rf_dagdegwr.c revision 1.13 1 1.13 oster /* $NetBSD: rf_dagdegwr.c,v 1.13 2003/12/29 03:33:47 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * rf_dagdegwr.c
31 1.1 oster *
32 1.1 oster * code for creating degraded write DAGs
33 1.1 oster *
34 1.1 oster */
35 1.9 lukem
36 1.9 lukem #include <sys/cdefs.h>
37 1.13 oster __KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.13 2003/12/29 03:33:47 oster Exp $");
38 1.1 oster
39 1.8 oster #include <dev/raidframe/raidframevar.h>
40 1.8 oster
41 1.1 oster #include "rf_raid.h"
42 1.1 oster #include "rf_dag.h"
43 1.1 oster #include "rf_dagutils.h"
44 1.1 oster #include "rf_dagfuncs.h"
45 1.1 oster #include "rf_debugMem.h"
46 1.1 oster #include "rf_general.h"
47 1.1 oster #include "rf_dagdegwr.h"
48 1.1 oster
49 1.1 oster
50 1.1 oster /******************************************************************************
51 1.1 oster *
52 1.1 oster * General comments on DAG creation:
53 1.3 oster *
54 1.1 oster * All DAGs in this file use roll-away error recovery. Each DAG has a single
55 1.1 oster * commit node, usually called "Cmt." If an error occurs before the Cmt node
56 1.1 oster * is reached, the execution engine will halt forward execution and work
57 1.1 oster * backward through the graph, executing the undo functions. Assuming that
58 1.1 oster * each node in the graph prior to the Cmt node are undoable and atomic - or -
59 1.1 oster * does not make changes to permanent state, the graph will fail atomically.
60 1.1 oster * If an error occurs after the Cmt node executes, the engine will roll-forward
61 1.1 oster * through the graph, blindly executing nodes until it reaches the end.
62 1.1 oster * If a graph reaches the end, it is assumed to have completed successfully.
63 1.1 oster *
64 1.1 oster * A graph has only 1 Cmt node.
65 1.1 oster *
66 1.1 oster */
67 1.1 oster
68 1.1 oster
69 1.1 oster /******************************************************************************
70 1.1 oster *
71 1.1 oster * The following wrappers map the standard DAG creation interface to the
72 1.1 oster * DAG creation routines. Additionally, these wrappers enable experimentation
73 1.1 oster * with new DAG structures by providing an extra level of indirection, allowing
74 1.1 oster * the DAG creation routines to be replaced at this single point.
75 1.1 oster */
76 1.1 oster
77 1.3 oster static
78 1.3 oster RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
79 1.1 oster {
80 1.3 oster rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
81 1.3 oster flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
82 1.1 oster }
83 1.1 oster
84 1.3 oster void
85 1.3 oster rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
86 1.3 oster RF_Raid_t *raidPtr;
87 1.3 oster RF_AccessStripeMap_t *asmap;
88 1.3 oster RF_DagHeader_t *dag_h;
89 1.3 oster void *bp;
90 1.3 oster RF_RaidAccessFlags_t flags;
91 1.3 oster RF_AllocListElem_t *allocList;
92 1.1 oster {
93 1.3 oster
94 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
95 1.3 oster dag_h->creator = "DegradedWriteDAG";
96 1.3 oster
97 1.7 thorpej /*
98 1.7 thorpej * if the access writes only a portion of the failed unit, and also
99 1.3 oster * writes some portion of at least one surviving unit, we create two
100 1.3 oster * DAGs, one for the failed component and one for the non-failed
101 1.3 oster * component, and do them sequentially. Note that the fact that we're
102 1.3 oster * accessing only a portion of the failed unit indicates that the
103 1.3 oster * access either starts or ends in the failed unit, and hence we need
104 1.3 oster * create only two dags. This is inefficient in that the same data or
105 1.3 oster * parity can get read and written twice using this structure. I need
106 1.7 thorpej * to fix this to do the access all at once.
107 1.7 thorpej */
108 1.7 thorpej RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
109 1.7 thorpej asmap->failedPDAs[0]->numSector !=
110 1.7 thorpej raidPtr->Layout.sectorsPerStripeUnit));
111 1.7 thorpej rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
112 1.7 thorpej allocList);
113 1.1 oster }
114 1.1 oster
115 1.1 oster
116 1.1 oster
117 1.1 oster /******************************************************************************
118 1.1 oster *
119 1.1 oster * DAG creation code begins here
120 1.1 oster */
121 1.1 oster
122 1.1 oster
123 1.1 oster
124 1.1 oster /******************************************************************************
125 1.1 oster *
126 1.1 oster * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
127 1.1 oster * write, which is as follows
128 1.1 oster *
129 1.1 oster * / {Wnq} --\
130 1.1 oster * hdr -> blockNode -> Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
131 1.1 oster * \ {Rod} / \ Wnd ---/
132 1.1 oster * \ {Wnd} -/
133 1.1 oster *
134 1.1 oster * commit nodes: Xor, Wnd
135 1.1 oster *
136 1.1 oster * IMPORTANT:
137 1.1 oster * This DAG generator does not work for double-degraded archs since it does not
138 1.1 oster * generate Q
139 1.1 oster *
140 1.1 oster * This dag is essentially identical to the large-write dag, except that the
141 1.1 oster * write to the failed data unit is suppressed.
