rf_dagdegwr.c revision 1.37 1 1.37 oster /* $NetBSD: rf_dagdegwr.c,v 1.37 2023/10/15 18:15:19 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * rf_dagdegwr.c
31 1.1 oster *
32 1.1 oster * code for creating degraded write DAGs
33 1.1 oster *
34 1.1 oster */
35 1.9 lukem
36 1.9 lukem #include <sys/cdefs.h>
37 1.37 oster __KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.37 2023/10/15 18:15:19 oster Exp $");
38 1.1 oster
39 1.8 oster #include <dev/raidframe/raidframevar.h>
40 1.8 oster
41 1.1 oster #include "rf_raid.h"
42 1.1 oster #include "rf_dag.h"
43 1.1 oster #include "rf_dagutils.h"
44 1.1 oster #include "rf_dagfuncs.h"
45 1.1 oster #include "rf_debugMem.h"
46 1.1 oster #include "rf_general.h"
47 1.1 oster #include "rf_dagdegwr.h"
48 1.19 oster #include "rf_map.h"
49 1.1 oster
50 1.1 oster
51 1.1 oster /******************************************************************************
52 1.1 oster *
53 1.1 oster * General comments on DAG creation:
54 1.3 oster *
55 1.1 oster * All DAGs in this file use roll-away error recovery. Each DAG has a single
56 1.1 oster * commit node, usually called "Cmt." If an error occurs before the Cmt node
57 1.1 oster * is reached, the execution engine will halt forward execution and work
58 1.1 oster * backward through the graph, executing the undo functions. Assuming that
59 1.1 oster * each node in the graph prior to the Cmt node are undoable and atomic - or -
60 1.1 oster * does not make changes to permanent state, the graph will fail atomically.
61 1.1 oster * If an error occurs after the Cmt node executes, the engine will roll-forward
62 1.1 oster * through the graph, blindly executing nodes until it reaches the end.
63 1.1 oster * If a graph reaches the end, it is assumed to have completed successfully.
64 1.1 oster *
65 1.1 oster * A graph has only 1 Cmt node.
66 1.1 oster *
67 1.1 oster */
68 1.1 oster
69 1.1 oster
70 1.1 oster /******************************************************************************
71 1.1 oster *
72 1.1 oster * The following wrappers map the standard DAG creation interface to the
73 1.1 oster * DAG creation routines. Additionally, these wrappers enable experimentation
74 1.1 oster * with new DAG structures by providing an extra level of indirection, allowing
75 1.1 oster * the DAG creation routines to be replaced at this single point.
76 1.1 oster */
77 1.1 oster
78 1.25 perry static
79 1.3 oster RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
80 1.1 oster {
81 1.3 oster rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
82 1.3 oster flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
83 1.1 oster }
84 1.1 oster
85 1.25 perry void
86 1.14 oster rf_CreateDegradedWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
87 1.25 perry RF_DagHeader_t *dag_h, void *bp,
88 1.25 perry RF_RaidAccessFlags_t flags,
89 1.14 oster RF_AllocListElem_t *allocList)
90 1.1 oster {
91 1.3 oster
92 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
93 1.3 oster dag_h->creator = "DegradedWriteDAG";
94 1.3 oster
95 1.7 thorpej /*
96 1.7 thorpej * if the access writes only a portion of the failed unit, and also
97 1.3 oster * writes some portion of at least one surviving unit, we create two
98 1.3 oster * DAGs, one for the failed component and one for the non-failed
99 1.3 oster * component, and do them sequentially. Note that the fact that we're
100 1.3 oster * accessing only a portion of the failed unit indicates that the
101 1.3 oster * access either starts or ends in the failed unit, and hence we need
102 1.3 oster * create only two dags. This is inefficient in that the same data or
103 1.3 oster * parity can get read and written twice using this structure. I need
104 1.7 thorpej * to fix this to do the access all at once.
105 1.7 thorpej */
106 1.7 thorpej RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
107 1.7 thorpej asmap->failedPDAs[0]->numSector !=
108 1.7 thorpej raidPtr->Layout.sectorsPerStripeUnit));
109 1.7 thorpej rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
110 1.7 thorpej allocList);
111 1.1 oster }
112 1.1 oster
113 1.1 oster
114 1.1 oster
115 1.1 oster /******************************************************************************
116 1.1 oster *
117 1.1 oster * DAG creation code begins here
118 1.1 oster */
119 1.34 christos #define BUF_ALLOC(num) \
120 1.34 christos RF_MallocAndAdd(rf_RaidAddressToByte(raidPtr, num), allocList)
121 1.1 oster
122 1.1 oster
123 1.1 oster
124 1.1 oster /******************************************************************************
125 1.1 oster *
126 1.1 oster * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
127 1.1 oster * write, which is as follows
128 1.1 oster *
129 1.1 oster * / {Wnq} --\
130 1.1 oster * hdr -> blockNode -> Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
131 1.1 oster * \ {Rod} / \ Wnd ---/
132 1.1 oster * \ {Wnd} -/
133 1.1 oster *
134 1.1 oster * commit nodes: Xor, Wnd
135 1.1 oster *
136 1.1 oster * IMPORTANT:
137 1.1 oster * This DAG generator does not work for double-degraded archs since it does not
138 1.1 oster * generate Q
139 1.1 oster *
140 1.1 oster * This dag is essentially identical to the large-write dag, except that the
141 1.1 oster * write to the failed data unit is suppressed.
