rf_dagdegwr.c revision 1.1 1 /* $NetBSD: rf_dagdegwr.c,v 1.1 1998/11/13 04:20:27 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * rf_dagdegwr.c
31 *
32 * code for creating degraded write DAGs
33 *
34 * :
35 * Log: rf_dagdegwr.c,v
36 * Revision 1.23 1996/11/05 21:10:40 jimz
37 * failed pda generalization
38 *
39 * Revision 1.22 1996/08/23 14:49:48 jimz
40 * remove bogus assert from small write double deg DAG generator
41 *
42 * Revision 1.21 1996/08/21 05:09:44 jimz
43 * get rid of bogus fakery in DoubleDegSmallWrite
44 *
45 * Revision 1.20 1996/08/21 04:14:35 jimz
46 * cleanup doubledegsmallwrite
47 * NOTE: we need doubledeglargewrite
48 *
49 * Revision 1.19 1996/08/19 21:39:38 jimz
50 * CommonCreateSimpleDegradedWriteDAG() was unable to correctly create DAGs for
51 * complete stripe overwrite accesses- it assumed the necessity to read old
52 * data. Rather than do the "right" thing, and risk breaking a critical DAG so
53 * close to release, I made a no-op read node to stick in and link up in this
54 * case. Seems to work.
55 *
56 * Revision 1.18 1996/07/31 15:35:34 jimz
57 * evenodd changes; bugfixes for double-degraded archs, generalize
58 * some formerly PQ-only functions
59 *
60 * Revision 1.17 1996/07/28 20:31:39 jimz
61 * i386netbsd port
62 * true/false fixup
63 *
64 * Revision 1.16 1996/07/27 23:36:08 jimz
65 * Solaris port of simulator
66 *
67 * Revision 1.15 1996/07/27 16:30:19 jimz
68 * cleanup sweep
69 *
70 * Revision 1.14 1996/07/22 19:52:16 jimz
71 * switched node params to RF_DagParam_t, a union of
72 * a 64-bit int and a void *, for better portability
73 * attempted hpux port, but failed partway through for
74 * lack of a single C compiler capable of compiling all
75 * source files
76 *
77 * Revision 1.13 1996/06/09 02:36:46 jimz
78 * lots of little crufty cleanup- fixup whitespace
79 * issues, comment #ifdefs, improve typing in some
80 * places (esp size-related)
81 *
82 * Revision 1.12 1996/06/07 22:26:27 jimz
83 * type-ify which_ru (RF_ReconUnitNum_t)
84 *
85 * Revision 1.11 1996/06/07 21:33:04 jimz
86 * begin using consistent types for sector numbers,
87 * stripe numbers, row+col numbers, recon unit numbers
88 *
89 * Revision 1.10 1996/05/31 22:26:54 jimz
90 * fix a lot of mapping problems, memory allocation problems
91 * found some weird lock issues, fixed 'em
92 * more code cleanup
93 *
94 * Revision 1.9 1996/05/30 11:29:41 jimz
95 * Numerous bug fixes. Stripe lock release code disagreed with the taking code
96 * about when stripes should be locked (I made it consistent: no parity, no lock)
97 * There was a lot of extra serialization of I/Os which I've removed- a lot of
98 * it was to calculate values for the cache code, which is no longer with us.
99 * More types, function, macro cleanup. Added code to properly quiesce the array
100 * on shutdown. Made a lot of stuff array-specific which was (bogusly) general
101 * before. Fixed memory allocation, freeing bugs.
