing a subset of the failed unit and nothing else. Then the
    330   1.3    oster 	 * asmap->parityInfo describes the failed unit and the copy can also
    331   1.3    oster 	 * be avoided. */
    332   1.3    oster 
    333   1.3    oster 	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    334   1.3    oster 	parityPDA->col = asmap->parityInfo->col;
    335   1.3    oster 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    336   1.3    oster 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    337   1.3    oster 	parityPDA->numSector = failedPDA->numSector;
    338   1.3    oster 
    339   1.3    oster 	if (!xorTargetBuf) {
    340  1.13    oster 		RF_MallocAndAdd(xorTargetBuf,
    341   1.3    oster 		    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    342   1.3    oster 	}
    343   1.3    oster 	/* init the Wnp node */
    344   1.3    oster 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    345   1.3    oster 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    346   1.3    oster 	wnpNode->params[0].p = parityPDA;
    347   1.3    oster 	wnpNode->params[1].p = xorTargetBuf;
    348   1.3    oster 	wnpNode->params[2].v = parityStripeID;
    349   1.3    oster 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    350   1.3    oster 
    351   1.3    oster 	/* fill in the Wnq Node */
    352   1.3    oster 	if (nfaults == 2) {
    353   1.3    oster 		{
    354   1.3    oster 			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
    355   1.3    oster 			    (RF_PhysDiskAddr_t *), allocList);
    356   1.3    oster 			parityPDA->col = asmap->qInfo->col;
    357   1.3    oster 			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
    358   1.3    oster 			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    359   1.3    oster 			parityPDA->numSector = failedPDA->numSector;
    360   1.3    oster 
    361   1.3    oster 			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    362   1.3    oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    363   1.3    oster 			wnqNode->params[0].p = parityPDA;
    364  1.13    oster 			RF_MallocAndAdd(xorNode->results[1],
    365   1.3    oster 			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    366   1.3    oster 			wnqNode->params[1].p = xorNode->results[1];
    367   1.3    oster 			wnqNode->params[2].v = parityStripeID;
    368   1.3    oster 			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    369   1.3    oster 		}
    370   1.3    oster 	}
    371   1.3    oster 	/* fill in the Wnd nodes */
    372   1.3    oster 	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
    373   1.3    oster 		if (pda == failedPDA) {
    374   1.3    oster 			i--;
    375   1.3    oster 			continue;
    376   1.3    oster 		}
    377   1.3    oster 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    378   1.3    oster 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    379   1.3    oster 		RF_ASSERT(pda);
    380   1.3    oster 		wndNodes[i].params[0].p = pda;
    381   1.3    oster 		wndNodes[i].params[1].p = pda->bufPtr;
    382   1.3    oster 		wndNodes[i].params[2].v = parityStripeID;
    383   1.3    oster 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    384   1.3    oster 	}
    385   1.3    oster 
    386   1.3    oster 	/* fill in the results of the xor node */
    387   1.3    oster 	xorNode->results[0] = xorTargetBuf;
    388   1.3    oster 
    389   1.3    oster 	/* fill in the params of the xor node */
    390   1.3    oster 
    391   1.3    oster 	paramNum = 0;
    392   1.3    oster 	if (rdnodesFaked == 0) {
    393   1.3    oster 		for (i = 0; i < nRrdNodes; i++) {
    394   1.3    oster 			/* all the Rrd nodes need to be xored together */
    395   1.3    oster 			xorNode->params[paramNum++] = rrdNodes[i].params[0];
    396   1.3    oster 			xorNode->params[paramNum++] = rrdNodes[i].params[1];
    397   1.3    oster 		}
    398   1.3    oster 	}
    399   1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    400   1.3    oster 		/* any Wnd nodes that overlap the failed access need to be
    401   1.3    oster 		 * xored in */
    402   1.3    oster 		if (overlappingPDAs[i]) {
    403   1.3    oster 			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    404  1.10      wiz 			memcpy((char *) pda, (char *) wndNodes[i].params[0].p, sizeof(RF_PhysDiskAddr_t));
    405   1.3    oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    406   1.3    oster 			xorNode->params[paramNum++].p = pda;
    407   1.3    oster 			xorNode->params[paramNum++].p = pda->bufPtr;
    408   1.3    oster 		}
    409   1.3    oster 	}
    410   1.3    oster 	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
    411   1.3    oster 
    412   1.3    oster 	/*
    413   1.3    oster          * Install the failed PDA into the xor param list so that the
    414   1.3    oster          * new data gets xor'd in.