142 1.1 oster *
143 1.1 oster * IMPORTANT: this dag does not work in the case where the access writes only
144 1.1 oster * a portion of the failed unit, and also writes some portion of at least one
145 1.1 oster * surviving SU. this case is handled in CreateDegradedWriteDAG above.
146 1.1 oster *
147 1.1 oster * The block & unblock nodes are leftovers from a previous version. They
148 1.1 oster * do nothing, but I haven't deleted them because it would be a tremendous
149 1.1 oster * effort to put them back in.
150 1.1 oster *
151 1.1 oster * This dag is used whenever a one of the data units in a write has failed.
152 1.1 oster * If it is the parity unit that failed, the nonredundant write dag (below)
153 1.1 oster * is used.
154 1.1 oster *****************************************************************************/
155 1.1 oster
156 1.25 perry void
157 1.25 perry rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t *raidPtr,
158 1.14 oster RF_AccessStripeMap_t *asmap,
159 1.30 christos RF_DagHeader_t *dag_h, void *bp,
160 1.30 christos RF_RaidAccessFlags_t flags,
161 1.14 oster RF_AllocListElem_t *allocList,
162 1.14 oster int nfaults,
163 1.35 christos void (*redFunc) (RF_DagNode_t *),
164 1.14 oster int allowBufferRecycle)
165 1.1 oster {
166 1.32 martin int nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
167 1.3 oster rdnodesFaked;
168 1.32 martin RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *termNode;
169 1.32 martin #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
170 1.32 martin RF_DagNode_t *wnqNode;
171 1.32 martin #endif
172 1.18 oster RF_DagNode_t *wndNodes, *rrdNodes, *xorNode, *commitNode;
173 1.18 oster RF_DagNode_t *tmpNode, *tmpwndNode, *tmprrdNode;
174 1.3 oster RF_SectorCount_t sectorsPerSU;
175 1.3 oster RF_ReconUnitNum_t which_ru;
176 1.3 oster char *xorTargetBuf = NULL; /* the target buffer for the XOR
177 1.3 oster * operation */
178 1.19 oster char overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
179 1.3 oster RF_AccessStripeMapHeader_t *new_asm_h[2];
180 1.3 oster RF_PhysDiskAddr_t *pda, *parityPDA;
181 1.3 oster RF_StripeNum_t parityStripeID;
182 1.3 oster RF_PhysDiskAddr_t *failedPDA;
183 1.3 oster RF_RaidLayout_t *layoutPtr;
184 1.3 oster
185 1.3 oster layoutPtr = &(raidPtr->Layout);
186 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
187 1.3 oster &which_ru);
188 1.3 oster sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
189 1.3 oster /* failedPDA points to the pda within the asm that targets the failed
190 1.3 oster * disk */
191 1.3 oster failedPDA = asmap->failedPDAs[0];
192 1.3 oster
193 1.16 oster #if RF_DEBUG_DAG
194 1.3 oster if (rf_dagDebug)
195 1.3 oster printf("[Creating degraded-write DAG]\n");
196 1.16 oster #endif
197 1.3 oster
198 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
199 1.3 oster dag_h->creator = "SimpleDegradedWriteDAG";
200 1.3 oster
201 1.3 oster /*
202 1.3 oster * Generate two ASMs identifying the surviving data
203 1.3 oster * we need in order to recover the lost data.
204 1.3 oster */
205 1.3 oster /* overlappingPDAs array must be zero'd */
206 1.19 oster memset(overlappingPDAs, 0, RF_MAXCOL);
207 1.3 oster rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
208 1.3 oster &nXorBufs, NULL, overlappingPDAs, allocList);
209 1.3 oster
210 1.3 oster /* create all the nodes at once */
211 1.3 oster nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is
212 1.3 oster * generated for the
213 1.3 oster * failed pda */
214 1.3 oster
215 1.3 oster nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
216 1.3 oster ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
217 1.3 oster /*
218 1.3 oster * XXX
219 1.3 oster *
220 1.3 oster * There's a bug with a complete stripe overwrite- that means 0 reads
221 1.3 oster * of old data, and the rest of the DAG generation code doesn't like
222 1.3 oster * that. A release is coming, and I don't wanna risk breaking a critical
223 1.3 oster * DAG generator, so here's what I'm gonna do- if there's no read nodes,
224 1.3 oster * I'm gonna fake there being a read node, and I'm gonna swap in a
225 1.3 oster * no-op node in its place (to make all the link-up code happy).
