rf_dagdegwr.c revision 1.3 1 /* $NetBSD: rf_dagdegwr.c,v 1.3 1999/02/05 00:06:07 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * rf_dagdegwr.c
31 *
32 * code for creating degraded write DAGs
33 *
34 */
35
36 #include "rf_types.h"
37 #include "rf_raid.h"
38 #include "rf_dag.h"
39 #include "rf_dagutils.h"
40 #include "rf_dagfuncs.h"
41 #include "rf_threadid.h"
42 #include "rf_debugMem.h"
43 #include "rf_memchunk.h"
44 #include "rf_general.h"
45 #include "rf_dagdegwr.h"
46 #include "rf_sys.h"
47
48
49 /******************************************************************************
50 *
51 * General comments on DAG creation:
52 *
53 * All DAGs in this file use roll-away error recovery. Each DAG has a single
54 * commit node, usually called "Cmt." If an error occurs before the Cmt node
55 * is reached, the execution engine will halt forward execution and work
56 * backward through the graph, executing the undo functions. Assuming that
57 * each node in the graph prior to the Cmt node are undoable and atomic - or -
58 * does not make changes to permanent state, the graph will fail atomically.
59 * If an error occurs after the Cmt node executes, the engine will roll-forward
60 * through the graph, blindly executing nodes until it reaches the end.
61 * If a graph reaches the end, it is assumed to have completed successfully.
62 *
63 * A graph has only 1 Cmt node.
64 *
65 */
66
67
68 /******************************************************************************
69 *
70 * The following wrappers map the standard DAG creation interface to the
71 * DAG creation routines. Additionally, these wrappers enable experimentation
72 * with new DAG structures by providing an extra level of indirection, allowing
73 * the DAG creation routines to be replaced at this single point.
74 */
75
76 static
77 RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
78 {
79 rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
80 flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
81 }
82
83 void
84 rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
85 RF_Raid_t *raidPtr;
86 RF_AccessStripeMap_t *asmap;
87 RF_DagHeader_t *dag_h;
88 void *bp;
89 RF_RaidAccessFlags_t flags;
90 RF_AllocListElem_t *allocList;
91 {
92 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
93 RF_PhysDiskAddr_t *failedPDA = asmap->failedPDAs[0];
94
95 RF_ASSERT(asmap->numDataFailed == 1);
96 dag_h->creator = "DegradedWriteDAG";
97
98 /* if the access writes only a portion of the failed unit, and also
99 * writes some portion of at least one surviving unit, we create two
100 * DAGs, one for the failed component and one for the non-failed
101 * component, and do them sequentially. Note that the fact that we're
102 * accessing only a portion of the failed unit indicates that the
103 * access either starts or ends in the failed unit, and hence we need
104 * create only two dags. This is inefficient in that the same data or
105 * parity can get read and written twice using this structure. I need
106 * to fix this to do the access all at once. */
107 RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 && failedPDA->numSector != layoutPtr->sectorsPerStripeUnit));
108 rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList);
109 }
110
111
112
113 /******************************************************************************
114 *
115 * DAG creation code begins here
116 */
117
118
119
120 /******************************************************************************
121 *
122 * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
123 * write, which is as follows
124 *
125 * / {Wnq} --\
126 * hdr -> blockNode -> Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
127 * \ {Rod} / \ Wnd ---/
128 * \ {Wnd} -/
129 *
130 * commit nodes: Xor, Wnd
131 *
132 * IMPORTANT:
133 * This DAG generator does not work for double-degraded archs since it does not
134 * generate Q
135 *
136 * This dag is essentially identical to the large-write dag, except that the
137 * write to the failed data unit is suppressed.
138 *
139 * IMPORTANT: this dag does not work in the case where the access writes only
140 * a portion of the failed unit, and also writes some portion of at least one
141 * surviving SU. this case is handled in CreateDegradedWriteDAG above.
142 *
143 * The block & unblock nodes are leftovers from a previous version. They
144 * do nothing, but I haven't deleted them because it would be a tremendous
145 * effort to put them back in.
146 *
147 * This dag is used whenever a one of the data units in a write has failed.
