rf_dagdegwr.c revision 1.22 1 1.22 oster /* $NetBSD: rf_dagdegwr.c,v 1.22 2004/03/21 03:22:08 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * rf_dagdegwr.c
31 1.1 oster *
32 1.1 oster * code for creating degraded write DAGs
33 1.1 oster *
34 1.1 oster */
35 1.9 lukem
36 1.9 lukem #include <sys/cdefs.h>
37 1.22 oster __KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.22 2004/03/21 03:22:08 oster Exp $");
38 1.1 oster
39 1.8 oster #include <dev/raidframe/raidframevar.h>
40 1.8 oster
41 1.1 oster #include "rf_raid.h"
42 1.1 oster #include "rf_dag.h"
43 1.1 oster #include "rf_dagutils.h"
44 1.1 oster #include "rf_dagfuncs.h"
45 1.1 oster #include "rf_debugMem.h"
46 1.1 oster #include "rf_general.h"
47 1.1 oster #include "rf_dagdegwr.h"
48 1.19 oster #include "rf_map.h"
49 1.1 oster
50 1.1 oster
51 1.1 oster /******************************************************************************
52 1.1 oster *
53 1.1 oster * General comments on DAG creation:
54 1.3 oster *
55 1.1 oster * All DAGs in this file use roll-away error recovery. Each DAG has a single
56 1.1 oster * commit node, usually called "Cmt." If an error occurs before the Cmt node
57 1.1 oster * is reached, the execution engine will halt forward execution and work
58 1.1 oster * backward through the graph, executing the undo functions. Assuming that
59 1.1 oster * each node in the graph prior to the Cmt node are undoable and atomic - or -
60 1.1 oster * does not make changes to permanent state, the graph will fail atomically.
61 1.1 oster * If an error occurs after the Cmt node executes, the engine will roll-forward
62 1.1 oster * through the graph, blindly executing nodes until it reaches the end.
63 1.1 oster * If a graph reaches the end, it is assumed to have completed successfully.
64 1.1 oster *
65 1.1 oster * A graph has only 1 Cmt node.
66 1.1 oster *
67 1.1 oster */
68 1.1 oster
69 1.1 oster
70 1.1 oster /******************************************************************************
71 1.1 oster *
72 1.1 oster * The following wrappers map the standard DAG creation interface to the
73 1.1 oster * DAG creation routines. Additionally, these wrappers enable experimentation
74 1.1 oster * with new DAG structures by providing an extra level of indirection, allowing
75 1.1 oster * the DAG creation routines to be replaced at this single point.
76 1.1 oster */
77 1.1 oster
78 1.3 oster static
79 1.3 oster RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
80 1.1 oster {
81 1.3 oster rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
82 1.3 oster flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
83 1.1 oster }
84 1.1 oster
85 1.3 oster void
86 1.14 oster rf_CreateDegradedWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
87 1.14 oster RF_DagHeader_t *dag_h, void *bp,
88 1.14 oster RF_RaidAccessFlags_t flags,
89 1.14 oster RF_AllocListElem_t *allocList)
90 1.1 oster {
91 1.3 oster
92 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
93 1.3 oster dag_h->creator = "DegradedWriteDAG";
94 1.3 oster
95 1.7 thorpej /*
96 1.7 thorpej * if the access writes only a portion of the failed unit, and also
97 1.3 oster * writes some portion of at least one surviving unit, we create two
98 1.3 oster * DAGs, one for the failed component and one for the non-failed
99 1.3 oster * component, and do them sequentially. Note that the fact that we're
100 1.3 oster * accessing only a portion of the failed unit indicates that the
101 1.3 oster * access either starts or ends in the failed unit, and hence we need
102 1.3 oster * create only two dags. This is inefficient in that the same data or
103 1.3 oster * parity can get read and written twice using this structure. I need
104 1.7 thorpej * to fix this to do the access all at once.
105 1.7 thorpej */
106 1.7 thorpej RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
107 1.7 thorpej asmap->failedPDAs[0]->numSector !=
108 1.7 thorpej raidPtr->Layout.sectorsPerStripeUnit));
109 1.7 thorpej rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
110 1.7 thorpej allocList);
111 1.1 oster }
112 1.1 oster
113 1.1 oster
114 1.1 oster
115 1.1 oster /******************************************************************************
116 1.1 oster *
117 1.1 oster * DAG creation code begins here
118 1.1 oster */
119 1.1 oster
120 1.1 oster
121 1.1 oster
122 1.1 oster /******************************************************************************
123 1.1 oster *
124 1.1 oster * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
125 1.1 oster * write, which is as follows
126 1.1 oster *
127 1.1 oster * / {Wnq} --\
128 1.1 oster * hdr -> blockNode -> Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
129 1.1 oster * \ {Rod} / \ Wnd ---/
130 1.1 oster * \ {Wnd} -/
131 1.1 oster *
132 1.1 oster * commit nodes: Xor, Wnd
133 1.1 oster *
134 1.1 oster * IMPORTANT:
135 1.1 oster * This DAG generator does not work for double-degraded archs since it does not
136 1.1 oster * generate Q
137 1.1 oster *
138 1.1 oster * This dag is essentially identical to the large-write dag, except that the
139 1.1 oster * write to the failed data unit is suppressed.
140 1.1 oster *
141 1.1 oster * IMPORTANT: this dag does not work in the case where the access writes only
142 1.1 oster * a portion of the failed unit, and also writes some portion of at least one
143 1.1 oster * surviving SU. this case is handled in CreateDegradedWriteDAG above.