142 1.1 oster *
143 1.1 oster * IMPORTANT: this dag does not work in the case where the access writes only
144 1.1 oster * a portion of the failed unit, and also writes some portion of at least one
145 1.1 oster * surviving SU. this case is handled in CreateDegradedWriteDAG above.
146 1.1 oster *
147 1.1 oster * The block & unblock nodes are leftovers from a previous version. They
148 1.1 oster * do nothing, but I haven't deleted them because it would be a tremendous
149 1.1 oster * effort to put them back in.
150 1.1 oster *
151 1.1 oster * This dag is used whenever a one of the data units in a write has failed.
152 1.1 oster * If it is the parity unit that failed, the nonredundant write dag (below)
153 1.1 oster * is used.
154 1.1 oster *****************************************************************************/
155 1.1 oster
156 1.3 oster void
157 1.3 oster rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
158 1.3 oster allocList, nfaults, redFunc, allowBufferRecycle)
159 1.3 oster RF_Raid_t *raidPtr;
160 1.3 oster RF_AccessStripeMap_t *asmap;
161 1.3 oster RF_DagHeader_t *dag_h;
162 1.3 oster void *bp;
163 1.3 oster RF_RaidAccessFlags_t flags;
164 1.3 oster RF_AllocListElem_t *allocList;
165 1.3 oster int nfaults;
166 1.3 oster int (*redFunc) (RF_DagNode_t *);
167 1.3 oster int allowBufferRecycle;
168 1.1 oster {
169 1.3 oster int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
170 1.3 oster rdnodesFaked;
171 1.3 oster RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
172 1.3 oster RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
173 1.3 oster RF_SectorCount_t sectorsPerSU;
174 1.3 oster RF_ReconUnitNum_t which_ru;
175 1.3 oster char *xorTargetBuf = NULL; /* the target buffer for the XOR
176 1.3 oster * operation */
177 1.3 oster char *overlappingPDAs;/* a temporary array of flags */
178 1.3 oster RF_AccessStripeMapHeader_t *new_asm_h[2];
179 1.3 oster RF_PhysDiskAddr_t *pda, *parityPDA;
180 1.3 oster RF_StripeNum_t parityStripeID;
181 1.3 oster RF_PhysDiskAddr_t *failedPDA;
182 1.3 oster RF_RaidLayout_t *layoutPtr;
183 1.3 oster
184 1.3 oster layoutPtr = &(raidPtr->Layout);
185 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
186 1.3 oster &which_ru);
187 1.3 oster sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
188 1.3 oster /* failedPDA points to the pda within the asm that targets the failed
189 1.3 oster * disk */
190 1.3 oster failedPDA = asmap->failedPDAs[0];
191 1.3 oster
192 1.3 oster if (rf_dagDebug)
193 1.3 oster printf("[Creating degraded-write DAG]\n");
194 1.3 oster
195 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
196 1.3 oster dag_h->creator = "SimpleDegradedWriteDAG";
197 1.3 oster
198 1.3 oster /*
199 1.3 oster * Generate two ASMs identifying the surviving data
200 1.3 oster * we need in order to recover the lost data.
201 1.3 oster */
202 1.3 oster /* overlappingPDAs array must be zero'd */
203 1.13 oster RF_Malloc(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char), (char *));
204 1.3 oster rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
205 1.3 oster &nXorBufs, NULL, overlappingPDAs, allocList);
206 1.3 oster
207 1.3 oster /* create all the nodes at once */
208 1.3 oster nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is
209 1.3 oster * generated for the
210 1.3 oster * failed pda */
211 1.3 oster
212 1.3 oster nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
213 1.3 oster ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
214 1.3 oster /*
215 1.3 oster * XXX
216 1.3 oster *
217 1.3 oster * There's a bug with a complete stripe overwrite- that means 0 reads
218 1.3 oster * of old data, and the rest of the DAG generation code doesn't like
219 1.3 oster * that. A release is coming, and I don't wanna risk breaking a critical
220 1.3 oster * DAG generator, so here's what I'm gonna do- if there's no read nodes,
221 1.3 oster * I'm gonna fake there being a read node, and I'm gonna swap in a
222 1.3 oster * no-op node in its place (to make all the link-up code happy).
