rf_dagdegwr.c revision 1.3 1 1.3 oster /* $NetBSD: rf_dagdegwr.c,v 1.3 1999/02/05 00:06:07 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * rf_dagdegwr.c
31 1.1 oster *
32 1.1 oster * code for creating degraded write DAGs
33 1.1 oster *
34 1.1 oster */
35 1.1 oster
36 1.1 oster #include "rf_types.h"
37 1.1 oster #include "rf_raid.h"
38 1.1 oster #include "rf_dag.h"
39 1.1 oster #include "rf_dagutils.h"
40 1.1 oster #include "rf_dagfuncs.h"
41 1.1 oster #include "rf_threadid.h"
42 1.1 oster #include "rf_debugMem.h"
43 1.1 oster #include "rf_memchunk.h"
44 1.1 oster #include "rf_general.h"
45 1.1 oster #include "rf_dagdegwr.h"
46 1.1 oster #include "rf_sys.h"
47 1.1 oster
48 1.1 oster
49 1.1 oster /******************************************************************************
50 1.1 oster *
51 1.1 oster * General comments on DAG creation:
52 1.3 oster *
53 1.1 oster * All DAGs in this file use roll-away error recovery. Each DAG has a single
54 1.1 oster * commit node, usually called "Cmt." If an error occurs before the Cmt node
55 1.1 oster * is reached, the execution engine will halt forward execution and work
56 1.1 oster * backward through the graph, executing the undo functions. Assuming that
57 1.1 oster * each node in the graph prior to the Cmt node are undoable and atomic - or -
58 1.1 oster * does not make changes to permanent state, the graph will fail atomically.
59 1.1 oster * If an error occurs after the Cmt node executes, the engine will roll-forward
60 1.1 oster * through the graph, blindly executing nodes until it reaches the end.
61 1.1 oster * If a graph reaches the end, it is assumed to have completed successfully.
62 1.1 oster *
63 1.1 oster * A graph has only 1 Cmt node.
64 1.1 oster *
65 1.1 oster */
66 1.1 oster
67 1.1 oster
68 1.1 oster /******************************************************************************
69 1.1 oster *
70 1.1 oster * The following wrappers map the standard DAG creation interface to the
71 1.1 oster * DAG creation routines. Additionally, these wrappers enable experimentation
72 1.1 oster * with new DAG structures by providing an extra level of indirection, allowing
73 1.1 oster * the DAG creation routines to be replaced at this single point.
74 1.1 oster */
75 1.1 oster
76 1.3 oster static
77 1.3 oster RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
78 1.1 oster {
79 1.3 oster rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
80 1.3 oster flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
81 1.1 oster }
82 1.1 oster
83 1.3 oster void
84 1.3 oster rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
85 1.3 oster RF_Raid_t *raidPtr;
86 1.3 oster RF_AccessStripeMap_t *asmap;
87 1.3 oster RF_DagHeader_t *dag_h;
88 1.3 oster void *bp;
89 1.3 oster RF_RaidAccessFlags_t flags;
90 1.3 oster RF_AllocListElem_t *allocList;
91 1.1 oster {
92 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
93 1.3 oster RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
94 1.3 oster
95 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
96 1.3 oster dag_h->creator = "DegradedWriteDAG";
97 1.3 oster
98 1.3 oster /* if the access writes only a portion of the failed unit, and also
99 1.3 oster * writes some portion of at least one surviving unit, we create two
100 1.3 oster * DAGs, one for the failed component and one for the non-failed
101 1.3 oster * component, and do them sequentially. Note that the fact that we're
102 1.3 oster * accessing only a portion of the failed unit indicates that the
103 1.3 oster * access either starts or ends in the failed unit, and hence we need
104 1.3 oster * create only two dags. This is inefficient in that the same data or
105 1.3 oster * parity can get read and written twice using this structure. I need
106 1.3 oster * to fix this to do the access all at once. */
107 1.3 oster RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit));
108 1.3 oster rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList);
109 1.1 oster }
110 1.1 oster
111 1.1 oster
112 1.1 oster
113 1.1 oster /******************************************************************************
114 1.1 oster *
115 1.1 oster * DAG creation code begins here
116 1.1 oster */
117 1.1 oster
118 1.1 oster
119 1.1 oster
120 1.1 oster /******************************************************************************
121 1.1 oster *
122 1.1 oster * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
123 1.1 oster * write, which is as follows
124 1.1 oster *
125 1.1 oster * / {Wnq} --\
126 1.1 oster * hdr -> blockNode -> Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
127 1.1 oster * \ {Rod} / \ Wnd ---/
128 1.1 oster * \ {Wnd} -/
129 1.1 oster *
130 1.1 oster * commit nodes: Xor, Wnd
131 1.1 oster *
132 1.1 oster * IMPORTANT:
133 1.1 oster * This DAG generator does not work for double-degraded archs since it does not
134 1.1 oster * generate Q
135 1.1 oster *
136 1.1 oster * This dag is essentially identical to the large-write dag, except that the
137 1.1 oster * write to the failed data unit is suppressed.