    415   1.3    oster          */
    416   1.3    oster 	xorNode->params[paramNum++].p = failedPDA;
    417   1.3    oster 	xorNode->params[paramNum++].p = failedPDA->bufPtr;
    418   1.3    oster 
    419   1.3    oster 	/*
    420   1.3    oster          * The last 2 params to the recovery xor node are always the failed
    421   1.3    oster          * PDA and the raidPtr. install the failedPDA even though we have just
    422   1.3    oster          * done so above. This allows us to use the same XOR function for both
    423   1.3    oster          * degraded reads and degraded writes.
    424   1.3    oster          */
    425   1.3    oster 	xorNode->params[paramNum++].p = failedPDA;
    426   1.3    oster 	xorNode->params[paramNum++].p = raidPtr;
    427   1.3    oster 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    428   1.3    oster 
    429   1.3    oster 	/*
    430   1.3    oster          * Code to link nodes begins here
    431   1.3    oster          */
    432   1.3    oster 
    433   1.3    oster 	/* link header to block node */
    434   1.3    oster 	RF_ASSERT(blockNode->numAntecedents == 0);
    435   1.3    oster 	dag_h->succedents[0] = blockNode;
    436   1.3    oster 
    437   1.3    oster 	/* link block node to rd nodes */
    438   1.3    oster 	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
    439   1.3    oster 	for (i = 0; i < nRrdNodes; i++) {
    440   1.3    oster 		RF_ASSERT(rrdNodes[i].numAntecedents == 1);
    441   1.3    oster 		blockNode->succedents[i] = &rrdNodes[i];
    442   1.3    oster 		rrdNodes[i].antecedents[0] = blockNode;
    443   1.3    oster 		rrdNodes[i].antType[0] = rf_control;
    444   1.3    oster 	}
    445   1.3    oster 
    446   1.3    oster 	/* link read nodes to xor node */
    447   1.3    oster 	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
    448   1.3    oster 	for (i = 0; i < nRrdNodes; i++) {
    449   1.3    oster 		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
    450   1.3    oster 		rrdNodes[i].succedents[0] = xorNode;
    451   1.3    oster 		xorNode->antecedents[i] = &rrdNodes[i];
    452   1.3    oster 		xorNode->antType[i] = rf_trueData;
    453   1.3    oster 	}
    454   1.3    oster 
    455   1.3    oster 	/* link xor node to commit node */
    456   1.3    oster 	RF_ASSERT(xorNode->numSuccedents == 1);
    457   1.3    oster 	RF_ASSERT(commitNode->numAntecedents == 1);
    458   1.3    oster 	xorNode->succedents[0] = commitNode;
    459   1.3    oster 	commitNode->antecedents[0] = xorNode;
    460   1.3    oster 	commitNode->antType[0] = rf_control;
    461   1.3    oster 
    462   1.3    oster 	/* link commit node to wnd nodes */
    463   1.3    oster 	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
    464   1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    465   1.3    oster 		RF_ASSERT(wndNodes[i].numAntecedents == 1);
    466   1.3    oster 		commitNode->succedents[i] = &wndNodes[i];
    467   1.3    oster 		wndNodes[i].antecedents[0] = commitNode;
    468   1.3    oster 		wndNodes[i].antType[0] = rf_control;
    469   1.3    oster 	}
    470   1.3    oster 
    471   1.3    oster 	/* link the commit node to wnp, wnq nodes */
    472   1.3    oster 	RF_ASSERT(wnpNode->numAntecedents == 1);
    473   1.3    oster 	commitNode->succedents[nWndNodes] = wnpNode;
    474   1.3    oster 	wnpNode->antecedents[0] = commitNode;
    475   1.3    oster 	wnpNode->antType[0] = rf_control;
    476   1.3    oster 	if (nfaults == 2) {
    477   1.3    oster 		RF_ASSERT(wnqNode->numAntecedents == 1);
    478   1.3    oster 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    479   1.3    oster 		wnqNode->antecedents[0] = commitNode;
    480   1.3    oster 		wnqNode->antType[0] = rf_control;
    481   1.3    oster 	}
    482   1.3    oster 	/* link write new data nodes to unblock node */
