Home | History | Annotate | Line # | Download | only in raidframe
rf_dagdegwr.c revision 1.1
      1 /*	$NetBSD: rf_dagdegwr.c,v 1.1 1998/11/13 04:20:27 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagdegwr.c
     31  *
     32  * code for creating degraded write DAGs
     33  *
     34  * :
     35  * Log: rf_dagdegwr.c,v
     36  * Revision 1.23  1996/11/05 21:10:40  jimz
     37  * failed pda generalization
     38  *
     39  * Revision 1.22  1996/08/23  14:49:48  jimz
     40  * remove bogus assert from small write double deg DAG generator
     41  *
     42  * Revision 1.21  1996/08/21  05:09:44  jimz
     43  * get rid of bogus fakery in DoubleDegSmallWrite
     44  *
     45  * Revision 1.20  1996/08/21  04:14:35  jimz
     46  * cleanup doubledegsmallwrite
     47  * NOTE: we need doubledeglargewrite
     48  *
     49  * Revision 1.19  1996/08/19  21:39:38  jimz
     50  * CommonCreateSimpleDegradedWriteDAG() was unable to correctly create DAGs for
     51  * complete stripe overwrite accesses- it assumed the necessity to read old
     52  * data. Rather than do the "right" thing, and risk breaking a critical DAG so
     53  * close to release, I made a no-op read node to stick in and link up in this
     54  * case. Seems to work.
     55  *
     56  * Revision 1.18  1996/07/31  15:35:34  jimz
     57  * evenodd changes; bugfixes for double-degraded archs, generalize
     58  * some formerly PQ-only functions
     59  *
     60  * Revision 1.17  1996/07/28  20:31:39  jimz
     61  * i386netbsd port
     62  * true/false fixup
     63  *
     64  * Revision 1.16  1996/07/27  23:36:08  jimz
     65  * Solaris port of simulator
     66  *
     67  * Revision 1.15  1996/07/27  16:30:19  jimz
     68  * cleanup sweep
     69  *
     70  * Revision 1.14  1996/07/22  19:52:16  jimz
     71  * switched node params to RF_DagParam_t, a union of
     72  * a 64-bit int and a void *, for better portability
     73  * attempted hpux port, but failed partway through for
     74  * lack of a single C compiler capable of compiling all
     75  * source files
     76  *
     77  * Revision 1.13  1996/06/09  02:36:46  jimz
     78  * lots of little crufty cleanup- fixup whitespace
     79  * issues, comment #ifdefs, improve typing in some
     80  * places (esp size-related)
     81  *
     82  * Revision 1.12  1996/06/07  22:26:27  jimz
     83  * type-ify which_ru (RF_ReconUnitNum_t)
     84  *
     85  * Revision 1.11  1996/06/07  21:33:04  jimz
     86  * begin using consistent types for sector numbers,
     87  * stripe numbers, row+col numbers, recon unit numbers
     88  *
     89  * Revision 1.10  1996/05/31  22:26:54  jimz
     90  * fix a lot of mapping problems, memory allocation problems
     91  * found some weird lock issues, fixed 'em
     92  * more code cleanup
     93  *
     94  * Revision 1.9  1996/05/30  11:29:41  jimz
     95  * Numerous bug fixes. Stripe lock release code disagreed with the taking code
     96  * about when stripes should be locked (I made it consistent: no parity, no lock)
     97  * There was a lot of extra serialization of I/Os which I've removed- a lot of
     98  * it was to calculate values for the cache code, which is no longer with us.
     99  * More types, function, macro cleanup. Added code to properly quiesce the array
    100  * on shutdown. Made a lot of stuff array-specific which was (bogusly) general
    101  * before. Fixed memory allocation, freeing bugs.
