Home | History | Annotate | Line # | Download | only in raidframe
rf_dagdegwr.c revision 1.22
      1 /*	$NetBSD: rf_dagdegwr.c,v 1.22 2004/03/21 03:22:08 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagdegwr.c
     31  *
     32  * code for creating degraded write DAGs
     33  *
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.22 2004/03/21 03:22:08 oster Exp $");
     38 
     39 #include <dev/raidframe/raidframevar.h>
     40 
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_general.h"
     47 #include "rf_dagdegwr.h"
     48 #include "rf_map.h"
     49 
     50 
     51 /******************************************************************************
     52  *
     53  * General comments on DAG creation:
     54  *
     55  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     56  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     57  * is reached, the execution engine will halt forward execution and work
     58  * backward through the graph, executing the undo functions.  Assuming that
     59  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     60  * does not make changes to permanent state, the graph will fail atomically.
     61  * If an error occurs after the Cmt node executes, the engine will roll-forward
     62  * through the graph, blindly executing nodes until it reaches the end.
     63  * If a graph reaches the end, it is assumed to have completed successfully.
     64  *
     65  * A graph has only 1 Cmt node.
     66  *
     67  */
     68 
     69 
     70 /******************************************************************************
     71  *
     72  * The following wrappers map the standard DAG creation interface to the
     73  * DAG creation routines.  Additionally, these wrappers enable experimentation
     74  * with new DAG structures by providing an extra level of indirection, allowing
     75  * the DAG creation routines to be replaced at this single point.
     76  */
     77 
     78 static
     79 RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
     80 {
     81 	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
     82 	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
     83 }
     84 
     85 void
     86 rf_CreateDegradedWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
     87 			  RF_DagHeader_t *dag_h, void *bp,
     88 			  RF_RaidAccessFlags_t flags,
     89 			  RF_AllocListElem_t *allocList)
     90 {
     91 
     92 	RF_ASSERT(asmap->numDataFailed == 1);
     93 	dag_h->creator = "DegradedWriteDAG";
     94 
     95 	/*
     96 	 * if the access writes only a portion of the failed unit, and also
     97 	 * writes some portion of at least one surviving unit, we create two
     98 	 * DAGs, one for the failed component and one for the non-failed
     99 	 * component, and do them sequentially.  Note that the fact that we're
    100 	 * accessing only a portion of the failed unit indicates that the
    101 	 * access either starts or ends in the failed unit, and hence we need
    102 	 * create only two dags.  This is inefficient in that the same data or
    103 	 * parity can get read and written twice using this structure.  I need
    104 	 * to fix this to do the access all at once.
    105 	 */
    106 	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
    107 		    asmap->failedPDAs[0]->numSector !=
    108 			raidPtr->Layout.sectorsPerStripeUnit));
    109 	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    110 	    allocList);
    111 }
    112 
    113 
    114 
    115 /******************************************************************************
    116  *
    117  * DAG creation code begins here
    118  */
    119 
    120 
    121 
    122 /******************************************************************************
    123  *
    124  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
    125  * write, which is as follows
    126  *
    127  *                                        / {Wnq} --\
    128  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
    129  *                  \  {Rod} /            \  Wnd ---/
    130  *                                        \ {Wnd} -/
    131  *
    132  * commit nodes: Xor, Wnd
    133  *
    134  * IMPORTANT:
    135  * This DAG generator does not work for double-degraded archs since it does not
    136  * generate Q
    137  *
    138  * This dag is essentially identical to the large-write dag, except that the
    139  * write to the failed data unit is suppressed.
    140  *
    141  * IMPORTANT:  this dag does not work in the case where the access writes only
    142  * a portion of the failed unit, and also writes some portion of at least one
    143  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
    144  *
    145  * The block & unblock nodes are leftovers from a previous version.  They
    146  * do nothing, but I haven't deleted them because it would be a tremendous
    147  * effort to put them back in.
    148  *
    149  * This dag is used whenever a one of the data units in a write has failed.
    150  * If it is the parity unit that failed, the nonredundant write dag (below)
    151  * is used.