226 1.3 oster * This should be fixed at some point. --jimz
227 1.3 oster */
228 1.3 oster if (nRrdNodes == 0) {
229 1.3 oster nRrdNodes = 1;
230 1.3 oster rdnodesFaked = 1;
231 1.3 oster } else {
232 1.3 oster rdnodesFaked = 0;
233 1.3 oster }
234 1.18 oster
235 1.36 oster blockNode = rf_AllocDAGNode(raidPtr);
236 1.18 oster blockNode->list_next = dag_h->nodes;
237 1.18 oster dag_h->nodes = blockNode;
238 1.18 oster
239 1.36 oster commitNode = rf_AllocDAGNode(raidPtr);
240 1.18 oster commitNode->list_next = dag_h->nodes;
241 1.18 oster dag_h->nodes = commitNode;
242 1.18 oster
243 1.36 oster unblockNode = rf_AllocDAGNode(raidPtr);
244 1.18 oster unblockNode->list_next = dag_h->nodes;
245 1.18 oster dag_h->nodes = unblockNode;
246 1.18 oster
247 1.36 oster termNode = rf_AllocDAGNode(raidPtr);
248 1.18 oster termNode->list_next = dag_h->nodes;
249 1.18 oster dag_h->nodes = termNode;
250 1.18 oster
251 1.36 oster xorNode = rf_AllocDAGNode(raidPtr);
252 1.18 oster xorNode->list_next = dag_h->nodes;
253 1.18 oster dag_h->nodes = xorNode;
254 1.18 oster
255 1.36 oster wnpNode = rf_AllocDAGNode(raidPtr);
256 1.18 oster wnpNode->list_next = dag_h->nodes;
257 1.18 oster dag_h->nodes = wnpNode;
258 1.18 oster
259 1.18 oster for (i = 0; i < nWndNodes; i++) {
260 1.36 oster tmpNode = rf_AllocDAGNode(raidPtr);
261 1.18 oster tmpNode->list_next = dag_h->nodes;
262 1.18 oster dag_h->nodes = tmpNode;
263 1.18 oster }
264 1.25 perry wndNodes = dag_h->nodes;
265 1.18 oster
266 1.18 oster for (i = 0; i < nRrdNodes; i++) {
267 1.36 oster tmpNode = rf_AllocDAGNode(raidPtr);
268 1.18 oster tmpNode->list_next = dag_h->nodes;
269 1.18 oster dag_h->nodes = tmpNode;
270 1.18 oster }
271 1.18 oster rrdNodes = dag_h->nodes;
272 1.18 oster
273 1.17 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
274 1.3 oster if (nfaults == 2) {
275 1.36 oster wnqNode = rf_AllocDAGNode(raidPtr);
276 1.18 oster wnqNode->list_next = dag_h->nodes;
277 1.18 oster dag_h->nodes = wnqNode;
278 1.3 oster } else {
279 1.3 oster wnqNode = NULL;
280 1.3 oster }
281 1.17 oster #endif
282 1.3 oster
283 1.3 oster /* this dag can not commit until all rrd and xor Nodes have completed */
284 1.3 oster dag_h->numCommitNodes = 1;
285 1.3 oster dag_h->numCommits = 0;
286 1.3 oster dag_h->numSuccedents = 1;
287 1.3 oster
288 1.3 oster RF_ASSERT(nRrdNodes > 0);
289 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
290 1.3 oster NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
291 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
292 1.3 oster NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
293 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
294 1.3 oster NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
295 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
296 1.3 oster NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
297 1.3 oster rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
298 1.3 oster nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
299 1.3 oster
300 1.3 oster /*
301 1.3 oster * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
302 1.3 oster * the failed buffer, save a pointer to it so we can use it as the target
303 1.3 oster * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
304 1.3 oster * a buffer is the same size as the failed buffer, it must also be at the
305 1.3 oster * same alignment within the SU.
306 1.3 oster */
307 1.3 oster i = 0;
308 1.18 oster tmprrdNode = rrdNodes;
309 1.3 oster if (new_asm_h[0]) {
310 1.3 oster for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
311 1.3 oster i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
312 1.3 oster i++, pda = pda->next) {
313 1.18 oster rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
314 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
315 1.3 oster RF_ASSERT(pda);
316 1.18 oster tmprrdNode->params[0].p = pda;
317 1.18 oster tmprrdNode->params[1].p = pda->bufPtr;
318 1.18 oster tmprrdNode->params[2].v = parityStripeID;
319 1.18 oster tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
320 1.18 oster tmprrdNode = tmprrdNode->list_next;
321 1.3 oster }
322 1.3 oster }
323 1.3 oster /* i now equals the number of stripe units accessed in new_asm_h[0] */
324 1.25 perry /* Note that for tmprrdNode, this means a continuation from above, so no need to
325 1.18 oster assign it anything.. */
326 1.3 oster if (new_asm_h[1]) {
327 1.3 oster for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
328 1.3 oster j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
329 1.3 oster j++, pda = pda->next) {
330 1.18 oster rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
331 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
332 1.3 oster RF_ASSERT(pda);
333 1.18 oster tmprrdNode->params[0].p = pda;
334 1.18 oster tmprrdNode->params[1].p = pda->bufPtr;
335 1.18 oster tmprrdNode->params[2].v = parityStripeID;
336 1.18 oster tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
337 1.3 oster if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
338 1.3 oster xorTargetBuf = pda->bufPtr;
339 1.18 oster tmprrdNode = tmprrdNode->list_next;
340 1.3 oster }
341 1.3 oster }
342 1.3 oster if (rdnodesFaked) {
343 1.3 oster /*
344 1.3 oster * This is where we'll init that fake noop read node
345 1.3 oster * (XXX should the wakeup func be different?)
346 1.3 oster */
347 1.18 oster /* node that rrdNodes will just be a single node... */
348 1.18 oster rf_InitNode(rrdNodes, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
349 1.3 oster NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
350 1.3 oster }
351 1.3 oster /*
352 1.3 oster * Make a PDA for the parity unit. The parity PDA should start at
353 1.3 oster * the same offset into the SU as the failed PDA.
354 1.3 oster */
355 1.3 oster /* Danner comment: I don't think this copy is really necessary. We are
356 1.3 oster * in one of two cases here. (1) The entire failed unit is written.