138 1.1 oster *
139 1.1 oster * IMPORTANT: this dag does not work in the case where the access writes only
140 1.1 oster * a portion of the failed unit, and also writes some portion of at least one
141 1.1 oster * surviving SU. this case is handled in CreateDegradedWriteDAG above.
142 1.1 oster *
143 1.1 oster * The block & unblock nodes are leftovers from a previous version. They
144 1.1 oster * do nothing, but I haven't deleted them because it would be a tremendous
145 1.1 oster * effort to put them back in.
146 1.1 oster *
147 1.1 oster * This dag is used whenever a one of the data units in a write has failed.
148 1.1 oster * If it is the parity unit that failed, the nonredundant write dag (below)
149 1.1 oster * is used.
150 1.1 oster *****************************************************************************/
151 1.1 oster
152 1.3 oster void
153 1.3 oster rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
154 1.3 oster allocList, nfaults, redFunc, allowBufferRecycle)
155 1.3 oster RF_Raid_t *raidPtr;
156 1.3 oster RF_AccessStripeMap_t *asmap;
157 1.3 oster RF_DagHeader_t *dag_h;
158 1.3 oster void *bp;
159 1.3 oster RF_RaidAccessFlags_t flags;
160 1.3 oster RF_AllocListElem_t *allocList;
161 1.3 oster int nfaults;
162 1.3 oster int (*redFunc) (RF_DagNode_t *);
163 1.3 oster int allowBufferRecycle;
164 1.1 oster {
165 1.3 oster int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
166 1.3 oster rdnodesFaked;
167 1.3 oster RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
168 1.3 oster RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
169 1.3 oster RF_SectorCount_t sectorsPerSU;
170 1.3 oster RF_ReconUnitNum_t which_ru;
171 1.3 oster char *xorTargetBuf = NULL; /* the target buffer for the XOR
172 1.3 oster * operation */
173 1.3 oster char *overlappingPDAs;/* a temporary array of flags */
174 1.3 oster RF_AccessStripeMapHeader_t *new_asm_h[2];
175 1.3 oster RF_PhysDiskAddr_t *pda, *parityPDA;
176 1.3 oster RF_StripeNum_t parityStripeID;
177 1.3 oster RF_PhysDiskAddr_t *failedPDA;
178 1.3 oster RF_RaidLayout_t *layoutPtr;
179 1.3 oster
180 1.3 oster layoutPtr = &(raidPtr->Layout);
181 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
182 1.3 oster &which_ru);
183 1.3 oster sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
184 1.3 oster /* failedPDA points to the pda within the asm that targets the failed
185 1.3 oster * disk */
186 1.3 oster failedPDA = asmap->failedPDAs[0];
187 1.3 oster
188 1.3 oster if (rf_dagDebug)
189 1.3 oster printf("[Creating degraded-write DAG]\n");
190 1.3 oster
191 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
192 1.3 oster dag_h->creator = "SimpleDegradedWriteDAG";
193 1.3 oster
194 1.3 oster /*
195 1.3 oster * Generate two ASMs identifying the surviving data
196 1.3 oster * we need in order to recover the lost data.
197 1.3 oster */
198 1.3 oster /* overlappingPDAs array must be zero'd */
199 1.3 oster RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
200 1.3 oster rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
201 1.3 oster &nXorBufs, NULL, overlappingPDAs, allocList);
202 1.3 oster
203 1.3 oster /* create all the nodes at once */
204 1.3 oster nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is
205 1.3 oster * generated for the
206 1.3 oster * failed pda */
207 1.3 oster
208 1.3 oster nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
209 1.3 oster ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
210 1.3 oster /*
211 1.3 oster * XXX
212 1.3 oster *
213 1.3 oster * There's a bug with a complete stripe overwrite- that means 0 reads
214 1.3 oster * of old data, and the rest of the DAG generation code doesn't like
215 1.3 oster * that. A release is coming, and I don't wanna risk breaking a critical
216 1.3 oster * DAG generator, so here's what I'm gonna do- if there's no read nodes,
217 1.3 oster * I'm gonna fake there being a read node, and I'm gonna swap in a
218 1.3 oster * no-op node in its place (to make all the link-up code happy).
