Home | History | Annotate | Line # | Download | only in raidframe
rf_dagdegwr.c revision 1.7
      1 /*	$NetBSD: rf_dagdegwr.c,v 1.7 2001/09/01 23:50:44 thorpej Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagdegwr.c
     31  *
     32  * code for creating degraded write DAGs
     33  *
     34  */
     35 
     36 #include "rf_types.h"
     37 #include "rf_raid.h"
     38 #include "rf_dag.h"
     39 #include "rf_dagutils.h"
     40 #include "rf_dagfuncs.h"
     41 #include "rf_debugMem.h"
     42 #include "rf_memchunk.h"
     43 #include "rf_general.h"
     44 #include "rf_dagdegwr.h"
     45 
     46 
     47 /******************************************************************************
     48  *
     49  * General comments on DAG creation:
     50  *
     51  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     52  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     53  * is reached, the execution engine will halt forward execution and work
     54  * backward through the graph, executing the undo functions.  Assuming that
     55  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     56  * does not make changes to permanent state, the graph will fail atomically.
     57  * If an error occurs after the Cmt node executes, the engine will roll-forward
     58  * through the graph, blindly executing nodes until it reaches the end.
     59  * If a graph reaches the end, it is assumed to have completed successfully.
     60  *
     61  * A graph has only 1 Cmt node.
     62  *
     63  */
     64 
     65 
     66 /******************************************************************************
     67  *
     68  * The following wrappers map the standard DAG creation interface to the
     69  * DAG creation routines.  Additionally, these wrappers enable experimentation
     70  * with new DAG structures by providing an extra level of indirection, allowing
     71  * the DAG creation routines to be replaced at this single point.
     72  */
     73 
     74 static
     75 RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
     76 {
     77 	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
     78 	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
     79 }
     80 
     81 void
     82 rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
     83 	RF_Raid_t *raidPtr;
     84 	RF_AccessStripeMap_t *asmap;
     85 	RF_DagHeader_t *dag_h;
     86 	void   *bp;
     87 	RF_RaidAccessFlags_t flags;
     88 	RF_AllocListElem_t *allocList;
     89 {
     90 
     91 	RF_ASSERT(asmap->numDataFailed == 1);
     92 	dag_h->creator = "DegradedWriteDAG";
     93 
     94 	/*
     95 	 * if the access writes only a portion of the failed unit, and also
     96 	 * writes some portion of at least one surviving unit, we create two
     97 	 * DAGs, one for the failed component and one for the non-failed
     98 	 * component, and do them sequentially.  Note that the fact that we're
     99 	 * accessing only a portion of the failed unit indicates that the
    100 	 * access either starts or ends in the failed unit, and hence we need
    101 	 * create only two dags.  This is inefficient in that the same data or
    102 	 * parity can get read and written twice using this structure.  I need
    103 	 * to fix this to do the access all at once.
    104 	 */
    105 	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
    106 		    asmap->failedPDAs[0]->numSector !=
    107 			raidPtr->Layout.sectorsPerStripeUnit));
    108 	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    109 	    allocList);
    110 }
    111 
    112 
    113 
    114 /******************************************************************************
    115  *
    116  * DAG creation code begins here
    117  */
    118 
    119 
    120 
    121 /******************************************************************************
    122  *
    123  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
    124  * write, which is as follows
    125  *
    126  *                                        / {Wnq} --\
    127  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
    128  *                  \  {Rod} /            \  Wnd ---/
    129  *                                        \ {Wnd} -/
    130  *
    131  * commit nodes: Xor, Wnd
    132  *
    133  * IMPORTANT:
    134  * This DAG generator does not work for double-degraded archs since it does not
    135  * generate Q
    136  *
    137  * This dag is essentially identical to the large-write dag, except that the
    138  * write to the failed data unit is suppressed.
    139  *
    140  * IMPORTANT:  this dag does not work in the case where the access writes only
    141  * a portion of the failed unit, and also writes some portion of at least one
    142  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
    143  *
    144  * The block & unblock nodes are leftovers from a previous version.  They
    145  * do nothing, but I haven't deleted them because it would be a tremendous
    146  * effort to put them back in.
    147  *
    148  * This dag is used whenever a one of the data units in a write has failed.
    149  * If it is the parity unit that failed, the nonredundant write dag (below)
    150  * is used.
