Home | History | Annotate | Line # | Download | only in raidframe
rf_dagdegwr.c revision 1.30
      1 /*	$NetBSD: rf_dagdegwr.c,v 1.30 2006/11/16 01:33:23 christos Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagdegwr.c
     31  *
     32  * code for creating degraded write DAGs
     33  *
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.30 2006/11/16 01:33:23 christos Exp $");
     38 
     39 #include <dev/raidframe/raidframevar.h>
     40 
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_general.h"
     47 #include "rf_dagdegwr.h"
     48 #include "rf_map.h"
     49 
     50 
     51 /******************************************************************************
     52  *
     53  * General comments on DAG creation:
     54  *
     55  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     56  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     57  * is reached, the execution engine will halt forward execution and work
     58  * backward through the graph, executing the undo functions.  Assuming that
     59  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     60  * does not make changes to permanent state, the graph will fail atomically.
     61  * If an error occurs after the Cmt node executes, the engine will roll-forward
     62  * through the graph, blindly executing nodes until it reaches the end.
     63  * If a graph reaches the end, it is assumed to have completed successfully.
     64  *
     65  * A graph has only 1 Cmt node.
     66  *
     67  */
     68 
     69 
     70 /******************************************************************************
     71  *
     72  * The following wrappers map the standard DAG creation interface to the
     73  * DAG creation routines.  Additionally, these wrappers enable experimentation
     74  * with new DAG structures by providing an extra level of indirection, allowing
     75  * the DAG creation routines to be replaced at this single point.
     76  */
     77 
     78 static
     79 RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
     80 {
     81 	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
     82 	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
     83 }
     84 
     85 void
     86 rf_CreateDegradedWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
     87 			  RF_DagHeader_t *dag_h, void *bp,
     88 			  RF_RaidAccessFlags_t flags,
     89 			  RF_AllocListElem_t *allocList)
     90 {
     91 
     92 	RF_ASSERT(asmap->numDataFailed == 1);
     93 	dag_h->creator = "DegradedWriteDAG";
     94 
     95 	/*
     96 	 * if the access writes only a portion of the failed unit, and also
     97 	 * writes some portion of at least one surviving unit, we create two
     98 	 * DAGs, one for the failed component and one for the non-failed
     99 	 * component, and do them sequentially.  Note that the fact that we're
    100 	 * accessing only a portion of the failed unit indicates that the
    101 	 * access either starts or ends in the failed unit, and hence we need
    102 	 * create only two dags.  This is inefficient in that the same data or
    103 	 * parity can get read and written twice using this structure.  I need
    104 	 * to fix this to do the access all at once.
    105 	 */
    106 	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
    107 		    asmap->failedPDAs[0]->numSector !=
    108 			raidPtr->Layout.sectorsPerStripeUnit));
    109 	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    110 	    allocList);
    111 }
    112 
    113 
    114 
    115 /******************************************************************************
    116  *
    117  * DAG creation code begins here
    118  */
    119 
    120 
    121 
    122 /******************************************************************************
    123  *
    124  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
    125  * write, which is as follows
    126  *
    127  *                                        / {Wnq} --\
    128  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
    129  *                  \  {Rod} /            \  Wnd ---/
    130  *                                        \ {Wnd} -/
    131  *
    132  * commit nodes: Xor, Wnd
    133  *
    134  * IMPORTANT:
    135  * This DAG generator does not work for double-degraded archs since it does not
    136  * generate Q
    137  *
    138  * This dag is essentially identical to the large-write dag, except that the
    139  * write to the failed data unit is suppressed.
    140  *
    141  * IMPORTANT:  this dag does not work in the case where the access writes only
    142  * a portion of the failed unit, and also writes some portion of at least one
    143  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
    144  *
    145  * The block & unblock nodes are leftovers from a previous version.  They
    146  * do nothing, but I haven't deleted them because it would be a tremendous
    147  * effort to put them back in.
    148  *
    149  * This dag is used whenever a one of the data units in a write has failed.
    150  * If it is the parity unit that failed, the nonredundant write dag (below)
    151  * is used.