223 1.3 oster * This should be fixed at some point. --jimz
224 1.3 oster */
225 1.3 oster if (nRrdNodes == 0) {
226 1.3 oster nRrdNodes = 1;
227 1.3 oster rdnodesFaked = 1;
228 1.3 oster } else {
229 1.3 oster rdnodesFaked = 0;
230 1.3 oster }
231 1.3 oster /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
232 1.3 oster nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
233 1.13 oster RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t),
234 1.3 oster (RF_DagNode_t *), allocList);
235 1.3 oster i = 0;
236 1.3 oster blockNode = &nodes[i];
237 1.3 oster i += 1;
238 1.3 oster commitNode = &nodes[i];
239 1.3 oster i += 1;
240 1.3 oster unblockNode = &nodes[i];
241 1.3 oster i += 1;
242 1.3 oster termNode = &nodes[i];
243 1.3 oster i += 1;
244 1.3 oster xorNode = &nodes[i];
245 1.3 oster i += 1;
246 1.3 oster wnpNode = &nodes[i];
247 1.3 oster i += 1;
248 1.3 oster wndNodes = &nodes[i];
249 1.3 oster i += nWndNodes;
250 1.3 oster rrdNodes = &nodes[i];
251 1.3 oster i += nRrdNodes;
252 1.3 oster if (nfaults == 2) {
253 1.3 oster wnqNode = &nodes[i];
254 1.3 oster i += 1;
255 1.3 oster } else {
256 1.3 oster wnqNode = NULL;
257 1.3 oster }
258 1.3 oster RF_ASSERT(i == nNodes);
259 1.3 oster
260 1.3 oster /* this dag can not commit until all rrd and xor Nodes have completed */
261 1.3 oster dag_h->numCommitNodes = 1;
262 1.3 oster dag_h->numCommits = 0;
263 1.3 oster dag_h->numSuccedents = 1;
264 1.3 oster
265 1.3 oster RF_ASSERT(nRrdNodes > 0);
266 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
267 1.3 oster NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
268 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
269 1.3 oster NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
270 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
271 1.3 oster NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
272 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
273 1.3 oster NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
274 1.3 oster rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
275 1.3 oster nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
276 1.3 oster
277 1.3 oster /*
278 1.3 oster * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
279 1.3 oster * the failed buffer, save a pointer to it so we can use it as the target
280 1.3 oster * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
281 1.3 oster * a buffer is the same size as the failed buffer, it must also be at the
282 1.3 oster * same alignment within the SU.
283 1.3 oster */
284 1.3 oster i = 0;
285 1.3 oster if (new_asm_h[0]) {
286 1.3 oster for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
287 1.3 oster i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
288 1.3 oster i++, pda = pda->next) {
289 1.3 oster rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
290 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
291 1.3 oster RF_ASSERT(pda);
292 1.3 oster rrdNodes[i].params[0].p = pda;
293 1.3 oster rrdNodes[i].params[1].p = pda->bufPtr;
294 1.3 oster rrdNodes[i].params[2].v = parityStripeID;
295 1.3 oster rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
296 1.3 oster }
297 1.3 oster }
298 1.3 oster /* i now equals the number of stripe units accessed in new_asm_h[0] */
299 1.3 oster if (new_asm_h[1]) {
300 1.3 oster for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
301 1.3 oster j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
302 1.3 oster j++, pda = pda->next) {
303 1.3 oster rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
304 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
305 1.3 oster RF_ASSERT(pda);
306 1.3 oster rrdNodes[i + j].params[0].p = pda;
307 1.3 oster rrdNodes[i + j].params[1].p = pda->bufPtr;
308 1.3 oster rrdNodes[i + j].params[2].v = parityStripeID;
309 1.3 oster rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
310 1.3 oster if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
311 1.3 oster xorTargetBuf = pda->bufPtr;
312 1.3 oster }
313 1.3 oster }
314 1.3 oster if (rdnodesFaked) {
315 1.3 oster /*
316 1.3 oster * This is where we'll init that fake noop read node
317 1.3 oster * (XXX should the wakeup func be different?)
318 1.3 oster */
319 1.3 oster rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
320 1.3 oster NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
321 1.3 oster }
322 1.3 oster /*
323 1.3 oster * Make a PDA for the parity unit. The parity PDA should start at
324 1.3 oster * the same offset into the SU as the failed PDA.
325 1.3 oster */
326 1.3 oster /* Danner comment: I don't think this copy is really necessary. We are
327 1.3 oster * in one of two cases here. (1) The entire failed unit is written.