102 *
103 * Revision 1.8 1996/05/27 18:56:37 jimz
104 * more code cleanup
105 * better typing
106 * compiles in all 3 environments
107 *
108 * Revision 1.7 1996/05/24 22:17:04 jimz
109 * continue code + namespace cleanup
110 * typed a bunch of flags
111 *
112 * Revision 1.6 1996/05/24 04:28:55 jimz
113 * release cleanup ckpt
114 *
115 * Revision 1.5 1996/05/23 21:46:35 jimz
116 * checkpoint in code cleanup (release prep)
117 * lots of types, function names have been fixed
118 *
119 * Revision 1.4 1996/05/23 00:33:23 jimz
120 * code cleanup: move all debug decls to rf_options.c, all extern
121 * debug decls to rf_options.h, all debug vars preceded by rf_
122 *
123 * Revision 1.3 1996/05/18 19:51:34 jimz
124 * major code cleanup- fix syntax, make some types consistent,
125 * add prototypes, clean out dead code, et cetera
126 *
127 * Revision 1.2 1996/05/08 21:01:24 jimz
128 * fixed up enum type names that were conflicting with other
129 * enums and function names (ie, "panic")
130 * future naming trends will be towards RF_ and rf_ for
131 * everything raidframe-related
132 *
133 * Revision 1.1 1996/05/03 19:21:50 wvcii
134 * Initial revision
135 *
136 */
137
138 #include "rf_types.h"
139 #include "rf_raid.h"
140 #include "rf_dag.h"
141 #include "rf_dagutils.h"
142 #include "rf_dagfuncs.h"
143 #include "rf_threadid.h"
144 #include "rf_debugMem.h"
145 #include "rf_memchunk.h"
146 #include "rf_general.h"
147 #include "rf_dagdegwr.h"
148 #include "rf_sys.h"
149
150
151 /******************************************************************************
152 *
153 * General comments on DAG creation:
154 *
155 * All DAGs in this file use roll-away error recovery. Each DAG has a single
156 * commit node, usually called "Cmt." If an error occurs before the Cmt node
157 * is reached, the execution engine will halt forward execution and work
158 * backward through the graph, executing the undo functions. Assuming that
159 * each node in the graph prior to the Cmt node are undoable and atomic - or -
160 * does not make changes to permanent state, the graph will fail atomically.
161 * If an error occurs after the Cmt node executes, the engine will roll-forward
162 * through the graph, blindly executing nodes until it reaches the end.
163 * If a graph reaches the end, it is assumed to have completed successfully.
164 *
165 * A graph has only 1 Cmt node.
166 *
167 */
168
169
170 /******************************************************************************
171 *
172 * The following wrappers map the standard DAG creation interface to the
173 * DAG creation routines. Additionally, these wrappers enable experimentation
174 * with new DAG structures by providing an extra level of indirection, allowing
175 * the DAG creation routines to be replaced at this single point.
176 */
177
178 static RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
179 {
180 rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
181 flags, allocList,1, rf_RecoveryXorFunc, RF_TRUE);
182 }
183
184 void rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
185 RF_Raid_t *raidPtr;
186 RF_AccessStripeMap_t *asmap;
187 RF_DagHeader_t *dag_h;
188 void *bp;
189 RF_RaidAccessFlags_t flags;
190 RF_AllocListElem_t *allocList;
191 {
192 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
193 RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
194
195 RF_ASSERT( asmap->numDataFailed == 1 );
196 dag_h->creator = "DegradedWriteDAG";
197
198 /* if the access writes only a portion of the failed unit, and also writes
199 * some portion of at least one surviving unit, we create two DAGs, one for
200 * the failed component and one for the non-failed component, and do them
201 * sequentially. Note that the fact that we're accessing only a portion of
202 * the failed unit indicates that the access either starts or ends in the
203 * failed unit, and hence we need create only two dags. This is inefficient
204 * in that the same data or parity can get read and written twice using this
205 * structure. I need to fix this to do the access all at once.
206 */
207 RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit));
208 rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList);
209 }
210
211
212
213 /******************************************************************************
214 *
215 * DAG creation code begins here
216 */
217
218
219
220 /******************************************************************************
221 *
222 * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
223 * write, which is as follows
224 *
225 * / {Wnq} --\
226 * hdr -> blockNode -> Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
227 * \ {Rod} / \ Wnd ---/
228 * \ {Wnd} -/
229 *
230 * commit nodes: Xor, Wnd
231 *
232 * IMPORTANT:
233 * This DAG generator does not work for double-degraded archs since it does not
234 * generate Q
235 *
236 * This dag is essentially identical to the large-write dag, except that the
237 * write to the failed data unit is suppressed.
238 *
239 * IMPORTANT: this dag does not work in the case where the access writes only
240 * a portion of the failed unit, and also writes some portion of at least one
241 * surviving SU. this case is handled in CreateDegradedWriteDAG above.
242 *
243 * The block & unblock nodes are leftovers from a previous version. They
244 * do nothing, but I haven't deleted them because it would be a tremendous
245 * effort to put them back in.
246 *
247 * This dag is used whenever a one of the data units in a write has failed.
248 * If it is the parity unit that failed, the nonredundant write dag (below)
249 * is used.