    152  *****************************************************************************/
    153 
    154 void
    155 rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t *raidPtr,
    156 				      RF_AccessStripeMap_t *asmap,
    157 				      RF_DagHeader_t *dag_h, void *bp,
    158 				      RF_RaidAccessFlags_t flags,
    159 				      RF_AllocListElem_t *allocList,
    160 				      int nfaults,
    161 				      int (*redFunc) (RF_DagNode_t *),
    162 				      int allowBufferRecycle)
    163 {
    164 	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
    165 	        rdnodesFaked;
    166 	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
    167 	RF_DagNode_t *wndNodes, *rrdNodes, *xorNode, *commitNode;
    168 	RF_DagNode_t *tmpNode, *tmpwndNode, *tmprrdNode;
    169 	RF_SectorCount_t sectorsPerSU;
    170 	RF_ReconUnitNum_t which_ru;
    171 	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
    172 					 * operation */
    173 	char   overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
    174 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    175 	RF_PhysDiskAddr_t *pda, *parityPDA;
    176 	RF_StripeNum_t parityStripeID;
    177 	RF_PhysDiskAddr_t *failedPDA;
    178 	RF_RaidLayout_t *layoutPtr;
    179 
    180 	layoutPtr = &(raidPtr->Layout);
    181 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    182 	    &which_ru);
    183 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    184 	/* failedPDA points to the pda within the asm that targets the failed
    185 	 * disk */
    186 	failedPDA = asmap->failedPDAs[0];
    187 
    188 #if RF_DEBUG_DAG
    189 	if (rf_dagDebug)
    190 		printf("[Creating degraded-write DAG]\n");
    191 #endif
    192 
    193 	RF_ASSERT(asmap->numDataFailed == 1);
    194 	dag_h->creator = "SimpleDegradedWriteDAG";
    195 
    196 	/*
    197          * Generate two ASMs identifying the surviving data
    198          * we need in order to recover the lost data.
    199          */
    200 	/* overlappingPDAs array must be zero'd */
    201 	memset(overlappingPDAs, 0, RF_MAXCOL);
    202 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
    203 	    &nXorBufs, NULL, overlappingPDAs, allocList);
    204 
    205 	/* create all the nodes at once */
    206 	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
    207 							 * generated for the
    208 							 * failed pda */
    209 
    210 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    211 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    212 	/*
    213          * XXX
    214          *
    215          * There's a bug with a complete stripe overwrite- that means 0 reads
    216          * of old data, and the rest of the DAG generation code doesn't like
    217          * that. A release is coming, and I don't wanna risk breaking a critical
    218          * DAG generator, so here's what I'm gonna do- if there's no read nodes,
    219          * I'm gonna fake there being a read node, and I'm gonna swap in a
    220          * no-op node in its place (to make all the link-up code happy).
    221          * This should be fixed at some point.  --jimz
    222          */
    223 	if (nRrdNodes == 0) {
    224 		nRrdNodes = 1;
    225 		rdnodesFaked = 1;
    226 	} else {
    227 		rdnodesFaked = 0;
    228 	}
    229 	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
    230 	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
    231 
    232 	blockNode = rf_AllocDAGNode();
    233 	blockNode->list_next = dag_h->nodes;
    234 	dag_h->nodes = blockNode;
    235 
    236 	commitNode = rf_AllocDAGNode();
    237 	commitNode->list_next = dag_h->nodes;
    238 	dag_h->nodes = commitNode;
    239 
    240 	unblockNode = rf_AllocDAGNode();
    241 	unblockNode->list_next = dag_h->nodes;
    242 	dag_h->nodes = unblockNode;
    243 
    244 	termNode = rf_AllocDAGNode();
    245 	termNode->list_next = dag_h->nodes;
    246 	dag_h->nodes = termNode;
    247 
    248 	xorNode = rf_AllocDAGNode();
    249 	xorNode->list_next = dag_h->nodes;
    250 	dag_h->nodes = xorNode;
    251 
    252 	wnpNode = rf_AllocDAGNode();
    253 	wnpNode->list_next = dag_h->nodes;
    254 	dag_h->nodes = wnpNode;
    255 
    256 	for (i = 0; i < nWndNodes; i++) {
    257 		tmpNode = rf_AllocDAGNode();
