Home | History | Annotate | Line # | Download | only in raidframe
rf_dagdegwr.c revision 1.8
      1  1.8    oster /*	$NetBSD: rf_dagdegwr.c,v 1.8 2001/10/04 15:58:52 oster Exp $	*/
      2  1.1    oster /*
      3  1.1    oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4  1.1    oster  * All rights reserved.
      5  1.1    oster  *
      6  1.1    oster  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  1.1    oster  *
      8  1.1    oster  * Permission to use, copy, modify and distribute this software and
      9  1.1    oster  * its documentation is hereby granted, provided that both the copyright
     10  1.1    oster  * notice and this permission notice appear in all copies of the
     11  1.1    oster  * software, derivative works or modified versions, and any portions
     12  1.1    oster  * thereof, and that both notices appear in supporting documentation.
     13  1.1    oster  *
     14  1.1    oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  1.1    oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  1.1    oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  1.1    oster  *
     18  1.1    oster  * Carnegie Mellon requests users of this software to return to
     19  1.1    oster  *
     20  1.1    oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  1.1    oster  *  School of Computer Science
     22  1.1    oster  *  Carnegie Mellon University
     23  1.1    oster  *  Pittsburgh PA 15213-3890
     24  1.1    oster  *
     25  1.1    oster  * any improvements or extensions that they make and grant Carnegie the
     26  1.1    oster  * rights to redistribute these changes.
     27  1.1    oster  */
     28  1.1    oster 
     29  1.1    oster /*
     30  1.1    oster  * rf_dagdegwr.c
     31  1.1    oster  *
     32  1.1    oster  * code for creating degraded write DAGs
     33  1.1    oster  *
     34  1.1    oster  */
     35  1.1    oster 
     36  1.8    oster #include <dev/raidframe/raidframevar.h>
     37  1.8    oster 
     38  1.1    oster #include "rf_raid.h"
     39  1.1    oster #include "rf_dag.h"
     40  1.1    oster #include "rf_dagutils.h"
     41  1.1    oster #include "rf_dagfuncs.h"
     42  1.1    oster #include "rf_debugMem.h"
     43  1.1    oster #include "rf_memchunk.h"
     44  1.1    oster #include "rf_general.h"
     45  1.1    oster #include "rf_dagdegwr.h"
     46  1.1    oster 
     47  1.1    oster 
     48  1.1    oster /******************************************************************************
     49  1.1    oster  *
     50  1.1    oster  * General comments on DAG creation:
     51  1.3    oster  *
     52  1.1    oster  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     53  1.1    oster  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     54  1.1    oster  * is reached, the execution engine will halt forward execution and work
     55  1.1    oster  * backward through the graph, executing the undo functions.  Assuming that
     56  1.1    oster  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     57  1.1    oster  * does not make changes to permanent state, the graph will fail atomically.
     58  1.1    oster  * If an error occurs after the Cmt node executes, the engine will roll-forward
     59  1.1    oster  * through the graph, blindly executing nodes until it reaches the end.
     60  1.1    oster  * If a graph reaches the end, it is assumed to have completed successfully.
     61  1.1    oster  *
     62  1.1    oster  * A graph has only 1 Cmt node.
     63  1.1    oster  *
     64  1.1    oster  */
     65  1.1    oster 
     66  1.1    oster 
     67  1.1    oster /******************************************************************************
     68  1.1    oster  *
     69  1.1    oster  * The following wrappers map the standard DAG creation interface to the
     70  1.1    oster  * DAG creation routines.  Additionally, these wrappers enable experimentation
     71  1.1    oster  * with new DAG structures by providing an extra level of indirection, allowing
     72  1.1    oster  * the DAG creation routines to be replaced at this single point.
     73  1.1    oster  */
     74  1.1    oster 
     75  1.3    oster static
     76  1.3    oster RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
     77  1.1    oster {
     78  1.3    oster 	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
     79  1.3    oster 	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
     80  1.1    oster }
     81  1.1    oster 
     82  1.3    oster void
     83  1.3    oster rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
     84  1.3    oster 	RF_Raid_t *raidPtr;
     85  1.3    oster 	RF_AccessStripeMap_t *asmap;
     86  1.3    oster 	RF_DagHeader_t *dag_h;
     87  1.3    oster 	void   *bp;
     88  1.3    oster 	RF_RaidAccessFlags_t flags;
     89  1.3    oster 	RF_AllocListElem_t *allocList;
     90  1.1    oster {
     91  1.3    oster 
     92  1.3    oster 	RF_ASSERT(asmap->numDataFailed == 1);
     93  1.3    oster 	dag_h->creator = "DegradedWriteDAG";
     94  1.3    oster 
     95  1.7  thorpej 	/*
     96  1.7  thorpej 	 * if the access writes only a portion of the failed unit, and also
     97  1.3    oster 	 * writes some portion of at least one surviving unit, we create two
     98  1.3    oster 	 * DAGs, one for the failed component and one for the non-failed
     99  1.3    oster 	 * component, and do them sequentially.  Note that the fact that we're
    100  1.3    oster 	 * accessing only a portion of the failed unit indicates that the
    101  1.3    oster 	 * access either starts or ends in the failed unit, and hence we need
    102  1.3    oster 	 * create only two dags.  This is inefficient in that the same data or
    103  1.3    oster 	 * parity can get read and written twice using this structure.  I need
    104  1.7  thorpej 	 * to fix this to do the access all at once.