219 1.3 oster * This should be fixed at some point. --jimz
220 1.3 oster */
221 1.3 oster if (nRrdNodes == 0) {
222 1.3 oster nRrdNodes = 1;
223 1.3 oster rdnodesFaked = 1;
224 1.3 oster } else {
225 1.3 oster rdnodesFaked = 0;
226 1.3 oster }
227 1.3 oster /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
228 1.3 oster nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
229 1.3 oster RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
230 1.3 oster (RF_DagNode_t *), allocList);
231 1.3 oster i = 0;
232 1.3 oster blockNode = &nodes[i];
233 1.3 oster i += 1;
234 1.3 oster commitNode = &nodes[i];
235 1.3 oster i += 1;
236 1.3 oster unblockNode = &nodes[i];
237 1.3 oster i += 1;
238 1.3 oster termNode = &nodes[i];
239 1.3 oster i += 1;
240 1.3 oster xorNode = &nodes[i];
241 1.3 oster i += 1;
242 1.3 oster wnpNode = &nodes[i];
243 1.3 oster i += 1;
244 1.3 oster wndNodes = &nodes[i];
245 1.3 oster i += nWndNodes;
246 1.3 oster rrdNodes = &nodes[i];
247 1.3 oster i += nRrdNodes;
248 1.3 oster if (nfaults == 2) {
249 1.3 oster wnqNode = &nodes[i];
250 1.3 oster i += 1;
251 1.3 oster } else {
252 1.3 oster wnqNode = NULL;
253 1.3 oster }
254 1.3 oster RF_ASSERT(i == nNodes);
255 1.3 oster
256 1.3 oster /* this dag can not commit until all rrd and xor Nodes have completed */
257 1.3 oster dag_h->numCommitNodes = 1;
258 1.3 oster dag_h->numCommits = 0;
259 1.3 oster dag_h->numSuccedents = 1;
260 1.3 oster
261 1.3 oster RF_ASSERT(nRrdNodes > 0);
262 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
263 1.3 oster NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
264 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
265 1.3 oster NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
266 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
267 1.3 oster NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
268 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
269 1.3 oster NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
270 1.3 oster rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
271 1.3 oster nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
272 1.3 oster
273 1.3 oster /*
274 1.3 oster * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
275 1.3 oster * the failed buffer, save a pointer to it so we can use it as the target
276 1.3 oster * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
277 1.3 oster * a buffer is the same size as the failed buffer, it must also be at the
278 1.3 oster * same alignment within the SU.
279 1.3 oster */
280 1.3 oster i = 0;
281 1.3 oster if (new_asm_h[0]) {
282 1.3 oster for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
283 1.3 oster i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
284 1.3 oster i++, pda = pda->next) {
285 1.3 oster rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
286 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
287 1.3 oster RF_ASSERT(pda);
288 1.3 oster rrdNodes[i].params[0].p = pda;
289 1.3 oster rrdNodes[i].params[1].p = pda->bufPtr;
290 1.3 oster rrdNodes[i].params[2].v = parityStripeID;
291 1.3 oster rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
292 1.3 oster }
293 1.3 oster }
294 1.3 oster /* i now equals the number of stripe units accessed in new_asm_h[0] */
295 1.3 oster if (new_asm_h[1]) {
296 1.3 oster for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
297 1.3 oster j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
298 1.3 oster j++, pda = pda->next) {
299 1.3 oster rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
300 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
301 1.3 oster RF_ASSERT(pda);
302 1.3 oster rrdNodes[i + j].params[0].p = pda;
303 1.3 oster rrdNodes[i + j].params[1].p = pda->bufPtr;
304 1.3 oster rrdNodes[i + j].params[2].v = parityStripeID;
305 1.3 oster rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
306 1.3 oster if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
307 1.3 oster xorTargetBuf = pda->bufPtr;
308 1.3 oster }
309 1.3 oster }
310 1.3 oster if (rdnodesFaked) {
311 1.3 oster /*
312 1.3 oster * This is where we'll init that fake noop read node
313 1.3 oster * (XXX should the wakeup func be different?)
314 1.3 oster */
315 1.3 oster rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
316 1.3 oster NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
317 1.3 oster }
318 1.3 oster /*
319 1.3 oster * Make a PDA for the parity unit. The parity PDA should start at
320 1.3 oster * the same offset into the SU as the failed PDA.
321 1.3 oster */
322 1.3 oster /* Danner comment: I don't think this copy is really necessary. We are
323 1.3 oster * in one of two cases here. (1) The entire failed unit is written.