    258 		tmpNode->list_next = dag_h->nodes;
    259 		dag_h->nodes = tmpNode;
    260 	}
    261 	wndNodes = dag_h->nodes;
    262 
    263 	for (i = 0; i < nRrdNodes; i++) {
    264 		tmpNode = rf_AllocDAGNode();
    265 		tmpNode->list_next = dag_h->nodes;
    266 		dag_h->nodes = tmpNode;
    267 	}
    268 	rrdNodes = dag_h->nodes;
    269 
    270 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    271 	if (nfaults == 2) {
    272 		wnqNode = rf_AllocDAGNode();
    273 		wnqNode->list_next = dag_h->nodes;
    274 		dag_h->nodes = wnqNode;
    275 	} else {
    276 #endif
    277 		wnqNode = NULL;
    278 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    279 	}
    280 #endif
    281 	RF_ASSERT(i == nNodes);
    282 
    283 	/* this dag can not commit until all rrd and xor Nodes have completed */
    284 	dag_h->numCommitNodes = 1;
    285 	dag_h->numCommits = 0;
    286 	dag_h->numSuccedents = 1;
    287 
    288 	RF_ASSERT(nRrdNodes > 0);
    289 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    290 	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
    291 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    292 	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    293 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    294 	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
    295 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    296 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    297 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    298 	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
    299 
    300 	/*
    301          * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
    302          * the failed buffer, save a pointer to it so we can use it as the target
    303          * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
    304          * a buffer is the same size as the failed buffer, it must also be at the
    305          * same alignment within the SU.
    306          */
    307 	i = 0;
    308 	tmprrdNode = rrdNodes;
    309 	if (new_asm_h[0]) {
    310 		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
    311 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    312 		    i++, pda = pda->next) {
    313 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    314 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    315 			RF_ASSERT(pda);
    316 			tmprrdNode->params[0].p = pda;
    317 			tmprrdNode->params[1].p = pda->bufPtr;
    318 			tmprrdNode->params[2].v = parityStripeID;
    319 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    320 			tmprrdNode = tmprrdNode->list_next;
    321 		}
    322 	}
    323 	/* i now equals the number of stripe units accessed in new_asm_h[0] */
    324 	/* Note that for tmprrdNode, this means a continuation from above, so no need to
    325 	   assign it anything.. */
    326 	if (new_asm_h[1]) {
    327 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    328 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    329 		    j++, pda = pda->next) {
    330 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    331 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    332 			RF_ASSERT(pda);
    333 			tmprrdNode->params[0].p = pda;
    334 			tmprrdNode->params[1].p = pda->bufPtr;
    335 			tmprrdNode->params[2].v = parityStripeID;
    336 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    337 			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
    338 				xorTargetBuf = pda->bufPtr;
    339 			tmprrdNode = tmprrdNode->list_next;
    340 		}
    341 	}
    342 	if (rdnodesFaked) {
    343 		/*
    344 	         * This is where we'll init that fake noop read node
    345 	         * (XXX should the wakeup func be different?)
    346 	         */
    347 		/* node that rrdNodes will just be a single node... */
    348 		rf_InitNode(rrdNodes, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    349 		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
    350 	}
    351 	/*
    352          * Make a PDA for the parity unit.  The parity PDA should start at
    353          * the same offset into the SU as the failed PDA.
    354          */
    355 	/* Danner comment: I don't think this copy is really necessary. We are
    356 	 * in one of two cases here. (1) The entire failed unit is written.