    105  1.7  thorpej 	 */
    106  1.7  thorpej 	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
    107  1.7  thorpej 		    asmap->failedPDAs[0]->numSector !=
    108  1.7  thorpej 			raidPtr->Layout.sectorsPerStripeUnit));
    109  1.7  thorpej 	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    110  1.7  thorpej 	    allocList);
    111  1.1    oster }
    112  1.1    oster 
    113  1.1    oster 
    114  1.1    oster 
    115  1.1    oster /******************************************************************************
    116  1.1    oster  *
    117  1.1    oster  * DAG creation code begins here
    118  1.1    oster  */
    119  1.1    oster 
    120  1.1    oster 
    121  1.1    oster 
    122  1.1    oster /******************************************************************************
    123  1.1    oster  *
    124  1.1    oster  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
    125  1.1    oster  * write, which is as follows
    126  1.1    oster  *
    127  1.1    oster  *                                        / {Wnq} --\
    128  1.1    oster  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
    129  1.1    oster  *                  \  {Rod} /            \  Wnd ---/
    130  1.1    oster  *                                        \ {Wnd} -/
    131  1.1    oster  *
    132  1.1    oster  * commit nodes: Xor, Wnd
    133  1.1    oster  *
    134  1.1    oster  * IMPORTANT:
    135  1.1    oster  * This DAG generator does not work for double-degraded archs since it does not
    136  1.1    oster  * generate Q
    137  1.1    oster  *
    138  1.1    oster  * This dag is essentially identical to the large-write dag, except that the
    139  1.1    oster  * write to the failed data unit is suppressed.
    140  1.1    oster  *
    141  1.1    oster  * IMPORTANT:  this dag does not work in the case where the access writes only
    142  1.1    oster  * a portion of the failed unit, and also writes some portion of at least one
    143  1.1    oster  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
    144  1.1    oster  *
    145  1.1    oster  * The block & unblock nodes are leftovers from a previous version.  They
    146  1.1    oster  * do nothing, but I haven't deleted them because it would be a tremendous
    147  1.1    oster  * effort to put them back in.
    148  1.1    oster  *
    149  1.1    oster  * This dag is used whenever a one of the data units in a write has failed.
    150  1.1    oster  * If it is the parity unit that failed, the nonredundant write dag (below)
    151  1.1    oster  * is used.
    152  1.1    oster  *****************************************************************************/
    153  1.1    oster 
    154  1.3    oster void
    155  1.3    oster rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    156  1.3    oster     allocList, nfaults, redFunc, allowBufferRecycle)
    157  1.3    oster 	RF_Raid_t *raidPtr;
    158  1.3    oster 	RF_AccessStripeMap_t *asmap;
    159  1.3    oster 	RF_DagHeader_t *dag_h;
    160  1.3    oster 	void   *bp;
    161  1.3    oster 	RF_RaidAccessFlags_t flags;
    162  1.3    oster 	RF_AllocListElem_t *allocList;
    163  1.3    oster 	int     nfaults;
    164  1.3    oster 	int     (*redFunc) (RF_DagNode_t *);
    165  1.3    oster 	int     allowBufferRecycle;
    166  1.1    oster {
    167  1.3    oster 	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
    168  1.3    oster 	        rdnodesFaked;
    169  1.3    oster 	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
    170  1.3    oster 	RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
    171  1.3    oster 	RF_SectorCount_t sectorsPerSU;
    172  1.3    oster 	RF_ReconUnitNum_t which_ru;
    173  1.3    oster 	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
    174  1.3    oster 					 * operation */
    175  1.3    oster 	char   *overlappingPDAs;/* a temporary array of flags */
    176  1.3    oster 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    177  1.3    oster 	RF_PhysDiskAddr_t *pda, *parityPDA;
    178  1.3    oster 	RF_StripeNum_t parityStripeID;
    179  1.3    oster 	RF_PhysDiskAddr_t *failedPDA;
    180  1.3    oster 	RF_RaidLayout_t *layoutPtr;
    181  1.3    oster 
    182  1.3    oster 	layoutPtr = &(raidPtr->Layout);
    183  1.3    oster 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    184  1.3    oster 	    &which_ru);
    185  1.3    oster 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    186  1.3    oster 	/* failedPDA points to the pda within the asm that targets the failed
    187  1.3    oster 	 * disk */
    188  1.3    oster 	failedPDA = asmap->failedPDAs[0];
    189  1.3    oster 
    190  1.3    oster 	if (rf_dagDebug)
    191  1.3    oster 		printf("[Creating degraded-write DAG]\n");
    192  1.3    oster 
    193  1.3    oster 	RF_ASSERT(asmap->numDataFailed == 1);
    194  1.3    oster 	dag_h->creator = "SimpleDegradedWriteDAG";
    195  1.3    oster 
    196  1.3    oster 	/*
    197  1.3    oster          * Generate two ASMs identifying the surviving data
    198  1.3    oster          * we need in order to recover the lost data.
    199  1.3    oster          */
    200  1.3    oster 	/* overlappingPDAs array must be zero'd */
    201  1.3    oster 	RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
    202  1.3    oster 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
    203  1.3    oster 	    &nXorBufs, NULL, overlappingPDAs, allocList);
    204  1.3    oster 
    205  1.3    oster 	/* create all the nodes at once */
    206  1.3    oster 	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
    207  1.3    oster 							 * generated for the
    208  1.3    oster 							 * failed pda */
    209  1.3    oster 
    210  1.3    oster 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    211  1.3    oster 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    212  1.3    oster 	/*
    213  1.3    oster          * XXX
    214  1.3    oster          *
    215  1.3    oster          * There's a bug with a complete stripe overwrite- that means 0 reads
    216  1.3    oster          * of old data, and the rest of the DAG generation code doesn't like
    217  1.3    oster          * that. A release is coming, and I don't wanna risk breaking a critical
    218  1.3    oster          * DAG generator, so here's what I'm gonna do- if there's no read nodes,
    219  1.3    oster          * I'm gonna fake there being a read node, and I'm gonna swap in a
    220  1.3    oster          * no-op node in its place (to make all the link-up code happy).