    483   1.3    oster 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
    484   1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    485   1.3    oster 		RF_ASSERT(wndNodes[i].numSuccedents == 1);
    486   1.3    oster 		wndNodes[i].succedents[0] = unblockNode;
    487   1.3    oster 		unblockNode->antecedents[i] = &wndNodes[i];
    488   1.3    oster 		unblockNode->antType[i] = rf_control;
    489   1.3    oster 	}
    490   1.3    oster 
    491   1.3    oster 	/* link write new parity node to unblock node */
    492   1.3    oster 	RF_ASSERT(wnpNode->numSuccedents == 1);
    493   1.3    oster 	wnpNode->succedents[0] = unblockNode;
    494   1.3    oster 	unblockNode->antecedents[nWndNodes] = wnpNode;
    495   1.3    oster 	unblockNode->antType[nWndNodes] = rf_control;
    496   1.3    oster 
    497   1.3    oster 	/* link write new q node to unblock node */
    498   1.3    oster 	if (nfaults == 2) {
    499   1.3    oster 		RF_ASSERT(wnqNode->numSuccedents == 1);
    500   1.3    oster 		wnqNode->succedents[0] = unblockNode;
    501   1.3    oster 		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
    502   1.3    oster 		unblockNode->antType[nWndNodes + 1] = rf_control;
    503   1.3    oster 	}
    504   1.3    oster 	/* link unblock node to term node */
    505   1.3    oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
    506   1.3    oster 	RF_ASSERT(termNode->numAntecedents == 1);
    507   1.3    oster 	RF_ASSERT(termNode->numSuccedents == 0);
    508   1.3    oster 	unblockNode->succedents[0] = termNode;
    509   1.3    oster 	termNode->antecedents[0] = unblockNode;
    510   1.3    oster 	termNode->antType[0] = rf_control;
    511   1.1    oster }
    512   1.1    oster #define CONS_PDA(if,start,num) \
    513  1.12    oster   pda_p->col = asmap->if->col; \
    514   1.1    oster   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    515   1.1    oster   pda_p->numSector = num; \
    516   1.1    oster   pda_p->next = NULL; \
    517   1.1    oster   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
    518   1.6    oster #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
    519   1.3    oster void
    520   1.3    oster rf_WriteGenerateFailedAccessASMs(
    521   1.3    oster     RF_Raid_t * raidPtr,
    522   1.3    oster     RF_AccessStripeMap_t * asmap,
    523   1.3    oster     RF_PhysDiskAddr_t ** pdap,
    524   1.3    oster     int *nNodep,
    525   1.3    oster     RF_PhysDiskAddr_t ** pqpdap,
    526   1.3    oster     int *nPQNodep,
    527   1.3    oster     RF_AllocListElem_t * allocList)
    528   1.1    oster {
    529   1.3    oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    530   1.3    oster 	int     PDAPerDisk, i;
    531   1.3    oster 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    532   1.3    oster 	int     numDataCol = layoutPtr->numDataCol;
    533   1.3    oster 	int     state;
    534   1.3    oster 	unsigned napdas;
    535   1.3    oster 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
    536   1.3    oster 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    537   1.3    oster 	RF_PhysDiskAddr_t *pda_p;
    538   1.3    oster 	RF_RaidAddr_t sosAddr;
    539   1.3    oster 
    540   1.3    oster 	/* determine how many pda's we will have to generate per unaccess
    541   1.3    oster 	 * stripe. If there is only one failed data unit, it is one; if two,
    542   1.3    oster 	 * possibly two, depending wether they overlap. */
    543   1.3    oster 
    544   1.3    oster 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    545   1.3    oster 	fone_end = fone_start + fone->numSector;
    546   1.3    oster 
    547   1.3    oster 	if (asmap->numDataFailed == 1) {
    548   1.3    oster 		PDAPerDisk = 1;
    549   1.3    oster 		state = 1;
    550   1.3    oster 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    551   1.3    oster 		pda_p = *pqpdap;