    357 	 * Then asmap->parityInfo will describe the entire parity. (2) We are
    358 	 * only writing a subset of the failed unit and nothing else. Then the
    359 	 * asmap->parityInfo describes the failed unit and the copy can also
    360 	 * be avoided. */
    361 
    362 	parityPDA = rf_AllocPhysDiskAddr();
    363 	parityPDA->next = dag_h->pda_cleanup_list;
    364 	dag_h->pda_cleanup_list = parityPDA;
    365 	parityPDA->col = asmap->parityInfo->col;
    366 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    367 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    368 	parityPDA->numSector = failedPDA->numSector;
    369 
    370 	if (!xorTargetBuf) {
    371 		xorTargetBuf = rf_AllocBuffer(raidPtr, dag_h,
    372 					      rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
    373 	}
    374 	/* init the Wnp node */
    375 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    376 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    377 	wnpNode->params[0].p = parityPDA;
    378 	wnpNode->params[1].p = xorTargetBuf;
    379 	wnpNode->params[2].v = parityStripeID;
    380 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    381 
    382 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    383 	/* fill in the Wnq Node */
    384 	if (nfaults == 2) {
    385 		{
    386 			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
    387 			    (RF_PhysDiskAddr_t *), allocList);
    388 			parityPDA->col = asmap->qInfo->col;
    389 			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
    390 			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    391 			parityPDA->numSector = failedPDA->numSector;
    392 
    393 			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    394 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    395 			wnqNode->params[0].p = parityPDA;
    396 			RF_MallocAndAdd(xorNode->results[1],
    397 			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    398 			wnqNode->params[1].p = xorNode->results[1];
    399 			wnqNode->params[2].v = parityStripeID;
    400 			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    401 		}
    402 	}
    403 #endif
    404 	/* fill in the Wnd nodes */
    405 	tmpwndNode = wndNodes;
    406 	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
    407 		if (pda == failedPDA) {
    408 			i--;
    409 			continue;
    410 		}
    411 		rf_InitNode(tmpwndNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    412 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    413 		RF_ASSERT(pda);
    414 		tmpwndNode->params[0].p = pda;
    415 		tmpwndNode->params[1].p = pda->bufPtr;
    416 		tmpwndNode->params[2].v = parityStripeID;
    417 		tmpwndNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    418 		tmpwndNode = tmpwndNode->list_next;
    419 	}
    420 
    421 	/* fill in the results of the xor node */
    422 	xorNode->results[0] = xorTargetBuf;
    423 
    424 	/* fill in the params of the xor node */
    425 
    426 	paramNum = 0;
    427 	if (rdnodesFaked == 0) {
    428 		tmprrdNode = rrdNodes;
    429 		for (i = 0; i < nRrdNodes; i++) {
    430 			/* all the Rrd nodes need to be xored together */
    431 			xorNode->params[paramNum++] = tmprrdNode->params[0];
    432 			xorNode->params[paramNum++] = tmprrdNode->params[1];
    433 			tmprrdNode = tmprrdNode->list_next;
    434 		}
    435 	}
    436 	tmpwndNode = wndNodes;
    437 	for (i = 0; i < nWndNodes; i++) {
    438 		/* any Wnd nodes that overlap the failed access need to be
    439 		 * xored in */
    440 		if (overlappingPDAs[i]) {
    441 			pda = rf_AllocPhysDiskAddr();
    442 			memcpy((char *) pda, (char *) tmpwndNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
    443 			/* add it into the pda_cleanup_list *after* the copy, TYVM */
    444 			pda->next = dag_h->pda_cleanup_list;
    445 			dag_h->pda_cleanup_list = pda;
    446 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    447 			xorNode->params[paramNum++].p = pda;
    448 			xorNode->params[paramNum++].p = pda->bufPtr;
    449 		}
    450 		tmpwndNode = tmpwndNode->list_next;
    451 	}
    452 
    453 	/*
    454          * Install the failed PDA into the xor param list so that the
    455          * new data gets xor'd in.
    456          */
    457 	xorNode->params[paramNum++].p = failedPDA;
    458 	xorNode->params[paramNum++].p = failedPDA->bufPtr;
    459 
    460 	/*
    461          * The last 2 params to the recovery xor node are always the failed
    462          * PDA and the raidPtr. install the failedPDA even though we have just
    463          * done so above. This allows us to use the same XOR function for both
    464          * degraded reads and degraded writes.