    221  1.3    oster          * This should be fixed at some point.  --jimz
    222  1.3    oster          */
    223  1.3    oster 	if (nRrdNodes == 0) {
    224  1.3    oster 		nRrdNodes = 1;
    225  1.3    oster 		rdnodesFaked = 1;
    226  1.3    oster 	} else {
    227  1.3    oster 		rdnodesFaked = 0;
    228  1.3    oster 	}
    229  1.3    oster 	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
    230  1.3    oster 	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
    231  1.3    oster 	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
    232  1.3    oster 	    (RF_DagNode_t *), allocList);
    233  1.3    oster 	i = 0;
    234  1.3    oster 	blockNode = &nodes[i];
    235  1.3    oster 	i += 1;
    236  1.3    oster 	commitNode = &nodes[i];
    237  1.3    oster 	i += 1;
    238  1.3    oster 	unblockNode = &nodes[i];
    239  1.3    oster 	i += 1;
    240  1.3    oster 	termNode = &nodes[i];
    241  1.3    oster 	i += 1;
    242  1.3    oster 	xorNode = &nodes[i];
    243  1.3    oster 	i += 1;
    244  1.3    oster 	wnpNode = &nodes[i];
    245  1.3    oster 	i += 1;
    246  1.3    oster 	wndNodes = &nodes[i];
    247  1.3    oster 	i += nWndNodes;
    248  1.3    oster 	rrdNodes = &nodes[i];
    249  1.3    oster 	i += nRrdNodes;
    250  1.3    oster 	if (nfaults == 2) {
    251  1.3    oster 		wnqNode = &nodes[i];
    252  1.3    oster 		i += 1;
    253  1.3    oster 	} else {
    254  1.3    oster 		wnqNode = NULL;
    255  1.3    oster 	}
    256  1.3    oster 	RF_ASSERT(i == nNodes);
    257  1.3    oster 
    258  1.3    oster 	/* this dag can not commit until all rrd and xor Nodes have completed */
    259  1.3    oster 	dag_h->numCommitNodes = 1;
    260  1.3    oster 	dag_h->numCommits = 0;
    261  1.3    oster 	dag_h->numSuccedents = 1;
    262  1.3    oster 
    263  1.3    oster 	RF_ASSERT(nRrdNodes > 0);
    264  1.3    oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    265  1.3    oster 	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
    266  1.3    oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    267  1.3    oster 	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    268  1.3    oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    269  1.3    oster 	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
    270  1.3    oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    271  1.3    oster 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    272  1.3    oster 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    273  1.3    oster 	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
    274  1.3    oster 
    275  1.3    oster 	/*
    276  1.3    oster          * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
    277  1.3    oster          * the failed buffer, save a pointer to it so we can use it as the target
    278  1.3    oster          * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
    279  1.3    oster          * a buffer is the same size as the failed buffer, it must also be at the
    280  1.3    oster          * same alignment within the SU.
    281  1.3    oster          */
    282  1.3    oster 	i = 0;
    283  1.3    oster 	if (new_asm_h[0]) {
    284  1.3    oster 		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
    285  1.3    oster 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    286  1.3    oster 		    i++, pda = pda->next) {
    287  1.3    oster 			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    288  1.3    oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    289  1.3    oster 			RF_ASSERT(pda);
    290  1.3    oster 			rrdNodes[i].params[0].p = pda;
    291  1.3    oster 			rrdNodes[i].params[1].p = pda->bufPtr;
    292  1.3    oster 			rrdNodes[i].params[2].v = parityStripeID;
    293  1.3    oster 			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    294  1.3    oster 		}
    295  1.3    oster 	}
    296  1.3    oster 	/* i now equals the number of stripe units accessed in new_asm_h[0] */
    297  1.3    oster 	if (new_asm_h[1]) {
    298  1.3    oster 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    299  1.3    oster 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    300  1.3    oster 		    j++, pda = pda->next) {
    301  1.3    oster 			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    302  1.3    oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    303  1.3    oster 			RF_ASSERT(pda);
    304  1.3    oster 			rrdNodes[i + j].params[0].p = pda;
    305  1.3    oster 			rrdNodes[i + j].params[1].p = pda->bufPtr;
    306  1.3    oster 			rrdNodes[i + j].params[2].v = parityStripeID;
    307  1.3    oster 			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    308  1.3    oster 			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
    309  1.3    oster 				xorTargetBuf = pda->bufPtr;
    310  1.3    oster 		}
    311  1.3    oster 	}
    312  1.3    oster 	if (rdnodesFaked) {
    313  1.3    oster 		/*
    314  1.3    oster 	         * This is where we'll init that fake noop read node
    315  1.3    oster 	         * (XXX should the wakeup func be different?)
    316  1.3    oster 	         */
    317  1.3    oster 		rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    318  1.3    oster 		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
    319  1.3    oster 	}
    320  1.3    oster 	/*
    321  1.3    oster          * Make a PDA for the parity unit.  The parity PDA should start at
    322  1.3    oster          * the same offset into the SU as the failed PDA.
    323  1.3    oster          */
    324  1.3    oster 	/* Danner comment: I don't think this copy is really necessary. We are
    325  1.3    oster 	 * in one of two cases here. (1) The entire failed unit is written.