    152  *****************************************************************************/
    153 
    154 void
    155 rf_CommonCreateSimpleDegradedWriteDAG(RF_Raid_t *raidPtr,
    156 				      RF_AccessStripeMap_t *asmap,
    157 				      RF_DagHeader_t *dag_h, void *bp,
    158 				      RF_RaidAccessFlags_t flags,
    159 				      RF_AllocListElem_t *allocList,
    160 				      int nfaults,
    161 				      int (*redFunc) (RF_DagNode_t *),
    162 				      int allowBufferRecycle)
    163 {
    164 	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
    165 	        rdnodesFaked;
    166 	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
    167 	RF_DagNode_t *wndNodes, *rrdNodes, *xorNode, *commitNode;
    168 	RF_DagNode_t *tmpNode, *tmpwndNode, *tmprrdNode;
    169 	RF_SectorCount_t sectorsPerSU;
    170 	RF_ReconUnitNum_t which_ru;
    171 	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
    172 					 * operation */
    173 	char   overlappingPDAs[RF_MAXCOL];/* a temporary array of flags */
    174 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    175 	RF_PhysDiskAddr_t *pda, *parityPDA;
    176 	RF_StripeNum_t parityStripeID;
    177 	RF_PhysDiskAddr_t *failedPDA;
    178 	RF_RaidLayout_t *layoutPtr;
    179 
    180 	layoutPtr = &(raidPtr->Layout);
    181 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    182 	    &which_ru);
    183 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    184 	/* failedPDA points to the pda within the asm that targets the failed
    185 	 * disk */
    186 	failedPDA = asmap->failedPDAs[0];
    187 
    188 #if RF_DEBUG_DAG
    189 	if (rf_dagDebug)
    190 		printf("[Creating degraded-write DAG]\n");
    191 #endif
    192 
    193 	RF_ASSERT(asmap->numDataFailed == 1);
    194 	dag_h->creator = "SimpleDegradedWriteDAG";
    195 
    196 	/*
    197          * Generate two ASMs identifying the surviving data
    198          * we need in order to recover the lost data.
    199          */
    200 	/* overlappingPDAs array must be zero'd */
    201 	memset(overlappingPDAs, 0, RF_MAXCOL);
    202 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
    203 	    &nXorBufs, NULL, overlappingPDAs, allocList);
    204 
    205 	/* create all the nodes at once */
    206 	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
    207 							 * generated for the
    208 							 * failed pda */
    209 
    210 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    211 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    212 	/*
    213          * XXX
    214          *
    215          * There's a bug with a complete stripe overwrite- that means 0 reads
    216          * of old data, and the rest of the DAG generation code doesn't like
    217          * that. A release is coming, and I don't wanna risk breaking a critical
    218          * DAG generator, so here's what I'm gonna do- if there's no read nodes,
    219          * I'm gonna fake there being a read node, and I'm gonna swap in a
    220          * no-op node in its place (to make all the link-up code happy).
    221          * This should be fixed at some point.  --jimz
    222          */
    223 	if (nRrdNodes == 0) {
    224 		nRrdNodes = 1;
    225 		rdnodesFaked = 1;
    226 	} else {
    227 		rdnodesFaked = 0;
    228 	}
    229 	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
    230 	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
    231 
    232 	blockNode = rf_AllocDAGNode();
    233 	blockNode->list_next = dag_h->nodes;
    234 	dag_h->nodes = blockNode;
    235 
    236 	commitNode = rf_AllocDAGNode();
    237 	commitNode->list_next = dag_h->nodes;
    238 	dag_h->nodes = commitNode;
    239 
    240 	unblockNode = rf_AllocDAGNode();
    241 	unblockNode->list_next = dag_h->nodes;
    242 	dag_h->nodes = unblockNode;
    243 
    244 	termNode = rf_AllocDAGNode();
    245 	termNode->list_next = dag_h->nodes;
    246 	dag_h->nodes = termNode;
    247 
    248 	xorNode = rf_AllocDAGNode();
    249 	xorNode->list_next = dag_h->nodes;
    250 	dag_h->nodes = xorNode;
    251 
    252 	wnpNode = rf_AllocDAGNode();
    253 	wnpNode->list_next = dag_h->nodes;
    254 	dag_h->nodes = wnpNode;
    255 
    256 	for (i = 0; i < nWndNodes; i++) {
    257 		tmpNode = rf_AllocDAGNode();
