rf_dagdegwr.c revision 1.7 1 /* $NetBSD: rf_dagdegwr.c,v 1.7 2001/09/01 23:50:44 thorpej Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * rf_dagdegwr.c
31 *
32 * code for creating degraded write DAGs
33 *
34 */
35
36 #include "rf_types.h"
37 #include "rf_raid.h"
38 #include "rf_dag.h"
39 #include "rf_dagutils.h"
40 #include "rf_dagfuncs.h"
41 #include "rf_debugMem.h"
42 #include "rf_memchunk.h"
43 #include "rf_general.h"
44 #include "rf_dagdegwr.h"
45
46
47 /******************************************************************************
48 *
49 * General comments on DAG creation:
50 *
51 * All DAGs in this file use roll-away error recovery. Each DAG has a single
52 * commit node, usually called "Cmt." If an error occurs before the Cmt node
53 * is reached, the execution engine will halt forward execution and work
54 * backward through the graph, executing the undo functions. Assuming that
55 * each node in the graph prior to the Cmt node are undoable and atomic - or -
56 * does not make changes to permanent state, the graph will fail atomically.
57 * If an error occurs after the Cmt node executes, the engine will roll-forward
58 * through the graph, blindly executing nodes until it reaches the end.
59 * If a graph reaches the end, it is assumed to have completed successfully.
60 *
61 * A graph has only 1 Cmt node.
62 *
63 */
64
65
66 /******************************************************************************
67 *
68 * The following wrappers map the standard DAG creation interface to the
69 * DAG creation routines. Additionally, these wrappers enable experimentation
70 * with new DAG structures by providing an extra level of indirection, allowing
71 * the DAG creation routines to be replaced at this single point.
72 */
73
74 static
75 RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
76 {
77 rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
78 flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
79 }
80
81 void
82 rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
83 RF_Raid_t *raidPtr;
84 RF_AccessStripeMap_t *asmap;
85 RF_DagHeader_t *dag_h;
86 void *bp;
87 RF_RaidAccessFlags_t flags;
88 RF_AllocListElem_t *allocList;
89 {
90
91 RF_ASSERT(asmap->numDataFailed == 1);
92 dag_h->creator = "DegradedWriteDAG";
93
94 /*
95 * if the access writes only a portion of the failed unit, and also
96 * writes some portion of at least one surviving unit, we create two
97 * DAGs, one for the failed component and one for the non-failed
98 * component, and do them sequentially. Note that the fact that we're
99 * accessing only a portion of the failed unit indicates that the
100 * access either starts or ends in the failed unit, and hence we need
101 * create only two dags. This is inefficient in that the same data or
102 * parity can get read and written twice using this structure. I need
103 * to fix this to do the access all at once.
104 */
105 RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
106 asmap->failedPDAs[0]->numSector !=
107 raidPtr->Layout.sectorsPerStripeUnit));
108 rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
109 allocList);
110 }
111
112
113
114 /******************************************************************************
115 *
116 * DAG creation code begins here
117 */
118
119
120
121 /******************************************************************************
122 *
123 * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
124 * write, which is as follows
125 *
126 * / {Wnq} --\
127 * hdr -> blockNode -> Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
128 * \ {Rod} / \ Wnd ---/
129 * \ {Wnd} -/
130 *
131 * commit nodes: Xor, Wnd
132 *
133 * IMPORTANT:
134 * This DAG generator does not work for double-degraded archs since it does not
135 * generate Q
136 *
137 * This dag is essentially identical to the large-write dag, except that the
138 * write to the failed data unit is suppressed.
139 *
140 * IMPORTANT: this dag does not work in the case where the access writes only
141 * a portion of the failed unit, and also writes some portion of at least one
142 * surviving SU. this case is handled in CreateDegradedWriteDAG above.
143 *
144 * The block & unblock nodes are leftovers from a previous version. They
145 * do nothing, but I haven't deleted them because it would be a tremendous
146 * effort to put them back in.
147 *
148 * This dag is used whenever a one of the data units in a write has failed.
149 * If it is the parity unit that failed, the nonredundant write dag (below)
150 * is used.