    326  1.3    oster 	 * Then asmap->parityInfo will describe the entire parity. (2) We are
    327  1.3    oster 	 * only writing a subset of the failed unit and nothing else. Then the
    328  1.3    oster 	 * asmap->parityInfo describes the failed unit and the copy can also
    329  1.3    oster 	 * be avoided. */
    330  1.3    oster 
    331  1.3    oster 	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    332  1.3    oster 	parityPDA->row = asmap->parityInfo->row;
    333  1.3    oster 	parityPDA->col = asmap->parityInfo->col;
    334  1.3    oster 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    335  1.3    oster 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    336  1.3    oster 	parityPDA->numSector = failedPDA->numSector;
    337  1.3    oster 
    338  1.3    oster 	if (!xorTargetBuf) {
    339  1.3    oster 		RF_CallocAndAdd(xorTargetBuf, 1,
    340  1.3    oster 		    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    341  1.3    oster 	}
    342  1.3    oster 	/* init the Wnp node */
    343  1.3    oster 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    344  1.3    oster 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    345  1.3    oster 	wnpNode->params[0].p = parityPDA;
    346  1.3    oster 	wnpNode->params[1].p = xorTargetBuf;
    347  1.3    oster 	wnpNode->params[2].v = parityStripeID;
    348  1.3    oster 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    349  1.3    oster 
    350  1.3    oster 	/* fill in the Wnq Node */
    351  1.3    oster 	if (nfaults == 2) {
    352  1.3    oster 		{
    353  1.3    oster 			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
    354  1.3    oster 			    (RF_PhysDiskAddr_t *), allocList);
    355  1.3    oster 			parityPDA->row = asmap->qInfo->row;
    356  1.3    oster 			parityPDA->col = asmap->qInfo->col;
    357  1.3    oster 			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
    358  1.3    oster 			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    359  1.3    oster 			parityPDA->numSector = failedPDA->numSector;
    360  1.3    oster 
    361  1.3    oster 			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    362  1.3    oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    363  1.3    oster 			wnqNode->params[0].p = parityPDA;
    364  1.3    oster 			RF_CallocAndAdd(xorNode->results[1], 1,
    365  1.3    oster 			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    366  1.3    oster 			wnqNode->params[1].p = xorNode->results[1];
    367  1.3    oster 			wnqNode->params[2].v = parityStripeID;
    368  1.3    oster 			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    369  1.3    oster 		}
    370  1.3    oster 	}
    371  1.3    oster 	/* fill in the Wnd nodes */
    372  1.3    oster 	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
    373  1.3    oster 		if (pda == failedPDA) {
    374  1.3    oster 			i--;
    375  1.3    oster 			continue;
    376  1.3    oster 		}
    377  1.3    oster 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    378  1.3    oster 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    379  1.3    oster 		RF_ASSERT(pda);
    380  1.3    oster 		wndNodes[i].params[0].p = pda;
    381  1.3    oster 		wndNodes[i].params[1].p = pda->bufPtr;
    382  1.3    oster 		wndNodes[i].params[2].v = parityStripeID;
    383  1.3    oster 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    384  1.3    oster 	}
    385  1.3    oster 
    386  1.3    oster 	/* fill in the results of the xor node */
    387  1.3    oster 	xorNode->results[0] = xorTargetBuf;
    388  1.3    oster 
    389  1.3    oster 	/* fill in the params of the xor node */
    390  1.3    oster 
    391  1.3    oster 	paramNum = 0;
    392  1.3    oster 	if (rdnodesFaked == 0) {
    393  1.3    oster 		for (i = 0; i < nRrdNodes; i++) {
    394  1.3    oster 			/* all the Rrd nodes need to be xored together */
    395  1.3    oster 			xorNode->params[paramNum++] = rrdNodes[i].params[0];
    396  1.3    oster 			xorNode->params[paramNum++] = rrdNodes[i].params[1];
    397  1.3    oster 		}
    398  1.3    oster 	}
    399  1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    400  1.3    oster 		/* any Wnd nodes that overlap the failed access need to be
    401  1.3    oster 		 * xored in */
    402  1.3    oster 		if (overlappingPDAs[i]) {
    403  1.3    oster 			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    404  1.3    oster 			bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
    405  1.3    oster 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    406  1.3    oster 			xorNode->params[paramNum++].p = pda;
    407  1.3    oster 			xorNode->params[paramNum++].p = pda->bufPtr;
    408  1.3    oster 		}
    409  1.3    oster 	}
    410  1.3    oster 	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
    411  1.3    oster 
    412  1.3    oster 	/*
    413  1.3    oster          * Install the failed PDA into the xor param list so that the
    414  1.3    oster          * new data gets xor'd in.
    415  1.3    oster          */
    416  1.3    oster 	xorNode->params[paramNum++].p = failedPDA;
    417  1.3    oster 	xorNode->params[paramNum++].p = failedPDA->bufPtr;
    418  1.3    oster 
    419  1.3    oster 	/*
    420  1.3    oster          * The last 2 params to the recovery xor node are always the failed
    421  1.3    oster          * PDA and the raidPtr. install the failedPDA even though we have just
    422  1.3    oster          * done so above. This allows us to use the same XOR function for both
    423  1.3    oster          * degraded reads and degraded writes.