250 *****************************************************************************/
251
252 void rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
253 allocList, nfaults, redFunc, allowBufferRecycle)
254 RF_Raid_t *raidPtr;
255 RF_AccessStripeMap_t *asmap;
256 RF_DagHeader_t *dag_h;
257 void *bp;
258 RF_RaidAccessFlags_t flags;
259 RF_AllocListElem_t *allocList;
260 int nfaults;
261 int (*redFunc)(RF_DagNode_t *);
262 int allowBufferRecycle;
263 {
264 int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum, rdnodesFaked;
265 RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
266 RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
267 RF_SectorCount_t sectorsPerSU;
268 RF_ReconUnitNum_t which_ru;
269 char *xorTargetBuf = NULL; /* the target buffer for the XOR operation */
270 char *overlappingPDAs; /* a temporary array of flags */
271 RF_AccessStripeMapHeader_t *new_asm_h[2];
272 RF_PhysDiskAddr_t *pda, *parityPDA;
273 RF_StripeNum_t parityStripeID;
274 RF_PhysDiskAddr_t *failedPDA;
275 RF_RaidLayout_t *layoutPtr;
276
277 layoutPtr = &(raidPtr->Layout);
278 parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
279 &which_ru);
280 sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
281 /* failedPDA points to the pda within the asm that targets the failed disk */
282 failedPDA = asmap->failedPDAs[0];
283
284 if (rf_dagDebug)
285 printf("[Creating degraded-write DAG]\n");
286
287 RF_ASSERT( asmap->numDataFailed == 1 );
288 dag_h->creator = "SimpleDegradedWriteDAG";
289
290 /*
291 * Generate two ASMs identifying the surviving data
292 * we need in order to recover the lost data.
293 */
294 /* overlappingPDAs array must be zero'd */
295 RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
296 rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
297 &nXorBufs, NULL, overlappingPDAs, allocList);
298
299 /* create all the nodes at once */
300 nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is generated
301 * for the failed pda */
302
303 nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
304 ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
305 /*
306 * XXX
307 *
308 * There's a bug with a complete stripe overwrite- that means 0 reads
309 * of old data, and the rest of the DAG generation code doesn't like
310 * that. A release is coming, and I don't wanna risk breaking a critical
311 * DAG generator, so here's what I'm gonna do- if there's no read nodes,
312 * I'm gonna fake there being a read node, and I'm gonna swap in a
313 * no-op node in its place (to make all the link-up code happy).
314 * This should be fixed at some point. --jimz
315 */
316 if (nRrdNodes == 0) {
317 nRrdNodes = 1;
318 rdnodesFaked = 1;
319 }
320 else {
321 rdnodesFaked = 0;
322 }
323 /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
324 nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
325 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
326 (RF_DagNode_t *), allocList);
327 i = 0;
328 blockNode = &nodes[i]; i += 1;
329 commitNode = &nodes[i]; i += 1;
330 unblockNode = &nodes[i]; i += 1;
331 termNode = &nodes[i]; i += 1;
332 xorNode = &nodes[i]; i += 1;
333 wnpNode = &nodes[i]; i += 1;
334 wndNodes = &nodes[i]; i += nWndNodes;
335 rrdNodes = &nodes[i]; i += nRrdNodes;
336 if (nfaults == 2) {
337 wnqNode = &nodes[i]; i += 1;
338 }
339 else {
340 wnqNode = NULL;
341 }
342 RF_ASSERT(i == nNodes);
343
344 /* this dag can not commit until all rrd and xor Nodes have completed */
345 dag_h->numCommitNodes = 1;
346 dag_h->numCommits = 0;
347 dag_h->numSuccedents = 1;
348
349 RF_ASSERT( nRrdNodes > 0 );
350 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
351 NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
352 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
353 NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
354 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
355 NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
356 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
357 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
358 rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
359 nRrdNodes, 2*nXorBufs+2, nfaults, dag_h, "Xrc", allocList);
360
361 /*
362 * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
363 * the failed buffer, save a pointer to it so we can use it as the target
364 * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
365 * a buffer is the same size as the failed buffer, it must also be at the
366 * same alignment within the SU.