144 1.1 oster *
145 1.1 oster * The block & unblock nodes are leftovers from a previous version. They
146 1.1 oster * do nothing, but I haven't deleted them because it would be a tremendous
147 1.1 oster * effort to put them back in.
148 1.1 oster *
149 1.1 oster * This dag is used whenever a one of the data units in a write has failed.
150 1.1 oster * If it is the parity unit that failed, the nonredundant write dag (below)
151 1.1 oster * is used.
152 1.1 oster *****************************************************************************/
153 1.1 oster
154 1.3 oster void
155 1.14 oster rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t *raidPtr,
156 1.14 oster RF_AccessStripeMap_t *asmap,
157 1.14 oster RF_DagHeader_t *dag_h, void *bp,
158 1.14 oster RF_RaidAccessFlags_t flags,
159 1.14 oster RF_AllocListElem_t *allocList,
160 1.14 oster int nfaults,
161 1.14 oster int (*redFunc) (RF_DagNode_t *),
162 1.14 oster int allowBufferRecycle)
163 1.1 oster {
164 1.3 oster int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
165 1.3 oster rdnodesFaked;
166 1.3 oster RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
167 1.18 oster RF_DagNode_t *wndNodes, *rrdNodes, *xorNode, *commitNode;
168 1.18 oster RF_DagNode_t *tmpNode, *tmpwndNode, *tmprrdNode;
169 1.3 oster RF_SectorCount_t sectorsPerSU;
170 1.3 oster RF_ReconUnitNum_t which_ru;
171 1.3 oster char *xorTargetBuf = NULL; /* the target buffer for the XOR
172 1.3 oster * operation */
173 1.19 oster char overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
174 1.3 oster RF_AccessStripeMapHeader_t *new_asm_h[2];
175 1.3 oster RF_PhysDiskAddr_t *pda, *parityPDA;
176 1.3 oster RF_StripeNum_t parityStripeID;
177 1.3 oster RF_PhysDiskAddr_t *failedPDA;
178 1.3 oster RF_RaidLayout_t *layoutPtr;
179 1.3 oster
180 1.3 oster layoutPtr = &(raidPtr->Layout);
181 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
182 1.3 oster &which_ru);
183 1.3 oster sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
184 1.3 oster /* failedPDA points to the pda within the asm that targets the failed
185 1.3 oster * disk */
186 1.3 oster failedPDA = asmap->failedPDAs[0];
187 1.3 oster
188 1.16 oster #if RF_DEBUG_DAG
189 1.3 oster if (rf_dagDebug)
190 1.3 oster printf("[Creating degraded-write DAG]\n");
191 1.16 oster #endif
192 1.3 oster
193 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
194 1.3 oster dag_h->creator = "SimpleDegradedWriteDAG";
195 1.3 oster
196 1.3 oster /*
197 1.3 oster * Generate two ASMs identifying the surviving data
198 1.3 oster * we need in order to recover the lost data.
199 1.3 oster */
200 1.3 oster /* overlappingPDAs array must be zero'd */
201 1.19 oster memset(overlappingPDAs, 0, RF_MAXCOL);
202 1.3 oster rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
203 1.3 oster &nXorBufs, NULL, overlappingPDAs, allocList);
204 1.3 oster
205 1.3 oster /* create all the nodes at once */
206 1.3 oster nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is
207 1.3 oster * generated for the
208 1.3 oster * failed pda */
209 1.3 oster
210 1.3 oster nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
211 1.3 oster ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
212 1.3 oster /*
213 1.3 oster * XXX
214 1.3 oster *
215 1.3 oster * There's a bug with a complete stripe overwrite- that means 0 reads
216 1.3 oster * of old data, and the rest of the DAG generation code doesn't like
217 1.3 oster * that. A release is coming, and I don't wanna risk breaking a critical
218 1.3 oster * DAG generator, so here's what I'm gonna do- if there's no read nodes,
219 1.3 oster * I'm gonna fake there being a read node, and I'm gonna swap in a
220 1.3 oster * no-op node in its place (to make all the link-up code happy).