324 1.3 oster * Then asmap->parityInfo will describe the entire parity. (2) We are
325 1.3 oster * only writing a subset of the failed unit and nothing else. Then the
326 1.3 oster * asmap->parityInfo describes the failed unit and the copy can also
327 1.3 oster * be avoided. */
328 1.3 oster
329 1.3 oster RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
330 1.3 oster parityPDA->row = asmap->parityInfo->row;
331 1.3 oster parityPDA->col = asmap->parityInfo->col;
332 1.3 oster parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
333 1.3 oster * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
334 1.3 oster parityPDA->numSector = failedPDA->numSector;
335 1.3 oster
336 1.3 oster if (!xorTargetBuf) {
337 1.3 oster RF_CallocAndAdd(xorTargetBuf, 1,
338 1.3 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
339 1.3 oster }
340 1.3 oster /* init the Wnp node */
341 1.3 oster rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
342 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
343 1.3 oster wnpNode->params[0].p = parityPDA;
344 1.3 oster wnpNode->params[1].p = xorTargetBuf;
345 1.3 oster wnpNode->params[2].v = parityStripeID;
346 1.3 oster wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
347 1.3 oster
348 1.3 oster /* fill in the Wnq Node */
349 1.3 oster if (nfaults == 2) {
350 1.3 oster {
351 1.3 oster RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
352 1.3 oster (RF_PhysDiskAddr_t *), allocList);
353 1.3 oster parityPDA->row = asmap->qInfo->row;
354 1.3 oster parityPDA->col = asmap->qInfo->col;
355 1.3 oster parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
356 1.3 oster * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
357 1.3 oster parityPDA->numSector = failedPDA->numSector;
358 1.3 oster
359 1.3 oster rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
360 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
361 1.3 oster wnqNode->params[0].p = parityPDA;
362 1.3 oster RF_CallocAndAdd(xorNode->results[1], 1,
363 1.3 oster rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
364 1.3 oster wnqNode->params[1].p = xorNode->results[1];
365 1.3 oster wnqNode->params[2].v = parityStripeID;
366 1.3 oster wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
367 1.3 oster }
368 1.3 oster }
369 1.3 oster /* fill in the Wnd nodes */
370 1.3 oster for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
371 1.3 oster if (pda == failedPDA) {
372 1.3 oster i--;
373 1.3 oster continue;
374 1.3 oster }
375 1.3 oster rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
376 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
377 1.3 oster RF_ASSERT(pda);
378 1.3 oster wndNodes[i].params[0].p = pda;
379 1.3 oster wndNodes[i].params[1].p = pda->bufPtr;
380 1.3 oster wndNodes[i].params[2].v = parityStripeID;
381 1.3 oster wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
382 1.3 oster }
383 1.3 oster
384 1.3 oster /* fill in the results of the xor node */
385 1.3 oster xorNode->results[0] = xorTargetBuf;
386 1.3 oster
387 1.3 oster /* fill in the params of the xor node */
388 1.3 oster
389 1.3 oster paramNum = 0;
390 1.3 oster if (rdnodesFaked == 0) {
391 1.3 oster for (i = 0; i < nRrdNodes; i++) {
392 1.3 oster /* all the Rrd nodes need to be xored together */
393 1.3 oster xorNode->params[paramNum++] = rrdNodes[i].params[0];
394 1.3 oster xorNode->params[paramNum++] = rrdNodes[i].params[1];
395 1.3 oster }
396 1.3 oster }
397 1.3 oster for (i = 0; i < nWndNodes; i++) {
398 1.3 oster /* any Wnd nodes that overlap the failed access need to be
399 1.3 oster * xored in */
400 1.3 oster if (overlappingPDAs[i]) {
401 1.3 oster RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
402 1.3 oster bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
403 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
404 1.3 oster xorNode->params[paramNum++].p = pda;
405 1.3 oster xorNode->params[paramNum++].p = pda->bufPtr;
406 1.3 oster }
407 1.3 oster }
408 1.3 oster RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
409 1.3 oster
410 1.3 oster /*
411 1.3 oster * Install the failed PDA into the xor param list so that the
412 1.3 oster * new data gets xor'd in.
413 1.3 oster */
414 1.3 oster xorNode->params[paramNum++].p = failedPDA;
415 1.3 oster xorNode->params[paramNum++].p = failedPDA->bufPtr;
416 1.3 oster
417 1.3 oster /*
418 1.3 oster * The last 2 params to the recovery xor node are always the failed
419 1.3 oster * PDA and the raidPtr. install the failedPDA even though we have just
420 1.3 oster * done so above. This allows us to use the same XOR function for both
421 1.3 oster * degraded reads and degraded writes.