328 1.3 oster * Then asmap->parityInfo will describe the entire parity. (2) We are
329 1.3 oster * only writing a subset of the failed unit and nothing else. Then the
330 1.3 oster * asmap->parityInfo describes the failed unit and the copy can also
331 1.3 oster * be avoided. */
332 1.3 oster
333 1.3 oster RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
334 1.3 oster parityPDA->col = asmap->parityInfo->col;
335 1.3 oster parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
336 1.3 oster * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
337 1.3 oster parityPDA->numSector = failedPDA->numSector;
338 1.3 oster
339 1.3 oster if (!xorTargetBuf) {
340 1.13 oster RF_MallocAndAdd(xorTargetBuf,
341 1.3 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
342 1.3 oster }
343 1.3 oster /* init the Wnp node */
344 1.3 oster rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
345 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
346 1.3 oster wnpNode->params[0].p = parityPDA;
347 1.3 oster wnpNode->params[1].p = xorTargetBuf;
348 1.3 oster wnpNode->params[2].v = parityStripeID;
349 1.3 oster wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
350 1.3 oster
351 1.3 oster /* fill in the Wnq Node */
352 1.3 oster if (nfaults == 2) {
353 1.3 oster {
354 1.3 oster RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
355 1.3 oster (RF_PhysDiskAddr_t *), allocList);
356 1.3 oster parityPDA->col = asmap->qInfo->col;
357 1.3 oster parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
358 1.3 oster * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
359 1.3 oster parityPDA->numSector = failedPDA->numSector;
360 1.3 oster
361 1.3 oster rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
362 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
363 1.3 oster wnqNode->params[0].p = parityPDA;
364 1.13 oster RF_MallocAndAdd(xorNode->results[1],
365 1.3 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
366 1.3 oster wnqNode->params[1].p = xorNode->results[1];
367 1.3 oster wnqNode->params[2].v = parityStripeID;
368 1.3 oster wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
369 1.3 oster }
370 1.3 oster }
371 1.3 oster /* fill in the Wnd nodes */
372 1.3 oster for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
373 1.3 oster if (pda == failedPDA) {
374 1.3 oster i--;
375 1.3 oster continue;
376 1.3 oster }
377 1.3 oster rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
378 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
379 1.3 oster RF_ASSERT(pda);
380 1.3 oster wndNodes[i].params[0].p = pda;
381 1.3 oster wndNodes[i].params[1].p = pda->bufPtr;
382 1.3 oster wndNodes[i].params[2].v = parityStripeID;
383 1.3 oster wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
384 1.3 oster }
385 1.3 oster
386 1.3 oster /* fill in the results of the xor node */
387 1.3 oster xorNode->results[0] = xorTargetBuf;
388 1.3 oster
389 1.3 oster /* fill in the params of the xor node */
390 1.3 oster
391 1.3 oster paramNum = 0;
392 1.3 oster if (rdnodesFaked == 0) {
393 1.3 oster for (i = 0; i < nRrdNodes; i++) {
394 1.3 oster /* all the Rrd nodes need to be xored together */
395 1.3 oster xorNode->params[paramNum++] = rrdNodes[i].params[0];
396 1.3 oster xorNode->params[paramNum++] = rrdNodes[i].params[1];
397 1.3 oster }
398 1.3 oster }
399 1.3 oster for (i = 0; i < nWndNodes; i++) {
400 1.3 oster /* any Wnd nodes that overlap the failed access need to be
401 1.3 oster * xored in */
402 1.3 oster if (overlappingPDAs[i]) {
403 1.3 oster RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
404 1.10 wiz memcpy((char *) pda, (char *) wndNodes[i].params[0].p, sizeof(RF_PhysDiskAddr_t));
405 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
406 1.3 oster xorNode->params[paramNum++].p = pda;
407 1.3 oster xorNode->params[paramNum++].p = pda->bufPtr;
408 1.3 oster }
409 1.3 oster }
410 1.3 oster RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
411 1.3 oster
412 1.3 oster /*
413 1.3 oster * Install the failed PDA into the xor param list so that the
414 1.3 oster * new data gets xor'd in.
415 1.3 oster */
416 1.3 oster xorNode->params[paramNum++].p = failedPDA;
417 1.3 oster xorNode->params[paramNum++].p = failedPDA->bufPtr;
418 1.3 oster
419 1.3 oster /*
420 1.3 oster * The last 2 params to the recovery xor node are always the failed
421 1.3 oster * PDA and the raidPtr. install the failedPDA even though we have just
422 1.3 oster * done so above. This allows us to use the same XOR function for both
423 1.3 oster * degraded reads and degraded writes.