367 */
368 i = 0;
369 if (new_asm_h[0]) {
370 for (i=0, pda=new_asm_h[0]->stripeMap->physInfo;
371 i<new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
372 i++, pda=pda->next)
373 {
374 rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
375 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
376 RF_ASSERT(pda);
377 rrdNodes[i].params[0].p = pda;
378 rrdNodes[i].params[1].p = pda->bufPtr;
379 rrdNodes[i].params[2].v = parityStripeID;
380 rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
381 }
382 }
383 /* i now equals the number of stripe units accessed in new_asm_h[0] */
384 if (new_asm_h[1]) {
385 for (j=0,pda=new_asm_h[1]->stripeMap->physInfo;
386 j<new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
387 j++, pda=pda->next)
388 {
389 rf_InitNode(&rrdNodes[i+j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
390 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
391 RF_ASSERT(pda);
392 rrdNodes[i+j].params[0].p = pda;
393 rrdNodes[i+j].params[1].p = pda->bufPtr;
394 rrdNodes[i+j].params[2].v = parityStripeID;
395 rrdNodes[i+j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
396 if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
397 xorTargetBuf = pda->bufPtr;
398 }
399 }
400 if (rdnodesFaked) {
401 /*
402 * This is where we'll init that fake noop read node
403 * (XXX should the wakeup func be different?)
404 */
405 rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
406 NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
407 }
408
409 /*
410 * Make a PDA for the parity unit. The parity PDA should start at
411 * the same offset into the SU as the failed PDA.
412 */
413 /*
414 * Danner comment:
415 * I don't think this copy is really necessary.
416 * We are in one of two cases here.
417 * (1) The entire failed unit is written. Then asmap->parityInfo will
418 * describe the entire parity.
419 * (2) We are only writing a subset of the failed unit and nothing
420 * else. Then the asmap->parityInfo describes the failed unit and
421 * the copy can also be avoided.
422 */
423
424 RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
425 parityPDA->row = asmap->parityInfo->row;
426 parityPDA->col = asmap->parityInfo->col;
427 parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
428 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
429 parityPDA->numSector = failedPDA->numSector;
430
431 if (!xorTargetBuf) {
432 RF_CallocAndAdd(xorTargetBuf, 1,
433 rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
434 }
435
436 /* init the Wnp node */
437 rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
438 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
439 wnpNode->params[0].p = parityPDA;
440 wnpNode->params[1].p = xorTargetBuf;
441 wnpNode->params[2].v = parityStripeID;
442 wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
443
444 /* fill in the Wnq Node */
445 if (nfaults == 2) {
446 {
447 RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
448 (RF_PhysDiskAddr_t *), allocList);
449 parityPDA->row = asmap->qInfo->row;
450 parityPDA->col = asmap->qInfo->col;
451 parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
452 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
453 parityPDA->numSector = failedPDA->numSector;
454
455 rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
456 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
457 wnqNode->params[0].p = parityPDA;
458 RF_CallocAndAdd(xorNode->results[1], 1,
459 rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
460 wnqNode->params[1].p = xorNode->results[1];
461 wnqNode->params[2].v = parityStripeID;
462 wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
463 }
464 }
465
466 /* fill in the Wnd nodes */
467 for (pda=asmap->physInfo, i=0; i<nWndNodes; i++, pda=pda->next) {
468 if (pda == failedPDA) {
469 i--;
470 continue;
471 }
472 rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
473 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
474 RF_ASSERT(pda);
475 wndNodes[i].params[0].p = pda;
476 wndNodes[i].params[1].p = pda->bufPtr;
477 wndNodes[i].params[2].v = parityStripeID;
478 wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
479 }
480
481 /* fill in the results of the xor node */
482 xorNode->results[0] = xorTargetBuf;
483
484 /* fill in the params of the xor node */
485
486 paramNum=0;
487 if (rdnodesFaked == 0) {
488 for (i=0; i<nRrdNodes; i++) {
489 /* all the Rrd nodes need to be xored together */
490 xorNode->params[paramNum++] = rrdNodes[i].params[0];
491 xorNode->params[paramNum++] = rrdNodes[i].params[1];
492 }
493 }
494 for (i=0; i < nWndNodes; i++) {
495 /* any Wnd nodes that overlap the failed access need to be xored in */
496 if (overlappingPDAs[i]) {
497 RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
498 bcopy((char *)wndNodes[i].params[0].p, (char *)pda, sizeof(RF_PhysDiskAddr_t));
499 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
500 xorNode->params[paramNum++].p = pda;
501 xorNode->params[paramNum++].p = pda->bufPtr;
502 }
503 }
504 RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
505
506 /*
507 * Install the failed PDA into the xor param list so that the
508 * new data gets xor'd in.