    424  1.3    oster          */
    425  1.3    oster 	xorNode->params[paramNum++].p = failedPDA;
    426  1.3    oster 	xorNode->params[paramNum++].p = raidPtr;
    427  1.3    oster 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    428  1.3    oster 
    429  1.3    oster 	/*
    430  1.3    oster          * Code to link nodes begins here
    431  1.3    oster          */
    432  1.3    oster 
    433  1.3    oster 	/* link header to block node */
    434  1.3    oster 	RF_ASSERT(blockNode->numAntecedents == 0);
    435  1.3    oster 	dag_h->succedents[0] = blockNode;
    436  1.3    oster 
    437  1.3    oster 	/* link block node to rd nodes */
    438  1.3    oster 	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
    439  1.3    oster 	for (i = 0; i < nRrdNodes; i++) {
    440  1.3    oster 		RF_ASSERT(rrdNodes[i].numAntecedents == 1);
    441  1.3    oster 		blockNode->succedents[i] = &rrdNodes[i];
    442  1.3    oster 		rrdNodes[i].antecedents[0] = blockNode;
    443  1.3    oster 		rrdNodes[i].antType[0] = rf_control;
    444  1.3    oster 	}
    445  1.3    oster 
    446  1.3    oster 	/* link read nodes to xor node */
    447  1.3    oster 	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
    448  1.3    oster 	for (i = 0; i < nRrdNodes; i++) {
    449  1.3    oster 		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
    450  1.3    oster 		rrdNodes[i].succedents[0] = xorNode;
    451  1.3    oster 		xorNode->antecedents[i] = &rrdNodes[i];
    452  1.3    oster 		xorNode->antType[i] = rf_trueData;
    453  1.3    oster 	}
    454  1.3    oster 
    455  1.3    oster 	/* link xor node to commit node */
    456  1.3    oster 	RF_ASSERT(xorNode->numSuccedents == 1);
    457  1.3    oster 	RF_ASSERT(commitNode->numAntecedents == 1);
    458  1.3    oster 	xorNode->succedents[0] = commitNode;
    459  1.3    oster 	commitNode->antecedents[0] = xorNode;
    460  1.3    oster 	commitNode->antType[0] = rf_control;
    461  1.3    oster 
    462  1.3    oster 	/* link commit node to wnd nodes */
    463  1.3    oster 	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
    464  1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    465  1.3    oster 		RF_ASSERT(wndNodes[i].numAntecedents == 1);
    466  1.3    oster 		commitNode->succedents[i] = &wndNodes[i];
    467  1.3    oster 		wndNodes[i].antecedents[0] = commitNode;
    468  1.3    oster 		wndNodes[i].antType[0] = rf_control;
    469  1.3    oster 	}
    470  1.3    oster 
    471  1.3    oster 	/* link the commit node to wnp, wnq nodes */
    472  1.3    oster 	RF_ASSERT(wnpNode->numAntecedents == 1);
    473  1.3    oster 	commitNode->succedents[nWndNodes] = wnpNode;
    474  1.3    oster 	wnpNode->antecedents[0] = commitNode;
    475  1.3    oster 	wnpNode->antType[0] = rf_control;
    476  1.3    oster 	if (nfaults == 2) {
    477  1.3    oster 		RF_ASSERT(wnqNode->numAntecedents == 1);
    478  1.3    oster 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    479  1.3    oster 		wnqNode->antecedents[0] = commitNode;
    480  1.3    oster 		wnqNode->antType[0] = rf_control;
    481  1.3    oster 	}
    482  1.3    oster 	/* link write new data nodes to unblock node */
    483  1.3    oster 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
    484  1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    485  1.3    oster 		RF_ASSERT(wndNodes[i].numSuccedents == 1);
    486  1.3    oster 		wndNodes[i].succedents[0] = unblockNode;
    487  1.3    oster 		unblockNode->antecedents[i] = &wndNodes[i];
    488  1.3    oster 		unblockNode->antType[i] = rf_control;
    489  1.3    oster 	}
    490  1.3    oster 
    491  1.3    oster 	/* link write new parity node to unblock node */
    492  1.3    oster 	RF_ASSERT(wnpNode->numSuccedents == 1);
    493  1.3    oster 	wnpNode->succedents[0] = unblockNode;
    494  1.3    oster 	unblockNode->antecedents[nWndNodes] = wnpNode;
    495  1.3    oster 	unblockNode->antType[nWndNodes] = rf_control;
    496  1.3    oster 
    497  1.3    oster 	/* link write new q node to unblock node */
    498  1.3    oster 	if (nfaults == 2) {
    499  1.3    oster 		RF_ASSERT(wnqNode->numSuccedents == 1);
    500  1.3    oster 		wnqNode->succedents[0] = unblockNode;
    501  1.3    oster 		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
    502  1.3    oster 		unblockNode->antType[nWndNodes + 1] = rf_control;
    503  1.3    oster 	}
    504  1.3    oster 	/* link unblock node to term node */
    505  1.3    oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
    506  1.3    oster 	RF_ASSERT(termNode->numAntecedents == 1);
    507  1.3    oster 	RF_ASSERT(termNode->numSuccedents == 0);
    508  1.3    oster 	unblockNode->succedents[0] = termNode;
    509  1.3    oster 	termNode->antecedents[0] = unblockNode;
    510  1.3    oster 	termNode->antType[0] = rf_control;
    511  1.1    oster }
    512  1.1    oster #define CONS_PDA(if,start,num) \
    513  1.1    oster   pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
    514  1.1    oster   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    515  1.1    oster   pda_p->numSector = num; \
    516  1.1    oster   pda_p->next = NULL; \
    517  1.1    oster   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
    518  1.6    oster #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
    519  1.3    oster void
    520  1.3    oster rf_WriteGenerateFailedAccessASMs(
    521  1.3    oster     RF_Raid_t * raidPtr,
    522  1.3    oster     RF_AccessStripeMap_t * asmap,
    523  1.3    oster     RF_PhysDiskAddr_t ** pdap,