424 1.3 oster */
425 1.3 oster xorNode->params[paramNum++].p = failedPDA;
426 1.3 oster xorNode->params[paramNum++].p = raidPtr;
427 1.3 oster RF_ASSERT(paramNum == 2 * nXorBufs + 2);
428 1.3 oster
429 1.3 oster /*
430 1.3 oster * Code to link nodes begins here
431 1.3 oster */
432 1.3 oster
433 1.3 oster /* link header to block node */
434 1.3 oster RF_ASSERT(blockNode->numAntecedents == 0);
435 1.3 oster dag_h->succedents[0] = blockNode;
436 1.3 oster
437 1.3 oster /* link block node to rd nodes */
438 1.3 oster RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
439 1.3 oster for (i = 0; i < nRrdNodes; i++) {
440 1.3 oster RF_ASSERT(rrdNodes[i].numAntecedents == 1);
441 1.3 oster blockNode->succedents[i] = &rrdNodes[i];
442 1.3 oster rrdNodes[i].antecedents[0] = blockNode;
443 1.3 oster rrdNodes[i].antType[0] = rf_control;
444 1.3 oster }
445 1.3 oster
446 1.3 oster /* link read nodes to xor node */
447 1.3 oster RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
448 1.3 oster for (i = 0; i < nRrdNodes; i++) {
449 1.3 oster RF_ASSERT(rrdNodes[i].numSuccedents == 1);
450 1.3 oster rrdNodes[i].succedents[0] = xorNode;
451 1.3 oster xorNode->antecedents[i] = &rrdNodes[i];
452 1.3 oster xorNode->antType[i] = rf_trueData;
453 1.3 oster }
454 1.3 oster
455 1.3 oster /* link xor node to commit node */
456 1.3 oster RF_ASSERT(xorNode->numSuccedents == 1);
457 1.3 oster RF_ASSERT(commitNode->numAntecedents == 1);
458 1.3 oster xorNode->succedents[0] = commitNode;
459 1.3 oster commitNode->antecedents[0] = xorNode;
460 1.3 oster commitNode->antType[0] = rf_control;
461 1.3 oster
462 1.3 oster /* link commit node to wnd nodes */
463 1.3 oster RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
464 1.3 oster for (i = 0; i < nWndNodes; i++) {
465 1.3 oster RF_ASSERT(wndNodes[i].numAntecedents == 1);
466 1.3 oster commitNode->succedents[i] = &wndNodes[i];
467 1.3 oster wndNodes[i].antecedents[0] = commitNode;
468 1.3 oster wndNodes[i].antType[0] = rf_control;
469 1.3 oster }
470 1.3 oster
471 1.3 oster /* link the commit node to wnp, wnq nodes */
472 1.3 oster RF_ASSERT(wnpNode->numAntecedents == 1);
473 1.3 oster commitNode->succedents[nWndNodes] = wnpNode;
474 1.3 oster wnpNode->antecedents[0] = commitNode;
475 1.3 oster wnpNode->antType[0] = rf_control;
476 1.3 oster if (nfaults == 2) {
477 1.3 oster RF_ASSERT(wnqNode->numAntecedents == 1);
478 1.3 oster commitNode->succedents[nWndNodes + 1] = wnqNode;
479 1.3 oster wnqNode->antecedents[0] = commitNode;
480 1.3 oster wnqNode->antType[0] = rf_control;
481 1.3 oster }
482 1.3 oster /* link write new data nodes to unblock node */
483 1.3 oster RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
484 1.3 oster for (i = 0; i < nWndNodes; i++) {
485 1.3 oster RF_ASSERT(wndNodes[i].numSuccedents == 1);
486 1.3 oster wndNodes[i].succedents[0] = unblockNode;
487 1.3 oster unblockNode->antecedents[i] = &wndNodes[i];
488 1.3 oster unblockNode->antType[i] = rf_control;
489 1.3 oster }
490 1.3 oster
491 1.3 oster /* link write new parity node to unblock node */
492 1.3 oster RF_ASSERT(wnpNode->numSuccedents == 1);
493 1.3 oster wnpNode->succedents[0] = unblockNode;
494 1.3 oster unblockNode->antecedents[nWndNodes] = wnpNode;
495 1.3 oster unblockNode->antType[nWndNodes] = rf_control;
496 1.3 oster
497 1.3 oster /* link write new q node to unblock node */
498 1.3 oster if (nfaults == 2) {
499 1.3 oster RF_ASSERT(wnqNode->numSuccedents == 1);
500 1.3 oster wnqNode->succedents[0] = unblockNode;
501 1.3 oster unblockNode->antecedents[nWndNodes + 1] = wnqNode;
502 1.3 oster unblockNode->antType[nWndNodes + 1] = rf_control;
503 1.3 oster }
504 1.3 oster /* link unblock node to term node */
505 1.3 oster RF_ASSERT(unblockNode->numSuccedents == 1);
506 1.3 oster RF_ASSERT(termNode->numAntecedents == 1);
507 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
508 1.3 oster unblockNode->succedents[0] = termNode;
509 1.3 oster termNode->antecedents[0] = unblockNode;
510 1.3 oster termNode->antType[0] = rf_control;
511 1.1 oster }
512 1.1 oster #define CONS_PDA(if,start,num) \
513 1.12 oster pda_p->col = asmap->if->col; \
514 1.1 oster pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
515 1.1 oster pda_p->numSector = num; \
516 1.1 oster pda_p->next = NULL; \
517 1.1 oster RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
518 1.6 oster #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
519 1.3 oster void
520 1.3 oster rf_WriteGenerateFailedAccessASMs(
521 1.3 oster RF_Raid_t * raidPtr,
522 1.3 oster RF_AccessStripeMap_t * asmap,
523 1.3 oster RF_PhysDiskAddr_t ** pdap,