    552   1.3    oster 		/* build p */
    553   1.3    oster 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    554   1.3    oster 		pda_p->type = RF_PDA_TYPE_PARITY;
    555   1.3    oster 		pda_p++;
    556   1.3    oster 		/* build q */
    557   1.3    oster 		CONS_PDA(qInfo, fone_start, fone->numSector);
    558   1.3    oster 		pda_p->type = RF_PDA_TYPE_Q;
    559   1.3    oster 	} else {
    560   1.3    oster 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    561   1.3    oster 		ftwo_end = ftwo_start + ftwo->numSector;
    562   1.3    oster 		if (fone->numSector + ftwo->numSector > secPerSU) {
    563   1.3    oster 			PDAPerDisk = 1;
    564   1.3    oster 			state = 2;
    565   1.3    oster 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    566   1.3    oster 			pda_p = *pqpdap;
    567   1.3    oster 			CONS_PDA(parityInfo, 0, secPerSU);
    568   1.3    oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    569   1.3    oster 			pda_p++;
    570   1.3    oster 			CONS_PDA(qInfo, 0, secPerSU);
    571   1.3    oster 			pda_p->type = RF_PDA_TYPE_Q;
    572   1.3    oster 		} else {
    573   1.3    oster 			PDAPerDisk = 2;
    574   1.3    oster 			state = 3;
    575   1.3    oster 			/* four of them, fone, then ftwo */
    576   1.3    oster 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    577   1.3    oster 			pda_p = *pqpdap;
    578   1.3    oster 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    579   1.3    oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    580   1.3    oster 			pda_p++;
    581   1.3    oster 			CONS_PDA(qInfo, fone_start, fone->numSector);
    582   1.3    oster 			pda_p->type = RF_PDA_TYPE_Q;
    583   1.3    oster 			pda_p++;
    584   1.3    oster 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    585   1.3    oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    586   1.3    oster 			pda_p++;
    587   1.3    oster 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    588   1.3    oster 			pda_p->type = RF_PDA_TYPE_Q;
    589   1.3    oster 		}
    590   1.3    oster 	}
    591   1.3    oster 	/* figure out number of nonaccessed pda */
    592   1.3    oster 	napdas = PDAPerDisk * (numDataCol - 2);
    593   1.3    oster 	*nPQNodep = PDAPerDisk;
    594   1.3    oster 
    595   1.3    oster 	*nNodep = napdas;
    596   1.3    oster 	if (napdas == 0)
    597   1.3    oster 		return;		/* short circuit */
    598   1.3    oster 
    599   1.3    oster 	/* allocate up our list of pda's */
    600   1.3    oster 
    601  1.13    oster 	RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
    602  1.13    oster 			(RF_PhysDiskAddr_t *), allocList);
    603   1.3    oster 	*pdap = pda_p;
    604   1.3    oster 
    605   1.3    oster 	/* linkem together */
    606   1.3    oster 	for (i = 0; i < (napdas - 1); i++)
    607   1.3    oster 		pda_p[i].next = pda_p + (i + 1);
    608   1.3    oster 
    609   1.3    oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    610   1.3    oster 	for (i = 0; i < numDataCol; i++) {
    611   1.3    oster 		if ((pda_p - (*pdap)) == napdas)
    612   1.3    oster 			continue;
    613   1.3    oster 		pda_p->type = RF_PDA_TYPE_DATA;
    614   1.3    oster 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    615  1.12    oster 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    616   1.3    oster 		/* skip over dead disks */
    617  1.12    oster 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    618   1.3    oster 			continue;
    619   1.3    oster 		switch (state) {
    620   1.3    oster 		case 1:	/* fone */
    621   1.3    oster 			pda_p->numSector = fone->numSector;
    622   1.3    oster 			pda_p->raidAddress += fone_start;
    623   1.3    oster 			pda_p->startSector += fone_start;
    624   1.3    oster 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    625   1.3    oster 			break;