    258 		tmpNode->list_next = dag_h->nodes;
    259 		dag_h->nodes = tmpNode;
    260 	}
    261 	wndNodes = dag_h->nodes;
    262 
    263 	for (i = 0; i < nRrdNodes; i++) {
    264 		tmpNode = rf_AllocDAGNode();
    265 		tmpNode->list_next = dag_h->nodes;
    266 		dag_h->nodes = tmpNode;
    267 	}
    268 	rrdNodes = dag_h->nodes;
    269 
    270 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    271 	if (nfaults == 2) {
    272 		wnqNode = rf_AllocDAGNode();
    273 		wnqNode->list_next = dag_h->nodes;
    274 		dag_h->nodes = wnqNode;
    275 	} else {
    276 #endif
    277 		wnqNode = NULL;
    278 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    279 	}
    280 #endif
    281 
    282 	/* this dag can not commit until all rrd and xor Nodes have completed */
    283 	dag_h->numCommitNodes = 1;
    284 	dag_h->numCommits = 0;
    285 	dag_h->numSuccedents = 1;
    286 
    287 	RF_ASSERT(nRrdNodes > 0);
    288 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    289 	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
    290 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    291 	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    292 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    293 	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
    294 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    295 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    296 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    297 	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
    298 
    299 	/*
    300          * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
    301          * the failed buffer, save a pointer to it so we can use it as the target
    302          * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
    303          * a buffer is the same size as the failed buffer, it must also be at the
    304          * same alignment within the SU.
    305          */
    306 	i = 0;
    307 	tmprrdNode = rrdNodes;
    308 	if (new_asm_h[0]) {
    309 		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
    310 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    311 		    i++, pda = pda->next) {
    312 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    313 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    314 			RF_ASSERT(pda);
    315 			tmprrdNode->params[0].p = pda;
    316 			tmprrdNode->params[1].p = pda->bufPtr;
    317 			tmprrdNode->params[2].v = parityStripeID;
    318 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    319 			tmprrdNode = tmprrdNode->list_next;
    320 		}
    321 	}
    322 	/* i now equals the number of stripe units accessed in new_asm_h[0] */
    323 	/* Note that for tmprrdNode, this means a continuation from above, so no need to
    324 	   assign it anything.. */
    325 	if (new_asm_h[1]) {
    326 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    327 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    328 		    j++, pda = pda->next) {
    329 			rf_InitNode(tmprrdNode, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    330 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    331 			RF_ASSERT(pda);
    332 			tmprrdNode->params[0].p = pda;
    333 			tmprrdNode->params[1].p = pda->bufPtr;
    334 			tmprrdNode->params[2].v = parityStripeID;
    335 			tmprrdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    336 			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
    337 				xorTargetBuf = pda->bufPtr;
    338 			tmprrdNode = tmprrdNode->list_next;
    339 		}
    340 	}
    341 	if (rdnodesFaked) {
    342 		/*
    343 	         * This is where we'll init that fake noop read node
    344 	         * (XXX should the wakeup func be different?)
    345 	         */
    346 		/* node that rrdNodes will just be a single node... */
    347 		rf_InitNode(rrdNodes, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    348 		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
    349 	}
    350 	/*
    351          * Make a PDA for the parity unit.  The parity PDA should start at
    352          * the same offset into the SU as the failed PDA.
    353          */
    354 	/* Danner comment: I don't think this copy is really necessary. We are
    355 	 * in one of two cases here. (1) The entire failed unit is written.