151 *****************************************************************************/
152
153 void
154 rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
155 allocList, nfaults, redFunc, allowBufferRecycle)
156 RF_Raid_t *raidPtr;
157 RF_AccessStripeMap_t *asmap;
158 RF_DagHeader_t *dag_h;
159 void *bp;
160 RF_RaidAccessFlags_t flags;
161 RF_AllocListElem_t *allocList;
162 int nfaults;
163 int (*redFunc) (RF_DagNode_t *);
164 int allowBufferRecycle;
165 {
166 int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
167 rdnodesFaked;
168 RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
169 RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
170 RF_SectorCount_t sectorsPerSU;
171 RF_ReconUnitNum_t which_ru;
172 char *xorTargetBuf = NULL; /* the target buffer for the XOR
173 * operation */
174 char *overlappingPDAs;/* a temporary array of flags */
175 RF_AccessStripeMapHeader_t *new_asm_h[2];
176 RF_PhysDiskAddr_t *pda, *parityPDA;
177 RF_StripeNum_t parityStripeID;
178 RF_PhysDiskAddr_t *failedPDA;
179 RF_RaidLayout_t *layoutPtr;
180
181 layoutPtr = &(raidPtr->Layout);
182 parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
183 &which_ru);
184 sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
185 /* failedPDA points to the pda within the asm that targets the failed
186 * disk */
187 failedPDA = asmap->failedPDAs[0];
188
189 if (rf_dagDebug)
190 printf("[Creating degraded-write DAG]\n");
191
192 RF_ASSERT(asmap->numDataFailed == 1);
193 dag_h->creator = "SimpleDegradedWriteDAG";
194
195 /*
196 * Generate two ASMs identifying the surviving data
197 * we need in order to recover the lost data.
198 */
199 /* overlappingPDAs array must be zero'd */
200 RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
201 rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
202 &nXorBufs, NULL, overlappingPDAs, allocList);
203
204 /* create all the nodes at once */
205 nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is
206 * generated for the
207 * failed pda */
208
209 nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
210 ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
211 /*
212 * XXX
213 *
214 * There's a bug with a complete stripe overwrite- that means 0 reads
215 * of old data, and the rest of the DAG generation code doesn't like
216 * that. A release is coming, and I don't wanna risk breaking a critical
217 * DAG generator, so here's what I'm gonna do- if there's no read nodes,
218 * I'm gonna fake there being a read node, and I'm gonna swap in a
219 * no-op node in its place (to make all the link-up code happy).
220 * This should be fixed at some point. --jimz
221 */
222 if (nRrdNodes == 0) {
223 nRrdNodes = 1;
224 rdnodesFaked = 1;
225 } else {
226 rdnodesFaked = 0;
227 }
228 /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
229 nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
230 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
231 (RF_DagNode_t *), allocList);
232 i = 0;
233 blockNode = &nodes[i];
234 i += 1;
235 commitNode = &nodes[i];
236 i += 1;
237 unblockNode = &nodes[i];
238 i += 1;
239 termNode = &nodes[i];
240 i += 1;
241 xorNode = &nodes[i];
242 i += 1;
243 wnpNode = &nodes[i];
244 i += 1;
245 wndNodes = &nodes[i];
246 i += nWndNodes;
247 rrdNodes = &nodes[i];
248 i += nRrdNodes;
249 if (nfaults == 2) {
250 wnqNode = &nodes[i];
251 i += 1;
252 } else {
253 wnqNode = NULL;
254 }
255 RF_ASSERT(i == nNodes);
256
257 /* this dag can not commit until all rrd and xor Nodes have completed */
258 dag_h->numCommitNodes = 1;
259 dag_h->numCommits = 0;
260 dag_h->numSuccedents = 1;
261
262 RF_ASSERT(nRrdNodes > 0);
263 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
264 NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
265 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
266 NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
267 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
268 NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
269 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
270 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
271 rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
272 nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
273
274 /*
275 * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
276 * the failed buffer, save a pointer to it so we can use it as the target
277 * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
278 * a buffer is the same size as the failed buffer, it must also be at the
279 * same alignment within the SU.