    524  1.3    oster     int *nNodep,
    525  1.3    oster     RF_PhysDiskAddr_t ** pqpdap,
    526  1.3    oster     int *nPQNodep,
    527  1.3    oster     RF_AllocListElem_t * allocList)
    528  1.1    oster {
    529  1.3    oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    530  1.3    oster 	int     PDAPerDisk, i;
    531  1.3    oster 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    532  1.3    oster 	int     numDataCol = layoutPtr->numDataCol;
    533  1.3    oster 	int     state;
    534  1.3    oster 	unsigned napdas;
    535  1.3    oster 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
    536  1.3    oster 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    537  1.3    oster 	RF_PhysDiskAddr_t *pda_p;
    538  1.3    oster 	RF_RaidAddr_t sosAddr;
    539  1.3    oster 
    540  1.3    oster 	/* determine how many pda's we will have to generate per unaccess
    541  1.3    oster 	 * stripe. If there is only one failed data unit, it is one; if two,
    542  1.3    oster 	 * possibly two, depending wether they overlap. */
    543  1.3    oster 
    544  1.3    oster 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    545  1.3    oster 	fone_end = fone_start + fone->numSector;
    546  1.3    oster 
    547  1.3    oster 	if (asmap->numDataFailed == 1) {
    548  1.3    oster 		PDAPerDisk = 1;
    549  1.3    oster 		state = 1;
    550  1.3    oster 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    551  1.3    oster 		pda_p = *pqpdap;
    552  1.3    oster 		/* build p */
    553  1.3    oster 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    554  1.3    oster 		pda_p->type = RF_PDA_TYPE_PARITY;
    555  1.3    oster 		pda_p++;
    556  1.3    oster 		/* build q */
    557  1.3    oster 		CONS_PDA(qInfo, fone_start, fone->numSector);
    558  1.3    oster 		pda_p->type = RF_PDA_TYPE_Q;
    559  1.3    oster 	} else {
    560  1.3    oster 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    561  1.3    oster 		ftwo_end = ftwo_start + ftwo->numSector;
    562  1.3    oster 		if (fone->numSector + ftwo->numSector > secPerSU) {
    563  1.3    oster 			PDAPerDisk = 1;
    564  1.3    oster 			state = 2;
    565  1.3    oster 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    566  1.3    oster 			pda_p = *pqpdap;
    567  1.3    oster 			CONS_PDA(parityInfo, 0, secPerSU);
    568  1.3    oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    569  1.3    oster 			pda_p++;
    570  1.3    oster 			CONS_PDA(qInfo, 0, secPerSU);
    571  1.3    oster 			pda_p->type = RF_PDA_TYPE_Q;
    572  1.3    oster 		} else {
    573  1.3    oster 			PDAPerDisk = 2;
    574  1.3    oster 			state = 3;
    575  1.3    oster 			/* four of them, fone, then ftwo */
    576  1.3    oster 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    577  1.3    oster 			pda_p = *pqpdap;
    578  1.3    oster 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    579  1.3    oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    580  1.3    oster 			pda_p++;
    581  1.3    oster 			CONS_PDA(qInfo, fone_start, fone->numSector);
    582  1.3    oster 			pda_p->type = RF_PDA_TYPE_Q;
    583  1.3    oster 			pda_p++;
    584  1.3    oster 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    585  1.3    oster 			pda_p->type = RF_PDA_TYPE_PARITY;
    586  1.3    oster 			pda_p++;
    587  1.3    oster 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    588  1.3    oster 			pda_p->type = RF_PDA_TYPE_Q;
    589  1.3    oster 		}
    590  1.3    oster 	}
    591  1.3    oster 	/* figure out number of nonaccessed pda */
    592  1.3    oster 	napdas = PDAPerDisk * (numDataCol - 2);
    593  1.3    oster 	*nPQNodep = PDAPerDisk;
    594  1.3    oster 
    595  1.3    oster 	*nNodep = napdas;
    596  1.3    oster 	if (napdas == 0)
    597  1.3    oster 		return;		/* short circuit */
    598  1.3    oster 
    599  1.3    oster 	/* allocate up our list of pda's */
    600  1.3    oster 
    601  1.3    oster 	RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    602  1.3    oster 	*pdap = pda_p;
    603  1.3    oster 
    604  1.3    oster 	/* linkem together */
    605  1.3    oster 	for (i = 0; i < (napdas - 1); i++)
    606  1.3    oster 		pda_p[i].next = pda_p + (i + 1);
    607  1.3    oster 
    608  1.3    oster 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    609  1.3    oster 	for (i = 0; i < numDataCol; i++) {
    610  1.3    oster 		if ((pda_p - (*pdap)) == napdas)
    611  1.3    oster 			continue;
    612  1.3    oster 		pda_p->type = RF_PDA_TYPE_DATA;
    613  1.3    oster 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    614  1.3    oster 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    615  1.3    oster 		/* skip over dead disks */
    616  1.3    oster 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
    617  1.3    oster 			continue;
    618  1.3    oster 		switch (state) {
    619  1.3    oster 		case 1:	/* fone */
    620  1.3    oster 			pda_p->numSector = fone->numSector;
    621  1.3    oster 			pda_p->raidAddress += fone_start;
    622  1.3    oster 			pda_p->startSector += fone_start;
    623  1.3    oster 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    624  1.3    oster 			break;
    625  1.3    oster 		case 2:	/* full stripe */
    626  1.3    oster 			pda_p->numSector = secPerSU;
    627  1.3    oster 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    628  1.3    oster 			break;
    629  1.3    oster 		case 3:	/* two slabs */
    630  1.3    oster 			pda_p->numSector = fone->numSector;