148 * If it is the parity unit that failed, the nonredundant write dag (below)
149 * is used.
150 *****************************************************************************/
151
152 void
153 rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
154 allocList, nfaults, redFunc, allowBufferRecycle)
155 RF_Raid_t *raidPtr;
156 RF_AccessStripeMap_t *asmap;
157 RF_DagHeader_t *dag_h;
158 void *bp;
159 RF_RaidAccessFlags_t flags;
160 RF_AllocListElem_t *allocList;
161 int nfaults;
162 int (*redFunc) (RF_DagNode_t *);
163 int allowBufferRecycle;
164 {
165 int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
166 rdnodesFaked;
167 RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
168 RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
169 RF_SectorCount_t sectorsPerSU;
170 RF_ReconUnitNum_t which_ru;
171 char *xorTargetBuf = NULL; /* the target buffer for the XOR
172 * operation */
173 char *overlappingPDAs;/* a temporary array of flags */
174 RF_AccessStripeMapHeader_t *new_asm_h[2];
175 RF_PhysDiskAddr_t *pda, *parityPDA;
176 RF_StripeNum_t parityStripeID;
177 RF_PhysDiskAddr_t *failedPDA;
178 RF_RaidLayout_t *layoutPtr;
179
180 layoutPtr = &(raidPtr->Layout);
181 parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
182 &which_ru);
183 sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
184 /* failedPDA points to the pda within the asm that targets the failed
185 * disk */
186 failedPDA = asmap->failedPDAs[0];
187
188 if (rf_dagDebug)
189 printf("[Creating degraded-write DAG]\n");
190
191 RF_ASSERT(asmap->numDataFailed == 1);
192 dag_h->creator = "SimpleDegradedWriteDAG";
193
194 /*
195 * Generate two ASMs identifying the surviving data
196 * we need in order to recover the lost data.
197 */
198 /* overlappingPDAs array must be zero'd */
199 RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
200 rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
201 &nXorBufs, NULL, overlappingPDAs, allocList);
202
203 /* create all the nodes at once */
204 nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is
205 * generated for the
206 * failed pda */
207
208 nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
209 ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
210 /*
211 * XXX
212 *
213 * There's a bug with a complete stripe overwrite- that means 0 reads
214 * of old data, and the rest of the DAG generation code doesn't like
215 * that. A release is coming, and I don't wanna risk breaking a critical
216 * DAG generator, so here's what I'm gonna do- if there's no read nodes,
217 * I'm gonna fake there being a read node, and I'm gonna swap in a
218 * no-op node in its place (to make all the link-up code happy).
219 * This should be fixed at some point. --jimz
220 */
221 if (nRrdNodes == 0) {
222 nRrdNodes = 1;
223 rdnodesFaked = 1;
224 } else {
225 rdnodesFaked = 0;
226 }
227 /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
228 nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
229 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
230 (RF_DagNode_t *), allocList);
231 i = 0;
232 blockNode = &nodes[i];
233 i += 1;
234 commitNode = &nodes[i];
235 i += 1;
236 unblockNode = &nodes[i];
237 i += 1;
238 termNode = &nodes[i];
239 i += 1;
240 xorNode = &nodes[i];
241 i += 1;
242 wnpNode = &nodes[i];
243 i += 1;
244 wndNodes = &nodes[i];
245 i += nWndNodes;
246 rrdNodes = &nodes[i];
247 i += nRrdNodes;
248 if (nfaults == 2) {
249 wnqNode = &nodes[i];
250 i += 1;
251 } else {
252 wnqNode = NULL;
253 }
254 RF_ASSERT(i == nNodes);
255
256 /* this dag can not commit until all rrd and xor Nodes have completed */
257 dag_h->numCommitNodes = 1;
258 dag_h->numCommits = 0;
259 dag_h->numSuccedents = 1;
260
261 RF_ASSERT(nRrdNodes > 0);
262 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
263 NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
264 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
265 NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
266 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
267 NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
268 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
269 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
270 rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
271 nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
272
273 /*
274 * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
275 * the failed buffer, save a pointer to it so we can use it as the target
276 * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
277 * a buffer is the same size as the failed buffer, it must also be at the
278 * same alignment within the SU.