    465          */
    466 	xorNode->params[paramNum++].p = failedPDA;
    467 	xorNode->params[paramNum++].p = raidPtr;
    468 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    469 
    470 	/*
    471          * Code to link nodes begins here
    472          */
    473 
    474 	/* link header to block node */
    475 	RF_ASSERT(blockNode->numAntecedents == 0);
    476 	dag_h->succedents[0] = blockNode;
    477 
    478 	/* link block node to rd nodes */
    479 	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
    480 	tmprrdNode = rrdNodes;
    481 	for (i = 0; i < nRrdNodes; i++) {
    482 		RF_ASSERT(tmprrdNode->numAntecedents == 1);
    483 		blockNode->succedents[i] = tmprrdNode;
    484 		tmprrdNode->antecedents[0] = blockNode;
    485 		tmprrdNode->antType[0] = rf_control;
    486 		tmprrdNode = tmprrdNode->list_next;
    487 	}
    488 
    489 	/* link read nodes to xor node */
    490 	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
    491 	tmprrdNode = rrdNodes;
    492 	for (i = 0; i < nRrdNodes; i++) {
    493 		RF_ASSERT(tmprrdNode->numSuccedents == 1);
    494 		tmprrdNode->succedents[0] = xorNode;
    495 		xorNode->antecedents[i] = tmprrdNode;
    496 		xorNode->antType[i] = rf_trueData;
    497 		tmprrdNode = tmprrdNode->list_next;
    498 	}
    499 
    500 	/* link xor node to commit node */
    501 	RF_ASSERT(xorNode->numSuccedents == 1);
    502 	RF_ASSERT(commitNode->numAntecedents == 1);
    503 	xorNode->succedents[0] = commitNode;
    504 	commitNode->antecedents[0] = xorNode;
    505 	commitNode->antType[0] = rf_control;
    506 
    507 	/* link commit node to wnd nodes */
    508 	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
    509 	tmpwndNode = wndNodes;
    510 	for (i = 0; i < nWndNodes; i++) {
    511 		RF_ASSERT(tmpwndNode->numAntecedents == 1);
    512 		commitNode->succedents[i] = tmpwndNode;
    513 		tmpwndNode->antecedents[0] = commitNode;
    514 		tmpwndNode->antType[0] = rf_control;
    515 		tmpwndNode = tmpwndNode->list_next;
    516 	}
    517 
    518 	/* link the commit node to wnp, wnq nodes */
    519 	RF_ASSERT(wnpNode->numAntecedents == 1);
    520 	commitNode->succedents[nWndNodes] = wnpNode;
    521 	wnpNode->antecedents[0] = commitNode;
    522 	wnpNode->antType[0] = rf_control;
    523 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    524 	if (nfaults == 2) {
    525 		RF_ASSERT(wnqNode->numAntecedents == 1);
    526 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    527 		wnqNode->antecedents[0] = commitNode;
    528 		wnqNode->antType[0] = rf_control;
    529 	}
    530 #endif
    531 	/* link write new data nodes to unblock node */
    532 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
    533 	tmpwndNode = wndNodes;
    534 	for (i = 0; i < nWndNodes; i++) {
    535 		RF_ASSERT(tmpwndNode->numSuccedents == 1);
    536 		tmpwndNode->succedents[0] = unblockNode;
    537 		unblockNode->antecedents[i] = tmpwndNode;
    538 		unblockNode->antType[i] = rf_control;
    539 		tmpwndNode = tmpwndNode->list_next;
    540 	}
    541 
    542 	/* link write new parity node to unblock node */
    543 	RF_ASSERT(wnpNode->numSuccedents == 1);
    544 	wnpNode->succedents[0] = unblockNode;
    545 	unblockNode->antecedents[nWndNodes] = wnpNode;
    546 	unblockNode->antType[nWndNodes] = rf_control;
    547 
    548 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    549 	/* link write new q node to unblock node */
    550 	if (nfaults == 2) {
    551 		RF_ASSERT(wnqNode->numSuccedents == 1);
    552 		wnqNode->succedents[0] = unblockNode;
    553 		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
    554 		unblockNode->antType[nWndNodes + 1] = rf_control;
    555 	}
    556 #endif
    557 	/* link unblock node to term node */
    558 	RF_ASSERT(unblockNode->numSuccedents == 1);
    559 	RF_ASSERT(termNode->numAntecedents == 1);
    560 	RF_ASSERT(termNode->numSuccedents == 0);
    561 	unblockNode->succedents[0] = termNode;
    562 	termNode->antecedents[0] = unblockNode;
    563 	termNode->antType[0] = rf_control;
    564 }
    565 #define CONS_PDA(if,start,num) \
    566   pda_p->col = asmap->if->col; \