    102  *
    103  * Revision 1.8  1996/05/27  18:56:37  jimz
    104  * more code cleanup
    105  * better typing
    106  * compiles in all 3 environments
    107  *
    108  * Revision 1.7  1996/05/24  22:17:04  jimz
    109  * continue code + namespace cleanup
    110  * typed a bunch of flags
    111  *
    112  * Revision 1.6  1996/05/24  04:28:55  jimz
    113  * release cleanup ckpt
    114  *
    115  * Revision 1.5  1996/05/23  21:46:35  jimz
    116  * checkpoint in code cleanup (release prep)
    117  * lots of types, function names have been fixed
    118  *
    119  * Revision 1.4  1996/05/23  00:33:23  jimz
    120  * code cleanup: move all debug decls to rf_options.c, all extern
    121  * debug decls to rf_options.h, all debug vars preceded by rf_
    122  *
    123  * Revision 1.3  1996/05/18  19:51:34  jimz
    124  * major code cleanup- fix syntax, make some types consistent,
    125  * add prototypes, clean out dead code, et cetera
    126  *
    127  * Revision 1.2  1996/05/08  21:01:24  jimz
    128  * fixed up enum type names that were conflicting with other
    129  * enums and function names (ie, "panic")
    130  * future naming trends will be towards RF_ and rf_ for
    131  * everything raidframe-related
    132  *
    133  * Revision 1.1  1996/05/03  19:21:50  wvcii
    134  * Initial revision
    135  *
    136  */
    137 
    138 #include "rf_types.h"
    139 #include "rf_raid.h"
    140 #include "rf_dag.h"
    141 #include "rf_dagutils.h"
    142 #include "rf_dagfuncs.h"
    143 #include "rf_threadid.h"
    144 #include "rf_debugMem.h"
    145 #include "rf_memchunk.h"
    146 #include "rf_general.h"
    147 #include "rf_dagdegwr.h"
    148 #include "rf_sys.h"
    149 
    150 
    151 /******************************************************************************
    152  *
    153  * General comments on DAG creation:
    154  *
    155  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
    156  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
    157  * is reached, the execution engine will halt forward execution and work
    158  * backward through the graph, executing the undo functions.  Assuming that
    159  * each node in the graph prior to the Cmt node are undoable and atomic - or -
    160  * does not make changes to permanent state, the graph will fail atomically.
    161  * If an error occurs after the Cmt node executes, the engine will roll-forward
    162  * through the graph, blindly executing nodes until it reaches the end.
    163  * If a graph reaches the end, it is assumed to have completed successfully.
    164  *
    165  * A graph has only 1 Cmt node.
    166  *
    167  */
    168 
    169 
    170 /******************************************************************************
    171  *
    172  * The following wrappers map the standard DAG creation interface to the
    173  * DAG creation routines.  Additionally, these wrappers enable experimentation
    174  * with new DAG structures by providing an extra level of indirection, allowing
    175  * the DAG creation routines to be replaced at this single point.
    176  */
    177 
    178 static RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
    179 {
    180   rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
    181     flags, allocList,1, rf_RecoveryXorFunc, RF_TRUE);
    182 }
    183 
    184 void rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
    185   RF_Raid_t             *raidPtr;
    186   RF_AccessStripeMap_t  *asmap;
    187   RF_DagHeader_t        *dag_h;
    188   void                  *bp;
    189   RF_RaidAccessFlags_t   flags;
    190   RF_AllocListElem_t    *allocList;
    191 {
    192   RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    193   RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
    194 
    195   RF_ASSERT( asmap->numDataFailed == 1 );
    196   dag_h->creator = "DegradedWriteDAG";
    197 
    198   /* if the access writes only a portion of the failed unit, and also writes
    199    * some portion of at least one surviving unit, we create two DAGs, one for
    200    * the failed component and one for the non-failed component, and do them
    201    * sequentially.  Note that the fact that we're accessing only a portion of
    202    * the failed unit indicates that the access either starts or ends in the
    203    * failed unit, and hence we need create only two dags.  This is inefficient
    204    * in that the same data or parity can get read and written twice using this
    205    * structure.  I need to fix this to do the access all at once.
    206    */
    207   RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit));
    208   rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList);
    209 }
    210 
    211 
    212 
    213 /******************************************************************************
    214  *
    215  * DAG creation code begins here
    216  */
    217 
    218 
    219 
    220 /******************************************************************************
    221  *
    222  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
    223  * write, which is as follows
    224  *
    225  *                                        / {Wnq} --\
    226  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
    227  *                  \  {Rod} /            \  Wnd ---/
    228  *                                        \ {Wnd} -/
    229  *
    230  * commit nodes: Xor, Wnd
    231  *
    232  * IMPORTANT:
    233  * This DAG generator does not work for double-degraded archs since it does not
    234  * generate Q
    235  *
    236  * This dag is essentially identical to the large-write dag, except that the
    237  * write to the failed data unit is suppressed.
    238  *
    239  * IMPORTANT:  this dag does not work in the case where the access writes only
    240  * a portion of the failed unit, and also writes some portion of at least one
    241  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
    242  *
    243  * The block & unblock nodes are leftovers from a previous version.  They
    244  * do nothing, but I haven't deleted them because it would be a tremendous
    245  * effort to put them back in.
    246  *
    247  * This dag is used whenever a one of the data units in a write has failed.
    248  * If it is the parity unit that failed, the nonredundant write dag (below)
    249  * is used.