357 1.3 oster * Then asmap->parityInfo will describe the entire parity. (2) We are
358 1.3 oster * only writing a subset of the failed unit and nothing else. Then the
359 1.3 oster * asmap->parityInfo describes the failed unit and the copy can also
360 1.3 oster * be avoided. */
361 1.3 oster
362 1.36 oster parityPDA = rf_AllocPhysDiskAddr(raidPtr);
363 1.19 oster parityPDA->next = dag_h->pda_cleanup_list;
364 1.19 oster dag_h->pda_cleanup_list = parityPDA;
365 1.3 oster parityPDA->col = asmap->parityInfo->col;
366 1.3 oster parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
367 1.3 oster * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
368 1.3 oster parityPDA->numSector = failedPDA->numSector;
369 1.3 oster
370 1.3 oster if (!xorTargetBuf) {
371 1.24 oster xorTargetBuf = rf_AllocBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
372 1.3 oster }
373 1.3 oster /* init the Wnp node */
374 1.3 oster rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
375 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
376 1.3 oster wnpNode->params[0].p = parityPDA;
377 1.3 oster wnpNode->params[1].p = xorTargetBuf;
378 1.3 oster wnpNode->params[2].v = parityStripeID;
379 1.15 oster wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
380 1.3 oster
381 1.17 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
382 1.3 oster /* fill in the Wnq Node */
383 1.3 oster if (nfaults == 2) {
384 1.3 oster {
385 1.37 oster parityPDA = RF_MallocAndAdd(sizeof(*parityPDA), allocList);
386 1.3 oster parityPDA->col = asmap->qInfo->col;
387 1.3 oster parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
388 1.3 oster * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
389 1.3 oster parityPDA->numSector = failedPDA->numSector;
390 1.3 oster
391 1.3 oster rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
392 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
393 1.3 oster wnqNode->params[0].p = parityPDA;
394 1.34 christos xorNode->results[1] = BUF_ALLOC(failedPDA->numSector);
395 1.3 oster wnqNode->params[1].p = xorNode->results[1];
396 1.3 oster wnqNode->params[2].v = parityStripeID;
397 1.15 oster wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
398 1.3 oster }
399 1.3 oster }
400 1.17 oster #endif
401 1.3 oster /* fill in the Wnd nodes */
402 1.18 oster tmpwndNode = wndNodes;
403 1.3 oster for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
404 1.3 oster if (pda == failedPDA) {
405 1.3 oster i--;
406 1.3 oster continue;
407 1.3 oster }
408 1.18 oster rf_InitNode(tmpwndNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
409 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
410 1.3 oster RF_ASSERT(pda);
411 1.18 oster tmpwndNode->params[0].p = pda;
412 1.18 oster tmpwndNode->params[1].p = pda->bufPtr;
413 1.18 oster tmpwndNode->params[2].v = parityStripeID;
414 1.18 oster tmpwndNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
415 1.18 oster tmpwndNode = tmpwndNode->list_next;
416 1.3 oster }
417 1.3 oster
418 1.3 oster /* fill in the results of the xor node */
419 1.3 oster xorNode->results[0] = xorTargetBuf;
420 1.3 oster
421 1.3 oster /* fill in the params of the xor node */
422 1.3 oster
423 1.3 oster paramNum = 0;
424 1.3 oster if (rdnodesFaked == 0) {
425 1.18 oster tmprrdNode = rrdNodes;
426 1.3 oster for (i = 0; i < nRrdNodes; i++) {
427 1.3 oster /* all the Rrd nodes need to be xored together */
428 1.18 oster xorNode->params[paramNum++] = tmprrdNode->params[0];
429 1.18 oster xorNode->params[paramNum++] = tmprrdNode->params[1];
430 1.18 oster tmprrdNode = tmprrdNode->list_next;
431 1.3 oster }
432 1.3 oster }
433 1.18 oster tmpwndNode = wndNodes;
434 1.3 oster for (i = 0; i < nWndNodes; i++) {
435 1.3 oster /* any Wnd nodes that overlap the failed access need to be
436 1.3 oster * xored in */
437 1.3 oster if (overlappingPDAs[i]) {
438 1.36 oster pda = rf_AllocPhysDiskAddr(raidPtr);
439 1.18 oster memcpy((char *) pda, (char *) tmpwndNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
440 1.19 oster /* add it into the pda_cleanup_list *after* the copy, TYVM */
441 1.19 oster pda->next = dag_h->pda_cleanup_list;
442 1.19 oster dag_h->pda_cleanup_list = pda;
443 1.3 oster rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
444 1.3 oster xorNode->params[paramNum++].p = pda;
445 1.3 oster xorNode->params[paramNum++].p = pda->bufPtr;
446 1.3 oster }
447 1.18 oster tmpwndNode = tmpwndNode->list_next;
448 1.3 oster }
449 1.3 oster
450 1.3 oster /*
451 1.3 oster * Install the failed PDA into the xor param list so that the
452 1.3 oster * new data gets xor'd in.
453 1.3 oster */
454 1.3 oster xorNode->params[paramNum++].p = failedPDA;
455 1.3 oster xorNode->params[paramNum++].p = failedPDA->bufPtr;
456 1.3 oster
457 1.3 oster /*
458 1.3 oster * The last 2 params to the recovery xor node are always the failed
459 1.3 oster * PDA and the raidPtr. install the failedPDA even though we have just
460 1.3 oster * done so above. This allows us to use the same XOR function for both
461 1.3 oster * degraded reads and degraded writes.