422 1.3 oster */
423 1.3 oster xorNode->params[paramNum++].p = failedPDA;
424 1.3 oster xorNode->params[paramNum++].p = raidPtr;
425 1.3 oster RF_ASSERT(paramNum == 2 * nXorBufs + 2);
426 1.3 oster
427 1.3 oster /*
428 1.3 oster * Code to link nodes begins here
429 1.3 oster */
430 1.3 oster
431 1.3 oster /* link header to block node */
432 1.3 oster RF_ASSERT(blockNode->numAntecedents == 0);
433 1.3 oster dag_h->succedents[0] = blockNode;
434 1.3 oster
435 1.3 oster /* link block node to rd nodes */
436 1.3 oster RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
437 1.3 oster for (i = 0; i < nRrdNodes; i++) {
438 1.3 oster RF_ASSERT(rrdNodes[i].numAntecedents == 1);
439 1.3 oster blockNode->succedents[i] = &rrdNodes[i];
440 1.3 oster rrdNodes[i].antecedents[0] = blockNode;
441 1.3 oster rrdNodes[i].antType[0] = rf_control;
442 1.3 oster }
443 1.3 oster
444 1.3 oster /* link read nodes to xor node */
445 1.3 oster RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
446 1.3 oster for (i = 0; i < nRrdNodes; i++) {
447 1.3 oster RF_ASSERT(rrdNodes[i].numSuccedents == 1);
448 1.3 oster rrdNodes[i].succedents[0] = xorNode;
449 1.3 oster xorNode->antecedents[i] = &rrdNodes[i];
450 1.3 oster xorNode->antType[i] = rf_trueData;
451 1.3 oster }
452 1.3 oster
453 1.3 oster /* link xor node to commit node */
454 1.3 oster RF_ASSERT(xorNode->numSuccedents == 1);
455 1.3 oster RF_ASSERT(commitNode->numAntecedents == 1);
456 1.3 oster xorNode->succedents[0] = commitNode;
457 1.3 oster commitNode->antecedents[0] = xorNode;
458 1.3 oster commitNode->antType[0] = rf_control;
459 1.3 oster
460 1.3 oster /* link commit node to wnd nodes */
461 1.3 oster RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
462 1.3 oster for (i = 0; i < nWndNodes; i++) {
463 1.3 oster RF_ASSERT(wndNodes[i].numAntecedents == 1);
464 1.3 oster commitNode->succedents[i] = &wndNodes[i];
465 1.3 oster wndNodes[i].antecedents[0] = commitNode;
466 1.3 oster wndNodes[i].antType[0] = rf_control;
467 1.3 oster }
468 1.3 oster
469 1.3 oster /* link the commit node to wnp, wnq nodes */
470 1.3 oster RF_ASSERT(wnpNode->numAntecedents == 1);
471 1.3 oster commitNode->succedents[nWndNodes] = wnpNode;
472 1.3 oster wnpNode->antecedents[0] = commitNode;
473 1.3 oster wnpNode->antType[0] = rf_control;
474 1.3 oster if (nfaults == 2) {
475 1.3 oster RF_ASSERT(wnqNode->numAntecedents == 1);
476 1.3 oster commitNode->succedents[nWndNodes + 1] = wnqNode;
477 1.3 oster wnqNode->antecedents[0] = commitNode;
478 1.3 oster wnqNode->antType[0] = rf_control;
479 1.3 oster }
480 1.3 oster /* link write new data nodes to unblock node */
481 1.3 oster RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
482 1.3 oster for (i = 0; i < nWndNodes; i++) {
483 1.3 oster RF_ASSERT(wndNodes[i].numSuccedents == 1);
484 1.3 oster wndNodes[i].succedents[0] = unblockNode;
485 1.3 oster unblockNode->antecedents[i] = &wndNodes[i];
486 1.3 oster unblockNode->antType[i] = rf_control;
487 1.3 oster }
488 1.3 oster
489 1.3 oster /* link write new parity node to unblock node */
490 1.3 oster RF_ASSERT(wnpNode->numSuccedents == 1);
491 1.3 oster wnpNode->succedents[0] = unblockNode;
492 1.3 oster unblockNode->antecedents[nWndNodes] = wnpNode;
493 1.3 oster unblockNode->antType[nWndNodes] = rf_control;
494 1.3 oster
495 1.3 oster /* link write new q node to unblock node */
496 1.3 oster if (nfaults == 2) {
497 1.3 oster RF_ASSERT(wnqNode->numSuccedents == 1);
498 1.3 oster wnqNode->succedents[0] = unblockNode;
499 1.3 oster unblockNode->antecedents[nWndNodes + 1] = wnqNode;
500 1.3 oster unblockNode->antType[nWndNodes + 1] = rf_control;
501 1.3 oster }
502 1.3 oster /* link unblock node to term node */
503 1.3 oster RF_ASSERT(unblockNode->numSuccedents == 1);
504 1.3 oster RF_ASSERT(termNode->numAntecedents == 1);
505 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
506 1.3 oster unblockNode->succedents[0] = termNode;
507 1.3 oster termNode->antecedents[0] = unblockNode;
508 1.3 oster termNode->antType[0] = rf_control;
509 1.1 oster }
510 1.1 oster #define CONS_PDA(if,start,num) \
511 1.1 oster pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
512 1.1 oster pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
513 1.1 oster pda_p->numSector = num; \
514 1.1 oster pda_p->next = NULL; \
515 1.1 oster RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
516 1.1 oster
517 1.3 oster void
518 1.3 oster rf_WriteGenerateFailedAccessASMs(
519 1.3 oster RF_Raid_t * raidPtr,
520 1.3 oster RF_AccessStripeMap_t * asmap,
521 1.3 oster RF_PhysDiskAddr_t ** pdap,