    250  *****************************************************************************/
    251 
    252 void rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    253 	allocList, nfaults, redFunc, allowBufferRecycle)
    254   RF_Raid_t              *raidPtr;
    255   RF_AccessStripeMap_t   *asmap;
    256   RF_DagHeader_t         *dag_h;
    257   void                   *bp;
    258   RF_RaidAccessFlags_t    flags;
    259   RF_AllocListElem_t     *allocList;
    260   int                     nfaults;
    261   int                   (*redFunc)(RF_DagNode_t *);
    262   int                     allowBufferRecycle;
    263 {
    264   int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum, rdnodesFaked;
    265   RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
    266   RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
    267   RF_SectorCount_t sectorsPerSU;
    268   RF_ReconUnitNum_t which_ru;
    269   char *xorTargetBuf = NULL; /* the target buffer for the XOR operation */
    270   char *overlappingPDAs; /* a temporary array of flags */
    271   RF_AccessStripeMapHeader_t *new_asm_h[2];
    272   RF_PhysDiskAddr_t *pda, *parityPDA;
    273   RF_StripeNum_t parityStripeID;
    274   RF_PhysDiskAddr_t *failedPDA;
    275   RF_RaidLayout_t *layoutPtr;
    276 
    277   layoutPtr = &(raidPtr->Layout);
    278   parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    279     &which_ru);
    280   sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    281   /* failedPDA points to the pda within the asm that targets the failed disk */
    282   failedPDA = asmap->failedPDAs[0];
    283 
    284   if (rf_dagDebug)
    285     printf("[Creating degraded-write DAG]\n");
    286 
    287   RF_ASSERT( asmap->numDataFailed == 1 );
    288   dag_h->creator = "SimpleDegradedWriteDAG";
    289 
    290   /*
    291    * Generate two ASMs identifying the surviving data
    292    * we need in order to recover the lost data.
    293    */
    294   /* overlappingPDAs array must be zero'd */
    295   RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
    296   rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
    297     &nXorBufs, NULL, overlappingPDAs, allocList);
    298 
    299   /* create all the nodes at once */
    300   nWndNodes = asmap->numStripeUnitsAccessed - 1;   /* no access is generated
    301                                                   * for the failed pda */
    302 
    303   nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    304               ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    305   /*
    306    * XXX
    307    *
    308    * There's a bug with a complete stripe overwrite- that means 0 reads
    309    * of old data, and the rest of the DAG generation code doesn't like
    310    * that. A release is coming, and I don't wanna risk breaking a critical
    311    * DAG generator, so here's what I'm gonna do- if there's no read nodes,
    312    * I'm gonna fake there being a read node, and I'm gonna swap in a
    313    * no-op node in its place (to make all the link-up code happy).
    314    * This should be fixed at some point.  --jimz
    315    */
    316   if (nRrdNodes == 0) {
    317     nRrdNodes = 1;
    318     rdnodesFaked = 1;
    319   }
    320   else {
    321     rdnodesFaked = 0;
    322   }
    323   /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
    324   nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
    325   RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
    326     (RF_DagNode_t *), allocList);
    327   i = 0;
    328   blockNode   = &nodes[i]; i += 1;
    329   commitNode    = &nodes[i]; i += 1;
    330   unblockNode = &nodes[i]; i += 1;
    331   termNode    = &nodes[i]; i += 1;
    332   xorNode     = &nodes[i]; i += 1;
    333   wnpNode     = &nodes[i]; i += 1;
    334   wndNodes    = &nodes[i]; i += nWndNodes;
    335   rrdNodes    = &nodes[i]; i += nRrdNodes;
    336   if (nfaults == 2) {
    337     wnqNode   = &nodes[i]; i += 1;
    338   }
    339   else {
    340     wnqNode = NULL;
    341   }
    342   RF_ASSERT(i == nNodes);
    343 
    344   /* this dag can not commit until all rrd and xor Nodes have completed */
    345   dag_h->numCommitNodes = 1;
    346   dag_h->numCommits = 0;
    347   dag_h->numSuccedents = 1;
    348 
    349   RF_ASSERT( nRrdNodes > 0 );
    350   rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    351     NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
    352   rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    353     NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    354   rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    355     NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
    356   rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    357     NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    358   rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    359     nRrdNodes, 2*nXorBufs+2, nfaults, dag_h, "Xrc", allocList);
    360 
    361   /*
    362    * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
    363    * the failed buffer, save a pointer to it so we can use it as the target
    364    * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
    365    * a buffer is the same size as the failed buffer, it must also be at the
    366    * same alignment within the SU.