462 1.3 oster */
463 1.3 oster xorNode->params[paramNum++].p = failedPDA;
464 1.3 oster xorNode->params[paramNum++].p = raidPtr;
465 1.3 oster RF_ASSERT(paramNum == 2 * nXorBufs + 2);
466 1.3 oster
467 1.3 oster /*
468 1.3 oster * Code to link nodes begins here
469 1.3 oster */
470 1.3 oster
471 1.3 oster /* link header to block node */
472 1.3 oster RF_ASSERT(blockNode->numAntecedents == 0);
473 1.3 oster dag_h->succedents[0] = blockNode;
474 1.3 oster
475 1.3 oster /* link block node to rd nodes */
476 1.3 oster RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
477 1.18 oster tmprrdNode = rrdNodes;
478 1.3 oster for (i = 0; i < nRrdNodes; i++) {
479 1.18 oster RF_ASSERT(tmprrdNode->numAntecedents == 1);
480 1.18 oster blockNode->succedents[i] = tmprrdNode;
481 1.18 oster tmprrdNode->antecedents[0] = blockNode;
482 1.18 oster tmprrdNode->antType[0] = rf_control;
483 1.18 oster tmprrdNode = tmprrdNode->list_next;
484 1.3 oster }
485 1.3 oster
486 1.3 oster /* link read nodes to xor node */
487 1.3 oster RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
488 1.18 oster tmprrdNode = rrdNodes;
489 1.3 oster for (i = 0; i < nRrdNodes; i++) {
490 1.18 oster RF_ASSERT(tmprrdNode->numSuccedents == 1);
491 1.18 oster tmprrdNode->succedents[0] = xorNode;
492 1.18 oster xorNode->antecedents[i] = tmprrdNode;
493 1.3 oster xorNode->antType[i] = rf_trueData;
494 1.18 oster tmprrdNode = tmprrdNode->list_next;
495 1.3 oster }
496 1.3 oster
497 1.3 oster /* link xor node to commit node */
498 1.3 oster RF_ASSERT(xorNode->numSuccedents == 1);
499 1.3 oster RF_ASSERT(commitNode->numAntecedents == 1);
500 1.3 oster xorNode->succedents[0] = commitNode;
501 1.3 oster commitNode->antecedents[0] = xorNode;
502 1.3 oster commitNode->antType[0] = rf_control;
503 1.3 oster
504 1.3 oster /* link commit node to wnd nodes */
505 1.3 oster RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
506 1.18 oster tmpwndNode = wndNodes;
507 1.3 oster for (i = 0; i < nWndNodes; i++) {
508 1.18 oster RF_ASSERT(tmpwndNode->numAntecedents == 1);
509 1.18 oster commitNode->succedents[i] = tmpwndNode;
510 1.18 oster tmpwndNode->antecedents[0] = commitNode;
511 1.18 oster tmpwndNode->antType[0] = rf_control;
512 1.22 oster tmpwndNode = tmpwndNode->list_next;
513 1.3 oster }
514 1.3 oster
515 1.3 oster /* link the commit node to wnp, wnq nodes */
516 1.3 oster RF_ASSERT(wnpNode->numAntecedents == 1);
517 1.3 oster commitNode->succedents[nWndNodes] = wnpNode;
518 1.3 oster wnpNode->antecedents[0] = commitNode;
519 1.3 oster wnpNode->antType[0] = rf_control;
520 1.17 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
521 1.3 oster if (nfaults == 2) {
522 1.3 oster RF_ASSERT(wnqNode->numAntecedents == 1);
523 1.3 oster commitNode->succedents[nWndNodes + 1] = wnqNode;
524 1.3 oster wnqNode->antecedents[0] = commitNode;
525 1.3 oster wnqNode->antType[0] = rf_control;
526 1.3 oster }
527 1.17 oster #endif
528 1.3 oster /* link write new data nodes to unblock node */
529 1.3 oster RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
530 1.18 oster tmpwndNode = wndNodes;
531 1.3 oster for (i = 0; i < nWndNodes; i++) {
532 1.18 oster RF_ASSERT(tmpwndNode->numSuccedents == 1);
533 1.18 oster tmpwndNode->succedents[0] = unblockNode;
534 1.18 oster unblockNode->antecedents[i] = tmpwndNode;
535 1.3 oster unblockNode->antType[i] = rf_control;
536 1.22 oster tmpwndNode = tmpwndNode->list_next;
537 1.3 oster }
538 1.3 oster
539 1.3 oster /* link write new parity node to unblock node */
540 1.3 oster RF_ASSERT(wnpNode->numSuccedents == 1);
541 1.3 oster wnpNode->succedents[0] = unblockNode;
542 1.3 oster unblockNode->antecedents[nWndNodes] = wnpNode;
543 1.3 oster unblockNode->antType[nWndNodes] = rf_control;
544 1.3 oster
545 1.17 oster #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
546 1.3 oster /* link write new q node to unblock node */
547 1.3 oster if (nfaults == 2) {
548 1.3 oster RF_ASSERT(wnqNode->numSuccedents == 1);
549 1.3 oster wnqNode->succedents[0] = unblockNode;
550 1.3 oster unblockNode->antecedents[nWndNodes + 1] = wnqNode;
551 1.3 oster unblockNode->antType[nWndNodes + 1] = rf_control;
552 1.3 oster }
553 1.17 oster #endif
554 1.3 oster /* link unblock node to term node */
555 1.3 oster RF_ASSERT(unblockNode->numSuccedents == 1);
556 1.3 oster RF_ASSERT(termNode->numAntecedents == 1);
557 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
558 1.3 oster unblockNode->succedents[0] = termNode;
559 1.3 oster termNode->antecedents[0] = unblockNode;
560 1.3 oster termNode->antType[0] = rf_control;
561 1.1 oster }
562 1.1 oster #define CONS_PDA(if,start,num) \
563 1.12 oster pda_p->col = asmap->if->col; \
564 1.1 oster pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