280 */
281 i = 0;
282 if (new_asm_h[0]) {
283 for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
284 i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
285 i++, pda = pda->next) {
286 rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
287 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
288 RF_ASSERT(pda);
289 rrdNodes[i].params[0].p = pda;
290 rrdNodes[i].params[1].p = pda->bufPtr;
291 rrdNodes[i].params[2].v = parityStripeID;
292 rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
293 }
294 }
295 /* i now equals the number of stripe units accessed in new_asm_h[0] */
296 if (new_asm_h[1]) {
297 for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
298 j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
299 j++, pda = pda->next) {
300 rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
301 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
302 RF_ASSERT(pda);
303 rrdNodes[i + j].params[0].p = pda;
304 rrdNodes[i + j].params[1].p = pda->bufPtr;
305 rrdNodes[i + j].params[2].v = parityStripeID;
306 rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
307 if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
308 xorTargetBuf = pda->bufPtr;
309 }
310 }
311 if (rdnodesFaked) {
312 /*
313 * This is where we'll init that fake noop read node
314 * (XXX should the wakeup func be different?)
315 */
316 rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
317 NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
318 }
319 /*
320 * Make a PDA for the parity unit. The parity PDA should start at
321 * the same offset into the SU as the failed PDA.
322 */
323 /* Danner comment: I don't think this copy is really necessary. We are
324 * in one of two cases here. (1) The entire failed unit is written.
325 * Then asmap->parityInfo will describe the entire parity. (2) We are
326 * only writing a subset of the failed unit and nothing else. Then the
327 * asmap->parityInfo describes the failed unit and the copy can also
328 * be avoided. */
329
330 RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
331 parityPDA->row = asmap->parityInfo->row;
332 parityPDA->col = asmap->parityInfo->col;
333 parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
334 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
335 parityPDA->numSector = failedPDA->numSector;
336
337 if (!xorTargetBuf) {
338 RF_CallocAndAdd(xorTargetBuf, 1,
339 rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
340 }
341 /* init the Wnp node */
342 rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
343 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
344 wnpNode->params[0].p = parityPDA;
345 wnpNode->params[1].p = xorTargetBuf;
346 wnpNode->params[2].v = parityStripeID;
347 wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
348
349 /* fill in the Wnq Node */
350 if (nfaults == 2) {
351 {
352 RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
353 (RF_PhysDiskAddr_t *), allocList);
354 parityPDA->row = asmap->qInfo->row;
355 parityPDA->col = asmap->qInfo->col;
356 parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
357 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
358 parityPDA->numSector = failedPDA->numSector;
359
360 rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
361 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
362 wnqNode->params[0].p = parityPDA;
363 RF_CallocAndAdd(xorNode->results[1], 1,
364 rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
365 wnqNode->params[1].p = xorNode->results[1];
366 wnqNode->params[2].v = parityStripeID;
367 wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
368 }
369 }
370 /* fill in the Wnd nodes */
371 for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
372 if (pda == failedPDA) {
373 i--;
374 continue;
375 }
376 rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
377 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
378 RF_ASSERT(pda);
379 wndNodes[i].params[0].p = pda;
380 wndNodes[i].params[1].p = pda->bufPtr;
381 wndNodes[i].params[2].v = parityStripeID;
382 wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
383 }
384
385 /* fill in the results of the xor node */
386 xorNode->results[0] = xorTargetBuf;
387
388 /* fill in the params of the xor node */
389
390 paramNum = 0;
391 if (rdnodesFaked == 0) {
392 for (i = 0; i < nRrdNodes; i++) {
393 /* all the Rrd nodes need to be xored together */
394 xorNode->params[paramNum++] = rrdNodes[i].params[0];
395 xorNode->params[paramNum++] = rrdNodes[i].params[1];
396 }
397 }
398 for (i = 0; i < nWndNodes; i++) {
399 /* any Wnd nodes that overlap the failed access need to be
400 * xored in */
401 if (overlappingPDAs[i]) {
402 RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
403 bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
404 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
405 xorNode->params[paramNum++].p = pda;
406 xorNode->params[paramNum++].p = pda->bufPtr;
407 }
408 }
409 RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
410
411 /*
412 * Install the failed PDA into the xor param list so that the
413 * new data gets xor'd in.