    367    */
    368   i = 0;
    369   if (new_asm_h[0]) {
    370     for (i=0, pda=new_asm_h[0]->stripeMap->physInfo;
    371         i<new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    372         i++, pda=pda->next)
    373     {
    374       rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    375         rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    376       RF_ASSERT(pda);
    377       rrdNodes[i].params[0].p = pda;
    378       rrdNodes[i].params[1].p = pda->bufPtr;
    379       rrdNodes[i].params[2].v = parityStripeID;
    380       rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    381     }
    382   }
    383   /* i now equals the number of stripe units accessed in new_asm_h[0] */
    384   if (new_asm_h[1]) {
    385     for (j=0,pda=new_asm_h[1]->stripeMap->physInfo;
    386         j<new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    387         j++, pda=pda->next)
    388     {
    389       rf_InitNode(&rrdNodes[i+j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    390         rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    391       RF_ASSERT(pda);
    392       rrdNodes[i+j].params[0].p = pda;
    393       rrdNodes[i+j].params[1].p = pda->bufPtr;
    394       rrdNodes[i+j].params[2].v = parityStripeID;
    395       rrdNodes[i+j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    396       if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
    397         xorTargetBuf = pda->bufPtr;
    398     }
    399   }
    400   if (rdnodesFaked) {
    401     /*
    402      * This is where we'll init that fake noop read node
    403      * (XXX should the wakeup func be different?)
    404      */
    405     rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    406       NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
    407   }
    408 
    409   /*
    410    * Make a PDA for the parity unit.  The parity PDA should start at
    411    * the same offset into the SU as the failed PDA.
    412    */
    413   /*
    414    * Danner comment:
    415    * I don't think this copy is really necessary.
    416    * We are in one of two cases here.
    417    *   (1) The entire failed unit is written. Then asmap->parityInfo will
    418    *       describe the entire parity.
    419    *   (2) We are only writing a subset of the failed unit and nothing
    420    *       else. Then the asmap->parityInfo describes the failed unit and
    421    *       the copy can also be avoided.
    422    */
    423 
    424   RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    425   parityPDA->row = asmap->parityInfo->row;
    426   parityPDA->col = asmap->parityInfo->col;
    427   parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    428     * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    429   parityPDA->numSector = failedPDA->numSector;
    430 
    431   if (!xorTargetBuf) {
    432     RF_CallocAndAdd(xorTargetBuf, 1,
    433       rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    434   }
    435 
    436   /* init the Wnp node */
    437   rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    438     rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    439   wnpNode->params[0].p = parityPDA;
    440   wnpNode->params[1].p = xorTargetBuf;
    441   wnpNode->params[2].v = parityStripeID;
    442   wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    443 
    444   /* fill in the Wnq Node */
    445   if (nfaults == 2) {
    446     {
    447       RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
    448         (RF_PhysDiskAddr_t *), allocList);
    449       parityPDA->row = asmap->qInfo->row;
    450       parityPDA->col = asmap->qInfo->col;
    451       parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
    452         * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    453       parityPDA->numSector = failedPDA->numSector;
    454 
    455       rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    456         rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    457       wnqNode->params[0].p = parityPDA;
    458       RF_CallocAndAdd(xorNode->results[1], 1,
    459         rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    460       wnqNode->params[1].p = xorNode->results[1];
    461       wnqNode->params[2].v = parityStripeID;
    462       wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    463     }
    464   }
    465 
    466   /* fill in the Wnd nodes */
    467   for (pda=asmap->physInfo, i=0; i<nWndNodes; i++, pda=pda->next) {
    468     if (pda == failedPDA) {
    469       i--;
    470       continue;
    471     }
    472     rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    473       rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    474     RF_ASSERT(pda);
    475     wndNodes[i].params[0].p = pda;
    476     wndNodes[i].params[1].p = pda->bufPtr;
    477     wndNodes[i].params[2].v = parityStripeID;
    478     wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    479   }
    480 
    481   /* fill in the results of the xor node */
    482   xorNode->results[0] = xorTargetBuf;
    483 
    484   /* fill in the params of the xor node */
    485 
    486   paramNum=0;
    487   if (rdnodesFaked == 0) {
    488     for (i=0; i<nRrdNodes; i++) {
    489       /* all the Rrd nodes need to be xored together */
    490       xorNode->params[paramNum++] = rrdNodes[i].params[0];
    491       xorNode->params[paramNum++] = rrdNodes[i].params[1];
    492     }
    493   }
    494   for (i=0; i < nWndNodes; i++) {
    495     /* any Wnd nodes that overlap the failed access need to be xored in */
    496     if (overlappingPDAs[i]) {
    497       RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    498       bcopy((char *)wndNodes[i].params[0].p, (char *)pda, sizeof(RF_PhysDiskAddr_t));
    499       rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    500       xorNode->params[paramNum++].p = pda;
    501       xorNode->params[paramNum++].p = pda->bufPtr;
    502     }
    503   }
    504   RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
    505 
    506   /*
    507    * Install the failed PDA into the xor param list so that the
    508    * new data gets xor'd in.
    509    */
    510   xorNode->params[paramNum++].p = failedPDA;
    511   xorNode->params[paramNum++].p = failedPDA->bufPtr;
    512 
    513   /*
    514    * The last 2 params to the recovery xor node are always the failed
    515    * PDA and the raidPtr. install the failedPDA even though we have just
    516    * done so above. This allows us to use the same XOR function for both
    517    * degraded reads and degraded writes.