565 1.1 oster pda_p->numSector = num; \
566 1.1 oster pda_p->next = NULL; \
567 1.34 christos pda_p->bufPtr = BUF_ALLOC(num)
568 1.37 oster #if (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
569 1.25 perry void
570 1.3 oster rf_WriteGenerateFailedAccessASMs(
571 1.3 oster RF_Raid_t * raidPtr,
572 1.3 oster RF_AccessStripeMap_t * asmap,
573 1.3 oster RF_PhysDiskAddr_t ** pdap,
574 1.3 oster int *nNodep,
575 1.3 oster RF_PhysDiskAddr_t ** pqpdap,
576 1.3 oster int *nPQNodep,
577 1.3 oster RF_AllocListElem_t * allocList)
578 1.1 oster {
579 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
580 1.3 oster int PDAPerDisk, i;
581 1.3 oster RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
582 1.3 oster int numDataCol = layoutPtr->numDataCol;
583 1.3 oster int state;
584 1.3 oster unsigned napdas;
585 1.33 christos RF_SectorNum_t fone_start, ftwo_start = 0;
586 1.3 oster RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
587 1.3 oster RF_PhysDiskAddr_t *pda_p;
588 1.3 oster RF_RaidAddr_t sosAddr;
589 1.3 oster
590 1.3 oster /* determine how many pda's we will have to generate per unaccess
591 1.3 oster * stripe. If there is only one failed data unit, it is one; if two,
592 1.31 mbalmer * possibly two, depending whether they overlap. */
593 1.3 oster
594 1.3 oster fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
595 1.3 oster
596 1.3 oster if (asmap->numDataFailed == 1) {
597 1.3 oster PDAPerDisk = 1;
598 1.3 oster state = 1;
599 1.34 christos *pqpdap = RF_MallocAndAdd(2 * sizeof(**pqpdap), allocList);
600 1.3 oster pda_p = *pqpdap;
601 1.3 oster /* build p */
602 1.3 oster CONS_PDA(parityInfo, fone_start, fone->numSector);
603 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
604 1.3 oster pda_p++;
605 1.3 oster /* build q */
606 1.3 oster CONS_PDA(qInfo, fone_start, fone->numSector);
607 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
608 1.3 oster } else {
609 1.3 oster ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
610 1.3 oster if (fone->numSector + ftwo->numSector > secPerSU) {
611 1.3 oster PDAPerDisk = 1;
612 1.3 oster state = 2;
613 1.34 christos *pqpdap = RF_MallocAndAdd(2 * sizeof(**pqpdap),
614 1.34 christos allocList);
615 1.3 oster pda_p = *pqpdap;
616 1.3 oster CONS_PDA(parityInfo, 0, secPerSU);
617 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
618 1.3 oster pda_p++;
619 1.3 oster CONS_PDA(qInfo, 0, secPerSU);
620 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
621 1.3 oster } else {
622 1.3 oster PDAPerDisk = 2;
623 1.3 oster state = 3;
624 1.3 oster /* four of them, fone, then ftwo */
625 1.34 christos *pqpdap = RF_MallocAndAdd(4 * sizeof(*pqpdap),
626 1.34 christos allocList);
627 1.3 oster pda_p = *pqpdap;
628 1.3 oster CONS_PDA(parityInfo, fone_start, fone->numSector);
629 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
630 1.3 oster pda_p++;
631 1.3 oster CONS_PDA(qInfo, fone_start, fone->numSector);
632 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
633 1.3 oster pda_p++;
634 1.3 oster CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
635 1.3 oster pda_p->type = RF_PDA_TYPE_PARITY;
636 1.3 oster pda_p++;
637 1.3 oster CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
638 1.3 oster pda_p->type = RF_PDA_TYPE_Q;
639 1.3 oster }
640 1.3 oster }
641 1.3 oster /* figure out number of nonaccessed pda */
642 1.3 oster napdas = PDAPerDisk * (numDataCol - 2);
643 1.3 oster *nPQNodep = PDAPerDisk;
644 1.3 oster
645 1.3 oster *nNodep = napdas;
646 1.3 oster if (napdas == 0)
647 1.3 oster return; /* short circuit */
648 1.3 oster
649 1.3 oster /* allocate up our list of pda's */
650 1.3 oster
651 1.34 christos pda_p = RF_MallocAndAdd(napdas * sizeof(*pda_p), allocList);
652 1.3 oster *pdap = pda_p;
653 1.3 oster
654 1.3 oster /* linkem together */
655 1.3 oster for (i = 0; i < (napdas - 1); i++)
656 1.3 oster pda_p[i].next = pda_p + (i + 1);
657 1.3 oster
658 1.3 oster sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
659 1.3 oster for (i = 0; i < numDataCol; i++) {
660 1.3 oster if ((pda_p - (*pdap)) == napdas)
661 1.3 oster continue;
662 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
663 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
664 1.12 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
665 1.3 oster /* skip over dead disks */
666 1.12 oster if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
667 1.3 oster continue;
668 1.3 oster switch (state) {
669 1.3 oster case 1: /* fone */
670 1.3 oster pda_p->numSector = fone->numSector;
671 1.3 oster pda_p->raidAddress += fone_start;
672 1.3 oster pda_p->startSector += fone_start;
673 1.34 christos pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