414 */
415 xorNode->params[paramNum++].p = failedPDA;
416 xorNode->params[paramNum++].p = failedPDA->bufPtr;
417
418 /*
419 * The last 2 params to the recovery xor node are always the failed
420 * PDA and the raidPtr. install the failedPDA even though we have just
421 * done so above. This allows us to use the same XOR function for both
422 * degraded reads and degraded writes.
423 */
424 xorNode->params[paramNum++].p = failedPDA;
425 xorNode->params[paramNum++].p = raidPtr;
426 RF_ASSERT(paramNum == 2 * nXorBufs + 2);
427
428 /*
429 * Code to link nodes begins here
430 */
431
432 /* link header to block node */
433 RF_ASSERT(blockNode->numAntecedents == 0);
434 dag_h->succedents[0] = blockNode;
435
436 /* link block node to rd nodes */
437 RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
438 for (i = 0; i < nRrdNodes; i++) {
439 RF_ASSERT(rrdNodes[i].numAntecedents == 1);
440 blockNode->succedents[i] = &rrdNodes[i];
441 rrdNodes[i].antecedents[0] = blockNode;
442 rrdNodes[i].antType[0] = rf_control;
443 }
444
445 /* link read nodes to xor node */
446 RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
447 for (i = 0; i < nRrdNodes; i++) {
448 RF_ASSERT(rrdNodes[i].numSuccedents == 1);
449 rrdNodes[i].succedents[0] = xorNode;
450 xorNode->antecedents[i] = &rrdNodes[i];
451 xorNode->antType[i] = rf_trueData;
452 }
453
454 /* link xor node to commit node */
455 RF_ASSERT(xorNode->numSuccedents == 1);
456 RF_ASSERT(commitNode->numAntecedents == 1);
457 xorNode->succedents[0] = commitNode;
458 commitNode->antecedents[0] = xorNode;
459 commitNode->antType[0] = rf_control;
460
461 /* link commit node to wnd nodes */
462 RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
463 for (i = 0; i < nWndNodes; i++) {
464 RF_ASSERT(wndNodes[i].numAntecedents == 1);
465 commitNode->succedents[i] = &wndNodes[i];
466 wndNodes[i].antecedents[0] = commitNode;
467 wndNodes[i].antType[0] = rf_control;
468 }
469
470 /* link the commit node to wnp, wnq nodes */
471 RF_ASSERT(wnpNode->numAntecedents == 1);
472 commitNode->succedents[nWndNodes] = wnpNode;
473 wnpNode->antecedents[0] = commitNode;
474 wnpNode->antType[0] = rf_control;
475 if (nfaults == 2) {
476 RF_ASSERT(wnqNode->numAntecedents == 1);
477 commitNode->succedents[nWndNodes + 1] = wnqNode;
478 wnqNode->antecedents[0] = commitNode;
479 wnqNode->antType[0] = rf_control;
480 }
481 /* link write new data nodes to unblock node */
482 RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
483 for (i = 0; i < nWndNodes; i++) {
484 RF_ASSERT(wndNodes[i].numSuccedents == 1);
485 wndNodes[i].succedents[0] = unblockNode;
486 unblockNode->antecedents[i] = &wndNodes[i];
487 unblockNode->antType[i] = rf_control;
488 }
489
490 /* link write new parity node to unblock node */
491 RF_ASSERT(wnpNode->numSuccedents == 1);
492 wnpNode->succedents[0] = unblockNode;
493 unblockNode->antecedents[nWndNodes] = wnpNode;
494 unblockNode->antType[nWndNodes] = rf_control;
495
496 /* link write new q node to unblock node */
497 if (nfaults == 2) {
498 RF_ASSERT(wnqNode->numSuccedents == 1);
499 wnqNode->succedents[0] = unblockNode;
500 unblockNode->antecedents[nWndNodes + 1] = wnqNode;
501 unblockNode->antType[nWndNodes + 1] = rf_control;
502 }
503 /* link unblock node to term node */
504 RF_ASSERT(unblockNode->numSuccedents == 1);
505 RF_ASSERT(termNode->numAntecedents == 1);
506 RF_ASSERT(termNode->numSuccedents == 0);
507 unblockNode->succedents[0] = termNode;
508 termNode->antecedents[0] = unblockNode;
509 termNode->antType[0] = rf_control;
510 }
511 #define CONS_PDA(if,start,num) \
512 pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