221 1.3 oster * This should be fixed at some point. --jimz
222 1.3 oster */
223 1.3 oster if (nRrdNodes == 0) {
224 1.3 oster nRrdNodes = 1;
225 1.3 oster rdnodesFaked = 1;
226 1.3 oster } else {
227 1.3 oster rdnodesFaked = 0;
228 1.3 oster }
229 1.3 oster /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
230 1.3 oster nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
231 1.18 oster
232 1.18 oster blockNode = rf_AllocDAGNode();
233 1.18 oster blockNode->list_next = dag_h->nodes;
234 1.18 oster dag_h->nodes = blockNode;
235 1.18 oster
236 1.18 oster commitNode = rf_AllocDAGNode();
237 1.18 oster commitNode->list_next = dag_h->nodes;
238 1.18 oster dag_h->nodes = commitNode;
239 1.18 oster
240 1.18 oster unblockNode = rf_AllocDAGNode();
241 1.18 oster unblockNode->list_next = dag_h->nodes;
242 1.18 oster dag_h->nodes = unblockNode;
243 1.18 oster
244 1.18 oster termNode = rf_AllocDAGNode();
245 1.18 oster termNode->list_next = dag_h->nodes;
246 1.18 oster dag_h->nodes = termNode;
247 1.18 oster
248 1.18 oster xorNode = rf_AllocDAGNode();
249 1.18 oster xorNode->list_next = dag_h->nodes;
250 1.18 oster dag_h->nodes = xorNode;
251 1.18 oster
252 1.18 oster wnpNode = rf_AllocDAGNode();
253 1.18 oster wnpNode->list_next = dag_h->nodes;
254 1.18 oster dag_h->nodes = wnpNode;
255 1.18 oster
256 1.18 oster for (i = 0; i < nWndNodes; i++) {
257 1.18 oster tmpNode = rf_AllocDAGNode();
258 1.18 oster tmpNode->list_next = dag_h->nodes;
259 1.18 oster dag_h->nodes = tmpNode;
260 1.18 oster }
261 1.18 oster wndNodes = dag_h->nodes;
262 1.18 oster
263 1.18 oster for (i = 0; i < nRrdNodes; i++) {
264 1.18 oster tmpNode = rf_AllocDAGNode();
265 1.18 oster tmpNode->list_next = dag_h->nodes;
266 1.18 oster dag_h->nodes = tmpNode;
267 1.18 oster }
268 1.18 oster rrdNodes = dag_h->nodes;
269 1.18 oster
270 1.17 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
271 1.3 oster if (nfaults == 2) {
272 1.18 oster wnqNode = rf_AllocDAGNode();
273 1.18 oster wnqNode->list_next = dag_h->nodes;
274 1.18 oster dag_h->nodes = wnqNode;
275 1.3 oster } else {
276 1.17 oster #endif
277 1.3 oster wnqNode = NULL;
278 1.17 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
279 1.3 oster }
280 1.17 oster #endif
281 1.3 oster RF_ASSERT(i == nNodes);
282 1.3 oster
283 1.3 oster /* this dag can not commit until all rrd and xor Nodes have completed */
284 1.3 oster dag_h->numCommitNodes = 1;
285 1.3 oster dag_h->numCommits = 0;
286 1.3 oster dag_h->numSuccedents = 1;
287 1.3 oster
288 1.3 oster RF_ASSERT(nRrdNodes > 0);
289 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
290 1.3 oster NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
291 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
292 1.3 oster NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
293 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
294 1.3 oster NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
295 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
296 1.3 oster NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
297 1.3 oster rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
298 1.3 oster nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
299 1.3 oster
300 1.3 oster /*
301 1.3 oster * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
302 1.3 oster * the failed buffer, save a pointer to it so we can use it as the target
303 1.3 oster * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
304 1.3 oster * a buffer is the same size as the failed buffer, it must also be at the
305 1.3 oster * same alignment within the SU.
306 1.3 oster */
307 1.3 oster i = 0;
308 1.18 oster tmprrdNode = rrdNodes;
309 1.3 oster if (new_asm_h[0]) {
310 1.3 oster for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
311 1.3 oster i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
312 1.3 oster i++, pda = pda->next) {
313 1.18 oster rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
314 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
315 1.3 oster RF_ASSERT(pda);
316 1.18 oster tmprrdNode->params[0].p = pda;
317 1.18 oster tmprrdNode->params[1].p = pda->bufPtr;
318 1.18 oster tmprrdNode->params[2].v = parityStripeID;
319 1.18 oster tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
320 1.18 oster tmprrdNode = tmprrdNode->list_next;
321 1.3 oster }
322 1.3 oster }
323 1.3 oster /* i now equals the number of stripe units accessed in new_asm_h[0] */
324 1.18 oster /* Note that for tmprrdNode, this means a continuation from above, so no need to
325 1.18 oster assign it anything.. */
326 1.3 oster if (new_asm_h[1]) {
327 1.3 oster for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
328 1.3 oster j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
329 1.3 oster j++, pda = pda->next) {
330 1.18 oster rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
331 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
332 1.3 oster RF_ASSERT(pda);
333 1.18 oster tmprrdNode->params[0].p = pda;
334 1.18 oster tmprrdNode->params[1].p = pda->bufPtr;
335 1.18 oster tmprrdNode->params[2].v = parityStripeID;
336 1.18 oster tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
337 1.3 oster if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
338 1.3 oster xorTargetBuf = pda->bufPtr;
339 1.18 oster tmprrdNode = tmprrdNode->list_next;
340 1.3 oster }
341 1.3 oster }
342 1.3 oster if (rdnodesFaked) {
343 1.3 oster /*
344 1.3 oster * This is where we'll init that fake noop read node
345 1.3 oster * (XXX should the wakeup func be different?)
346 1.3 oster */
347 1.18 oster /* node that rrdNodes will just be a single node... */
348 1.18 oster rf_InitNode(rrdNodes, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
349 1.3 oster NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
350 1.3 oster }
351 1.3 oster /*
352 1.3 oster * Make a PDA for the parity unit. The parity PDA should start at
353 1.3 oster * the same offset into the SU as the failed PDA.
354 1.3 oster */
355 1.3 oster /* Danner comment: I don't think this copy is really necessary. We are
356 1.3 oster * in one of two cases here. (1) The entire failed unit is written.