    567   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    568   pda_p->numSector = num; \
    569   pda_p->next = NULL; \
    570   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
    571 #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
    572 void
    573 rf_WriteGenerateFailedAccessASMs(
    574     RF_Raid_t * raidPtr,
    575     RF_AccessStripeMap_t * asmap,
    576     RF_PhysDiskAddr_t ** pdap,
    577     int *nNodep,
    578     RF_PhysDiskAddr_t ** pqpdap,
    579     int *nPQNodep,
    580     RF_AllocListElem_t * allocList)
    581 {
    582 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    583 	int     PDAPerDisk, i;
    584 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    585 	int     numDataCol = layoutPtr->numDataCol;
    586 	int     state;
    587 	unsigned napdas;
    588 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
    589 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    590 	RF_PhysDiskAddr_t *pda_p;
    591 	RF_RaidAddr_t sosAddr;
    592 
    593 	/* determine how many pda's we will have to generate per unaccess
    594 	 * stripe. If there is only one failed data unit, it is one; if two,
    595 	 * possibly two, depending wether they overlap. */
    596 
    597 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    598 	fone_end = fone_start + fone->numSector;
    599 
    600 	if (asmap->numDataFailed == 1) {
    601 		PDAPerDisk = 1;
    602 		state = 1;
    603 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    604 		pda_p = *pqpdap;
    605 		/* build p */
    606 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    607 		pda_p->type = RF_PDA_TYPE_PARITY;
    608 		pda_p++;
    609 		/* build q */
    610 		CONS_PDA(qInfo, fone_start, fone->numSector);
    611 		pda_p->type = RF_PDA_TYPE_Q;
    612 	} else {
    613 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    614 		ftwo_end = ftwo_start + ftwo->numSector;
    615 		if (fone->numSector + ftwo->numSector > secPerSU) {
    616 			PDAPerDisk = 1;
    617 			state = 2;
    618 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    619 			pda_p = *pqpdap;
    620 			CONS_PDA(parityInfo, 0, secPerSU);
    621 			pda_p->type = RF_PDA_TYPE_PARITY;
    622 			pda_p++;
    623 			CONS_PDA(qInfo, 0, secPerSU);
    624 			pda_p->type = RF_PDA_TYPE_Q;
    625 		} else {
    626 			PDAPerDisk = 2;
    627 			state = 3;
    628 			/* four of them, fone, then ftwo */
    629 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    630 			pda_p = *pqpdap;
    631 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    632 			pda_p->type = RF_PDA_TYPE_PARITY;
    633 			pda_p++;
    634 			CONS_PDA(qInfo, fone_start, fone->numSector);
    635 			pda_p->type = RF_PDA_TYPE_Q;
    636 			pda_p++;
    637 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    638 			pda_p->type = RF_PDA_TYPE_PARITY;
    639 			pda_p++;
    640 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    641 			pda_p->type = RF_PDA_TYPE_Q;
    642 		}
    643 	}
    644 	/* figure out number of nonaccessed pda */
    645 	napdas = PDAPerDisk * (numDataCol - 2);
    646 	*nPQNodep = PDAPerDisk;
    647 
    648 	*nNodep = napdas;
    649 	if (napdas == 0)
    650 		return;		/* short circuit */
    651 
    652 	/* allocate up our list of pda's */
    653 
    654 	RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
    655 			(RF_PhysDiskAddr_t *), allocList);
    656 	*pdap = pda_p;
    657 
    658 	/* linkem together */
    659 	for (i = 0; i < (napdas - 1); i++)
    660 		pda_p[i].next = pda_p + (i + 1);
    661 
    662 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    663 	for (i = 0; i < numDataCol; i++) {
    664 		if ((pda_p - (*pdap)) == napdas)
    665 			continue;
    666 		pda_p->type = RF_PDA_TYPE_DATA;
    667 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    668 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    669 		/* skip over dead disks */
    670 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    671 			continue;
    672 		switch (state) {
    673 		case 1:	/* fone */
    674 			pda_p->numSector = fone->numSector;
    675 			pda_p->raidAddress += fone_start;
    676 			pda_p->startSector += fone_start;
    677 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    678 			break;