524 1.3 oster int *nNodep,
525 1.3 oster RF_PhysDiskAddr_t ** pqpdap,
526 1.3 oster int *nPQNodep,
527 1.3 oster RF_AllocListElem_t * allocList)
528 1.1 oster {
529 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
530 1.3 oster int PDAPerDisk, i;
531 1.3 oster RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
532 1.3 oster int numDataCol = layoutPtr->numDataCol;
533 1.3 oster int state;
534 1.3 oster unsigned napdas;
535 1.3 oster RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
536 1.3 oster RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
537 1.3 oster RF_PhysDiskAddr_t *pda_p;
538 1.3 oster RF_RaidAddr_t sosAddr;
539 1.3 oster
540 1.3 oster /* determine how many pda's we will have to generate per unaccess
541 1.3 oster * stripe. If there is only one failed data unit, it is one; if two,
542 1.3 oster * possibly two, depending wether they overlap. */
543 1.3 oster
544 1.3 oster fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
545 1.3 oster fone_end = fone_start + fone->numSector;
546 1.3 oster
547 1.3 oster if (asmap->numDataFailed == 1) {
548 1.3 oster PDAPerDisk = 1;
549 1.3 oster state = 1;
550 1.3 oster RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
551 1.3 oster pda_p = *pqpdap;
552 1.3 oster /* build p */
553 1.3 oster CONS_PDA(parityInfo, fone_start, fone->numSector);
554 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
555 1.3 oster pda_p++;
556 1.3 oster /* build q */
557 1.3 oster CONS_PDA(qInfo, fone_start, fone->numSector);
558 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
559 1.3 oster } else {
560 1.3 oster ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
561 1.3 oster ftwo_end = ftwo_start + ftwo->numSector;
562 1.3 oster if (fone->numSector + ftwo->numSector > secPerSU) {
563 1.3 oster PDAPerDisk = 1;
564 1.3 oster state = 2;
565 1.3 oster RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
566 1.3 oster pda_p = *pqpdap;
567 1.3 oster CONS_PDA(parityInfo, 0, secPerSU);
568 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
569 1.3 oster pda_p++;
570 1.3 oster CONS_PDA(qInfo, 0, secPerSU);
571 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
572 1.3 oster } else {
573 1.3 oster PDAPerDisk = 2;
574 1.3 oster state = 3;
575 1.3 oster /* four of them, fone, then ftwo */
576 1.3 oster RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
577 1.3 oster pda_p = *pqpdap;
578 1.3 oster CONS_PDA(parityInfo, fone_start, fone->numSector);
579 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
580 1.3 oster pda_p++;
581 1.3 oster CONS_PDA(qInfo, fone_start, fone->numSector);
582 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
583 1.3 oster pda_p++;
584 1.3 oster CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
585 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
586 1.3 oster pda_p++;
587 1.3 oster CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
588 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
589 1.3 oster }
590 1.3 oster }
591 1.3 oster /* figure out number of nonaccessed pda */
592 1.3 oster napdas = PDAPerDisk * (numDataCol - 2);
593 1.3 oster *nPQNodep = PDAPerDisk;
594 1.3 oster
595 1.3 oster *nNodep = napdas;
596 1.3 oster if (napdas == 0)
597 1.3 oster return; /* short circuit */
598 1.3 oster
599 1.3 oster /* allocate up our list of pda's */
600 1.3 oster
601 1.13 oster RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
602 1.13 oster (RF_PhysDiskAddr_t *), allocList);
603 1.3 oster *pdap = pda_p;
604 1.3 oster
605 1.3 oster /* linkem together */
606 1.3 oster for (i = 0; i < (napdas - 1); i++)
607 1.3 oster pda_p[i].next = pda_p + (i + 1);
608 1.3 oster
609 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
610 1.3 oster for (i = 0; i < numDataCol; i++) {
611 1.3 oster if ((pda_p - (*pdap)) == napdas)
612 1.3 oster continue;
613 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
614 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
615 1.12 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
616 1.3 oster /* skip over dead disks */
617 1.12 oster if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
618 1.3 oster continue;
619 1.3 oster switch (state) {
620 1.3 oster case 1: /* fone */
621 1.3 oster pda_p->numSector = fone->numSector;
622 1.3 oster pda_p->raidAddress += fone_start;
623 1.3 oster pda_p->startSector += fone_start;
624 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
625 1.3 oster break;
626 1.3 oster case 2: /* full stripe */
627 1.3 oster pda_p->numSector = secPerSU;
628 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
629 1.3 oster break;
630 1.3 oster case 3: /* two slabs */