    356 	 * Then asmap->parityInfo will describe the entire parity. (2) We are
    357 	 * only writing a subset of the failed unit and nothing else. Then the
    358 	 * asmap->parityInfo describes the failed unit and the copy can also
    359 	 * be avoided. */
    360 
    361 	parityPDA = rf_AllocPhysDiskAddr();
    362 	parityPDA->next = dag_h->pda_cleanup_list;
    363 	dag_h->pda_cleanup_list = parityPDA;
    364 	parityPDA->col = asmap->parityInfo->col;
    365 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    366 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    367 	parityPDA->numSector = failedPDA->numSector;
    368 
    369 	if (!xorTargetBuf) {
    370 		xorTargetBuf = rf_AllocBuffer(raidPtr, dag_h, rf_RaidAddressToByte(raidPtr, failedPDA->numSector));
    371 	}
    372 	/* init the Wnp node */
    373 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    374 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    375 	wnpNode->params[0].p = parityPDA;
    376 	wnpNode->params[1].p = xorTargetBuf;
    377 	wnpNode->params[2].v = parityStripeID;
    378 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    379 
    380 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    381 	/* fill in the Wnq Node */
    382 	if (nfaults == 2) {
    383 		{
    384 			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
    385 			    (RF_PhysDiskAddr_t *), allocList);
    386 			parityPDA->col = asmap->qInfo->col;
    387 			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
    388 			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    389 			parityPDA->numSector = failedPDA->numSector;
    390 
    391 			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    392 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    393 			wnqNode->params[0].p = parityPDA;
    394 			RF_MallocAndAdd(xorNode->results[1],
    395 			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    396 			wnqNode->params[1].p = xorNode->results[1];
    397 			wnqNode->params[2].v = parityStripeID;
    398 			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    399 		}
    400 	}
    401 #endif
    402 	/* fill in the Wnd nodes */
    403 	tmpwndNode = wndNodes;
    404 	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
    405 		if (pda == failedPDA) {
    406 			i--;
    407 			continue;
    408 		}
    409 		rf_InitNode(tmpwndNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    410 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    411 		RF_ASSERT(pda);
    412 		tmpwndNode->params[0].p = pda;
    413 		tmpwndNode->params[1].p = pda->bufPtr;
    414 		tmpwndNode->params[2].v = parityStripeID;
    415 		tmpwndNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    416 		tmpwndNode = tmpwndNode->list_next;
    417 	}
    418 
    419 	/* fill in the results of the xor node */
    420 	xorNode->results[0] = xorTargetBuf;
    421 
    422 	/* fill in the params of the xor node */
    423 
    424 	paramNum = 0;
    425 	if (rdnodesFaked == 0) {
    426 		tmprrdNode = rrdNodes;
    427 		for (i = 0; i < nRrdNodes; i++) {
    428 			/* all the Rrd nodes need to be xored together */
    429 			xorNode->params[paramNum++] = tmprrdNode->params[0];
    430 			xorNode->params[paramNum++] = tmprrdNode->params[1];
    431 			tmprrdNode = tmprrdNode->list_next;
    432 		}
    433 	}
    434 	tmpwndNode = wndNodes;
    435 	for (i = 0; i < nWndNodes; i++) {
    436 		/* any Wnd nodes that overlap the failed access need to be
    437 		 * xored in */
    438 		if (overlappingPDAs[i]) {
    439 			pda = rf_AllocPhysDiskAddr();
    440 			memcpy((char *) pda, (char *) tmpwndNode->params[0].p, sizeof(RF_PhysDiskAddr_t));
    441 			/* add it into the pda_cleanup_list *after* the copy, TYVM */
    442 			pda->next = dag_h->pda_cleanup_list;
    443 			dag_h->pda_cleanup_list = pda;
    444 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    445 			xorNode->params[paramNum++].p = pda;
    446 			xorNode->params[paramNum++].p = pda->bufPtr;
    447 		}
    448 		tmpwndNode = tmpwndNode->list_next;
    449 	}
    450 
    451 	/*
    452          * Install the failed PDA into the xor param list so that the
    453          * new data gets xor'd in.
    454          */
    455 	xorNode->params[paramNum++].p = failedPDA;
    456 	xorNode->params[paramNum++].p = failedPDA->bufPtr;
    457 
    458 	/*
    459          * The last 2 params to the recovery xor node are always the failed
    460          * PDA and the raidPtr. install the failedPDA even though we have just
    461          * done so above. This allows us to use the same XOR function for both
    462          * degraded reads and degraded writes.