    626   1.3    oster 		case 2:	/* full stripe */
    627   1.3    oster 			pda_p->numSector = secPerSU;
    628   1.3    oster 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    629   1.3    oster 			break;
    630   1.3    oster 		case 3:	/* two slabs */
    631   1.3    oster 			pda_p->numSector = fone->numSector;
    632   1.3    oster 			pda_p->raidAddress += fone_start;
    633   1.3    oster 			pda_p->startSector += fone_start;
    634   1.3    oster 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    635   1.3    oster 			pda_p++;
    636   1.3    oster 			pda_p->type = RF_PDA_TYPE_DATA;
    637   1.3    oster 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    638  1.12    oster 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    639   1.3    oster 			pda_p->numSector = ftwo->numSector;
    640   1.3    oster 			pda_p->raidAddress += ftwo_start;
    641   1.3    oster 			pda_p->startSector += ftwo_start;
    642   1.3    oster 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    643   1.3    oster 			break;
    644   1.3    oster 		default:
    645   1.3    oster 			RF_PANIC();
    646   1.3    oster 		}
    647   1.3    oster 		pda_p++;
    648   1.1    oster 	}
    649   1.1    oster 
    650   1.3    oster 	RF_ASSERT(pda_p - *pdap == napdas);
    651   1.3    oster 	return;
    652   1.1    oster }
    653   1.1    oster #define DISK_NODE_PDA(node)  ((node)->params[0].p)
    654   1.1    oster 
    655   1.1    oster #define DISK_NODE_PARAMS(_node_,_p_) \
    656   1.1    oster   (_node_).params[0].p = _p_ ; \
    657   1.1    oster   (_node_).params[1].p = (_p_)->bufPtr; \
    658   1.1    oster   (_node_).params[2].v = parityStripeID; \
    659   1.1    oster   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
    660   1.1    oster 
    661   1.3    oster void
    662   1.3    oster rf_DoubleDegSmallWrite(
    663   1.3    oster     RF_Raid_t * raidPtr,
    664   1.3    oster     RF_AccessStripeMap_t * asmap,
    665   1.3    oster     RF_DagHeader_t * dag_h,
    666   1.3    oster     void *bp,
    667   1.3    oster     RF_RaidAccessFlags_t flags,
    668   1.3    oster     RF_AllocListElem_t * allocList,
    669   1.3    oster     char *redundantReadNodeName,
    670   1.3    oster     char *redundantWriteNodeName,
    671   1.3    oster     char *recoveryNodeName,
    672   1.3    oster     int (*recovFunc) (RF_DagNode_t *))
    673   1.1    oster {
    674   1.3    oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    675   1.3    oster 	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
    676   1.3    oster 	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
    677   1.3    oster 	RF_PhysDiskAddr_t *pda, *pqPDAs;
    678   1.3    oster 	RF_PhysDiskAddr_t *npdas;
    679   1.3    oster 	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
    680   1.3    oster 	RF_ReconUnitNum_t which_ru;
    681   1.3    oster 	int     nPQNodes;
    682   1.3    oster 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
    683   1.3    oster 
    684   1.3    oster 	/* simple small write case - First part looks like a reconstruct-read
    685   1.3    oster 	 * of the failed data units. Then a write of all data units not
    686   1.3    oster 	 * failed. */
    687   1.3    oster 
    688   1.3    oster 
    689   1.3    oster 	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
    690   1.3    oster 	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
    691   1.3    oster 	 * --Unblock- | T
    692   1.3    oster 	 *
    693   1.3    oster 	 * Rrd = read recovery data  (potentially none) Wud = write user data
    694   1.3    oster 	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
    695   1.3    oster 	 * (could be two)
    696   1.3    oster 	 *
    697   1.3    oster 	 */
    698   1.3    oster 
    699   1.3    oster 	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
    700   1.3    oster 