631 1.3 oster pda_p->numSector = fone->numSector;
632 1.3 oster pda_p->raidAddress += fone_start;
633 1.3 oster pda_p->startSector += fone_start;
634 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
635 1.3 oster pda_p++;
636 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
637 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
638 1.12 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
639 1.3 oster pda_p->numSector = ftwo->numSector;
640 1.3 oster pda_p->raidAddress += ftwo_start;
641 1.3 oster pda_p->startSector += ftwo_start;
642 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
643 1.3 oster break;
644 1.3 oster default:
645 1.3 oster RF_PANIC();
646 1.3 oster }
647 1.3 oster pda_p++;
648 1.1 oster }
649 1.1 oster
650 1.3 oster RF_ASSERT(pda_p - *pdap == napdas);
651 1.3 oster return;
652 1.1 oster }
653 1.1 oster #define DISK_NODE_PDA(node) ((node)->params[0].p)
654 1.1 oster
655 1.1 oster #define DISK_NODE_PARAMS(_node_,_p_) \
656 1.1 oster (_node_).params[0].p = _p_ ; \
657 1.1 oster (_node_).params[1].p = (_p_)->bufPtr; \
658 1.1 oster (_node_).params[2].v = parityStripeID; \
659 1.1 oster (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
660 1.1 oster
661 1.3 oster void
662 1.3 oster rf_DoubleDegSmallWrite(
663 1.3 oster RF_Raid_t * raidPtr,
664 1.3 oster RF_AccessStripeMap_t * asmap,
665 1.3 oster RF_DagHeader_t * dag_h,
666 1.3 oster void *bp,
667 1.3 oster RF_RaidAccessFlags_t flags,
668 1.3 oster RF_AllocListElem_t * allocList,
669 1.3 oster char *redundantReadNodeName,
670 1.3 oster char *redundantWriteNodeName,
671 1.3 oster char *recoveryNodeName,
672 1.3 oster int (*recovFunc) (RF_DagNode_t *))
673 1.1 oster {
674 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
675 1.3 oster RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
676 1.3 oster *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
677 1.3 oster RF_PhysDiskAddr_t *pda, *pqPDAs;
678 1.3 oster RF_PhysDiskAddr_t *npdas;
679 1.3 oster int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
680 1.3 oster RF_ReconUnitNum_t which_ru;
681 1.3 oster int nPQNodes;
682 1.3 oster RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
683 1.3 oster
684 1.3 oster /* simple small write case - First part looks like a reconstruct-read
685 1.3 oster * of the failed data units. Then a write of all data units not
686 1.3 oster * failed. */
687 1.3 oster
688 1.3 oster
689 1.3 oster /* Hdr | ------Block- / / \ Rrd Rrd ... Rrd Rp Rq \ \
690 1.3 oster * / -------PQ----- / \ \ Wud Wp WQ \ | /
691 1.3 oster * --Unblock- | T
692 1.3 oster *
693 1.3 oster * Rrd = read recovery data (potentially none) Wud = write user data
694 1.3 oster * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
695 1.3 oster * (could be two)
696 1.3 oster *
697 1.3 oster */
698 1.3 oster
699 1.3 oster rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
700 1.3 oster
701 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
702 1.3 oster
703 1.3 oster nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
704 1.3 oster nReadNodes = nRrdNodes + 2 * nPQNodes;
705 1.3 oster nWriteNodes = nWudNodes + 2 * nPQNodes;
706 1.3 oster nNodes = 4 + nReadNodes + nWriteNodes;
707 1.3 oster
708 1.13 oster RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
709 1.3 oster blockNode = nodes;
710 1.3 oster unblockNode = blockNode + 1;
711 1.3 oster termNode = unblockNode + 1;
712 1.3 oster recoveryNode = termNode + 1;
713 1.3 oster rrdNodes = recoveryNode + 1;
714 1.3 oster rpNodes = rrdNodes + nRrdNodes;
715 1.3 oster rqNodes = rpNodes + nPQNodes;
716 1.3 oster wudNodes = rqNodes + nPQNodes;
717 1.3 oster wpNodes = wudNodes + nWudNodes;
718 1.3 oster wqNodes = wpNodes + nPQNodes;
719 1.3 oster
720 1.3 oster dag_h->creator = "PQ_DDSimpleSmallWrite";
721 1.3 oster dag_h->numSuccedents = 1;
722 1.3 oster dag_h->succedents[0] = blockNode;
723 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
724 1.3 oster termNode->antecedents[0] = unblockNode;
725 1.3 oster termNode->antType[0] = rf_control;
726 1.3 oster
727 1.3 oster /* init the block and unblock nodes */
728 1.3 oster /* The block node has all the read nodes as successors */
729 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
730 1.3 oster for (i = 0; i < nReadNodes; i++)
731 1.3 oster blockNode->succedents[i] = rrdNodes + i;
732 1.3 oster
733 1.3 oster /* The unblock node has all the writes as successors */
734 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
735 1.3 oster for (i = 0; i < nWriteNodes; i++) {
736 1.3 oster unblockNode->antecedents[i] = wudNodes + i;