279 */
280 i = 0;
281 if (new_asm_h[0]) {
282 for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
283 i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
284 i++, pda = pda->next) {
285 rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
286 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
287 RF_ASSERT(pda);
288 rrdNodes[i].params[0].p = pda;
289 rrdNodes[i].params[1].p = pda->bufPtr;
290 rrdNodes[i].params[2].v = parityStripeID;
291 rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
292 }
293 }
294 /* i now equals the number of stripe units accessed in new_asm_h[0] */
295 if (new_asm_h[1]) {
296 for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
297 j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
298 j++, pda = pda->next) {
299 rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
300 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
301 RF_ASSERT(pda);
302 rrdNodes[i + j].params[0].p = pda;
303 rrdNodes[i + j].params[1].p = pda->bufPtr;
304 rrdNodes[i + j].params[2].v = parityStripeID;
305 rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
306 if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
307 xorTargetBuf = pda->bufPtr;
308 }
309 }
310 if (rdnodesFaked) {
311 /*
312 * This is where we'll init that fake noop read node
313 * (XXX should the wakeup func be different?)
314 */
315 rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
316 NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
317 }
318 /*
319 * Make a PDA for the parity unit. The parity PDA should start at
320 * the same offset into the SU as the failed PDA.
321 */
322 /* Danner comment: I don't think this copy is really necessary. We are
323 * in one of two cases here. (1) The entire failed unit is written.
324 * Then asmap->parityInfo will describe the entire parity. (2) We are
325 * only writing a subset of the failed unit and nothing else. Then the
326 * asmap->parityInfo describes the failed unit and the copy can also
327 * be avoided. */
328
329 RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
330 parityPDA->row = asmap->parityInfo->row;
331 parityPDA->col = asmap->parityInfo->col;
332 parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
333 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
334 parityPDA->numSector = failedPDA->numSector;
335
336 if (!xorTargetBuf) {
337 RF_CallocAndAdd(xorTargetBuf, 1,
338 rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
339 }
340 /* init the Wnp node */
341 rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
342 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
343 wnpNode->params[0].p = parityPDA;
344 wnpNode->params[1].p = xorTargetBuf;
345 wnpNode->params[2].v = parityStripeID;
346 wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
347
348 /* fill in the Wnq Node */
349 if (nfaults == 2) {
350 {
351 RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
352 (RF_PhysDiskAddr_t *), allocList);
353 parityPDA->row = asmap->qInfo->row;
354 parityPDA->col = asmap->qInfo->col;
355 parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
356 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
357 parityPDA->numSector = failedPDA->numSector;
358
359 rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
360 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
361 wnqNode->params[0].p = parityPDA;
362 RF_CallocAndAdd(xorNode->results[1], 1,
363 rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
364 wnqNode->params[1].p = xorNode->results[1];
365 wnqNode->params[2].v = parityStripeID;
366 wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
367 }
368 }
369 /* fill in the Wnd nodes */
370 for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
371 if (pda == failedPDA) {
372 i--;
373 continue;
374 }
375 rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
376 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
377 RF_ASSERT(pda);
378 wndNodes[i].params[0].p = pda;
379 wndNodes[i].params[1].p = pda->bufPtr;
380 wndNodes[i].params[2].v = parityStripeID;
381 wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
382 }
383
384 /* fill in the results of the xor node */
385 xorNode->results[0] = xorTargetBuf;
386
387 /* fill in the params of the xor node */
388
389 paramNum = 0;
390 if (rdnodesFaked == 0) {
391 for (i = 0; i < nRrdNodes; i++) {
392 /* all the Rrd nodes need to be xored together */
393 xorNode->params[paramNum++] = rrdNodes[i].params[0];
394 xorNode->params[paramNum++] = rrdNodes[i].params[1];
395 }
396 }
397 for (i = 0; i < nWndNodes; i++) {
398 /* any Wnd nodes that overlap the failed access need to be
399 * xored in */
400 if (overlappingPDAs[i]) {
401 RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
402 bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
403 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
404 xorNode->params[paramNum++].p = pda;
405 xorNode->params[paramNum++].p = pda->bufPtr;
406 }
407 }
408 RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
409
410 /*
411 * Install the failed PDA into the xor param list so that the
412 * new data gets xor'd in.