    518    */
    519   xorNode->params[paramNum++].p = failedPDA;
    520   xorNode->params[paramNum++].p = raidPtr;
    521   RF_ASSERT( paramNum == 2*nXorBufs+2 );
    522 
    523   /*
    524    * Code to link nodes begins here
    525    */
    526 
    527   /* link header to block node */
    528   RF_ASSERT(blockNode->numAntecedents == 0);
    529   dag_h->succedents[0] = blockNode;
    530 
    531   /* link block node to rd nodes */
    532   RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
    533   for (i = 0; i < nRrdNodes; i++) {
    534     RF_ASSERT(rrdNodes[i].numAntecedents == 1);
    535     blockNode->succedents[i] = &rrdNodes[i];
    536     rrdNodes[i].antecedents[0] = blockNode;
    537     rrdNodes[i].antType[0] = rf_control;
    538   }
    539 
    540   /* link read nodes to xor node*/
    541   RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
    542   for (i = 0; i < nRrdNodes; i++) {
    543     RF_ASSERT(rrdNodes[i].numSuccedents == 1);
    544     rrdNodes[i].succedents[0] = xorNode;
    545     xorNode->antecedents[i] = &rrdNodes[i];
    546     xorNode->antType[i] = rf_trueData;
    547   }
    548 
    549   /* link xor node to commit node */
    550   RF_ASSERT(xorNode->numSuccedents == 1);
    551   RF_ASSERT(commitNode->numAntecedents == 1);
    552   xorNode->succedents[0] = commitNode;
    553   commitNode->antecedents[0] = xorNode;
    554   commitNode->antType[0] = rf_control;
    555 
    556   /* link commit node to wnd nodes */
    557   RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
    558   for (i = 0; i < nWndNodes; i++) {
    559     RF_ASSERT(wndNodes[i].numAntecedents == 1);
    560     commitNode->succedents[i] = &wndNodes[i];
    561     wndNodes[i].antecedents[0] = commitNode;
    562     wndNodes[i].antType[0] = rf_control;
    563   }
    564 
    565   /* link the commit node to wnp, wnq nodes */
    566   RF_ASSERT(wnpNode->numAntecedents == 1);
    567   commitNode->succedents[nWndNodes] = wnpNode;
    568   wnpNode->antecedents[0] = commitNode;
    569   wnpNode->antType[0] = rf_control;
    570   if (nfaults == 2) {
    571     RF_ASSERT(wnqNode->numAntecedents == 1);
    572     commitNode->succedents[nWndNodes + 1] = wnqNode;
    573     wnqNode->antecedents[0] = commitNode;
    574     wnqNode->antType[0] = rf_control;
    575   }
    576 
    577   /* link write new data nodes to unblock node */
    578   RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
    579   for(i = 0; i < nWndNodes; i++) {
    580     RF_ASSERT(wndNodes[i].numSuccedents == 1);
    581     wndNodes[i].succedents[0] = unblockNode;
    582     unblockNode->antecedents[i] = &wndNodes[i];
    583     unblockNode->antType[i] = rf_control;
    584   }
    585 
    586   /* link write new parity node to unblock node */
    587   RF_ASSERT(wnpNode->numSuccedents == 1);
    588   wnpNode->succedents[0] = unblockNode;
    589   unblockNode->antecedents[nWndNodes] = wnpNode;
    590   unblockNode->antType[nWndNodes] = rf_control;
    591 
    592   /* link write new q node to unblock node */
    593   if (nfaults == 2) {
    594     RF_ASSERT(wnqNode->numSuccedents == 1);
    595     wnqNode->succedents[0] = unblockNode;
    596     unblockNode->antecedents[nWndNodes+1] = wnqNode;
    597     unblockNode->antType[nWndNodes+1] = rf_control;
    598   }
    599 
    600   /* link unblock node to term node */
    601   RF_ASSERT(unblockNode->numSuccedents == 1);
    602   RF_ASSERT(termNode->numAntecedents == 1);
    603   RF_ASSERT(termNode->numSuccedents == 0);
    604   unblockNode->succedents[0] = termNode;
    605   termNode->antecedents[0]  = unblockNode;
    606   termNode->antType[0] = rf_control;
    607 }
    608 
    609 #define CONS_PDA(if,start,num) \
    610   pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
    611   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    612   pda_p->numSector = num; \
    613   pda_p->next = NULL; \
    614   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
    615 
    616 void rf_WriteGenerateFailedAccessASMs(
    617   RF_Raid_t              *raidPtr,
    618   RF_AccessStripeMap_t   *asmap,
    619   RF_PhysDiskAddr_t     **pdap,
    620   int                    *nNodep,
    621   RF_PhysDiskAddr_t     **pqpdap,
    622   int                    *nPQNodep,
    623   RF_AllocListElem_t     *allocList)
    624 {
    625   RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    626   int PDAPerDisk,i;
    627   RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    628   int numDataCol = layoutPtr->numDataCol;
    629   int state;
    630   unsigned napdas;
    631   RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
    632   RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    633   RF_PhysDiskAddr_t *pda_p;
    634   RF_RaidAddr_t sosAddr;
    635 
    636   /* determine how many pda's we will have to generate per unaccess stripe.