    463          */
    464 	xorNode->params[paramNum++].p = failedPDA;
    465 	xorNode->params[paramNum++].p = raidPtr;
    466 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    467 
    468 	/*
    469          * Code to link nodes begins here
    470          */
    471 
    472 	/* link header to block node */
    473 	RF_ASSERT(blockNode->numAntecedents == 0);
    474 	dag_h->succedents[0] = blockNode;
    475 
    476 	/* link block node to rd nodes */
    477 	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
    478 	tmprrdNode = rrdNodes;
    479 	for (i = 0; i < nRrdNodes; i++) {
    480 		RF_ASSERT(tmprrdNode->numAntecedents == 1);
    481 		blockNode->succedents[i] = tmprrdNode;
    482 		tmprrdNode->antecedents[0] = blockNode;
    483 		tmprrdNode->antType[0] = rf_control;
    484 		tmprrdNode = tmprrdNode->list_next;
    485 	}
    486 
    487 	/* link read nodes to xor node */
    488 	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
    489 	tmprrdNode = rrdNodes;
    490 	for (i = 0; i < nRrdNodes; i++) {
    491 		RF_ASSERT(tmprrdNode->numSuccedents == 1);
    492 		tmprrdNode->succedents[0] = xorNode;
    493 		xorNode->antecedents[i] = tmprrdNode;
    494 		xorNode->antType[i] = rf_trueData;
    495 		tmprrdNode = tmprrdNode->list_next;
    496 	}
    497 
    498 	/* link xor node to commit node */
    499 	RF_ASSERT(xorNode->numSuccedents == 1);
    500 	RF_ASSERT(commitNode->numAntecedents == 1);
    501 	xorNode->succedents[0] = commitNode;
    502 	commitNode->antecedents[0] = xorNode;
    503 	commitNode->antType[0] = rf_control;
    504 
    505 	/* link commit node to wnd nodes */
    506 	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
    507 	tmpwndNode = wndNodes;
    508 	for (i = 0; i < nWndNodes; i++) {
    509 		RF_ASSERT(tmpwndNode->numAntecedents == 1);
    510 		commitNode->succedents[i] = tmpwndNode;
    511 		tmpwndNode->antecedents[0] = commitNode;
    512 		tmpwndNode->antType[0] = rf_control;
    513 		tmpwndNode = tmpwndNode->list_next;
    514 	}
    515 
    516 	/* link the commit node to wnp, wnq nodes */
    517 	RF_ASSERT(wnpNode->numAntecedents == 1);
    518 	commitNode->succedents[nWndNodes] = wnpNode;
    519 	wnpNode->antecedents[0] = commitNode;
    520 	wnpNode->antType[0] = rf_control;
    521 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    522 	if (nfaults == 2) {
    523 		RF_ASSERT(wnqNode->numAntecedents == 1);
    524 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    525 		wnqNode->antecedents[0] = commitNode;
    526 		wnqNode->antType[0] = rf_control;
    527 	}
    528 #endif
    529 	/* link write new data nodes to unblock node */
    530 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
    531 	tmpwndNode = wndNodes;
    532 	for (i = 0; i < nWndNodes; i++) {
    533 		RF_ASSERT(tmpwndNode->numSuccedents == 1);
    534 		tmpwndNode->succedents[0] = unblockNode;
    535 		unblockNode->antecedents[i] = tmpwndNode;
    536 		unblockNode->antType[i] = rf_control;
    537 		tmpwndNode = tmpwndNode->list_next;
    538 	}
    539 
    540 	/* link write new parity node to unblock node */
    541 	RF_ASSERT(wnpNode->numSuccedents == 1);
    542 	wnpNode->succedents[0] = unblockNode;
    543 	unblockNode->antecedents[nWndNodes] = wnpNode;
    544 	unblockNode->antType[nWndNodes] = rf_control;
    545 
    546 #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0)
    547 	/* link write new q node to unblock node */
    548 	if (nfaults == 2) {
    549 		RF_ASSERT(wnqNode->numSuccedents == 1);
    550 		wnqNode->succedents[0] = unblockNode;
    551 		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
    552 		unblockNode->antType[nWndNodes + 1] = rf_control;
    553 	}
    554 #endif
    555 	/* link unblock node to term node */
    556 	RF_ASSERT(unblockNode->numSuccedents == 1);
    557 	RF_ASSERT(termNode->numAntecedents == 1);
    558 	RF_ASSERT(termNode->numSuccedents == 0);
    559 	unblockNode->succedents[0] = termNode;
    560 	termNode->antecedents[0] = unblockNode;
    561 	termNode->antType[0] = rf_control;
    562 }
    563 #define CONS_PDA(if,start,num) \
    564   pda_p->col = asmap->if->col; \
    565   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    566   pda_p->numSector = num; \