413 */
414 xorNode->params[paramNum++].p = failedPDA;
415 xorNode->params[paramNum++].p = failedPDA->bufPtr;
416
417 /*
418 * The last 2 params to the recovery xor node are always the failed
419 * PDA and the raidPtr. install the failedPDA even though we have just
420 * done so above. This allows us to use the same XOR function for both
421 * degraded reads and degraded writes.
422 */
423 xorNode->params[paramNum++].p = failedPDA;
424 xorNode->params[paramNum++].p = raidPtr;
425 RF_ASSERT(paramNum == 2 * nXorBufs + 2);
426
427 /*
428 * Code to link nodes begins here
429 */
430
431 /* link header to block node */
432 RF_ASSERT(blockNode->numAntecedents == 0);
433 dag_h->succedents[0] = blockNode;
434
435 /* link block node to rd nodes */
436 RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
437 for (i = 0; i < nRrdNodes; i++) {
438 RF_ASSERT(rrdNodes[i].numAntecedents == 1);
439 blockNode->succedents[i] = &rrdNodes[i];
440 rrdNodes[i].antecedents[0] = blockNode;
441 rrdNodes[i].antType[0] = rf_control;
442 }
443
444 /* link read nodes to xor node */
445 RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
446 for (i = 0; i < nRrdNodes; i++) {
447 RF_ASSERT(rrdNodes[i].numSuccedents == 1);
448 rrdNodes[i].succedents[0] = xorNode;
449 xorNode->antecedents[i] = &rrdNodes[i];
450 xorNode->antType[i] = rf_trueData;
451 }
452
453 /* link xor node to commit node */
454 RF_ASSERT(xorNode->numSuccedents == 1);
455 RF_ASSERT(commitNode->numAntecedents == 1);
456 xorNode->succedents[0] = commitNode;
457 commitNode->antecedents[0] = xorNode;
458 commitNode->antType[0] = rf_control;
459
460 /* link commit node to wnd nodes */
461 RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
462 for (i = 0; i < nWndNodes; i++) {
463 RF_ASSERT(wndNodes[i].numAntecedents == 1);
464 commitNode->succedents[i] = &wndNodes[i];
465 wndNodes[i].antecedents[0] = commitNode;
466 wndNodes[i].antType[0] = rf_control;
467 }
468
469 /* link the commit node to wnp, wnq nodes */
470 RF_ASSERT(wnpNode->numAntecedents == 1);
471 commitNode->succedents[nWndNodes] = wnpNode;
472 wnpNode->antecedents[0] = commitNode;
473 wnpNode->antType[0] = rf_control;
474 if (nfaults == 2) {
475 RF_ASSERT(wnqNode->numAntecedents == 1);
476 commitNode->succedents[nWndNodes + 1] = wnqNode;
477 wnqNode->antecedents[0] = commitNode;
478 wnqNode->antType[0] = rf_control;
479 }
480 /* link write new data nodes to unblock node */
481 RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
482 for (i = 0; i < nWndNodes; i++) {
483 RF_ASSERT(wndNodes[i].numSuccedents == 1);
484 wndNodes[i].succedents[0] = unblockNode;
485 unblockNode->antecedents[i] = &wndNodes[i];
486 unblockNode->antType[i] = rf_control;
487 }
488
489 /* link write new parity node to unblock node */
490 RF_ASSERT(wnpNode->numSuccedents == 1);
491 wnpNode->succedents[0] = unblockNode;
492 unblockNode->antecedents[nWndNodes] = wnpNode;
493 unblockNode->antType[nWndNodes] = rf_control;
494
495 /* link write new q node to unblock node */
496 if (nfaults == 2) {
497 RF_ASSERT(wnqNode->numSuccedents == 1);
498 wnqNode->succedents[0] = unblockNode;
499 unblockNode->antecedents[nWndNodes + 1] = wnqNode;
500 unblockNode->antType[nWndNodes + 1] = rf_control;
501 }
502 /* link unblock node to term node */
503 RF_ASSERT(unblockNode->numSuccedents == 1);
504 RF_ASSERT(termNode->numAntecedents == 1);
505 RF_ASSERT(termNode->numSuccedents == 0);
506 unblockNode->succedents[0] = termNode;
507 termNode->antecedents[0] = unblockNode;
508 termNode->antType[0] = rf_control;
509 }
510 #define CONS_PDA(if,start,num) \