522 1.3 oster int *nNodep,
523 1.3 oster RF_PhysDiskAddr_t ** pqpdap,
524 1.3 oster int *nPQNodep,
525 1.3 oster RF_AllocListElem_t * allocList)
526 1.1 oster {
527 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
528 1.3 oster int PDAPerDisk, i;
529 1.3 oster RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
530 1.3 oster int numDataCol = layoutPtr->numDataCol;
531 1.3 oster int state;
532 1.3 oster unsigned napdas;
533 1.3 oster RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
534 1.3 oster RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
535 1.3 oster RF_PhysDiskAddr_t *pda_p;
536 1.3 oster RF_RaidAddr_t sosAddr;
537 1.3 oster
538 1.3 oster /* determine how many pda's we will have to generate per unaccess
539 1.3 oster * stripe. If there is only one failed data unit, it is one; if two,
540 1.3 oster * possibly two, depending wether they overlap. */
541 1.3 oster
542 1.3 oster fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
543 1.3 oster fone_end = fone_start + fone->numSector;
544 1.3 oster
545 1.3 oster if (asmap->numDataFailed == 1) {
546 1.3 oster PDAPerDisk = 1;
547 1.3 oster state = 1;
548 1.3 oster RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
549 1.3 oster pda_p = *pqpdap;
550 1.3 oster /* build p */
551 1.3 oster CONS_PDA(parityInfo, fone_start, fone->numSector);
552 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
553 1.3 oster pda_p++;
554 1.3 oster /* build q */
555 1.3 oster CONS_PDA(qInfo, fone_start, fone->numSector);
556 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
557 1.3 oster } else {
558 1.3 oster ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
559 1.3 oster ftwo_end = ftwo_start + ftwo->numSector;
560 1.3 oster if (fone->numSector + ftwo->numSector > secPerSU) {
561 1.3 oster PDAPerDisk = 1;
562 1.3 oster state = 2;
563 1.3 oster RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
564 1.3 oster pda_p = *pqpdap;
565 1.3 oster CONS_PDA(parityInfo, 0, secPerSU);
566 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
567 1.3 oster pda_p++;
568 1.3 oster CONS_PDA(qInfo, 0, secPerSU);
569 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
570 1.3 oster } else {
571 1.3 oster PDAPerDisk = 2;
572 1.3 oster state = 3;
573 1.3 oster /* four of them, fone, then ftwo */
574 1.3 oster RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
575 1.3 oster pda_p = *pqpdap;
576 1.3 oster CONS_PDA(parityInfo, fone_start, fone->numSector);
577 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
578 1.3 oster pda_p++;
579 1.3 oster CONS_PDA(qInfo, fone_start, fone->numSector);
580 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
581 1.3 oster pda_p++;
582 1.3 oster CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
583 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
584 1.3 oster pda_p++;
585 1.3 oster CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
586 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
587 1.3 oster }
588 1.3 oster }
589 1.3 oster /* figure out number of nonaccessed pda */
590 1.3 oster napdas = PDAPerDisk * (numDataCol - 2);
591 1.3 oster *nPQNodep = PDAPerDisk;
592 1.3 oster
593 1.3 oster *nNodep = napdas;
594 1.3 oster if (napdas == 0)
595 1.3 oster return; /* short circuit */
596 1.3 oster
597 1.3 oster /* allocate up our list of pda's */
598 1.3 oster
599 1.3 oster RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
600 1.3 oster *pdap = pda_p;
601 1.3 oster
602 1.3 oster /* linkem together */
603 1.3 oster for (i = 0; i < (napdas - 1); i++)
604 1.3 oster pda_p[i].next = pda_p + (i + 1);
605 1.3 oster
606 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
607 1.3 oster for (i = 0; i < numDataCol; i++) {
608 1.3 oster if ((pda_p - (*pdap)) == napdas)
609 1.3 oster continue;
610 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
611 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
612 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
613 1.3 oster /* skip over dead disks */
614 1.3 oster if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
615 1.3 oster continue;
616 1.3 oster switch (state) {
617 1.3 oster case 1: /* fone */
618 1.3 oster pda_p->numSector = fone->numSector;
619 1.3 oster pda_p->raidAddress += fone_start;
620 1.3 oster pda_p->startSector += fone_start;
621 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
622 1.3 oster break;
623 1.3 oster case 2: /* full stripe */
624 1.3 oster pda_p->numSector = secPerSU;
625 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
626 1.3 oster break;
627 1.3 oster case 3: /* two slabs */