    679 		case 2:	/* full stripe */
    680 			pda_p->numSector = secPerSU;
    681 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    682 			break;
    683 		case 3:	/* two slabs */
    684 			pda_p->numSector = fone->numSector;
    685 			pda_p->raidAddress += fone_start;
    686 			pda_p->startSector += fone_start;
    687 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    688 			pda_p++;
    689 			pda_p->type = RF_PDA_TYPE_DATA;
    690 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    691 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    692 			pda_p->numSector = ftwo->numSector;
    693 			pda_p->raidAddress += ftwo_start;
    694 			pda_p->startSector += ftwo_start;
    695 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    696 			break;
    697 		default:
    698 			RF_PANIC();
    699 		}
    700 		pda_p++;
    701 	}
    702 
    703 	RF_ASSERT(pda_p - *pdap == napdas);
    704 	return;
    705 }
    706 #define DISK_NODE_PDA(node)  ((node)->params[0].p)
    707 
    708 #define DISK_NODE_PARAMS(_node_,_p_) \
    709   (_node_).params[0].p = _p_ ; \
    710   (_node_).params[1].p = (_p_)->bufPtr; \
    711   (_node_).params[2].v = parityStripeID; \
    712   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
    713 
    714 void
    715 rf_DoubleDegSmallWrite(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    716 		       RF_DagHeader_t *dag_h, void *bp,
    717 		       RF_RaidAccessFlags_t flags,
    718 		       RF_AllocListElem_t *allocList,
    719 		       char *redundantReadNodeName,
    720 		       char *redundantWriteNodeName,
    721 		       char *recoveryNodeName,
    722 		       int (*recovFunc) (RF_DagNode_t *))
    723 {
    724 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    725 	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
    726 	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
    727 	RF_PhysDiskAddr_t *pda, *pqPDAs;
    728 	RF_PhysDiskAddr_t *npdas;
    729 	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
    730 	RF_ReconUnitNum_t which_ru;
    731 	int     nPQNodes;
    732 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
    733 
    734 	/* simple small write case - First part looks like a reconstruct-read
    735 	 * of the failed data units. Then a write of all data units not
    736 	 * failed. */
    737 
    738 
    739 	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
    740 	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
    741 	 * --Unblock- | T
    742 	 *
    743 	 * Rrd = read recovery data  (potentially none) Wud = write user data
    744 	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
    745 	 * (could be two)
    746 	 *
    747 	 */
    748 
    749 	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
    750 
    751 	RF_ASSERT(asmap->numDataFailed == 1);
    752 
    753 	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
    754 	nReadNodes = nRrdNodes + 2 * nPQNodes;
    755 	nWriteNodes = nWudNodes + 2 * nPQNodes;
    756 	nNodes = 4 + nReadNodes + nWriteNodes;
    757 
    758 	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    759 	blockNode = nodes;
    760 	unblockNode = blockNode + 1;
    761 	termNode = unblockNode + 1;
    762 	recoveryNode = termNode + 1;
    763 	rrdNodes = recoveryNode + 1;
    764 	rpNodes = rrdNodes + nRrdNodes;
    765 	rqNodes = rpNodes + nPQNodes;
    766 	wudNodes = rqNodes + nPQNodes;
    767 	wpNodes = wudNodes + nWudNodes;
    768 	wqNodes = wpNodes + nPQNodes;
    769 
    770 	dag_h->creator = "PQ_DDSimpleSmallWrite";
    771 	dag_h->numSuccedents = 1;
    772 	dag_h->succedents[0] = blockNode;
    773 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    774 	termNode->antecedents[0] = unblockNode;
    775 	termNode->antType[0] = rf_control;
    776 
    777 	/* init the block and unblock nodes */
    778 	/* The block node has all the read nodes as successors */
    779 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
    780 	for (i = 0; i < nReadNodes; i++)
    781 		blockNode->succedents[i] = rrdNodes + i;
    782 
    783 	/* The unblock node has all the writes as successors */