511 pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
512 pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
513 pda_p->numSector = num; \
514 pda_p->next = NULL; \
515 RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
516
517 void
518 rf_WriteGenerateFailedAccessASMs(
519 RF_Raid_t * raidPtr,
520 RF_AccessStripeMap_t * asmap,
521 RF_PhysDiskAddr_t ** pdap,
522 int *nNodep,
523 RF_PhysDiskAddr_t ** pqpdap,
524 int *nPQNodep,
525 RF_AllocListElem_t * allocList)
526 {
527 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
528 int PDAPerDisk, i;
529 RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
530 int numDataCol = layoutPtr->numDataCol;
531 int state;
532 unsigned napdas;
533 RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
534 RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
535 RF_PhysDiskAddr_t *pda_p;
536 RF_RaidAddr_t sosAddr;
537
538 /* determine how many pda's we will have to generate per unaccess
539 * stripe. If there is only one failed data unit, it is one; if two,
540 * possibly two, depending wether they overlap. */
541
542 fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
543 fone_end = fone_start + fone->numSector;
544
545 if (asmap->numDataFailed == 1) {
546 PDAPerDisk = 1;
547 state = 1;
548 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
549 pda_p = *pqpdap;
550 /* build p */
551 CONS_PDA(parityInfo, fone_start, fone->numSector);
552 pda_p->type = RF_PDA_TYPE_PARITY;
553 pda_p++;
554 /* build q */
555 CONS_PDA(qInfo, fone_start, fone->numSector);
556 pda_p->type = RF_PDA_TYPE_Q;
557 } else {
558 ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
559 ftwo_end = ftwo_start + ftwo->numSector;
560 if (fone->numSector + ftwo->numSector > secPerSU) {
561 PDAPerDisk = 1;
562 state = 2;
563 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
564 pda_p = *pqpdap;
565 CONS_PDA(parityInfo, 0, secPerSU);
566 pda_p->type = RF_PDA_TYPE_PARITY;
567 pda_p++;
568 CONS_PDA(qInfo, 0, secPerSU);
569 pda_p->type = RF_PDA_TYPE_Q;
570 } else {
571 PDAPerDisk = 2;
572 state = 3;
573 /* four of them, fone, then ftwo */
574 RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
575 pda_p = *pqpdap;
576 CONS_PDA(parityInfo, fone_start, fone->numSector);
577 pda_p->type = RF_PDA_TYPE_PARITY;
578 pda_p++;
579 CONS_PDA(qInfo, fone_start, fone->numSector);
580 pda_p->type = RF_PDA_TYPE_Q;
581 pda_p++;
582 CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
583 pda_p->type = RF_PDA_TYPE_PARITY;
584 pda_p++;
585 CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
586 pda_p->type = RF_PDA_TYPE_Q;
587 }
588 }
589 /* figure out number of nonaccessed pda */
590 napdas = PDAPerDisk * (numDataCol - 2);
591 *nPQNodep = PDAPerDisk;
592
593 *nNodep = napdas;
594 if (napdas == 0)
595 return; /* short circuit */
596
597 /* allocate up our list of pda's */
598
599 RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
600 *pdap = pda_p;
601
602 /* linkem together */
603 for (i = 0; i < (napdas - 1); i++)
604 pda_p[i].next = pda_p + (i + 1);
605
606 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
607 for (i = 0; i < numDataCol; i++) {
608 if ((pda_p - (*pdap)) == napdas)
609 continue;
610 pda_p->type = RF_PDA_TYPE_DATA;
611 pda_p->raidAddress = sosAddr + (i * secPerSU);
612 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
613 /* skip over dead disks */
614 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
615 continue;
616 switch (state) {
617 case 1: /* fone */
618 pda_p->numSector = fone->numSector;
619 pda_p->raidAddress += fone_start;
620 pda_p->startSector += fone_start;
621 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