    567   pda_p->next = NULL; \
    568   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
    569 #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
    570 void
    571 rf_WriteGenerateFailedAccessASMs(
    572     RF_Raid_t * raidPtr,
    573     RF_AccessStripeMap_t * asmap,
    574     RF_PhysDiskAddr_t ** pdap,
    575     int *nNodep,
    576     RF_PhysDiskAddr_t ** pqpdap,
    577     int *nPQNodep,
    578     RF_AllocListElem_t * allocList)
    579 {
    580 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    581 	int     PDAPerDisk, i;
    582 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    583 	int     numDataCol = layoutPtr->numDataCol;
    584 	int     state;
    585 	unsigned napdas;
    586 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
    587 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    588 	RF_PhysDiskAddr_t *pda_p;
    589 	RF_RaidAddr_t sosAddr;
    590 
    591 	/* determine how many pda's we will have to generate per unaccess
    592 	 * stripe. If there is only one failed data unit, it is one; if two,
    593 	 * possibly two, depending wether they overlap. */
    594 
    595 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    596 	fone_end = fone_start + fone->numSector;
    597 
    598 	if (asmap->numDataFailed == 1) {
    599 		PDAPerDisk = 1;
    600 		state = 1;
    601 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    602 		pda_p = *pqpdap;
    603 		/* build p */
    604 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    605 		pda_p->type = RF_PDA_TYPE_PARITY;
    606 		pda_p++;
    607 		/* build q */
    608 		CONS_PDA(qInfo, fone_start, fone->numSector);
    609 		pda_p->type = RF_PDA_TYPE_Q;
    610 	} else {
    611 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    612 		ftwo_end = ftwo_start + ftwo->numSector;
    613 		if (fone->numSector + ftwo->numSector > secPerSU) {
    614 			PDAPerDisk = 1;
    615 			state = 2;
    616 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    617 			pda_p = *pqpdap;
    618 			CONS_PDA(parityInfo, 0, secPerSU);
    619 			pda_p->type = RF_PDA_TYPE_PARITY;
    620 			pda_p++;
    621 			CONS_PDA(qInfo, 0, secPerSU);
    622 			pda_p->type = RF_PDA_TYPE_Q;
    623 		} else {
    624 			PDAPerDisk = 2;
    625 			state = 3;
    626 			/* four of them, fone, then ftwo */
    627 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    628 			pda_p = *pqpdap;
    629 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    630 			pda_p->type = RF_PDA_TYPE_PARITY;
    631 			pda_p++;
    632 			CONS_PDA(qInfo, fone_start, fone->numSector);
    633 			pda_p->type = RF_PDA_TYPE_Q;
    634 			pda_p++;
    635 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    636 			pda_p->type = RF_PDA_TYPE_PARITY;
    637 			pda_p++;
    638 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    639 			pda_p->type = RF_PDA_TYPE_Q;
    640 		}
    641 	}
    642 	/* figure out number of nonaccessed pda */
    643 	napdas = PDAPerDisk * (numDataCol - 2);
    644 	*nPQNodep = PDAPerDisk;
    645 
    646 	*nNodep = napdas;
    647 	if (napdas == 0)
    648 		return;		/* short circuit */
    649 
    650 	/* allocate up our list of pda's */
    651 
    652 	RF_MallocAndAdd(pda_p, napdas * sizeof(RF_PhysDiskAddr_t),
    653 			(RF_PhysDiskAddr_t *), allocList);
    654 	*pdap = pda_p;
    655 
    656 	/* linkem together */
    657 	for (i = 0; i < (napdas - 1); i++)
    658 		pda_p[i].next = pda_p + (i + 1);
    659 
    660 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    661 	for (i = 0; i < numDataCol; i++) {
    662 		if ((pda_p - (*pdap)) == napdas)
    663 			continue;
    664 		pda_p->type = RF_PDA_TYPE_DATA;
    665 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    666 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    667 		/* skip over dead disks */
    668 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->col].status))
    669 			continue;
    670 		switch (state) {
    671 		case 1:	/* fone */
    672 			pda_p->numSector = fone->numSector;
    673 			pda_p->raidAddress += fone_start;
    674 			pda_p->startSector += fone_start;
    675 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    676 			break;