357 1.3 oster * Then asmap->parityInfo will describe the entire parity. (2) We are
358 1.3 oster * only writing a subset of the failed unit and nothing else. Then the
359 1.3 oster * asmap->parityInfo describes the failed unit and the copy can also
360 1.3 oster * be avoided. */
361 1.3 oster
362 1.19 oster parityPDA = rf_AllocPhysDiskAddr();
363 1.19 oster parityPDA->next = dag_h->pda_cleanup_list;
364 1.19 oster dag_h->pda_cleanup_list = parityPDA;
365 1.3 oster parityPDA->col = asmap->parityInfo->col;
366 1.3 oster parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
367 1.3 oster * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
368 1.3 oster parityPDA->numSector = failedPDA->numSector;
369 1.3 oster
370 1.3 oster if (!xorTargetBuf) {
371 1.21 oster xorTargetBuf = rf_AllocBuffer(raidPtr, dag_h,
372 1.21 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
373 1.3 oster }
374 1.3 oster /* init the Wnp node */
375 1.3 oster rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
376 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
377 1.3 oster wnpNode->params[0].p = parityPDA;
378 1.3 oster wnpNode->params[1].p = xorTargetBuf;
379 1.3 oster wnpNode->params[2].v = parityStripeID;
380 1.15 oster wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
381 1.3 oster
382 1.17 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
383 1.3 oster /* fill in the Wnq Node */
384 1.3 oster if (nfaults == 2) {
385 1.3 oster {
386 1.3 oster RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
387 1.3 oster (RF_PhysDiskAddr_t *), allocList);
388 1.3 oster parityPDA->col = asmap->qInfo->col;
389 1.3 oster parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
390 1.3 oster * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
391 1.3 oster parityPDA->numSector = failedPDA->numSector;
392 1.3 oster
393 1.3 oster rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
394 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
395 1.3 oster wnqNode->params[0].p = parityPDA;
396 1.13 oster RF_MallocAndAdd(xorNode->results[1],
397 1.3 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
398 1.3 oster wnqNode->params[1].p = xorNode->results[1];
399 1.3 oster wnqNode->params[2].v = parityStripeID;
400 1.15 oster wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
401 1.3 oster }
402 1.3 oster }
403 1.17 oster #endif
404 1.3 oster /* fill in the Wnd nodes */
405 1.18 oster tmpwndNode = wndNodes;
406 1.3 oster for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
407 1.3 oster if (pda == failedPDA) {
408 1.3 oster i--;
409 1.3 oster continue;
410 1.3 oster }
411 1.18 oster rf_InitNode(tmpwndNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
412 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
413 1.3 oster RF_ASSERT(pda);
414 1.18 oster tmpwndNode->params[0].p = pda;
415 1.18 oster tmpwndNode->params[1].p = pda->bufPtr;
416 1.18 oster tmpwndNode->params[2].v = parityStripeID;
417 1.18 oster tmpwndNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
418 1.18 oster tmpwndNode = tmpwndNode->list_next;
419 1.3 oster }
420 1.3 oster
421 1.3 oster /* fill in the results of the xor node */
422 1.3 oster xorNode->results[0] = xorTargetBuf;
423 1.3 oster
424 1.3 oster /* fill in the params of the xor node */
425 1.3 oster
426 1.3 oster paramNum = 0;
427 1.3 oster if (rdnodesFaked == 0) {
428 1.18 oster tmprrdNode = rrdNodes;
429 1.3 oster for (i = 0; i < nRrdNodes; i++) {
430 1.3 oster /* all the Rrd nodes need to be xored together */
431 1.18 oster xorNode->params[paramNum++] = tmprrdNode->params[0];
432 1.18 oster xorNode->params[paramNum++] = tmprrdNode->params[1];
433 1.18 oster tmprrdNode = tmprrdNode->list_next;
434 1.3 oster }
435 1.3 oster }
436 1.18 oster tmpwndNode = wndNodes;
437 1.3 oster for (i = 0; i < nWndNodes; i++) {
438 1.3 oster /* any Wnd nodes that overlap the failed access need to be
439 1.3 oster * xored in */
440 1.3 oster if (overlappingPDAs[i]) {
441 1.19 oster pda = rf_AllocPhysDiskAddr();
442 1.18 oster memcpy((char *) pda, (char *) tmpwndNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
443 1.19 oster /* add it into the pda_cleanup_list *after* the copy, TYVM */
444 1.19 oster pda->next = dag_h->pda_cleanup_list;
445 1.19 oster dag_h->pda_cleanup_list = pda;
446 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
447 1.3 oster xorNode->params[paramNum++].p = pda;
448 1.3 oster xorNode->params[paramNum++].p = pda->bufPtr;
449 1.3 oster }
450 1.18 oster tmpwndNode = tmpwndNode->list_next;
451 1.3 oster }
452 1.3 oster
453 1.3 oster /*
454 1.3 oster * Install the failed PDA into the xor param list so that the
455 1.3 oster * new data gets xor'd in.
456 1.3 oster */
457 1.3 oster xorNode->params[paramNum++].p = failedPDA;
458 1.3 oster xorNode->params[paramNum++].p = failedPDA->bufPtr;
459 1.3 oster
460 1.3 oster /*
461 1.3 oster * The last 2 params to the recovery xor node are always the failed
462 1.3 oster * PDA and the raidPtr. install the failedPDA even though we have just
463 1.3 oster * done so above. This allows us to use the same XOR function for both
464 1.3 oster * degraded reads and degraded writes.