509 */
510 xorNode->params[paramNum++].p = failedPDA;
511 xorNode->params[paramNum++].p = failedPDA->bufPtr;
512
513 /*
514 * The last 2 params to the recovery xor node are always the failed
515 * PDA and the raidPtr. install the failedPDA even though we have just
516 * done so above. This allows us to use the same XOR function for both
517 * degraded reads and degraded writes.
518 */
519 xorNode->params[paramNum++].p = failedPDA;
520 xorNode->params[paramNum++].p = raidPtr;
521 RF_ASSERT( paramNum == 2*nXorBufs+2 );
522
523 /*
524 * Code to link nodes begins here
525 */
526
527 /* link header to block node */
528 RF_ASSERT(blockNode->numAntecedents == 0);
529 dag_h->succedents[0] = blockNode;
530
531 /* link block node to rd nodes */
532 RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
533 for (i = 0; i < nRrdNodes; i++) {
534 RF_ASSERT(rrdNodes[i].numAntecedents == 1);
535 blockNode->succedents[i] = &rrdNodes[i];
536 rrdNodes[i].antecedents[0] = blockNode;
537 rrdNodes[i].antType[0] = rf_control;
538 }
539
540 /* link read nodes to xor node*/
541 RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
542 for (i = 0; i < nRrdNodes; i++) {
543 RF_ASSERT(rrdNodes[i].numSuccedents == 1);
544 rrdNodes[i].succedents[0] = xorNode;
545 xorNode->antecedents[i] = &rrdNodes[i];
546 xorNode->antType[i] = rf_trueData;
547 }
548
549 /* link xor node to commit node */
550 RF_ASSERT(xorNode->numSuccedents == 1);
551 RF_ASSERT(commitNode->numAntecedents == 1);
552 xorNode->succedents[0] = commitNode;
553 commitNode->antecedents[0] = xorNode;
554 commitNode->antType[0] = rf_control;
555
556 /* link commit node to wnd nodes */
557 RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
558 for (i = 0; i < nWndNodes; i++) {
559 RF_ASSERT(wndNodes[i].numAntecedents == 1);
560 commitNode->succedents[i] = &wndNodes[i];
561 wndNodes[i].antecedents[0] = commitNode;
562 wndNodes[i].antType[0] = rf_control;
563 }
564
565 /* link the commit node to wnp, wnq nodes */
566 RF_ASSERT(wnpNode->numAntecedents == 1);
567 commitNode->succedents[nWndNodes] = wnpNode;
568 wnpNode->antecedents[0] = commitNode;
569 wnpNode->antType[0] = rf_control;
570 if (nfaults == 2) {
571 RF_ASSERT(wnqNode->numAntecedents == 1);
572 commitNode->succedents[nWndNodes + 1] = wnqNode;
573 wnqNode->antecedents[0] = commitNode;
574 wnqNode->antType[0] = rf_control;
575 }
576
577 /* link write new data nodes to unblock node */
578 RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
579 for(i = 0; i < nWndNodes; i++) {
580 RF_ASSERT(wndNodes[i].numSuccedents == 1);
581 wndNodes[i].succedents[0] = unblockNode;
582 unblockNode->antecedents[i] = &wndNodes[i];
583 unblockNode->antType[i] = rf_control;
584 }
585
586 /* link write new parity node to unblock node */
587 RF_ASSERT(wnpNode->numSuccedents == 1);
588 wnpNode->succedents[0] = unblockNode;
589 unblockNode->antecedents[nWndNodes] = wnpNode;
590 unblockNode->antType[nWndNodes] = rf_control;
591
592 /* link write new q node to unblock node */
593 if (nfaults == 2) {
594 RF_ASSERT(wnqNode->numSuccedents == 1);
595 wnqNode->succedents[0] = unblockNode;
596 unblockNode->antecedents[nWndNodes+1] = wnqNode;
597 unblockNode->antType[nWndNodes+1] = rf_control;
598 }
599
600 /* link unblock node to term node */
601 RF_ASSERT(unblockNode->numSuccedents == 1);
602 RF_ASSERT(termNode->numAntecedents == 1);
603 RF_ASSERT(termNode->numSuccedents == 0);
604 unblockNode->succedents[0] = termNode;
605 termNode->antecedents[0] = unblockNode;
606 termNode->antType[0] = rf_control;
607 }
608
609 #define CONS_PDA(if,start,num) \
610 pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
611 pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
612 pda_p->numSector = num; \
613 pda_p->next = NULL; \
614 RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
615
616 void rf_WriteGenerateFailedAccessASMs(
617 RF_Raid_t *raidPtr,
618 RF_AccessStripeMap_t *asmap,
619 RF_PhysDiskAddr_t **pdap,
620 int *nNodep,
621 RF_PhysDiskAddr_t **pqpdap,
622 int *nPQNodep,
623 RF_AllocListElem_t *allocList)
624 {
625 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
626 int PDAPerDisk,i;
627 RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
628 int numDataCol = layoutPtr->numDataCol;
629 int state;
630 unsigned napdas;
631 RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
632 RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
633 RF_PhysDiskAddr_t *pda_p;
634 RF_RaidAddr_t sosAddr;
635
636 /* determine how many pda's we will have to generate per unaccess stripe.