622 break;
623 case 2: /* full stripe */
624 pda_p->numSector = secPerSU;
625 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
626 break;
627 case 3: /* two slabs */
628 pda_p->numSector = fone->numSector;
629 pda_p->raidAddress += fone_start;
630 pda_p->startSector += fone_start;
631 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
632 pda_p++;
633 pda_p->type = RF_PDA_TYPE_DATA;
634 pda_p->raidAddress = sosAddr + (i * secPerSU);
635 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
636 pda_p->numSector = ftwo->numSector;
637 pda_p->raidAddress += ftwo_start;
638 pda_p->startSector += ftwo_start;
639 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
640 break;
641 default:
642 RF_PANIC();
643 }
644 pda_p++;
645 }
646
647 RF_ASSERT(pda_p - *pdap == napdas);
648 return;
649 }
650 #define DISK_NODE_PDA(node) ((node)->params[0].p)
651
652 #define DISK_NODE_PARAMS(_node_,_p_) \
653 (_node_).params[0].p = _p_ ; \
654 (_node_).params[1].p = (_p_)->bufPtr; \
655 (_node_).params[2].v = parityStripeID; \
656 (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
657
658 void
659 rf_DoubleDegSmallWrite(
660 RF_Raid_t * raidPtr,
661 RF_AccessStripeMap_t * asmap,
662 RF_DagHeader_t * dag_h,
663 void *bp,
664 RF_RaidAccessFlags_t flags,
665 RF_AllocListElem_t * allocList,
666 char *redundantReadNodeName,
667 char *redundantWriteNodeName,
668 char *recoveryNodeName,
669 int (*recovFunc) (RF_DagNode_t *))
670 {
671 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
672 RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
673 *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
674 RF_PhysDiskAddr_t *pda, *pqPDAs;
675 RF_PhysDiskAddr_t *npdas;
676 int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
677 RF_ReconUnitNum_t which_ru;
678 int nPQNodes;
679 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
680
681 /* simple small write case - First part looks like a reconstruct-read
682 * of the failed data units. Then a write of all data units not
683 * failed. */
684
685
686 /* Hdr | ------Block- / / \ Rrd Rrd ... Rrd Rp Rq \ \
687 * / -------PQ----- / \ \ Wud Wp WQ \ | /
688 * --Unblock- | T
689 *
690 * Rrd = read recovery data (potentially none) Wud = write user data
691 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
692 * (could be two)
693 *
694 */
695
696 rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
697
698 RF_ASSERT(asmap->numDataFailed == 1);
699
700 nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
701 nReadNodes = nRrdNodes + 2 * nPQNodes;
702 nWriteNodes = nWudNodes + 2 * nPQNodes;
703 nNodes = 4 + nReadNodes + nWriteNodes;
704
705 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
706 blockNode = nodes;
707 unblockNode = blockNode + 1;
708 termNode = unblockNode + 1;
709 recoveryNode = termNode + 1;
710 rrdNodes = recoveryNode + 1;
711 rpNodes = rrdNodes + nRrdNodes;
712 rqNodes = rpNodes + nPQNodes;
713 wudNodes = rqNodes + nPQNodes;
714 wpNodes = wudNodes + nWudNodes;
715 wqNodes = wpNodes + nPQNodes;
716
717 dag_h->creator = "PQ_DDSimpleSmallWrite";
718 dag_h->numSuccedents = 1;
719 dag_h->succedents[0] = blockNode;
720 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
721 termNode->antecedents[0] = unblockNode;
722 termNode->antType[0] = rf_control;
723
724 /* init the block and unblock nodes */
725 /* The block node has all the read nodes as successors */
726 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
727 for (i = 0; i < nReadNodes; i++)
728 blockNode->succedents[i] = rrdNodes + i;
729
730 /* The unblock node has all the writes as successors */