    701   1.3    oster 	RF_ASSERT(asmap->numDataFailed == 1);
    702   1.3    oster 
    703   1.3    oster 	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
    704   1.3    oster 	nReadNodes = nRrdNodes + 2 * nPQNodes;
    705   1.3    oster 	nWriteNodes = nWudNodes + 2 * nPQNodes;
    706   1.3    oster 	nNodes = 4 + nReadNodes + nWriteNodes;
    707   1.3    oster 
    708  1.13    oster 	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    709   1.3    oster 	blockNode = nodes;
    710   1.3    oster 	unblockNode = blockNode + 1;
    711   1.3    oster 	termNode = unblockNode + 1;
    712   1.3    oster 	recoveryNode = termNode + 1;
    713   1.3    oster 	rrdNodes = recoveryNode + 1;
    714   1.3    oster 	rpNodes = rrdNodes + nRrdNodes;
    715   1.3    oster 	rqNodes = rpNodes + nPQNodes;
    716   1.3    oster 	wudNodes = rqNodes + nPQNodes;
    717   1.3    oster 	wpNodes = wudNodes + nWudNodes;
    718   1.3    oster 	wqNodes = wpNodes + nPQNodes;
    719   1.3    oster 
    720   1.3    oster 	dag_h->creator = "PQ_DDSimpleSmallWrite";
    721   1.3    oster 	dag_h->numSuccedents = 1;
    722   1.3    oster 	dag_h->succedents[0] = blockNode;
    723   1.3    oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    724   1.3    oster 	termNode->antecedents[0] = unblockNode;
    725   1.3    oster 	termNode->antType[0] = rf_control;
    726   1.3    oster 
    727   1.3    oster 	/* init the block and unblock nodes */
    728   1.3    oster 	/* The block node has all the read nodes as successors */
    729   1.3    oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
    730   1.3    oster 	for (i = 0; i < nReadNodes; i++)
    731   1.3    oster 		blockNode->succedents[i] = rrdNodes + i;
    732   1.3    oster 
    733   1.3    oster 	/* The unblock node has all the writes as successors */
    734   1.3    oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
    735   1.3    oster 	for (i = 0; i < nWriteNodes; i++) {
    736   1.3    oster 		unblockNode->antecedents[i] = wudNodes + i;
    737   1.3    oster 		unblockNode->antType[i] = rf_control;
    738   1.3    oster 	}
    739   1.3    oster 	unblockNode->succedents[0] = termNode;
    740   1.1    oster 
    741   1.1    oster #define INIT_READ_NODE(node,name) \
    742   1.1    oster   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    743   1.1    oster   (node)->succedents[0] = recoveryNode; \
    744   1.1    oster   (node)->antecedents[0] = blockNode; \
    745   1.1    oster   (node)->antType[0] = rf_control;
    746   1.1    oster 
    747   1.3    oster 	/* build the read nodes */
    748   1.3    oster 	pda = npdas;
    749   1.3    oster 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
    750   1.3    oster 		INIT_READ_NODE(rrdNodes + i, "rrd");
    751   1.3    oster 		DISK_NODE_PARAMS(rrdNodes[i], pda);
    752   1.3    oster 	}
    753   1.3    oster 
    754   1.3    oster 	/* read redundancy pdas */
    755   1.3    oster 	pda = pqPDAs;
    756   1.3    oster 	INIT_READ_NODE(rpNodes, "Rp");
    757   1.3    oster 	RF_ASSERT(pda);
    758   1.3    oster 	DISK_NODE_PARAMS(rpNodes[0], pda);
    759   1.3    oster 	pda++;
    760   1.3    oster 	INIT_READ_NODE(rqNodes, redundantReadNodeName);
    761   1.3    oster 	RF_ASSERT(pda);
    762   1.3    oster 	DISK_NODE_PARAMS(rqNodes[0], pda);
    763   1.3    oster 	if (nPQNodes == 2) {
    764   1.3    oster 		pda++;
    765   1.3    oster 		INIT_READ_NODE(rpNodes + 1, "Rp");
    766   1.3    oster 		RF_ASSERT(pda);
    767   1.3    oster 		DISK_NODE_PARAMS(rpNodes[1], pda);
    768   1.3    oster 		pda++;
    769   1.3    oster 		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
    770   1.3    oster 		RF_ASSERT(pda);
    771   1.3    oster 		DISK_NODE_PARAMS(rqNodes[1], pda);
    772   1.3    oster 	}
    773   1.3    oster 	/* the recovery node has all reads as precedessors and all writes as