465 1.3 oster */
466 1.3 oster xorNode->params[paramNum++].p = failedPDA;
467 1.3 oster xorNode->params[paramNum++].p = raidPtr;
468 1.3 oster RF_ASSERT(paramNum == 2 * nXorBufs + 2);
469 1.3 oster
470 1.3 oster /*
471 1.3 oster * Code to link nodes begins here
472 1.3 oster */
473 1.3 oster
474 1.3 oster /* link header to block node */
475 1.3 oster RF_ASSERT(blockNode->numAntecedents == 0);
476 1.3 oster dag_h->succedents[0] = blockNode;
477 1.3 oster
478 1.3 oster /* link block node to rd nodes */
479 1.3 oster RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
480 1.18 oster tmprrdNode = rrdNodes;
481 1.3 oster for (i = 0; i < nRrdNodes; i++) {
482 1.18 oster RF_ASSERT(tmprrdNode->numAntecedents == 1);
483 1.18 oster blockNode->succedents[i] = tmprrdNode;
484 1.18 oster tmprrdNode->antecedents[0] = blockNode;
485 1.18 oster tmprrdNode->antType[0] = rf_control;
486 1.18 oster tmprrdNode = tmprrdNode->list_next;
487 1.3 oster }
488 1.3 oster
489 1.3 oster /* link read nodes to xor node */
490 1.3 oster RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
491 1.18 oster tmprrdNode = rrdNodes;
492 1.3 oster for (i = 0; i < nRrdNodes; i++) {
493 1.18 oster RF_ASSERT(tmprrdNode->numSuccedents == 1);
494 1.18 oster tmprrdNode->succedents[0] = xorNode;
495 1.18 oster xorNode->antecedents[i] = tmprrdNode;
496 1.3 oster xorNode->antType[i] = rf_trueData;
497 1.18 oster tmprrdNode = tmprrdNode->list_next;
498 1.3 oster }
499 1.3 oster
500 1.3 oster /* link xor node to commit node */
501 1.3 oster RF_ASSERT(xorNode->numSuccedents == 1);
502 1.3 oster RF_ASSERT(commitNode->numAntecedents == 1);
503 1.3 oster xorNode->succedents[0] = commitNode;
504 1.3 oster commitNode->antecedents[0] = xorNode;
505 1.3 oster commitNode->antType[0] = rf_control;
506 1.3 oster
507 1.3 oster /* link commit node to wnd nodes */
508 1.3 oster RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
509 1.18 oster tmpwndNode = wndNodes;
510 1.3 oster for (i = 0; i < nWndNodes; i++) {
511 1.18 oster RF_ASSERT(tmpwndNode->numAntecedents == 1);
512 1.18 oster commitNode->succedents[i] = tmpwndNode;
513 1.18 oster tmpwndNode->antecedents[0] = commitNode;
514 1.18 oster tmpwndNode->antType[0] = rf_control;
515 1.22 oster tmpwndNode = tmpwndNode->list_next;
516 1.3 oster }
517 1.3 oster
518 1.3 oster /* link the commit node to wnp, wnq nodes */
519 1.3 oster RF_ASSERT(wnpNode->numAntecedents == 1);
520 1.3 oster commitNode->succedents[nWndNodes] = wnpNode;
521 1.3 oster wnpNode->antecedents[0] = commitNode;
522 1.3 oster wnpNode->antType[0] = rf_control;
523 1.17 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
524 1.3 oster if (nfaults == 2) {
525 1.3 oster RF_ASSERT(wnqNode->numAntecedents == 1);
526 1.3 oster commitNode->succedents[nWndNodes + 1] = wnqNode;
527 1.3 oster wnqNode->antecedents[0] = commitNode;
528 1.3 oster wnqNode->antType[0] = rf_control;
529 1.3 oster }
530 1.17 oster #endif
531 1.3 oster /* link write new data nodes to unblock node */
532 1.3 oster RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
533 1.18 oster tmpwndNode = wndNodes;
534 1.3 oster for (i = 0; i < nWndNodes; i++) {
535 1.18 oster RF_ASSERT(tmpwndNode->numSuccedents == 1);
536 1.18 oster tmpwndNode->succedents[0] = unblockNode;
537 1.18 oster unblockNode->antecedents[i] = tmpwndNode;
538 1.3 oster unblockNode->antType[i] = rf_control;
539 1.22 oster tmpwndNode = tmpwndNode->list_next;
540 1.3 oster }
541 1.3 oster
542 1.3 oster /* link write new parity node to unblock node */
543 1.3 oster RF_ASSERT(wnpNode->numSuccedents == 1);
544 1.3 oster wnpNode->succedents[0] = unblockNode;
545 1.3 oster unblockNode->antecedents[nWndNodes] = wnpNode;
546 1.3 oster unblockNode->antType[nWndNodes] = rf_control;
547 1.3 oster
548 1.17 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
549 1.3 oster /* link write new q node to unblock node */
550 1.3 oster if (nfaults == 2) {
551 1.3 oster RF_ASSERT(wnqNode->numSuccedents == 1);
552 1.3 oster wnqNode->succedents[0] = unblockNode;
553 1.3 oster unblockNode->antecedents[nWndNodes + 1] = wnqNode;
554 1.3 oster unblockNode->antType[nWndNodes + 1] = rf_control;
555 1.3 oster }
556 1.17 oster #endif
557 1.3 oster /* link unblock node to term node */
558 1.3 oster RF_ASSERT(unblockNode->numSuccedents == 1);
559 1.3 oster RF_ASSERT(termNode->numAntecedents == 1);
560 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
561 1.3 oster unblockNode->succedents[0] = termNode;
562 1.3 oster termNode->antecedents[0] = unblockNode;
563 1.3 oster termNode->antType[0] = rf_control;
564 1.1 oster }
565 1.1 oster #define CONS_PDA(if,start,num) \
566 1.12 oster pda_p->col = asmap->if->col; \
567 1.1 oster pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