    637      If there is only one failed data unit, it is one; if two, possibly two,
    638      depending wether they overlap. */
    639 
    640   fone_start = rf_StripeUnitOffset(layoutPtr,fone->startSector);
    641   fone_end = fone_start + fone->numSector;
    642 
    643   if (asmap->numDataFailed==1)
    644     {
    645       PDAPerDisk = 1;
    646       state = 1;
    647       RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
    648       pda_p = *pqpdap;
    649       /* build p */
    650       CONS_PDA(parityInfo,fone_start,fone->numSector);
    651       pda_p->type = RF_PDA_TYPE_PARITY;
    652       pda_p++;
    653       /* build q */
    654       CONS_PDA(qInfo,fone_start,fone->numSector);
    655       pda_p->type = RF_PDA_TYPE_Q;
    656     }
    657   else
    658     {
    659       ftwo_start = rf_StripeUnitOffset(layoutPtr,ftwo->startSector);
    660       ftwo_end = ftwo_start + ftwo->numSector;
    661       if (fone->numSector + ftwo->numSector > secPerSU)
    662 	{
    663 	  PDAPerDisk = 1;
    664 	  state = 2;
    665 	  RF_MallocAndAdd(*pqpdap,2*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
    666 	  pda_p = *pqpdap;
    667 	  CONS_PDA(parityInfo,0,secPerSU);
    668 	  pda_p->type = RF_PDA_TYPE_PARITY;
    669 	  pda_p++;
    670 	  CONS_PDA(qInfo,0,secPerSU);
    671 	  pda_p->type = RF_PDA_TYPE_Q;
    672 	}
    673       else
    674 	{
    675 	  PDAPerDisk = 2;
    676 	  state = 3;
    677 	  /* four of them, fone, then ftwo */
    678 	  RF_MallocAndAdd(*pqpdap,4*sizeof(RF_PhysDiskAddr_t),(RF_PhysDiskAddr_t *), allocList);
    679 	  pda_p = *pqpdap;
    680 	  CONS_PDA(parityInfo,fone_start,fone->numSector);
    681 	  pda_p->type = RF_PDA_TYPE_PARITY;
    682 	  pda_p++;
    683 	  CONS_PDA(qInfo,fone_start,fone->numSector);
    684 	  pda_p->type = RF_PDA_TYPE_Q;
    685 	  pda_p++;
    686 	  CONS_PDA(parityInfo,ftwo_start,ftwo->numSector);
    687 	  pda_p->type = RF_PDA_TYPE_PARITY;
    688 	  pda_p++;
    689 	  CONS_PDA(qInfo,ftwo_start,ftwo->numSector);
    690 	  pda_p->type = RF_PDA_TYPE_Q;
    691 	}
    692     }
    693   /* figure out number of nonaccessed pda */
    694   napdas = PDAPerDisk * (numDataCol - 2);
    695   *nPQNodep = PDAPerDisk;
    696 
    697   *nNodep = napdas;
    698   if (napdas == 0) return; /* short circuit */
    699 
    700   /* allocate up our list of pda's */
    701 
    702   RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    703   *pdap = pda_p;
    704 
    705   /* linkem together */
    706   for (i=0; i < (napdas-1); i++)
    707     pda_p[i].next = pda_p+(i+1);
    708 
    709   sosAddr      = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    710   for (i=0; i < numDataCol; i++)
    711     {
    712       if ((pda_p - (*pdap)) == napdas)
    713 	continue;
    714       pda_p->type = RF_PDA_TYPE_DATA;
    715       pda_p->raidAddress = sosAddr + (i * secPerSU);
    716       (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    717       /* skip over dead disks */
    718       if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
    719 	continue;
    720       switch (state)
    721 	{
    722 	case 1: /* fone */
    723 	  pda_p->numSector = fone->numSector;
    724 	  pda_p->raidAddress += fone_start;
    725 	  pda_p->startSector += fone_start;
    726 	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
    727 	  break;
    728 	case 2: /* full stripe */
    729 	  pda_p->numSector = secPerSU;
    730 	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,secPerSU), (char *), allocList);
    731 	  break;
    732 	case 3: /* two slabs */
    733 	  pda_p->numSector = fone->numSector;
    734 	  pda_p->raidAddress += fone_start;
    735 	  pda_p->startSector += fone_start;
    736 	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
    737 	  pda_p++;
    738           pda_p->type = RF_PDA_TYPE_DATA;
    739           pda_p->raidAddress = sosAddr + (i * secPerSU);
    740           (raidPtr->Layout.map->MapSector)(raidPtr,pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    741 	  pda_p->numSector = ftwo->numSector;
    742 	  pda_p->raidAddress += ftwo_start;
    743 	  pda_p->startSector += ftwo_start;
    744 	  RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr,pda_p->numSector), (char *), allocList);
    745 	  break;
    746 	default:
    747 	  RF_PANIC();
    748 	}
    749       pda_p++;
    750     }
    751 
    752   RF_ASSERT  (pda_p - *pdap == napdas);
    753   return;
    754 }
    755 
    756 #define DISK_NODE_PDA(node)  ((node)->params[0].p)
    757 
    758 #define DISK_NODE_PARAMS(_node_,_p_) \
    759   (_node_).params[0].p = _p_ ; \
    760   (_node_).params[1].p = (_p_)->bufPtr; \
    761   (_node_).params[2].v = parityStripeID; \
    762   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