628 1.3 oster pda_p->numSector = fone->numSector;
629 1.3 oster pda_p->raidAddress += fone_start;
630 1.3 oster pda_p->startSector += fone_start;
631 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
632 1.3 oster pda_p++;
633 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
634 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
635 1.3 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
636 1.3 oster pda_p->numSector = ftwo->numSector;
637 1.3 oster pda_p->raidAddress += ftwo_start;
638 1.3 oster pda_p->startSector += ftwo_start;
639 1.3 oster RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
640 1.3 oster break;
641 1.3 oster default:
642 1.3 oster RF_PANIC();
643 1.3 oster }
644 1.3 oster pda_p++;
645 1.1 oster }
646 1.1 oster
647 1.3 oster RF_ASSERT(pda_p - *pdap == napdas);
648 1.3 oster return;
649 1.1 oster }
650 1.1 oster #define DISK_NODE_PDA(node) ((node)->params[0].p)
651 1.1 oster
652 1.1 oster #define DISK_NODE_PARAMS(_node_,_p_) \
653 1.1 oster (_node_).params[0].p = _p_ ; \
654 1.1 oster (_node_).params[1].p = (_p_)->bufPtr; \
655 1.1 oster (_node_).params[2].v = parityStripeID; \
656 1.1 oster (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
657 1.1 oster
658 1.3 oster void
659 1.3 oster rf_DoubleDegSmallWrite(
660 1.3 oster RF_Raid_t * raidPtr,
661 1.3 oster RF_AccessStripeMap_t * asmap,
662 1.3 oster RF_DagHeader_t * dag_h,
663 1.3 oster void *bp,
664 1.3 oster RF_RaidAccessFlags_t flags,
665 1.3 oster RF_AllocListElem_t * allocList,
666 1.3 oster char *redundantReadNodeName,
667 1.3 oster char *redundantWriteNodeName,
668 1.3 oster char *recoveryNodeName,
669 1.3 oster int (*recovFunc) (RF_DagNode_t *))
670 1.1 oster {
671 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
672 1.3 oster RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
673 1.3 oster *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
674 1.3 oster RF_PhysDiskAddr_t *pda, *pqPDAs;
675 1.3 oster RF_PhysDiskAddr_t *npdas;
676 1.3 oster int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
677 1.3 oster RF_ReconUnitNum_t which_ru;
678 1.3 oster int nPQNodes;
679 1.3 oster RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
680 1.3 oster
681 1.3 oster /* simple small write case - First part looks like a reconstruct-read
682 1.3 oster * of the failed data units. Then a write of all data units not
683 1.3 oster * failed. */
684 1.3 oster
685 1.3 oster
686 1.3 oster /* Hdr | ------Block- / / \ Rrd Rrd ... Rrd Rp Rq \ \
687 1.3 oster * / -------PQ----- / \ \ Wud Wp WQ \ | /
688 1.3 oster * --Unblock- | T
689 1.3 oster *
690 1.3 oster * Rrd = read recovery data (potentially none) Wud = write user data
691 1.3 oster * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
692 1.3 oster * (could be two)
693 1.3 oster *
694 1.3 oster */
695 1.3 oster
696 1.3 oster rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
697 1.3 oster
698 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
699 1.3 oster
700 1.3 oster nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
701 1.3 oster nReadNodes = nRrdNodes + 2 * nPQNodes;
702 1.3 oster nWriteNodes = nWudNodes + 2 * nPQNodes;
703 1.3 oster nNodes = 4 + nReadNodes + nWriteNodes;
704 1.3 oster
705 1.3 oster RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
706 1.3 oster blockNode = nodes;
707 1.3 oster unblockNode = blockNode + 1;
708 1.3 oster termNode = unblockNode + 1;
709 1.3 oster recoveryNode = termNode + 1;
710 1.3 oster rrdNodes = recoveryNode + 1;
711 1.3 oster rpNodes = rrdNodes + nRrdNodes;
712 1.3 oster rqNodes = rpNodes + nPQNodes;
713 1.3 oster wudNodes = rqNodes + nPQNodes;
714 1.3 oster wpNodes = wudNodes + nWudNodes;
715 1.3 oster wqNodes = wpNodes + nPQNodes;
716 1.3 oster
717 1.3 oster dag_h->creator = "PQ_DDSimpleSmallWrite";
718 1.3 oster dag_h->numSuccedents = 1;
719 1.3 oster dag_h->succedents[0] = blockNode;
720 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
721 1.3 oster termNode->antecedents[0] = unblockNode;
722 1.3 oster termNode->antType[0] = rf_control;
723 1.3 oster
724 1.3 oster /* init the block and unblock nodes */
725 1.3 oster /* The block node has all the read nodes as successors */
726 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
727 1.3 oster for (i = 0; i < nReadNodes; i++)
728 1.3 oster blockNode->succedents[i] = rrdNodes + i;
729 1.3 oster
730 1.3 oster /* The unblock node has all the writes as successors */
731 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
732 1.3 oster for (i = 0; i < nWriteNodes; i++) {
733 1.3 oster unblockNode->antecedents[i] = wudNodes + i;