    774   1.3    oster 	 * successors. It generates a result for every write P or write Q
    775   1.3    oster 	 * node. As parameters, it takes a pda per read and a pda per stripe
    776   1.3    oster 	 * of user data written. It also takes as the last params the raidPtr
    777   1.3    oster 	 * and asm. For results, it takes PDA for P & Q. */
    778   1.3    oster 
    779   1.3    oster 
    780   1.3    oster 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
    781   1.3    oster 	    nWriteNodes,	/* succesors */
    782   1.3    oster 	    nReadNodes,		/* preds */
    783   1.3    oster 	    nReadNodes + nWudNodes + 3,	/* params */
    784   1.3    oster 	    2 * nPQNodes,	/* results */
    785   1.3    oster 	    dag_h, recoveryNodeName, allocList);
    786   1.3    oster 
    787   1.3    oster 
    788   1.3    oster 
    789   1.3    oster 	for (i = 0; i < nReadNodes; i++) {
    790   1.3    oster 		recoveryNode->antecedents[i] = rrdNodes + i;
    791   1.3    oster 		recoveryNode->antType[i] = rf_control;
    792   1.3    oster 		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
    793   1.3    oster 	}
    794   1.3    oster 	for (i = 0; i < nWudNodes; i++) {
    795   1.3    oster 		recoveryNode->succedents[i] = wudNodes + i;
    796   1.3    oster 	}
    797   1.3    oster 	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
    798   1.3    oster 	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
    799   1.3    oster 	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
    800   1.3    oster 
    801   1.3    oster 	for (; i < nWriteNodes; i++)
    802   1.3    oster 		recoveryNode->succedents[i] = wudNodes + i;
    803   1.3    oster 
    804   1.3    oster 	pda = pqPDAs;
    805   1.3    oster 	recoveryNode->results[0] = pda;
    806   1.3    oster 	pda++;
    807   1.3    oster 	recoveryNode->results[1] = pda;
    808   1.3    oster 	if (nPQNodes == 2) {
    809   1.3    oster 		pda++;
    810   1.3    oster 		recoveryNode->results[2] = pda;
    811   1.3    oster 		pda++;
    812   1.3    oster 		recoveryNode->results[3] = pda;
    813   1.3    oster 	}
    814   1.3    oster 	/* fill writes */
    815   1.1    oster #define INIT_WRITE_NODE(node,name) \
    816   1.1    oster   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    817   1.1    oster     (node)->succedents[0] = unblockNode; \
    818   1.1    oster     (node)->antecedents[0] = recoveryNode; \
    819   1.1    oster     (node)->antType[0] = rf_control;
    820   1.1    oster 
    821   1.3    oster 	pda = asmap->physInfo;
    822   1.3    oster 	for (i = 0; i < nWudNodes; i++) {
    823   1.3    oster 		INIT_WRITE_NODE(wudNodes + i, "Wd");
    824   1.3    oster 		DISK_NODE_PARAMS(wudNodes[i], pda);
    825   1.3    oster 		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
    826   1.3    oster 		pda = pda->next;
    827   1.3    oster 	}
    828   1.3    oster 	/* write redundancy pdas */
    829   1.3    oster 	pda = pqPDAs;
    830   1.3    oster 	INIT_WRITE_NODE(wpNodes, "Wp");
    831   1.3    oster 	RF_ASSERT(pda);
    832   1.3    oster 	DISK_NODE_PARAMS(wpNodes[0], pda);
    833   1.3    oster 	pda++;
    834   1.3    oster 	INIT_WRITE_NODE(wqNodes, "Wq");
    835   1.3    oster 	RF_ASSERT(pda);
    836   1.3    oster 	DISK_NODE_PARAMS(wqNodes[0], pda);
    837   1.3    oster 	if (nPQNodes == 2) {
    838   1.3    oster 		pda++;
    839   1.3    oster 		INIT_WRITE_NODE(wpNodes + 1, "Wp");
    840   1.3    oster 		RF_ASSERT(pda);
    841   1.3    oster 		DISK_NODE_PARAMS(wpNodes[1], pda);
    842   1.3    oster 		pda++;
    843   1.3    oster 		INIT_WRITE_NODE(wqNodes + 1, "Wq");
    844   1.3    oster 		RF_ASSERT(pda);
    845   1.3    oster 		DISK_NODE_PARAMS(wqNodes[1], pda);
    846   1.3    oster 	}
    847   1.1    oster }
    848   1.6    oster #endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
    849