513 pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
514 pda_p->numSector = num; \
515 pda_p->next = NULL; \
516 RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
517 #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
518 void
519 rf_WriteGenerateFailedAccessASMs(
520 RF_Raid_t * raidPtr,
521 RF_AccessStripeMap_t * asmap,
522 RF_PhysDiskAddr_t ** pdap,
523 int *nNodep,
524 RF_PhysDiskAddr_t ** pqpdap,
525 int *nPQNodep,
526 RF_AllocListElem_t * allocList)
527 {
528 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
529 int PDAPerDisk, i;
530 RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
531 int numDataCol = layoutPtr->numDataCol;
532 int state;
533 unsigned napdas;
534 RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
535 RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
536 RF_PhysDiskAddr_t *pda_p;
537 RF_RaidAddr_t sosAddr;
538
539 /* determine how many pda's we will have to generate per unaccess
540 * stripe. If there is only one failed data unit, it is one; if two,
541 * possibly two, depending wether they overlap. */
542
543 fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
544 fone_end = fone_start + fone->numSector;
545
546 if (asmap->numDataFailed == 1) {
547 PDAPerDisk = 1;
548 state = 1;
549 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
550 pda_p = *pqpdap;
551 /* build p */
552 CONS_PDA(parityInfo, fone_start, fone->numSector);
553 pda_p->type = RF_PDA_TYPE_PARITY;
554 pda_p++;
555 /* build q */
556 CONS_PDA(qInfo, fone_start, fone->numSector);
557 pda_p->type = RF_PDA_TYPE_Q;
558 } else {
559 ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
560 ftwo_end = ftwo_start + ftwo->numSector;
561 if (fone->numSector + ftwo->numSector > secPerSU) {
562 PDAPerDisk = 1;
563 state = 2;
564 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
565 pda_p = *pqpdap;
566 CONS_PDA(parityInfo, 0, secPerSU);
567 pda_p->type = RF_PDA_TYPE_PARITY;
568 pda_p++;
569 CONS_PDA(qInfo, 0, secPerSU);
570 pda_p->type = RF_PDA_TYPE_Q;
571 } else {
572 PDAPerDisk = 2;
573 state = 3;
574 /* four of them, fone, then ftwo */
575 RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
576 pda_p = *pqpdap;
577 CONS_PDA(parityInfo, fone_start, fone->numSector);
578 pda_p->type = RF_PDA_TYPE_PARITY;
579 pda_p++;
580 CONS_PDA(qInfo, fone_start, fone->numSector);
581 pda_p->type = RF_PDA_TYPE_Q;
582 pda_p++;
583 CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
584 pda_p->type = RF_PDA_TYPE_PARITY;
585 pda_p++;
586 CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
587 pda_p->type = RF_PDA_TYPE_Q;
588 }
589 }
590 /* figure out number of nonaccessed pda */
591 napdas = PDAPerDisk * (numDataCol - 2);
592 *nPQNodep = PDAPerDisk;
593
594 *nNodep = napdas;
595 if (napdas == 0)
596 return; /* short circuit */
597
598 /* allocate up our list of pda's */
599
600 RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
601 *pdap = pda_p;
602
603 /* linkem together */
604 for (i = 0; i < (napdas - 1); i++)
605 pda_p[i].next = pda_p + (i + 1);
606
607 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
608 for (i = 0; i < numDataCol; i++) {
609 if ((pda_p - (*pdap)) == napdas)
610 continue;
611 pda_p->type = RF_PDA_TYPE_DATA;
612 pda_p->raidAddress = sosAddr + (i * secPerSU);
613 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
614 /* skip over dead disks */
615 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
616 continue;
617 switch (state) {
618 case 1: /* fone */
619 pda_p->numSector = fone->numSector;
620 pda_p->raidAddress += fone_start;
621 pda_p->startSector += fone_start;
622 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