    784 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
    785 	for (i = 0; i < nWriteNodes; i++) {
    786 		unblockNode->antecedents[i] = wudNodes + i;
    787 		unblockNode->antType[i] = rf_control;
    788 	}
    789 	unblockNode->succedents[0] = termNode;
    790 
    791 #define INIT_READ_NODE(node,name) \
    792   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    793   (node)->succedents[0] = recoveryNode; \
    794   (node)->antecedents[0] = blockNode; \
    795   (node)->antType[0] = rf_control;
    796 
    797 	/* build the read nodes */
    798 	pda = npdas;
    799 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
    800 		INIT_READ_NODE(rrdNodes + i, "rrd");
    801 		DISK_NODE_PARAMS(rrdNodes[i], pda);
    802 	}
    803 
    804 	/* read redundancy pdas */
    805 	pda = pqPDAs;
    806 	INIT_READ_NODE(rpNodes, "Rp");
    807 	RF_ASSERT(pda);
    808 	DISK_NODE_PARAMS(rpNodes[0], pda);
    809 	pda++;
    810 	INIT_READ_NODE(rqNodes, redundantReadNodeName);
    811 	RF_ASSERT(pda);
    812 	DISK_NODE_PARAMS(rqNodes[0], pda);
    813 	if (nPQNodes == 2) {
    814 		pda++;
    815 		INIT_READ_NODE(rpNodes + 1, "Rp");
    816 		RF_ASSERT(pda);
    817 		DISK_NODE_PARAMS(rpNodes[1], pda);
    818 		pda++;
    819 		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
    820 		RF_ASSERT(pda);
    821 		DISK_NODE_PARAMS(rqNodes[1], pda);
    822 	}
    823 	/* the recovery node has all reads as precedessors and all writes as
    824 	 * successors. It generates a result for every write P or write Q
    825 	 * node. As parameters, it takes a pda per read and a pda per stripe
    826 	 * of user data written. It also takes as the last params the raidPtr
    827 	 * and asm. For results, it takes PDA for P & Q. */
    828 
    829 
    830 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
    831 	    nWriteNodes,	/* succesors */
    832 	    nReadNodes,		/* preds */
    833 	    nReadNodes + nWudNodes + 3,	/* params */
    834 	    2 * nPQNodes,	/* results */
    835 	    dag_h, recoveryNodeName, allocList);
    836 
    837 
    838 
    839 	for (i = 0; i < nReadNodes; i++) {
    840 		recoveryNode->antecedents[i] = rrdNodes + i;
    841 		recoveryNode->antType[i] = rf_control;
    842 		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
    843 	}
    844 	for (i = 0; i < nWudNodes; i++) {
    845 		recoveryNode->succedents[i] = wudNodes + i;
    846 	}
    847 	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
    848 	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
    849 	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
    850 
    851 	for (; i < nWriteNodes; i++)
    852 		recoveryNode->succedents[i] = wudNodes + i;
    853 
    854 	pda = pqPDAs;
    855 	recoveryNode->results[0] = pda;
    856 	pda++;
    857 	recoveryNode->results[1] = pda;
    858 	if (nPQNodes == 2) {
    859 		pda++;
    860 		recoveryNode->results[2] = pda;
    861 		pda++;
    862 		recoveryNode->results[3] = pda;
    863 	}
    864 	/* fill writes */
    865 #define INIT_WRITE_NODE(node,name) \
    866   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    867     (node)->succedents[0] = unblockNode; \
    868     (node)->antecedents[0] = recoveryNode; \
    869     (node)->antType[0] = rf_control;
    870 
    871 	pda = asmap->physInfo;
    872 	for (i = 0; i < nWudNodes; i++) {
    873 		INIT_WRITE_NODE(wudNodes + i, "Wd");
    874 		DISK_NODE_PARAMS(wudNodes[i], pda);
    875 		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
    876 		pda = pda->next;
    877 	}
    878 	/* write redundancy pdas */
    879 	pda = pqPDAs;
    880 	INIT_WRITE_NODE(wpNodes, "Wp");
    881 	RF_ASSERT(pda);
    882 	DISK_NODE_PARAMS(wpNodes[0], pda);
    883 	pda++;
    884 	INIT_WRITE_NODE(wqNodes, "Wq");
    885 	RF_ASSERT(pda);
    886 	DISK_NODE_PARAMS(wqNodes[0], pda);
    887 	if (nPQNodes == 2) {
    888 		pda++;
    889 		INIT_WRITE_NODE(wpNodes + 1, "Wp");
    890 		RF_ASSERT(pda);
    891 		DISK_NODE_PARAMS(wpNodes[1], pda);
    892 		pda++;
    893 		INIT_WRITE_NODE(wqNodes + 1, "Wq");
    894 		RF_ASSERT(pda);
    895 		DISK_NODE_PARAMS(wqNodes[1], pda);
    896 	}
    897 }
    898 #endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
    899