    631  1.3    oster 			pda_p->raidAddress += fone_start;
    632  1.3    oster 			pda_p->startSector += fone_start;
    633  1.3    oster 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    634  1.3    oster 			pda_p++;
    635  1.3    oster 			pda_p->type = RF_PDA_TYPE_DATA;
    636  1.3    oster 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    637  1.3    oster 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    638  1.3    oster 			pda_p->numSector = ftwo->numSector;
    639  1.3    oster 			pda_p->raidAddress += ftwo_start;
    640  1.3    oster 			pda_p->startSector += ftwo_start;
    641  1.3    oster 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    642  1.3    oster 			break;
    643  1.3    oster 		default:
    644  1.3    oster 			RF_PANIC();
    645  1.3    oster 		}
    646  1.3    oster 		pda_p++;
    647  1.1    oster 	}
    648  1.1    oster 
    649  1.3    oster 	RF_ASSERT(pda_p - *pdap == napdas);
    650  1.3    oster 	return;
    651  1.1    oster }
    652  1.1    oster #define DISK_NODE_PDA(node)  ((node)->params[0].p)
    653  1.1    oster 
    654  1.1    oster #define DISK_NODE_PARAMS(_node_,_p_) \
    655  1.1    oster   (_node_).params[0].p = _p_ ; \
    656  1.1    oster   (_node_).params[1].p = (_p_)->bufPtr; \
    657  1.1    oster   (_node_).params[2].v = parityStripeID; \
    658  1.1    oster   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
    659  1.1    oster 
    660  1.3    oster void
    661  1.3    oster rf_DoubleDegSmallWrite(
    662  1.3    oster     RF_Raid_t * raidPtr,
    663  1.3    oster     RF_AccessStripeMap_t * asmap,
    664  1.3    oster     RF_DagHeader_t * dag_h,
    665  1.3    oster     void *bp,
    666  1.3    oster     RF_RaidAccessFlags_t flags,
    667  1.3    oster     RF_AllocListElem_t * allocList,
    668  1.3    oster     char *redundantReadNodeName,
    669  1.3    oster     char *redundantWriteNodeName,
    670  1.3    oster     char *recoveryNodeName,
    671  1.3    oster     int (*recovFunc) (RF_DagNode_t *))
    672  1.1    oster {
    673  1.3    oster 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    674  1.3    oster 	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
    675  1.3    oster 	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
    676  1.3    oster 	RF_PhysDiskAddr_t *pda, *pqPDAs;
    677  1.3    oster 	RF_PhysDiskAddr_t *npdas;
    678  1.3    oster 	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
    679  1.3    oster 	RF_ReconUnitNum_t which_ru;
    680  1.3    oster 	int     nPQNodes;
    681  1.3    oster 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
    682  1.3    oster 
    683  1.3    oster 	/* simple small write case - First part looks like a reconstruct-read
    684  1.3    oster 	 * of the failed data units. Then a write of all data units not
    685  1.3    oster 	 * failed. */
    686  1.3    oster 
    687  1.3    oster 
    688  1.3    oster 	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
    689  1.3    oster 	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
    690  1.3    oster 	 * --Unblock- | T
    691  1.3    oster 	 *
    692  1.3    oster 	 * Rrd = read recovery data  (potentially none) Wud = write user data
    693  1.3    oster 	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
    694  1.3    oster 	 * (could be two)
    695  1.3    oster 	 *
    696  1.3    oster 	 */
    697  1.3    oster 
    698  1.3    oster 	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
    699  1.3    oster 
    700  1.3    oster 	RF_ASSERT(asmap->numDataFailed == 1);
    701  1.3    oster 
    702  1.3    oster 	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
    703  1.3    oster 	nReadNodes = nRrdNodes + 2 * nPQNodes;
    704  1.3    oster 	nWriteNodes = nWudNodes + 2 * nPQNodes;
    705  1.3    oster 	nNodes = 4 + nReadNodes + nWriteNodes;
    706  1.3    oster 
    707  1.3    oster 	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    708  1.3    oster 	blockNode = nodes;
    709  1.3    oster 	unblockNode = blockNode + 1;
    710  1.3    oster 	termNode = unblockNode + 1;
    711  1.3    oster 	recoveryNode = termNode + 1;
    712  1.3    oster 	rrdNodes = recoveryNode + 1;
    713  1.3    oster 	rpNodes = rrdNodes + nRrdNodes;
    714  1.3    oster 	rqNodes = rpNodes + nPQNodes;
    715  1.3    oster 	wudNodes = rqNodes + nPQNodes;
    716  1.3    oster 	wpNodes = wudNodes + nWudNodes;
    717  1.3    oster 	wqNodes = wpNodes + nPQNodes;
    718  1.3    oster 
    719  1.3    oster 	dag_h->creator = "PQ_DDSimpleSmallWrite";
    720  1.3    oster 	dag_h->numSuccedents = 1;
    721  1.3    oster 	dag_h->succedents[0] = blockNode;
    722  1.3    oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    723  1.3    oster 	termNode->antecedents[0] = unblockNode;
    724  1.3    oster 	termNode->antType[0] = rf_control;
    725  1.3    oster 
    726  1.3    oster 	/* init the block and unblock nodes */
    727  1.3    oster 	/* The block node has all the read nodes as successors */
    728  1.3    oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
    729  1.3    oster 	for (i = 0; i < nReadNodes; i++)
    730  1.3    oster 		blockNode->succedents[i] = rrdNodes + i;
    731  1.3    oster 
    732  1.3    oster 	/* The unblock node has all the writes as successors */
    733  1.3    oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
    734  1.3    oster 	for (i = 0; i < nWriteNodes; i++) {
    735  1.3    oster 		unblockNode->antecedents[i] = wudNodes + i;
    736  1.3    oster 		unblockNode->antType[i] = rf_control;