623 break;
624 case 2: /* full stripe */
625 pda_p->numSector = secPerSU;
626 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
627 break;
628 case 3: /* two slabs */
629 pda_p->numSector = fone->numSector;
630 pda_p->raidAddress += fone_start;
631 pda_p->startSector += fone_start;
632 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
633 pda_p++;
634 pda_p->type = RF_PDA_TYPE_DATA;
635 pda_p->raidAddress = sosAddr + (i * secPerSU);
636 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
637 pda_p->numSector = ftwo->numSector;
638 pda_p->raidAddress += ftwo_start;
639 pda_p->startSector += ftwo_start;
640 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
641 break;
642 default:
643 RF_PANIC();
644 }
645 pda_p++;
646 }
647
648 RF_ASSERT(pda_p - *pdap == napdas);
649 return;
650 }
651 #define DISK_NODE_PDA(node) ((node)->params[0].p)
652
653 #define DISK_NODE_PARAMS(_node_,_p_) \
654 (_node_).params[0].p = _p_ ; \
655 (_node_).params[1].p = (_p_)->bufPtr; \
656 (_node_).params[2].v = parityStripeID; \
657 (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
658
659 void
660 rf_DoubleDegSmallWrite(
661 RF_Raid_t * raidPtr,
662 RF_AccessStripeMap_t * asmap,
663 RF_DagHeader_t * dag_h,
664 void *bp,
665 RF_RaidAccessFlags_t flags,
666 RF_AllocListElem_t * allocList,
667 char *redundantReadNodeName,
668 char *redundantWriteNodeName,
669 char *recoveryNodeName,
670 int (*recovFunc) (RF_DagNode_t *))
671 {
672 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
673 RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
674 *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
675 RF_PhysDiskAddr_t *pda, *pqPDAs;
676 RF_PhysDiskAddr_t *npdas;
677 int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
678 RF_ReconUnitNum_t which_ru;
679 int nPQNodes;
680 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
681
682 /* simple small write case - First part looks like a reconstruct-read
683 * of the failed data units. Then a write of all data units not
684 * failed. */
685
686
687 /* Hdr | ------Block- / / \ Rrd Rrd ... Rrd Rp Rq \ \
688 * / -------PQ----- / \ \ Wud Wp WQ \ | /
689 * --Unblock- | T
690 *
691 * Rrd = read recovery data (potentially none) Wud = write user data
692 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
693 * (could be two)
694 *
695 */
696
697 rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
698
699 RF_ASSERT(asmap->numDataFailed == 1);
700
701 nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
702 nReadNodes = nRrdNodes + 2 * nPQNodes;
703 nWriteNodes = nWudNodes + 2 * nPQNodes;
704 nNodes = 4 + nReadNodes + nWriteNodes;
705
706 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
707 blockNode = nodes;
708 unblockNode = blockNode + 1;
709 termNode = unblockNode + 1;
710 recoveryNode = termNode + 1;
711 rrdNodes = recoveryNode + 1;
712 rpNodes = rrdNodes + nRrdNodes;
713 rqNodes = rpNodes + nPQNodes;
714 wudNodes = rqNodes + nPQNodes;
715 wpNodes = wudNodes + nWudNodes;
716 wqNodes = wpNodes + nPQNodes;
717
718 dag_h->creator = "PQ_DDSimpleSmallWrite";
719 dag_h->numSuccedents = 1;
720 dag_h->succedents[0] = blockNode;
721 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
722 termNode->antecedents[0] = unblockNode;
723 termNode->antType[0] = rf_control;
724
725 /* init the block and unblock nodes */
726 /* The block node has all the read nodes as successors */
727 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
728 for (i = 0; i < nReadNodes; i++)
729 blockNode->succedents[i] = rrdNodes + i;
730
731 /* The unblock node has all the writes as successors */