    677 		case 2:	/* full stripe */
    678 			pda_p->numSector = secPerSU;
    679 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    680 			break;
    681 		case 3:	/* two slabs */
    682 			pda_p->numSector = fone->numSector;
    683 			pda_p->raidAddress += fone_start;
    684 			pda_p->startSector += fone_start;
    685 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    686 			pda_p++;
    687 			pda_p->type = RF_PDA_TYPE_DATA;
    688 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    689 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->col), &(pda_p->startSector), 0);
    690 			pda_p->numSector = ftwo->numSector;
    691 			pda_p->raidAddress += ftwo_start;
    692 			pda_p->startSector += ftwo_start;
    693 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    694 			break;
    695 		default:
    696 			RF_PANIC();
    697 		}
    698 		pda_p++;
    699 	}
    700 
    701 	RF_ASSERT(pda_p - *pdap == napdas);
    702 	return;
    703 }
    704 #define DISK_NODE_PDA(node)  ((node)->params[0].p)
    705 
    706 #define DISK_NODE_PARAMS(_node_,_p_) \
    707   (_node_).params[0].p = _p_ ; \
    708   (_node_).params[1].p = (_p_)->bufPtr; \
    709   (_node_).params[2].v = parityStripeID; \
    710   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru)
    711 
    712 void
    713 rf_DoubleDegSmallWrite(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    714 		       RF_DagHeader_t *dag_h, void *bp,
    715 		       RF_RaidAccessFlags_t flags,
    716 		       RF_AllocListElem_t *allocList,
    717 		       const char *redundantReadNodeName,
    718 		       const char *redundantWriteNodeName,
    719 		       const char *recoveryNodeName,
    720 		       int (*recovFunc) (RF_DagNode_t *))
    721 {
    722 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    723 	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
    724 	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
    725 	RF_PhysDiskAddr_t *pda, *pqPDAs;
    726 	RF_PhysDiskAddr_t *npdas;
    727 	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
    728 	RF_ReconUnitNum_t which_ru;
    729 	int     nPQNodes;
    730 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
    731 
    732 	/* simple small write case - First part looks like a reconstruct-read
    733 	 * of the failed data units. Then a write of all data units not
    734 	 * failed. */
    735 
    736 
    737 	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
    738 	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
    739 	 * --Unblock- | T
    740 	 *
    741 	 * Rrd = read recovery data  (potentially none) Wud = write user data
    742 	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
    743 	 * (could be two)
    744 	 *
    745 	 */
    746 
    747 	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
    748 
    749 	RF_ASSERT(asmap->numDataFailed == 1);
    750 
    751 	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
    752 	nReadNodes = nRrdNodes + 2 * nPQNodes;
    753 	nWriteNodes = nWudNodes + 2 * nPQNodes;
    754 	nNodes = 4 + nReadNodes + nWriteNodes;
    755 
    756 	RF_MallocAndAdd(nodes, nNodes * sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    757 	blockNode = nodes;
    758 	unblockNode = blockNode + 1;
    759 	termNode = unblockNode + 1;
    760 	recoveryNode = termNode + 1;
    761 	rrdNodes = recoveryNode + 1;
    762 	rpNodes = rrdNodes + nRrdNodes;
    763 	rqNodes = rpNodes + nPQNodes;
    764 	wudNodes = rqNodes + nPQNodes;
    765 	wpNodes = wudNodes + nWudNodes;
    766 	wqNodes = wpNodes + nPQNodes;
    767 
    768 	dag_h->creator = "PQ_DDSimpleSmallWrite";
    769 	dag_h->numSuccedents = 1;
    770 	dag_h->succedents[0] = blockNode;
    771 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    772 	termNode->antecedents[0] = unblockNode;
    773 	termNode->antType[0] = rf_control;
    774 
    775 	/* init the block and unblock nodes */
    776 	/* The block node has all the read nodes as successors */
    777 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
    778 	for (i = 0; i < nReadNodes; i++)
    779 		blockNode->succedents[i] = rrdNodes + i;
    780 
    781 	/* The unblock node has all the writes as successors */