    763 
    764 void rf_DoubleDegSmallWrite(
    765   RF_Raid_t              *raidPtr,
    766   RF_AccessStripeMap_t   *asmap,
    767   RF_DagHeader_t         *dag_h,
    768   void                   *bp,
    769   RF_RaidAccessFlags_t    flags,
    770   RF_AllocListElem_t     *allocList,
    771   char                   *redundantReadNodeName,
    772   char                   *redundantWriteNodeName,
    773   char                   *recoveryNodeName,
    774   int                   (*recovFunc)(RF_DagNode_t *))
    775 {
    776   RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    777   RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode, *unblockNode, *rpNodes,*rqNodes, *wpNodes, *wqNodes, *termNode;
    778   RF_PhysDiskAddr_t *pda, *pqPDAs;
    779   RF_PhysDiskAddr_t *npdas;
    780   int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
    781   RF_ReconUnitNum_t which_ru;
    782   int nPQNodes;
    783   RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
    784 
    785   /* simple small write case -
    786      First part looks like a reconstruct-read of the failed data units.
    787      Then a write of all data units not failed. */
    788 
    789 
    790   /*
    791              Hdr
    792 	      |
    793        ------Block-
    794       /  /         \
    795     Rrd  Rrd ...  Rrd  Rp Rq
    796       \  \          /
    797       -------PQ-----
    798             /   \   \
    799           Wud   Wp  WQ
    800            \    |   /
    801            --Unblock-
    802                 |
    803                 T
    804 
    805    Rrd = read recovery data  (potentially none)
    806    Wud = write user data (not incl. failed disks)
    807    Wp = Write P (could be two)
    808    Wq = Write Q (could be two)
    809 
    810    */
    811 
    812   rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes,allocList);
    813 
    814   RF_ASSERT(asmap->numDataFailed == 1);
    815 
    816   nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
    817   nReadNodes = nRrdNodes + 2*nPQNodes;
    818   nWriteNodes = nWudNodes+ 2*nPQNodes;
    819   nNodes = 4 + nReadNodes + nWriteNodes;
    820 
    821   RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    822   blockNode = nodes;
    823   unblockNode = blockNode+1;
    824   termNode = unblockNode+1;
    825   recoveryNode = termNode+1;
    826   rrdNodes = recoveryNode+1;
    827   rpNodes = rrdNodes + nRrdNodes;
    828   rqNodes = rpNodes + nPQNodes;
    829   wudNodes = rqNodes + nPQNodes;
    830   wpNodes = wudNodes + nWudNodes;
    831   wqNodes = wpNodes + nPQNodes;
    832 
    833   dag_h->creator = "PQ_DDSimpleSmallWrite";
    834   dag_h->numSuccedents = 1;
    835   dag_h->succedents[0] = blockNode;
    836   rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    837   termNode->antecedents[0]  = unblockNode;
    838   termNode->antType[0] = rf_control;
    839 
    840   /* init the block and unblock nodes */
    841   /* The block node has all the read nodes as successors */
    842   rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
    843   for (i=0; i < nReadNodes; i++)
    844     blockNode->succedents[i] = rrdNodes+i;
    845 
    846   /* The unblock node has all the writes as successors */
    847   rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
    848   for (i=0; i < nWriteNodes; i++) {
    849     unblockNode->antecedents[i] = wudNodes+i;
    850     unblockNode->antType[i] = rf_control;
    851   }
    852   unblockNode->succedents[0] = termNode;
    853 
    854 #define INIT_READ_NODE(node,name) \
    855   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    856   (node)->succedents[0] = recoveryNode; \
    857   (node)->antecedents[0] = blockNode; \
    858   (node)->antType[0] = rf_control;
    859 
    860   /* build the read nodes */
    861   pda = npdas;
    862   for (i=0; i < nRrdNodes; i++, pda = pda->next) {
    863     INIT_READ_NODE(rrdNodes+i,"rrd");
    864     DISK_NODE_PARAMS(rrdNodes[i],pda);
    865   }
    866 
    867   /* read redundancy pdas */
    868   pda = pqPDAs;
    869   INIT_READ_NODE(rpNodes,"Rp");
    870   RF_ASSERT(pda);
    871   DISK_NODE_PARAMS(rpNodes[0],pda);
    872   pda++;
    873   INIT_READ_NODE(rqNodes, redundantReadNodeName );
    874   RF_ASSERT(pda);
    875   DISK_NODE_PARAMS(rqNodes[0],pda);
    876   if (nPQNodes==2)
    877     {
    878       pda++;
    879       INIT_READ_NODE(rpNodes+1,"Rp");
    880       RF_ASSERT(pda);
    881       DISK_NODE_PARAMS(rpNodes[1],pda);
    882       pda++;
    883       INIT_READ_NODE(rqNodes+1,redundantReadNodeName );
    884       RF_ASSERT(pda);
    885       DISK_NODE_PARAMS(rqNodes[1],pda);
    886     }
    887 
    888   /* the recovery node has all reads as precedessors and all writes as successors.