674 1.3 oster break;
675 1.3 oster case 2: /* full stripe */
676 1.3 oster pda_p->numSector = secPerSU;
677 1.34 christos pda_p->bufPtr = BUF_ALLOC(secPerSU);
678 1.3 oster break;
679 1.3 oster case 3: /* two slabs */
680 1.3 oster pda_p->numSector = fone->numSector;
681 1.3 oster pda_p->raidAddress += fone_start;
682 1.3 oster pda_p->startSector += fone_start;
683 1.34 christos pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
684 1.3 oster pda_p++;
685 1.3 oster pda_p->type = RF_PDA_TYPE_DATA;
686 1.3 oster pda_p->raidAddress = sosAddr + (i * secPerSU);
687 1.12 oster (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
688 1.3 oster pda_p->numSector = ftwo->numSector;
689 1.3 oster pda_p->raidAddress += ftwo_start;
690 1.3 oster pda_p->startSector += ftwo_start;
691 1.34 christos pda_p->bufPtr = BUF_ALLOC(pda_p->numSector);
692 1.3 oster break;
693 1.3 oster default:
694 1.3 oster RF_PANIC();
695 1.3 oster }
696 1.3 oster pda_p++;
697 1.1 oster }
698 1.1 oster
699 1.3 oster RF_ASSERT(pda_p - *pdap == napdas);
700 1.3 oster return;
701 1.1 oster }
702 1.1 oster #define DISK_NODE_PDA(node) ((node)->params[0].p)
703 1.1 oster
704 1.1 oster #define DISK_NODE_PARAMS(_node_,_p_) \
705 1.1 oster (_node_).params[0].p = _p_ ; \
706 1.1 oster (_node_).params[1].p = (_p_)->bufPtr; \
707 1.1 oster (_node_).params[2].v = parityStripeID; \
708 1.15 oster (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
709 1.1 oster
710 1.25 perry void
711 1.14 oster rf_DoubleDegSmallWrite(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
712 1.30 christos RF_DagHeader_t *dag_h, void *bp,
713 1.30 christos RF_RaidAccessFlags_t flags,
714 1.14 oster RF_AllocListElem_t *allocList,
715 1.28 oster const char *redundantReadNodeName,
716 1.30 christos const char *redundantWriteNodeName,
717 1.28 oster const char *recoveryNodeName,
718 1.35 christos void (*recovFunc) (RF_DagNode_t *))
719 1.1 oster {
720 1.3 oster RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
721 1.3 oster RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
722 1.3 oster *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
723 1.3 oster RF_PhysDiskAddr_t *pda, *pqPDAs;
724 1.3 oster RF_PhysDiskAddr_t *npdas;
725 1.3 oster int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
726 1.3 oster RF_ReconUnitNum_t which_ru;
727 1.3 oster int nPQNodes;
728 1.3 oster RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
729 1.3 oster
730 1.3 oster /* simple small write case - First part looks like a reconstruct-read
731 1.3 oster * of the failed data units. Then a write of all data units not
732 1.3 oster * failed. */
733 1.3 oster
734 1.3 oster
735 1.3 oster /* Hdr | ------Block- / / \ Rrd Rrd ... Rrd Rp Rq \ \
736 1.3 oster * / -------PQ----- / \ \ Wud Wp WQ \ | /
737 1.3 oster * --Unblock- | T
738 1.25 perry *
739 1.3 oster * Rrd = read recovery data (potentially none) Wud = write user data
740 1.3 oster * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
741 1.3 oster * (could be two)
742 1.25 perry *
743 1.3 oster */
744 1.3 oster
745 1.3 oster rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
746 1.3 oster
747 1.3 oster RF_ASSERT(asmap->numDataFailed == 1);
748 1.3 oster
749 1.3 oster nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
750 1.3 oster nReadNodes = nRrdNodes + 2 * nPQNodes;
751 1.3 oster nWriteNodes = nWudNodes + 2 * nPQNodes;
752 1.3 oster nNodes = 4 + nReadNodes + nWriteNodes;
753 1.3 oster
754 1.34 christos nodes = RF_MallocAndAdd(nNodes * sizeof(*nodes), allocList);
755 1.3 oster blockNode = nodes;
756 1.3 oster unblockNode = blockNode + 1;
757 1.3 oster termNode = unblockNode + 1;
758 1.3 oster recoveryNode = termNode + 1;
759 1.3 oster rrdNodes = recoveryNode + 1;
760 1.3 oster rpNodes = rrdNodes + nRrdNodes;
761 1.3 oster rqNodes = rpNodes + nPQNodes;
762 1.3 oster wudNodes = rqNodes + nPQNodes;
763 1.3 oster wpNodes = wudNodes + nWudNodes;
764 1.3 oster wqNodes = wpNodes + nPQNodes;
765 1.3 oster
766 1.3 oster dag_h->creator = "PQ_DDSimpleSmallWrite";
767 1.3 oster dag_h->numSuccedents = 1;
768 1.3 oster dag_h->succedents[0] = blockNode;
769 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
770 1.3 oster termNode->antecedents[0] = unblockNode;
771 1.3 oster termNode->antType[0] = rf_control;
772 1.3 oster
773 1.3 oster /* init the block and unblock nodes */
774 1.3 oster /* The block node has all the read nodes as successors */
775 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
776 1.3 oster for (i = 0; i < nReadNodes; i++)
777 1.3 oster blockNode->succedents[i] = rrdNodes + i;
778 1.3 oster
779 1.3 oster /* The unblock node has all the writes as successors */
780 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