568 1.1 oster pda_p->numSector = num; \
569 1.1 oster pda_p->next = NULL; \
570 1.1 oster RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
571 1.6 oster #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
572 1.3 oster void
573 1.3 oster rf_WriteGenerateFailedAccessASMs(
574 1.3 oster RF_Raid_t * raidPtr,
575 1.3 oster RF_AccessStripeMap_t * asmap,
576 1.3 oster RF_PhysDiskAddr_t ** pdap,
577 1.3 oster int *nNodep,
578 1.3 oster RF_PhysDiskAddr_t ** pqpdap,
579 1.3 oster int *nPQNodep,
580 1.3 oster RF_AllocListElem_t * allocList)
581 1.1 oster {
582 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
583 1.3 oster int PDAPerDisk, i;
584 1.3 oster RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
585 1.3 oster int numDataCol = layoutPtr->numDataCol;
586 1.3 oster int state;
587 1.3 oster unsigned napdas;
588 1.3 oster RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
589 1.3 oster RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
590 1.3 oster RF_PhysDiskAddr_t *pda_p;
591 1.3 oster RF_RaidAddr_t sosAddr;
592 1.3 oster
593 1.3 oster /* determine how many pda's we will have to generate per unaccess
594 1.3 oster * stripe. If there is only one failed data unit, it is one; if two,
595 1.3 oster * possibly two, depending wether they overlap. */
596 1.3 oster
597 1.3 oster fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
598 1.3 oster fone_end = fone_start + fone->numSector;
599 1.3 oster
600 1.3 oster if (asmap->numDataFailed == 1) {
601 1.3 oster PDAPerDisk = 1;
602 1.3 oster state = 1;
603 1.3 oster RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
604 1.3 oster pda_p = *pqpdap;
605 1.3 oster /* build p */
606 1.3 oster CONS_PDA(parityInfo, fone_start, fone->numSector);
607 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
608 1.3 oster pda_p++;
609 1.3 oster /* build q */
610 1.3 oster CONS_PDA(qInfo, fone_start, fone->numSector);
611 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
612 1.3 oster } else {
613 1.3 oster ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
614 1.3 oster ftwo_end = ftwo_start + ftwo->numSector;
615 1.3 oster if (fone->numSector + ftwo->numSector > secPerSU) {
616 1.3 oster PDAPerDisk = 1;
617 1.3 oster state = 2;
618 1.3 oster RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
619 1.3 oster pda_p = *pqpdap;
620 1.3 oster CONS_PDA(parityInfo, 0, secPerSU);
621 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
622 1.3 oster pda_p++;
623 1.3 oster CONS_PDA(qInfo, 0, secPerSU);
624 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
625 1.3 oster } else {
626 1.3 oster PDAPerDisk = 2;
627 1.3 oster state = 3;
628 1.3 oster /* four of them, fone, then ftwo */
629 1.3 oster RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
630 1.3 oster pda_p = *pqpdap;
631 1.3 oster CONS_PDA(parityInfo, fone_start, fone->numSector);
632 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
633 1.3 oster pda_p++;
634 1.3 oster CONS_PDA(qInfo, fone_start, fone->numSector);
635 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
636 1.3 oster pda_p++;
637 1.3 oster CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
638 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
639 1.3 oster pda_p++;
640 1.3 oster CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
641 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
642 1.3 oster }
643 1.3 oster }
644 1.3 oster /* figure out number of nonaccessed pda */
645 1.3 oster napdas = PDAPerDisk * (numDataCol - 2);
646 1.3 oster *nPQNodep = PDAPerDisk;
647 1.3 oster
648 1.3 oster *nNodep = napdas;
649 1.3 oster if (napdas == 0)
650 1.3 oster return; /* short circuit */
651 1.3 oster
652 1.3 oster /* allocate up our list of pda's */
653 1.3 oster
654 1.13 oster RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
655 1.13 oster (RF_PhysDiskAddr_t *), allocList);
656 1.3 oster *pdap = pda_p;
657 1.3 oster
658 1.3 oster /* linkem together */
659 1.3 oster for (i = 0; i < (napdas - 1); i++)
660 1.3 oster pda_p[i].next = pda_p + (i + 1);
661 1.3 oster
662 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
663 1.3 oster for (i = 0; i < numDataCol; i++) {
664 1.3 oster if ((pda_p - (*pdap)) == napdas)
665 1.3 oster continue;
666 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
667 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
668 1.12 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
669 1.3 oster /* skip over dead disks */
670 1.12 oster if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
671 1.3 oster continue;
672 1.3 oster switch (state) {
673 1.3 oster case 1: /* fone */
674 1.3 oster pda_p->numSector = fone->numSector;
675 1.3 oster pda_p->raidAddress += fone_start;
676 1.3 oster pda_p->startSector += fone_start;