    782 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
    783 	for (i = 0; i < nWriteNodes; i++) {
    784 		unblockNode->antecedents[i] = wudNodes + i;
    785 		unblockNode->antType[i] = rf_control;
    786 	}
    787 	unblockNode->succedents[0] = termNode;
    788 
    789 #define INIT_READ_NODE(node,name) \
    790   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    791   (node)->succedents[0] = recoveryNode; \
    792   (node)->antecedents[0] = blockNode; \
    793   (node)->antType[0] = rf_control;
    794 
    795 	/* build the read nodes */
    796 	pda = npdas;
    797 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
    798 		INIT_READ_NODE(rrdNodes + i, "rrd");
    799 		DISK_NODE_PARAMS(rrdNodes[i], pda);
    800 	}
    801 
    802 	/* read redundancy pdas */
    803 	pda = pqPDAs;
    804 	INIT_READ_NODE(rpNodes, "Rp");
    805 	RF_ASSERT(pda);
    806 	DISK_NODE_PARAMS(rpNodes[0], pda);
    807 	pda++;
    808 	INIT_READ_NODE(rqNodes, redundantReadNodeName);
    809 	RF_ASSERT(pda);
    810 	DISK_NODE_PARAMS(rqNodes[0], pda);
    811 	if (nPQNodes == 2) {
    812 		pda++;
    813 		INIT_READ_NODE(rpNodes + 1, "Rp");
    814 		RF_ASSERT(pda);
    815 		DISK_NODE_PARAMS(rpNodes[1], pda);
    816 		pda++;
    817 		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
    818 		RF_ASSERT(pda);
    819 		DISK_NODE_PARAMS(rqNodes[1], pda);
    820 	}
    821 	/* the recovery node has all reads as precedessors and all writes as
    822 	 * successors. It generates a result for every write P or write Q
    823 	 * node. As parameters, it takes a pda per read and a pda per stripe
    824 	 * of user data written. It also takes as the last params the raidPtr
    825 	 * and asm. For results, it takes PDA for P & Q. */
    826 
    827 
    828 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
    829 	    nWriteNodes,	/* succesors */
    830 	    nReadNodes,		/* preds */
    831 	    nReadNodes + nWudNodes + 3,	/* params */
    832 	    2 * nPQNodes,	/* results */
    833 	    dag_h, recoveryNodeName, allocList);
    834 
    835 
    836 
    837 	for (i = 0; i < nReadNodes; i++) {
    838 		recoveryNode->antecedents[i] = rrdNodes + i;
    839 		recoveryNode->antType[i] = rf_control;
    840 		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
    841 	}
    842 	for (i = 0; i < nWudNodes; i++) {
    843 		recoveryNode->succedents[i] = wudNodes + i;
    844 	}
    845 	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
    846 	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
    847 	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
    848 
    849 	for (; i < nWriteNodes; i++)
    850 		recoveryNode->succedents[i] = wudNodes + i;
    851 
    852 	pda = pqPDAs;
    853 	recoveryNode->results[0] = pda;
    854 	pda++;
    855 	recoveryNode->results[1] = pda;
    856 	if (nPQNodes == 2) {
    857 		pda++;
    858 		recoveryNode->results[2] = pda;
    859 		pda++;
    860 		recoveryNode->results[3] = pda;
    861 	}
    862 	/* fill writes */
    863 #define INIT_WRITE_NODE(node,name) \
    864   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    865     (node)->succedents[0] = unblockNode; \
    866     (node)->antecedents[0] = recoveryNode; \
    867     (node)->antType[0] = rf_control;
    868 
    869 	pda = asmap->physInfo;
    870 	for (i = 0; i < nWudNodes; i++) {
    871 		INIT_WRITE_NODE(wudNodes + i, "Wd");
    872 		DISK_NODE_PARAMS(wudNodes[i], pda);
    873 		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
    874 		pda = pda->next;
    875 	}
    876 	/* write redundancy pdas */
    877 	pda = pqPDAs;
    878 	INIT_WRITE_NODE(wpNodes, "Wp");
    879 	RF_ASSERT(pda);
    880 	DISK_NODE_PARAMS(wpNodes[0], pda);
    881 	pda++;
    882 	INIT_WRITE_NODE(wqNodes, "Wq");
    883 	RF_ASSERT(pda);
    884 	DISK_NODE_PARAMS(wqNodes[0], pda);
    885 	if (nPQNodes == 2) {
    886 		pda++;
    887 		INIT_WRITE_NODE(wpNodes + 1, "Wp");
    888 		RF_ASSERT(pda);
    889 		DISK_NODE_PARAMS(wpNodes[1], pda);
    890 		pda++;
    891 		INIT_WRITE_NODE(wqNodes + 1, "Wq");
    892 		RF_ASSERT(pda);
    893 		DISK_NODE_PARAMS(wqNodes[1], pda);
    894 	}
    895 }
    896 #endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
    897