737 1.3 oster unblockNode->antType[i] = rf_control;
738 1.3 oster }
739 1.3 oster unblockNode->succedents[0] = termNode;
740 1.1 oster
741 1.1 oster #define INIT_READ_NODE(node,name) \
742 1.1 oster rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
743 1.1 oster (node)->succedents[0] = recoveryNode; \
744 1.1 oster (node)->antecedents[0] = blockNode; \
745 1.1 oster (node)->antType[0] = rf_control;
746 1.1 oster
747 1.3 oster /* build the read nodes */
748 1.3 oster pda = npdas;
749 1.3 oster for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
750 1.3 oster INIT_READ_NODE(rrdNodes + i, "rrd");
751 1.3 oster DISK_NODE_PARAMS(rrdNodes[i], pda);
752 1.3 oster }
753 1.3 oster
754 1.3 oster /* read redundancy pdas */
755 1.3 oster pda = pqPDAs;
756 1.3 oster INIT_READ_NODE(rpNodes, "Rp");
757 1.3 oster RF_ASSERT(pda);
758 1.3 oster DISK_NODE_PARAMS(rpNodes[0], pda);
759 1.3 oster pda++;
760 1.3 oster INIT_READ_NODE(rqNodes, redundantReadNodeName);
761 1.3 oster RF_ASSERT(pda);
762 1.3 oster DISK_NODE_PARAMS(rqNodes[0], pda);
763 1.3 oster if (nPQNodes == 2) {
764 1.3 oster pda++;
765 1.3 oster INIT_READ_NODE(rpNodes + 1, "Rp");
766 1.3 oster RF_ASSERT(pda);
767 1.3 oster DISK_NODE_PARAMS(rpNodes[1], pda);
768 1.3 oster pda++;
769 1.3 oster INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
770 1.3 oster RF_ASSERT(pda);
771 1.3 oster DISK_NODE_PARAMS(rqNodes[1], pda);
772 1.3 oster }
773 1.3 oster /* the recovery node has all reads as precedessors and all writes as
774 1.3 oster * successors. It generates a result for every write P or write Q
775 1.3 oster * node. As parameters, it takes a pda per read and a pda per stripe
776 1.3 oster * of user data written. It also takes as the last params the raidPtr
777 1.3 oster * and asm. For results, it takes PDA for P & Q. */
778 1.3 oster
779 1.3 oster
780 1.3 oster rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
781 1.3 oster nWriteNodes, /* succesors */
782 1.3 oster nReadNodes, /* preds */
783 1.3 oster nReadNodes + nWudNodes + 3, /* params */
784 1.3 oster 2 * nPQNodes, /* results */
785 1.3 oster dag_h, recoveryNodeName, allocList);
786 1.3 oster
787 1.3 oster
788 1.3 oster
789 1.3 oster for (i = 0; i < nReadNodes; i++) {
790 1.3 oster recoveryNode->antecedents[i] = rrdNodes + i;
791 1.3 oster recoveryNode->antType[i] = rf_control;
792 1.3 oster recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
793 1.3 oster }
794 1.3 oster for (i = 0; i < nWudNodes; i++) {
795 1.3 oster recoveryNode->succedents[i] = wudNodes + i;
796 1.3 oster }
797 1.3 oster recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
798 1.3 oster recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
799 1.3 oster recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
800 1.3 oster
801 1.3 oster for (; i < nWriteNodes; i++)
802 1.3 oster recoveryNode->succedents[i] = wudNodes + i;
803 1.3 oster
804 1.3 oster pda = pqPDAs;
805 1.3 oster recoveryNode->results[0] = pda;
806 1.3 oster pda++;
807 1.3 oster recoveryNode->results[1] = pda;
808 1.3 oster if (nPQNodes == 2) {
809 1.3 oster pda++;
810 1.3 oster recoveryNode->results[2] = pda;
811 1.3 oster pda++;
812 1.3 oster recoveryNode->results[3] = pda;
813 1.3 oster }
814 1.3 oster /* fill writes */
815 1.1 oster #define INIT_WRITE_NODE(node,name) \
816 1.1 oster rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
817 1.1 oster (node)->succedents[0] = unblockNode; \
818 1.1 oster (node)->antecedents[0] = recoveryNode; \
819 1.1 oster (node)->antType[0] = rf_control;
820 1.1 oster
821 1.3 oster pda = asmap->physInfo;
822 1.3 oster for (i = 0; i < nWudNodes; i++) {
823 1.3 oster INIT_WRITE_NODE(wudNodes + i, "Wd");
824 1.3 oster DISK_NODE_PARAMS(wudNodes[i], pda);
825 1.3 oster recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
826 1.3 oster pda = pda->next;
827 1.3 oster }
828 1.3 oster /* write redundancy pdas */
829 1.3 oster pda = pqPDAs;
830 1.3 oster INIT_WRITE_NODE(wpNodes, "Wp");
831 1.3 oster RF_ASSERT(pda);
832 1.3 oster DISK_NODE_PARAMS(wpNodes[0], pda);
833 1.3 oster pda++;
834 1.3 oster INIT_WRITE_NODE(wqNodes, "Wq");
835 1.3 oster RF_ASSERT(pda);
836 1.3 oster DISK_NODE_PARAMS(wqNodes[0], pda);
837 1.3 oster if (nPQNodes == 2) {
838 1.3 oster pda++;
839 1.3 oster INIT_WRITE_NODE(wpNodes + 1, "Wp");
840 1.3 oster RF_ASSERT(pda);
841 1.3 oster DISK_NODE_PARAMS(wpNodes[1], pda);
842 1.3 oster pda++;
843 1.3 oster INIT_WRITE_NODE(wqNodes + 1, "Wq");
844 1.3 oster RF_ASSERT(pda);
845 1.3 oster DISK_NODE_PARAMS(wqNodes[1], pda);
846 1.3 oster }
847 1.1 oster }
848 1.6 oster #endif /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
849