731 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
732 for (i = 0; i < nWriteNodes; i++) {
733 unblockNode->antecedents[i] = wudNodes + i;
734 unblockNode->antType[i] = rf_control;
735 }
736 unblockNode->succedents[0] = termNode;
737
738 #define INIT_READ_NODE(node,name) \
739 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
740 (node)->succedents[0] = recoveryNode; \
741 (node)->antecedents[0] = blockNode; \
742 (node)->antType[0] = rf_control;
743
744 /* build the read nodes */
745 pda = npdas;
746 for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
747 INIT_READ_NODE(rrdNodes + i, "rrd");
748 DISK_NODE_PARAMS(rrdNodes[i], pda);
749 }
750
751 /* read redundancy pdas */
752 pda = pqPDAs;
753 INIT_READ_NODE(rpNodes, "Rp");
754 RF_ASSERT(pda);
755 DISK_NODE_PARAMS(rpNodes[0], pda);
756 pda++;
757 INIT_READ_NODE(rqNodes, redundantReadNodeName);
758 RF_ASSERT(pda);
759 DISK_NODE_PARAMS(rqNodes[0], pda);
760 if (nPQNodes == 2) {
761 pda++;
762 INIT_READ_NODE(rpNodes + 1, "Rp");
763 RF_ASSERT(pda);
764 DISK_NODE_PARAMS(rpNodes[1], pda);
765 pda++;
766 INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
767 RF_ASSERT(pda);
768 DISK_NODE_PARAMS(rqNodes[1], pda);
769 }
770 /* the recovery node has all reads as precedessors and all writes as
771 * successors. It generates a result for every write P or write Q
772 * node. As parameters, it takes a pda per read and a pda per stripe
773 * of user data written. It also takes as the last params the raidPtr
774 * and asm. For results, it takes PDA for P & Q. */
775
776
777 rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
778 nWriteNodes, /* succesors */
779 nReadNodes, /* preds */
780 nReadNodes + nWudNodes + 3, /* params */
781 2 * nPQNodes, /* results */
782 dag_h, recoveryNodeName, allocList);
783
784
785
786 for (i = 0; i < nReadNodes; i++) {
787 recoveryNode->antecedents[i] = rrdNodes + i;
788 recoveryNode->antType[i] = rf_control;
789 recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
790 }
791 for (i = 0; i < nWudNodes; i++) {
792 recoveryNode->succedents[i] = wudNodes + i;
793 }
794 recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
795 recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
796 recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
797
798 for (; i < nWriteNodes; i++)
799 recoveryNode->succedents[i] = wudNodes + i;
800
801 pda = pqPDAs;
802 recoveryNode->results[0] = pda;
803 pda++;
804 recoveryNode->results[1] = pda;
805 if (nPQNodes == 2) {
806 pda++;
807 recoveryNode->results[2] = pda;
808 pda++;
809 recoveryNode->results[3] = pda;
810 }
811 /* fill writes */
812 #define INIT_WRITE_NODE(node,name) \
813 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
814 (node)->succedents[0] = unblockNode; \
815 (node)->antecedents[0] = recoveryNode; \
816 (node)->antType[0] = rf_control;
817
818 pda = asmap->physInfo;
819 for (i = 0; i < nWudNodes; i++) {
820 INIT_WRITE_NODE(wudNodes + i, "Wd");
821 DISK_NODE_PARAMS(wudNodes[i], pda);
822 recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
823 pda = pda->next;
824 }
825 /* write redundancy pdas */
826 pda = pqPDAs;
827 INIT_WRITE_NODE(wpNodes, "Wp");
828 RF_ASSERT(pda);
829 DISK_NODE_PARAMS(wpNodes[0], pda);
830 pda++;
831 INIT_WRITE_NODE(wqNodes, "Wq");
832 RF_ASSERT(pda);
833 DISK_NODE_PARAMS(wqNodes[0], pda);
834 if (nPQNodes == 2) {
835 pda++;
836 INIT_WRITE_NODE(wpNodes + 1, "Wp");
837 RF_ASSERT(pda);
838 DISK_NODE_PARAMS(wpNodes[1], pda);
839 pda++;
840 INIT_WRITE_NODE(wqNodes + 1, "Wq");
841 RF_ASSERT(pda);
842 DISK_NODE_PARAMS(wqNodes[1], pda);
843 }
844 }
845