    889      It generates a result for every write P or write Q node.
    890      As parameters, it takes a pda per read and a pda per stripe of user data written.
    891      It also takes as the last params the raidPtr and asm.
    892      For results, it takes PDA for P & Q. */
    893 
    894 
    895     rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
    896            nWriteNodes, /* succesors */
    897            nReadNodes, /* preds */
    898            nReadNodes + nWudNodes + 3, /* params */
    899            2 * nPQNodes, /* results */
    900            dag_h, recoveryNodeName, allocList);
    901 
    902 
    903 
    904   for (i=0; i < nReadNodes; i++ )
    905     {
    906       recoveryNode->antecedents[i] = rrdNodes+i;
    907       recoveryNode->antType[i] = rf_control;
    908       recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes+i);
    909     }
    910   for (i=0; i < nWudNodes; i++)
    911     {
    912       recoveryNode->succedents[i] = wudNodes+i;
    913     }
    914   recoveryNode->params[nReadNodes+nWudNodes].p = asmap->failedPDAs[0];
    915   recoveryNode->params[nReadNodes+nWudNodes+1].p = raidPtr;
    916   recoveryNode->params[nReadNodes+nWudNodes+2].p = asmap;
    917 
    918   for ( ; i < nWriteNodes; i++)
    919       recoveryNode->succedents[i] = wudNodes+i;
    920 
    921   pda = pqPDAs;
    922   recoveryNode->results[0] = pda;
    923   pda++;
    924   recoveryNode->results[1] = pda;
    925   if ( nPQNodes == 2)
    926     {
    927       pda++;
    928       recoveryNode->results[2] = pda;
    929       pda++;
    930       recoveryNode->results[3] = pda;
    931     }
    932 
    933   /* fill writes */
    934 #define INIT_WRITE_NODE(node,name) \
    935   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    936     (node)->succedents[0] = unblockNode; \
    937     (node)->antecedents[0] = recoveryNode; \
    938     (node)->antType[0] = rf_control;
    939 
    940   pda = asmap->physInfo;
    941   for (i=0; i < nWudNodes; i++)
    942     {
    943       INIT_WRITE_NODE(wudNodes+i,"Wd");
    944       DISK_NODE_PARAMS(wudNodes[i],pda);
    945       recoveryNode->params[nReadNodes+i].p = DISK_NODE_PDA(wudNodes+i);
    946       pda = pda->next;
    947     }
    948   /* write redundancy pdas */
    949   pda = pqPDAs;
    950   INIT_WRITE_NODE(wpNodes,"Wp");
    951   RF_ASSERT(pda);
    952   DISK_NODE_PARAMS(wpNodes[0],pda);
    953   pda++;
    954   INIT_WRITE_NODE(wqNodes,"Wq");
    955   RF_ASSERT(pda);
    956   DISK_NODE_PARAMS(wqNodes[0],pda);
    957   if (nPQNodes==2)
    958     {
    959       pda++;
    960       INIT_WRITE_NODE(wpNodes+1,"Wp");
    961       RF_ASSERT(pda);
    962       DISK_NODE_PARAMS(wpNodes[1],pda);
    963       pda++;
    964       INIT_WRITE_NODE(wqNodes+1,"Wq");
    965       RF_ASSERT(pda);
    966       DISK_NODE_PARAMS(wqNodes[1],pda);
    967     }
    968 }
    969