781 1.3 oster for (i = 0; i < nWriteNodes; i++) {
782 1.3 oster unblockNode->antecedents[i] = wudNodes + i;
783 1.3 oster unblockNode->antType[i] = rf_control;
784 1.3 oster }
785 1.3 oster unblockNode->succedents[0] = termNode;
786 1.1 oster
787 1.1 oster #define INIT_READ_NODE(node,name) \
788 1.1 oster rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
789 1.1 oster (node)->succedents[0] = recoveryNode; \
790 1.1 oster (node)->antecedents[0] = blockNode; \
791 1.1 oster (node)->antType[0] = rf_control;
792 1.1 oster
793 1.3 oster /* build the read nodes */
794 1.3 oster pda = npdas;
795 1.3 oster for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
796 1.3 oster INIT_READ_NODE(rrdNodes + i, "rrd");
797 1.3 oster DISK_NODE_PARAMS(rrdNodes[i], pda);
798 1.3 oster }
799 1.3 oster
800 1.3 oster /* read redundancy pdas */
801 1.3 oster pda = pqPDAs;
802 1.3 oster INIT_READ_NODE(rpNodes, "Rp");
803 1.3 oster RF_ASSERT(pda);
804 1.3 oster DISK_NODE_PARAMS(rpNodes[0], pda);
805 1.3 oster pda++;
806 1.3 oster INIT_READ_NODE(rqNodes, redundantReadNodeName);
807 1.3 oster RF_ASSERT(pda);
808 1.3 oster DISK_NODE_PARAMS(rqNodes[0], pda);
809 1.3 oster if (nPQNodes == 2) {
810 1.3 oster pda++;
811 1.3 oster INIT_READ_NODE(rpNodes + 1, "Rp");
812 1.3 oster RF_ASSERT(pda);
813 1.3 oster DISK_NODE_PARAMS(rpNodes[1], pda);
814 1.3 oster pda++;
815 1.3 oster INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
816 1.3 oster RF_ASSERT(pda);
817 1.3 oster DISK_NODE_PARAMS(rqNodes[1], pda);
818 1.3 oster }
819 1.3 oster /* the recovery node has all reads as precedessors and all writes as
820 1.3 oster * successors. It generates a result for every write P or write Q
821 1.3 oster * node. As parameters, it takes a pda per read and a pda per stripe
822 1.3 oster * of user data written. It also takes as the last params the raidPtr
823 1.3 oster * and asm. For results, it takes PDA for P & Q. */
824 1.3 oster
825 1.3 oster
826 1.3 oster rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
827 1.3 oster nWriteNodes, /* succesors */
828 1.3 oster nReadNodes, /* preds */
829 1.3 oster nReadNodes + nWudNodes + 3, /* params */
830 1.3 oster 2 * nPQNodes, /* results */
831 1.3 oster dag_h, recoveryNodeName, allocList);
832 1.3 oster
833 1.3 oster
834 1.3 oster
835 1.3 oster for (i = 0; i < nReadNodes; i++) {
836 1.3 oster recoveryNode->antecedents[i] = rrdNodes + i;
837 1.3 oster recoveryNode->antType[i] = rf_control;
838 1.3 oster recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
839 1.3 oster }
840 1.3 oster for (i = 0; i < nWudNodes; i++) {
841 1.3 oster recoveryNode->succedents[i] = wudNodes + i;
842 1.3 oster }
843 1.3 oster recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
844 1.3 oster recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
845 1.3 oster recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
846 1.3 oster
847 1.3 oster for (; i < nWriteNodes; i++)
848 1.3 oster recoveryNode->succedents[i] = wudNodes + i;
849 1.3 oster
850 1.3 oster pda = pqPDAs;
851 1.3 oster recoveryNode->results[0] = pda;
852 1.3 oster pda++;
853 1.3 oster recoveryNode->results[1] = pda;
854 1.3 oster if (nPQNodes == 2) {
855 1.3 oster pda++;
856 1.3 oster recoveryNode->results[2] = pda;
857 1.3 oster pda++;
858 1.3 oster recoveryNode->results[3] = pda;
859 1.3 oster }
860 1.3 oster /* fill writes */
861 1.1 oster #define INIT_WRITE_NODE(node,name) \
862 1.1 oster rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
863 1.1 oster (node)->succedents[0] = unblockNode; \
864 1.1 oster (node)->antecedents[0] = recoveryNode; \
865 1.1 oster (node)->antType[0] = rf_control;
866 1.1 oster
867 1.3 oster pda = asmap->physInfo;
868 1.3 oster for (i = 0; i < nWudNodes; i++) {
869 1.3 oster INIT_WRITE_NODE(wudNodes + i, "Wd");
870 1.3 oster DISK_NODE_PARAMS(wudNodes[i], pda);
871 1.3 oster recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
872 1.3 oster pda = pda->next;
873 1.3 oster }
874 1.3 oster /* write redundancy pdas */
875 1.3 oster pda = pqPDAs;
876 1.3 oster INIT_WRITE_NODE(wpNodes, "Wp");
877 1.3 oster RF_ASSERT(pda);
878 1.3 oster DISK_NODE_PARAMS(wpNodes[0], pda);
879 1.3 oster pda++;
880 1.3 oster INIT_WRITE_NODE(wqNodes, "Wq");
881 1.3 oster RF_ASSERT(pda);
882 1.3 oster DISK_NODE_PARAMS(wqNodes[0], pda);
883 1.3 oster if (nPQNodes == 2) {
884 1.3 oster pda++;
885 1.3 oster INIT_WRITE_NODE(wpNodes + 1, "Wp");
886 1.3 oster RF_ASSERT(pda);
887 1.3 oster DISK_NODE_PARAMS(wpNodes[1], pda);
888 1.3 oster pda++;
889 1.3 oster INIT_WRITE_NODE(wqNodes + 1, "Wq");
890 1.3 oster RF_ASSERT(pda);
891 1.3 oster DISK_NODE_PARAMS(wqNodes[1], pda);
892 1.3 oster }
893 1.1 oster }
894 1.6 oster #endif /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
895