677 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
678 1.3 oster break;
679 1.3 oster case 2: /* full stripe */
680 1.3 oster pda_p->numSector = secPerSU;
681 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
682 1.3 oster break;
683 1.3 oster case 3: /* two slabs */
684 1.3 oster pda_p->numSector = fone->numSector;
685 1.3 oster pda_p->raidAddress += fone_start;
686 1.3 oster pda_p->startSector += fone_start;
687 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
688 1.3 oster pda_p++;
689 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
690 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
691 1.12 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
692 1.3 oster pda_p->numSector = ftwo->numSector;
693 1.3 oster pda_p->raidAddress += ftwo_start;
694 1.3 oster pda_p->startSector += ftwo_start;
695 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
696 1.3 oster break;
697 1.3 oster default:
698 1.3 oster RF_PANIC();
699 1.3 oster }
700 1.3 oster pda_p++;
701 1.1 oster }
702 1.1 oster
703 1.3 oster RF_ASSERT(pda_p - *pdap == napdas);
704 1.3 oster return;
705 1.1 oster }
706 1.1 oster #define DISK_NODE_PDA(node) ((node)->params[0].p)
707 1.1 oster
708 1.1 oster #define DISK_NODE_PARAMS(_node_,_p_) \
709 1.1 oster (_node_).params[0].p = _p_ ; \
710 1.1 oster (_node_).params[1].p = (_p_)->bufPtr; \
711 1.1 oster (_node_).params[2].v = parityStripeID; \
712 1.15 oster (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
713 1.1 oster
714 1.3 oster void
715 1.14 oster rf_DoubleDegSmallWrite(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
716 1.14 oster RF_DagHeader_t *dag_h, void *bp,
717 1.14 oster RF_RaidAccessFlags_t flags,
718 1.14 oster RF_AllocListElem_t *allocList,
719 1.14 oster char *redundantReadNodeName,
720 1.14 oster char *redundantWriteNodeName,
721 1.14 oster char *recoveryNodeName,
722 1.14 oster int (*recovFunc) (RF_DagNode_t *))
723 1.1 oster {
724 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
725 1.3 oster RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
726 1.3 oster *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
727 1.3 oster RF_PhysDiskAddr_t *pda, *pqPDAs;
728 1.3 oster RF_PhysDiskAddr_t *npdas;
729 1.3 oster int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
730 1.3 oster RF_ReconUnitNum_t which_ru;
731 1.3 oster int nPQNodes;
732 1.3 oster RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
733 1.3 oster
734 1.3 oster /* simple small write case - First part looks like a reconstruct-read
735 1.3 oster * of the failed data units. Then a write of all data units not
736 1.3 oster * failed. */
737 1.3 oster
738 1.3 oster
739 1.3 oster /* Hdr | ------Block- / / \ Rrd Rrd ... Rrd Rp Rq \ \
740 1.3 oster * / -------PQ----- / \ \ Wud Wp WQ \ | /
741 1.3 oster * --Unblock- | T
742 1.3 oster *
743 1.3 oster * Rrd = read recovery data (potentially none) Wud = write user data
744 1.3 oster * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
745 1.3 oster * (could be two)
746 1.3 oster *
747 1.3 oster */
748 1.3 oster
749 1.3 oster rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
750 1.3 oster
751 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
752 1.3 oster
753 1.3 oster nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
754 1.3 oster nReadNodes = nRrdNodes + 2 * nPQNodes;
755 1.3 oster nWriteNodes = nWudNodes + 2 * nPQNodes;
756 1.3 oster nNodes = 4 + nReadNodes + nWriteNodes;
757 1.3 oster
758 1.13 oster RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
759 1.3 oster blockNode = nodes;
760 1.3 oster unblockNode = blockNode + 1;
761 1.3 oster termNode = unblockNode + 1;
762 1.3 oster recoveryNode = termNode + 1;
763 1.3 oster rrdNodes = recoveryNode + 1;
764 1.3 oster rpNodes = rrdNodes + nRrdNodes;
765 1.3 oster rqNodes = rpNodes + nPQNodes;
766 1.3 oster wudNodes = rqNodes + nPQNodes;
767 1.3 oster wpNodes = wudNodes + nWudNodes;
768 1.3 oster wqNodes = wpNodes + nPQNodes;
769 1.3 oster
770 1.3 oster dag_h->creator = "PQ_DDSimpleSmallWrite";
771 1.3 oster dag_h->numSuccedents = 1;
772 1.3 oster dag_h->succedents[0] = blockNode;
773 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
774 1.3 oster termNode->antecedents[0] = unblockNode;
775 1.3 oster termNode->antType[0] = rf_control;
776 1.3 oster
777 1.3 oster /* init the block and unblock nodes */
778 1.3 oster /* The block node has all the read nodes as successors */
779 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
780 1.3 oster for (i = 0; i < nReadNodes; i++)
781 1.3 oster blockNode->succedents[i] = rrdNodes + i;
782 1.3 oster
783 1.3 oster /* The unblock node has all the writes as successors */
784 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