637 If there is only one failed data unit, it is one; if two, possibly two,
638 depending wether they overlap. */
639
640 fone_start = rf_StripeUnitOffset(layoutPtr,fone->startSector);
641 fone_end = fone_start + fone->numSector;
642
643 if (asmap->numDataFailed==1)
644 {
645 PDAPerDisk = 1;
646 state = 1;
647 RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
648 pda_p = *pqpdap;
649 /* build p */
650 CONS_PDA(parityInfo,fone_start,fone->numSector);
651 pda_p->type = RF_PDA_TYPE_PARITY;
652 pda_p++;
653 /* build q */
654 CONS_PDA(qInfo,fone_start,fone->numSector);
655 pda_p->type = RF_PDA_TYPE_Q;
656 }
657 else
658 {
659 ftwo_start = rf_StripeUnitOffset(layoutPtr,ftwo->startSector);
660 ftwo_end = ftwo_start + ftwo->numSector;
661 if (fone->numSector + ftwo->numSector > secPerSU)
662 {
663 PDAPerDisk = 1;
664 state = 2;
665 RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
666 pda_p = *pqpdap;
667 CONS_PDA(parityInfo,0,secPerSU);
668 pda_p->type = RF_PDA_TYPE_PARITY;
669 pda_p++;
670 CONS_PDA(qInfo,0,secPerSU);
671 pda_p->type = RF_PDA_TYPE_Q;
672 }
673 else
674 {
675 PDAPerDisk = 2;
676 state = 3;
677 /* four of them, fone, then ftwo */
678 RF_MallocAndAdd(*pqpdap,4*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
679 pda_p = *pqpdap;
680 CONS_PDA(parityInfo,fone_start,fone->numSector);
681 pda_p->type = RF_PDA_TYPE_PARITY;
682 pda_p++;
683 CONS_PDA(qInfo,fone_start,fone->numSector);
684 pda_p->type = RF_PDA_TYPE_Q;
685 pda_p++;
686 CONS_PDA(parityInfo,ftwo_start,ftwo->numSector);
687 pda_p->type = RF_PDA_TYPE_PARITY;
688 pda_p++;
689 CONS_PDA(qInfo,ftwo_start,ftwo->numSector);
690 pda_p->type = RF_PDA_TYPE_Q;
691 }
692 }
693 /* figure out number of nonaccessed pda */
694 napdas = PDAPerDisk * (numDataCol - 2);
695 *nPQNodep = PDAPerDisk;
696
697 *nNodep = napdas;
698 if (napdas == 0) return; /* short circuit */
699
700 /* allocate up our list of pda's */
701
702 RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
703 *pdap = pda_p;
704
705 /* linkem together */
706 for (i=0; i < (napdas-1); i++)
707 pda_p[i].next = pda_p+(i+1);
708
709 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
710 for (i=0; i < numDataCol; i++)
711 {
712 if ((pda_p - (*pdap)) == napdas)
713 continue;
714 pda_p->type = RF_PDA_TYPE_DATA;
715 pda_p->raidAddress = sosAddr + (i * secPerSU);
716 (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
717 /* skip over dead disks */
718 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
719 continue;
720 switch (state)
721 {
722 case 1: /* fone */
723 pda_p->numSector = fone->numSector;
724 pda_p->raidAddress += fone_start;
725 pda_p->startSector += fone_start;
726 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
727 break;
728 case 2: /* full stripe */
729 pda_p->numSector = secPerSU;
730 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,secPerSU), (char *), allocList);
731 break;
732 case 3: /* two slabs */
733 pda_p->numSector = fone->numSector;
734 pda_p->raidAddress += fone_start;
735 pda_p->startSector += fone_start;
736 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
737 pda_p++;
738 pda_p->type = RF_PDA_TYPE_DATA;
739 pda_p->raidAddress = sosAddr + (i * secPerSU);
740 (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
741 pda_p->numSector = ftwo->numSector;
742 pda_p->raidAddress += ftwo_start;
743 pda_p->startSector += ftwo_start;
744 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
745 break;
746 default:
747 RF_PANIC();
748 }
749 pda_p++;
750 }
751
752 RF_ASSERT (pda_p - *pdap == napdas);
753 return;
754 }
755
756 #define DISK_NODE_PDA(node) ((node)->params[0].p)
757
758 #define DISK_NODE_PARAMS(_node_,_p_) \
759 (_node_).params[0].p = _p_ ; \
760 (_node_).params[1].p = (_p_)->bufPtr; \
761 (_node_).params[2].v = parityStripeID; \
762 (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