    737  1.3    oster 	}
    738  1.3    oster 	unblockNode->succedents[0] = termNode;
    739  1.1    oster 
    740  1.1    oster #define INIT_READ_NODE(node,name) \
    741  1.1    oster   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    742  1.1    oster   (node)->succedents[0] = recoveryNode; \
    743  1.1    oster   (node)->antecedents[0] = blockNode; \
    744  1.1    oster   (node)->antType[0] = rf_control;
    745  1.1    oster 
    746  1.3    oster 	/* build the read nodes */
    747  1.3    oster 	pda = npdas;
    748  1.3    oster 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
    749  1.3    oster 		INIT_READ_NODE(rrdNodes + i, "rrd");
    750  1.3    oster 		DISK_NODE_PARAMS(rrdNodes[i], pda);
    751  1.3    oster 	}
    752  1.3    oster 
    753  1.3    oster 	/* read redundancy pdas */
    754  1.3    oster 	pda = pqPDAs;
    755  1.3    oster 	INIT_READ_NODE(rpNodes, "Rp");
    756  1.3    oster 	RF_ASSERT(pda);
    757  1.3    oster 	DISK_NODE_PARAMS(rpNodes[0], pda);
    758  1.3    oster 	pda++;
    759  1.3    oster 	INIT_READ_NODE(rqNodes, redundantReadNodeName);
    760  1.3    oster 	RF_ASSERT(pda);
    761  1.3    oster 	DISK_NODE_PARAMS(rqNodes[0], pda);
    762  1.3    oster 	if (nPQNodes == 2) {
    763  1.3    oster 		pda++;
    764  1.3    oster 		INIT_READ_NODE(rpNodes + 1, "Rp");
    765  1.3    oster 		RF_ASSERT(pda);
    766  1.3    oster 		DISK_NODE_PARAMS(rpNodes[1], pda);
    767  1.3    oster 		pda++;
    768  1.3    oster 		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
    769  1.3    oster 		RF_ASSERT(pda);
    770  1.3    oster 		DISK_NODE_PARAMS(rqNodes[1], pda);
    771  1.3    oster 	}
    772  1.3    oster 	/* the recovery node has all reads as precedessors and all writes as
    773  1.3    oster 	 * successors. It generates a result for every write P or write Q
    774  1.3    oster 	 * node. As parameters, it takes a pda per read and a pda per stripe
    775  1.3    oster 	 * of user data written. It also takes as the last params the raidPtr
    776  1.3    oster 	 * and asm. For results, it takes PDA for P & Q. */
    777  1.3    oster 
    778  1.3    oster 
    779  1.3    oster 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
    780  1.3    oster 	    nWriteNodes,	/* succesors */
    781  1.3    oster 	    nReadNodes,		/* preds */
    782  1.3    oster 	    nReadNodes + nWudNodes + 3,	/* params */
    783  1.3    oster 	    2 * nPQNodes,	/* results */
    784  1.3    oster 	    dag_h, recoveryNodeName, allocList);
    785  1.3    oster 
    786  1.3    oster 
    787  1.3    oster 
    788  1.3    oster 	for (i = 0; i < nReadNodes; i++) {
    789  1.3    oster 		recoveryNode->antecedents[i] = rrdNodes + i;
    790  1.3    oster 		recoveryNode->antType[i] = rf_control;
    791  1.3    oster 		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
    792  1.3    oster 	}
    793  1.3    oster 	for (i = 0; i < nWudNodes; i++) {
    794  1.3    oster 		recoveryNode->succedents[i] = wudNodes + i;
    795  1.3    oster 	}
    796  1.3    oster 	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
    797  1.3    oster 	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
    798  1.3    oster 	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
    799  1.3    oster 
    800  1.3    oster 	for (; i < nWriteNodes; i++)
    801  1.3    oster 		recoveryNode->succedents[i] = wudNodes + i;
    802  1.3    oster 
    803  1.3    oster 	pda = pqPDAs;
    804  1.3    oster 	recoveryNode->results[0] = pda;
    805  1.3    oster 	pda++;
    806  1.3    oster 	recoveryNode->results[1] = pda;
    807  1.3    oster 	if (nPQNodes == 2) {
    808  1.3    oster 		pda++;
    809  1.3    oster 		recoveryNode->results[2] = pda;
    810  1.3    oster 		pda++;
    811  1.3    oster 		recoveryNode->results[3] = pda;
    812  1.3    oster 	}
    813  1.3    oster 	/* fill writes */
    814  1.1    oster #define INIT_WRITE_NODE(node,name) \
    815  1.1    oster   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    816  1.1    oster     (node)->succedents[0] = unblockNode; \
    817  1.1    oster     (node)->antecedents[0] = recoveryNode; \
    818  1.1    oster     (node)->antType[0] = rf_control;
    819  1.1    oster 
    820  1.3    oster 	pda = asmap->physInfo;
    821  1.3    oster 	for (i = 0; i < nWudNodes; i++) {
    822  1.3    oster 		INIT_WRITE_NODE(wudNodes + i, "Wd");
    823  1.3    oster 		DISK_NODE_PARAMS(wudNodes[i], pda);
    824  1.3    oster 		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
    825  1.3    oster 		pda = pda->next;
    826  1.3    oster 	}
    827  1.3    oster 	/* write redundancy pdas */
    828  1.3    oster 	pda = pqPDAs;
    829  1.3    oster 	INIT_WRITE_NODE(wpNodes, "Wp");
    830  1.3    oster 	RF_ASSERT(pda);
    831  1.3    oster 	DISK_NODE_PARAMS(wpNodes[0], pda);
    832  1.3    oster 	pda++;
    833  1.3    oster 	INIT_WRITE_NODE(wqNodes, "Wq");
    834  1.3    oster 	RF_ASSERT(pda);
    835  1.3    oster 	DISK_NODE_PARAMS(wqNodes[0], pda);
    836  1.3    oster 	if (nPQNodes == 2) {
    837  1.3    oster 		pda++;
    838  1.3    oster 		INIT_WRITE_NODE(wpNodes + 1, "Wp");
    839  1.3    oster 		RF_ASSERT(pda);
    840  1.3    oster 		DISK_NODE_PARAMS(wpNodes[1], pda);
    841  1.3    oster 		pda++;
    842  1.3    oster 		INIT_WRITE_NODE(wqNodes + 1, "Wq");
    843  1.3    oster 		RF_ASSERT(pda);
    844  1.3    oster 		DISK_NODE_PARAMS(wqNodes[1], pda);
    845  1.3    oster 	}
    846  1.1    oster }
    847  1.6    oster #endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
    848