785 1.3 oster for (i = 0; i < nWriteNodes; i++) {
786 1.3 oster unblockNode->antecedents[i] = wudNodes + i;
787 1.3 oster unblockNode->antType[i] = rf_control;
788 1.3 oster }
789 1.3 oster unblockNode->succedents[0] = termNode;
790 1.1 oster
791 1.1 oster #define INIT_READ_NODE(node,name) \
792 1.1 oster rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
793 1.1 oster (node)->succedents[0] = recoveryNode; \
794 1.1 oster (node)->antecedents[0] = blockNode; \
795 1.1 oster (node)->antType[0] = rf_control;
796 1.1 oster
797 1.3 oster /* build the read nodes */
798 1.3 oster pda = npdas;
799 1.3 oster for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
800 1.3 oster INIT_READ_NODE(rrdNodes + i, "rrd");
801 1.3 oster DISK_NODE_PARAMS(rrdNodes[i], pda);
802 1.3 oster }
803 1.3 oster
804 1.3 oster /* read redundancy pdas */
805 1.3 oster pda = pqPDAs;
806 1.3 oster INIT_READ_NODE(rpNodes, "Rp");
807 1.3 oster RF_ASSERT(pda);
808 1.3 oster DISK_NODE_PARAMS(rpNodes[0], pda);
809 1.3 oster pda++;
810 1.3 oster INIT_READ_NODE(rqNodes, redundantReadNodeName);
811 1.3 oster RF_ASSERT(pda);
812 1.3 oster DISK_NODE_PARAMS(rqNodes[0], pda);
813 1.3 oster if (nPQNodes == 2) {
814 1.3 oster pda++;
815 1.3 oster INIT_READ_NODE(rpNodes + 1, "Rp");
816 1.3 oster RF_ASSERT(pda);
817 1.3 oster DISK_NODE_PARAMS(rpNodes[1], pda);
818 1.3 oster pda++;
819 1.3 oster INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
820 1.3 oster RF_ASSERT(pda);
821 1.3 oster DISK_NODE_PARAMS(rqNodes[1], pda);
822 1.3 oster }
823 1.3 oster /* the recovery node has all reads as precedessors and all writes as
824 1.3 oster * successors. It generates a result for every write P or write Q
825 1.3 oster * node. As parameters, it takes a pda per read and a pda per stripe
826 1.3 oster * of user data written. It also takes as the last params the raidPtr
827 1.3 oster * and asm. For results, it takes PDA for P & Q. */
828 1.3 oster
829 1.3 oster
830 1.3 oster rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
831 1.3 oster nWriteNodes, /* succesors */
832 1.3 oster nReadNodes, /* preds */
833 1.3 oster nReadNodes + nWudNodes + 3, /* params */
834 1.3 oster 2 * nPQNodes, /* results */
835 1.3 oster dag_h, recoveryNodeName, allocList);
836 1.3 oster
837 1.3 oster
838 1.3 oster
839 1.3 oster for (i = 0; i < nReadNodes; i++) {
840 1.3 oster recoveryNode->antecedents[i] = rrdNodes + i;
841 1.3 oster recoveryNode->antType[i] = rf_control;
842 1.3 oster recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
843 1.3 oster }
844 1.3 oster for (i = 0; i < nWudNodes; i++) {
845 1.3 oster recoveryNode->succedents[i] = wudNodes + i;
846 1.3 oster }
847 1.3 oster recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
848 1.3 oster recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
849 1.3 oster recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
850 1.3 oster
851 1.3 oster for (; i < nWriteNodes; i++)
852 1.3 oster recoveryNode->succedents[i] = wudNodes + i;
853 1.3 oster
854 1.3 oster pda = pqPDAs;
855 1.3 oster recoveryNode->results[0] = pda;
856 1.3 oster pda++;
857 1.3 oster recoveryNode->results[1] = pda;
858 1.3 oster if (nPQNodes == 2) {
859 1.3 oster pda++;
860 1.3 oster recoveryNode->results[2] = pda;
861 1.3 oster pda++;
862 1.3 oster recoveryNode->results[3] = pda;
863 1.3 oster }
864 1.3 oster /* fill writes */
865 1.1 oster #define INIT_WRITE_NODE(node,name) \
866 1.1 oster rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
867 1.1 oster (node)->succedents[0] = unblockNode; \
868 1.1 oster (node)->antecedents[0] = recoveryNode; \
869 1.1 oster (node)->antType[0] = rf_control;
870 1.1 oster
871 1.3 oster pda = asmap->physInfo;
872 1.3 oster for (i = 0; i < nWudNodes; i++) {
873 1.3 oster INIT_WRITE_NODE(wudNodes + i, "Wd");
874 1.3 oster DISK_NODE_PARAMS(wudNodes[i], pda);
875 1.3 oster recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
876 1.3 oster pda = pda->next;
877 1.3 oster }
878 1.3 oster /* write redundancy pdas */
879 1.3 oster pda = pqPDAs;
880 1.3 oster INIT_WRITE_NODE(wpNodes, "Wp");
881 1.3 oster RF_ASSERT(pda);
882 1.3 oster DISK_NODE_PARAMS(wpNodes[0], pda);
883 1.3 oster pda++;
884 1.3 oster INIT_WRITE_NODE(wqNodes, "Wq");
885 1.3 oster RF_ASSERT(pda);
886 1.3 oster DISK_NODE_PARAMS(wqNodes[0], pda);
887 1.3 oster if (nPQNodes == 2) {
888 1.3 oster pda++;
889 1.3 oster INIT_WRITE_NODE(wpNodes + 1, "Wp");
890 1.3 oster RF_ASSERT(pda);
891 1.3 oster DISK_NODE_PARAMS(wpNodes[1], pda);
892 1.3 oster pda++;
893 1.3 oster INIT_WRITE_NODE(wqNodes + 1, "Wq");
894 1.3 oster RF_ASSERT(pda);
895 1.3 oster DISK_NODE_PARAMS(wqNodes[1], pda);
896 1.3 oster }
897 1.1 oster }
898 1.6 oster #endif /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
899