763
764 void rf_DoubleDegSmallWrite(
765 RF_Raid_t *raidPtr,
766 RF_AccessStripeMap_t *asmap,
767 RF_DagHeader_t *dag_h,
768 void *bp,
769 RF_RaidAccessFlags_t flags,
770 RF_AllocListElem_t *allocList,
771 char *redundantReadNodeName,
772 char *redundantWriteNodeName,
773 char *recoveryNodeName,
774 int (*recovFunc)(RF_DagNode_t *))
775 {
776 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
777 RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode, *unblockNode, *rpNodes,*rqNodes, *wpNodes, *wqNodes, *termNode;
778 RF_PhysDiskAddr_t *pda, *pqPDAs;
779 RF_PhysDiskAddr_t *npdas;
780 int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
781 RF_ReconUnitNum_t which_ru;
782 int nPQNodes;
783 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
784
785 /* simple small write case -
786 First part looks like a reconstruct-read of the failed data units.
787 Then a write of all data units not failed. */
788
789
790 /*
791 Hdr
792 |
793 ------Block-
794 / / \
795 Rrd Rrd ... Rrd Rp Rq
796 \ \ /
797 -------PQ-----
798 / \ \
799 Wud Wp WQ
800 \ | /
801 --Unblock-
802 |
803 T
804
805 Rrd = read recovery data (potentially none)
806 Wud = write user data (not incl. failed disks)
807 Wp = Write P (could be two)
808 Wq = Write Q (could be two)
809
810 */
811
812 rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes,allocList);
813
814 RF_ASSERT(asmap->numDataFailed == 1);
815
816 nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
817 nReadNodes = nRrdNodes + 2*nPQNodes;
818 nWriteNodes = nWudNodes+ 2*nPQNodes;
819 nNodes = 4 + nReadNodes + nWriteNodes;
820
821 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
822 blockNode = nodes;
823 unblockNode = blockNode+1;
824 termNode = unblockNode+1;
825 recoveryNode = termNode+1;
826 rrdNodes = recoveryNode+1;
827 rpNodes = rrdNodes + nRrdNodes;
828 rqNodes = rpNodes + nPQNodes;
829 wudNodes = rqNodes + nPQNodes;
830 wpNodes = wudNodes + nWudNodes;
831 wqNodes = wpNodes + nPQNodes;
832
833 dag_h->creator = "PQ_DDSimpleSmallWrite";
834 dag_h->numSuccedents = 1;
835 dag_h->succedents[0] = blockNode;
836 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
837 termNode->antecedents[0] = unblockNode;
838 termNode->antType[0] = rf_control;
839
840 /* init the block and unblock nodes */
841 /* The block node has all the read nodes as successors */
842 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
843 for (i=0; i < nReadNodes; i++)
844 blockNode->succedents[i] = rrdNodes+i;
845
846 /* The unblock node has all the writes as successors */
847 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
848 for (i=0; i < nWriteNodes; i++) {
849 unblockNode->antecedents[i] = wudNodes+i;
850 unblockNode->antType[i] = rf_control;
851 }
852 unblockNode->succedents[0] = termNode;
853
854 #define INIT_READ_NODE(node,name) \
855 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
856 (node)->succedents[0] = recoveryNode; \
857 (node)->antecedents[0] = blockNode; \
858 (node)->antType[0] = rf_control;
859
860 /* build the read nodes */
861 pda = npdas;
862 for (i=0; i < nRrdNodes; i++, pda = pda->next) {
863 INIT_READ_NODE(rrdNodes+i,"rrd");
864 DISK_NODE_PARAMS(rrdNodes[i],pda);
865 }
866
867 /* read redundancy pdas */
868 pda = pqPDAs;
869 INIT_READ_NODE(rpNodes,"Rp");
870 RF_ASSERT(pda);
871 DISK_NODE_PARAMS(rpNodes[0],pda);
872 pda++;
873 INIT_READ_NODE(rqNodes, redundantReadNodeName );
874 RF_ASSERT(pda);
875 DISK_NODE_PARAMS(rqNodes[0],pda);
876 if (nPQNodes==2)
877 {
878 pda++;
879 INIT_READ_NODE(rpNodes+1,"Rp");
880 RF_ASSERT(pda);
881 DISK_NODE_PARAMS(rpNodes[1],pda);
882 pda++;
883 INIT_READ_NODE(rqNodes+1,redundantReadNodeName );
884 RF_ASSERT(pda);
885 DISK_NODE_PARAMS(rqNodes[1],pda);
886 }
887
888 /* the recovery node has all reads as precedessors and all writes as successors.