732 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
733 for (i = 0; i < nWriteNodes; i++) {
734 unblockNode->antecedents[i] = wudNodes + i;
735 unblockNode->antType[i] = rf_control;
736 }
737 unblockNode->succedents[0] = termNode;
738
739 #define INIT_READ_NODE(node,name) \
740 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
741 (node)->succedents[0] = recoveryNode; \
742 (node)->antecedents[0] = blockNode; \
743 (node)->antType[0] = rf_control;
744
745 /* build the read nodes */
746 pda = npdas;
747 for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
748 INIT_READ_NODE(rrdNodes + i, "rrd");
749 DISK_NODE_PARAMS(rrdNodes[i], pda);
750 }
751
752 /* read redundancy pdas */
753 pda = pqPDAs;
754 INIT_READ_NODE(rpNodes, "Rp");
755 RF_ASSERT(pda);
756 DISK_NODE_PARAMS(rpNodes[0], pda);
757 pda++;
758 INIT_READ_NODE(rqNodes, redundantReadNodeName);
759 RF_ASSERT(pda);
760 DISK_NODE_PARAMS(rqNodes[0], pda);
761 if (nPQNodes == 2) {
762 pda++;
763 INIT_READ_NODE(rpNodes + 1, "Rp");
764 RF_ASSERT(pda);
765 DISK_NODE_PARAMS(rpNodes[1], pda);
766 pda++;
767 INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
768 RF_ASSERT(pda);
769 DISK_NODE_PARAMS(rqNodes[1], pda);
770 }
771 /* the recovery node has all reads as precedessors and all writes as
772 * successors. It generates a result for every write P or write Q
773 * node. As parameters, it takes a pda per read and a pda per stripe
774 * of user data written. It also takes as the last params the raidPtr
775 * and asm. For results, it takes PDA for P & Q. */
776
777
778 rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
779 nWriteNodes, /* succesors */
780 nReadNodes, /* preds */
781 nReadNodes + nWudNodes + 3, /* params */
782 2 * nPQNodes, /* results */
783 dag_h, recoveryNodeName, allocList);
784
785
786
787 for (i = 0; i < nReadNodes; i++) {
788 recoveryNode->antecedents[i] = rrdNodes + i;
789 recoveryNode->antType[i] = rf_control;
790 recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
791 }
792 for (i = 0; i < nWudNodes; i++) {
793 recoveryNode->succedents[i] = wudNodes + i;
794 }
795 recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
796 recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
797 recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
798
799 for (; i < nWriteNodes; i++)
800 recoveryNode->succedents[i] = wudNodes + i;
801
802 pda = pqPDAs;
803 recoveryNode->results[0] = pda;
804 pda++;
805 recoveryNode->results[1] = pda;
806 if (nPQNodes == 2) {
807 pda++;
808 recoveryNode->results[2] = pda;
809 pda++;
810 recoveryNode->results[3] = pda;
811 }
812 /* fill writes */
813 #define INIT_WRITE_NODE(node,name) \
814 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
815 (node)->succedents[0] = unblockNode; \
816 (node)->antecedents[0] = recoveryNode; \
817 (node)->antType[0] = rf_control;
818
819 pda = asmap->physInfo;
820 for (i = 0; i < nWudNodes; i++) {
821 INIT_WRITE_NODE(wudNodes + i, "Wd");
822 DISK_NODE_PARAMS(wudNodes[i], pda);
823 recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
824 pda = pda->next;
825 }
826 /* write redundancy pdas */
827 pda = pqPDAs;
828 INIT_WRITE_NODE(wpNodes, "Wp");
829 RF_ASSERT(pda);
830 DISK_NODE_PARAMS(wpNodes[0], pda);
831 pda++;
832 INIT_WRITE_NODE(wqNodes, "Wq");
833 RF_ASSERT(pda);
834 DISK_NODE_PARAMS(wqNodes[0], pda);
835 if (nPQNodes == 2) {
836 pda++;
837 INIT_WRITE_NODE(wpNodes + 1, "Wp");
838 RF_ASSERT(pda);
839 DISK_NODE_PARAMS(wpNodes[1], pda);
840 pda++;
841 INIT_WRITE_NODE(wqNodes + 1, "Wq");
842 RF_ASSERT(pda);
843 DISK_NODE_PARAMS(wqNodes[1], pda);
844 }
845 }
846 #endif /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
847