734 1.3 oster unblockNode->antType[i] = rf_control;
735 1.3 oster }
736 1.3 oster unblockNode->succedents[0] = termNode;
737 1.1 oster
738 1.1 oster #define INIT_READ_NODE(node,name) \
739 1.1 oster rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
740 1.1 oster (node)->succedents[0] = recoveryNode; \
741 1.1 oster (node)->antecedents[0] = blockNode; \
742 1.1 oster (node)->antType[0] = rf_control;
743 1.1 oster
744 1.3 oster /* build the read nodes */
745 1.3 oster pda = npdas;
746 1.3 oster for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
747 1.3 oster INIT_READ_NODE(rrdNodes + i, "rrd");
748 1.3 oster DISK_NODE_PARAMS(rrdNodes[i], pda);
749 1.3 oster }
750 1.3 oster
751 1.3 oster /* read redundancy pdas */
752 1.3 oster pda = pqPDAs;
753 1.3 oster INIT_READ_NODE(rpNodes, "Rp");
754 1.3 oster RF_ASSERT(pda);
755 1.3 oster DISK_NODE_PARAMS(rpNodes[0], pda);
756 1.3 oster pda++;
757 1.3 oster INIT_READ_NODE(rqNodes, redundantReadNodeName);
758 1.3 oster RF_ASSERT(pda);
759 1.3 oster DISK_NODE_PARAMS(rqNodes[0], pda);
760 1.3 oster if (nPQNodes == 2) {
761 1.3 oster pda++;
762 1.3 oster INIT_READ_NODE(rpNodes + 1, "Rp");
763 1.3 oster RF_ASSERT(pda);
764 1.3 oster DISK_NODE_PARAMS(rpNodes[1], pda);
765 1.3 oster pda++;
766 1.3 oster INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
767 1.3 oster RF_ASSERT(pda);
768 1.3 oster DISK_NODE_PARAMS(rqNodes[1], pda);
769 1.3 oster }
770 1.3 oster /* the recovery node has all reads as precedessors and all writes as
771 1.3 oster * successors. It generates a result for every write P or write Q
772 1.3 oster * node. As parameters, it takes a pda per read and a pda per stripe
773 1.3 oster * of user data written. It also takes as the last params the raidPtr
774 1.3 oster * and asm. For results, it takes PDA for P & Q. */
775 1.3 oster
776 1.3 oster
777 1.3 oster rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
778 1.3 oster nWriteNodes, /* succesors */
779 1.3 oster nReadNodes, /* preds */
780 1.3 oster nReadNodes + nWudNodes + 3, /* params */
781 1.3 oster 2 * nPQNodes, /* results */
782 1.3 oster dag_h, recoveryNodeName, allocList);
783 1.3 oster
784 1.3 oster
785 1.3 oster
786 1.3 oster for (i = 0; i < nReadNodes; i++) {
787 1.3 oster recoveryNode->antecedents[i] = rrdNodes + i;
788 1.3 oster recoveryNode->antType[i] = rf_control;
789 1.3 oster recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
790 1.3 oster }
791 1.3 oster for (i = 0; i < nWudNodes; i++) {
792 1.3 oster recoveryNode->succedents[i] = wudNodes + i;
793 1.3 oster }
794 1.3 oster recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
795 1.3 oster recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
796 1.3 oster recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
797 1.3 oster
798 1.3 oster for (; i < nWriteNodes; i++)
799 1.3 oster recoveryNode->succedents[i] = wudNodes + i;
800 1.3 oster
801 1.3 oster pda = pqPDAs;
802 1.3 oster recoveryNode->results[0] = pda;
803 1.3 oster pda++;
804 1.3 oster recoveryNode->results[1] = pda;
805 1.3 oster if (nPQNodes == 2) {
806 1.3 oster pda++;
807 1.3 oster recoveryNode->results[2] = pda;
808 1.3 oster pda++;
809 1.3 oster recoveryNode->results[3] = pda;
810 1.3 oster }
811 1.3 oster /* fill writes */
812 1.1 oster #define INIT_WRITE_NODE(node,name) \
813 1.1 oster rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
814 1.1 oster (node)->succedents[0] = unblockNode; \
815 1.1 oster (node)->antecedents[0] = recoveryNode; \
816 1.1 oster (node)->antType[0] = rf_control;
817 1.1 oster
818 1.3 oster pda = asmap->physInfo;
819 1.3 oster for (i = 0; i < nWudNodes; i++) {
820 1.3 oster INIT_WRITE_NODE(wudNodes + i, "Wd");
821 1.3 oster DISK_NODE_PARAMS(wudNodes[i], pda);
822 1.3 oster recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
823 1.3 oster pda = pda->next;
824 1.3 oster }
825 1.3 oster /* write redundancy pdas */
826 1.3 oster pda = pqPDAs;
827 1.3 oster INIT_WRITE_NODE(wpNodes, "Wp");
828 1.3 oster RF_ASSERT(pda);
829 1.3 oster DISK_NODE_PARAMS(wpNodes[0], pda);
830 1.3 oster pda++;
831 1.3 oster INIT_WRITE_NODE(wqNodes, "Wq");
832 1.3 oster RF_ASSERT(pda);
833 1.3 oster DISK_NODE_PARAMS(wqNodes[0], pda);
834 1.3 oster if (nPQNodes == 2) {
835 1.3 oster pda++;
836 1.3 oster INIT_WRITE_NODE(wpNodes + 1, "Wp");
837 1.3 oster RF_ASSERT(pda);
838 1.3 oster DISK_NODE_PARAMS(wpNodes[1], pda);
839 1.3 oster pda++;
840 1.3 oster INIT_WRITE_NODE(wqNodes + 1, "Wq");
841 1.3 oster RF_ASSERT(pda);
842 1.3 oster DISK_NODE_PARAMS(wqNodes[1], pda);
843 1.3 oster }
844 1.1 oster }
845