889 It generates a result for every write P or write Q node.
890 As parameters, it takes a pda per read and a pda per stripe of user data written.
891 It also takes as the last params the raidPtr and asm.
892 For results, it takes PDA for P & Q. */
893
894
895 rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
896 nWriteNodes, /* succesors */
897 nReadNodes, /* preds */
898 nReadNodes + nWudNodes + 3, /* params */
899 2 * nPQNodes, /* results */
900 dag_h, recoveryNodeName, allocList);
901
902
903
904 for (i=0; i < nReadNodes; i++ )
905 {
906 recoveryNode->antecedents[i] = rrdNodes+i;
907 recoveryNode->antType[i] = rf_control;
908 recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes+i);
909 }
910 for (i=0; i < nWudNodes; i++)
911 {
912 recoveryNode->succedents[i] = wudNodes+i;
913 }
914 recoveryNode->params[nReadNodes+nWudNodes].p = asmap->failedPDAs[0];
915 recoveryNode->params[nReadNodes+nWudNodes+1].p = raidPtr;
916 recoveryNode->params[nReadNodes+nWudNodes+2].p = asmap;
917
918 for ( ; i < nWriteNodes; i++)
919 recoveryNode->succedents[i] = wudNodes+i;
920
921 pda = pqPDAs;
922 recoveryNode->results[0] = pda;
923 pda++;
924 recoveryNode->results[1] = pda;
925 if ( nPQNodes == 2)
926 {
927 pda++;
928 recoveryNode->results[2] = pda;
929 pda++;
930 recoveryNode->results[3] = pda;
931 }
932
933 /* fill writes */
934 #define INIT_WRITE_NODE(node,name) \
935 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
936 (node)->succedents[0] = unblockNode; \
937 (node)->antecedents[0] = recoveryNode; \
938 (node)->antType[0] = rf_control;
939
940 pda = asmap->physInfo;
941 for (i=0; i < nWudNodes; i++)
942 {
943 INIT_WRITE_NODE(wudNodes+i,"Wd");
944 DISK_NODE_PARAMS(wudNodes[i],pda);
945 recoveryNode->params[nReadNodes+i].p = DISK_NODE_PDA(wudNodes+i);
946 pda = pda->next;
947 }
948 /* write redundancy pdas */
949 pda = pqPDAs;
950 INIT_WRITE_NODE(wpNodes,"Wp");
951 RF_ASSERT(pda);
952 DISK_NODE_PARAMS(wpNodes[0],pda);
953 pda++;
954 INIT_WRITE_NODE(wqNodes,"Wq");
955 RF_ASSERT(pda);
956 DISK_NODE_PARAMS(wqNodes[0],pda);
957 if (nPQNodes==2)
958 {
959 pda++;
960 INIT_WRITE_NODE(wpNodes+1,"Wp");
961 RF_ASSERT(pda);
962 DISK_NODE_PARAMS(wpNodes[1],pda);
963 pda++;
964 INIT_WRITE_NODE(wqNodes+1,"Wq");
965 RF_ASSERT(pda);
966 DISK_NODE_PARAMS(wqNodes[1],pda);
967 }
968 }
969