    151  *****************************************************************************/
    152 
    153 void
    154 rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    155     allocList, nfaults, redFunc, allowBufferRecycle)
    156 	RF_Raid_t *raidPtr;
    157 	RF_AccessStripeMap_t *asmap;
    158 	RF_DagHeader_t *dag_h;
    159 	void   *bp;
    160 	RF_RaidAccessFlags_t flags;
    161 	RF_AllocListElem_t *allocList;
    162 	int     nfaults;
    163 	int     (*redFunc) (RF_DagNode_t *);
    164 	int     allowBufferRecycle;
    165 {
    166 	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
    167 	        rdnodesFaked;
    168 	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
    169 	RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
    170 	RF_SectorCount_t sectorsPerSU;
    171 	RF_ReconUnitNum_t which_ru;
    172 	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
    173 					 * operation */
    174 	char   *overlappingPDAs;/* a temporary array of flags */
    175 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    176 	RF_PhysDiskAddr_t *pda, *parityPDA;
    177 	RF_StripeNum_t parityStripeID;
    178 	RF_PhysDiskAddr_t *failedPDA;
    179 	RF_RaidLayout_t *layoutPtr;
    180 
    181 	layoutPtr = &(raidPtr->Layout);
    182 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    183 	    &which_ru);
    184 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    185 	/* failedPDA points to the pda within the asm that targets the failed
    186 	 * disk */
    187 	failedPDA = asmap->failedPDAs[0];
    188 
    189 	if (rf_dagDebug)
    190 		printf("[Creating degraded-write DAG]\n");
    191 
    192 	RF_ASSERT(asmap->numDataFailed == 1);
    193 	dag_h->creator = "SimpleDegradedWriteDAG";
    194 
    195 	/*
    196          * Generate two ASMs identifying the surviving data
    197          * we need in order to recover the lost data.
    198          */
    199 	/* overlappingPDAs array must be zero'd */
    200 	RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
    201 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
    202 	    &nXorBufs, NULL, overlappingPDAs, allocList);
    203 
    204 	/* create all the nodes at once */
    205 	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
    206 							 * generated for the
    207 							 * failed pda */
    208 
    209 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    210 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    211 	/*
    212          * XXX
    213          *
    214          * There's a bug with a complete stripe overwrite- that means 0 reads
    215          * of old data, and the rest of the DAG generation code doesn't like
    216          * that. A release is coming, and I don't wanna risk breaking a critical
    217          * DAG generator, so here's what I'm gonna do- if there's no read nodes,
    218          * I'm gonna fake there being a read node, and I'm gonna swap in a
    219          * no-op node in its place (to make all the link-up code happy).
    220          * This should be fixed at some point.  --jimz
    221          */
    222 	if (nRrdNodes == 0) {
    223 		nRrdNodes = 1;
    224 		rdnodesFaked = 1;
    225 	} else {
    226 		rdnodesFaked = 0;
    227 	}
    228 	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
    229 	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
    230 	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
    231 	    (RF_DagNode_t *), allocList);
    232 	i = 0;
    233 	blockNode = &nodes[i];
    234 	i += 1;
    235 	commitNode = &nodes[i];
    236 	i += 1;
    237 	unblockNode = &nodes[i];
    238 	i += 1;
    239 	termNode = &nodes[i];
    240 	i += 1;
    241 	xorNode = &nodes[i];
    242 	i += 1;
    243 	wnpNode = &nodes[i];
    244 	i += 1;
    245 	wndNodes = &nodes[i];
    246 	i += nWndNodes;
    247 	rrdNodes = &nodes[i];
    248 	i += nRrdNodes;
    249 	if (nfaults == 2) {
    250 		wnqNode = &nodes[i];
    251 		i += 1;
    252 	} else {
    253 		wnqNode = NULL;
    254 	}
    255 	RF_ASSERT(i == nNodes);
    256 
    257 	/* this dag can not commit until all rrd and xor Nodes have completed */
    258 	dag_h->numCommitNodes = 1;
    259 	dag_h->numCommits = 0;
    260 	dag_h->numSuccedents = 1;
    261 
    262 	RF_ASSERT(nRrdNodes > 0);
    263 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    264 	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
    265 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    266 	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    267 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    268 	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
    269 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    270 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    271 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    272 	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
    273 
    274 	/*
    275          * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
    276          * the failed buffer, save a pointer to it so we can use it as the target
    277          * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
    278          * a buffer is the same size as the failed buffer, it must also be at the
    279          * same alignment within the SU.
    280          */
    281 	i = 0;
    282 	if (new_asm_h[0]) {
    283 		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
    284 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    285 		    i++, pda = pda->next) {
    286 			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    287 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    288 			RF_ASSERT(pda);
    289 			rrdNodes[i].params[0].p = pda;
    290 			rrdNodes[i].params[1].p = pda->bufPtr;
    291 			rrdNodes[i].params[2].v = parityStripeID;
    292 			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    293 		}
    294 	}
    295 	/* i now equals the number of stripe units accessed in new_asm_h[0] */
    296 	if (new_asm_h[1]) {
    297 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    298 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    299 		    j++, pda = pda->next) {
    300 			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    301 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    302 			RF_ASSERT(pda);
    303 			rrdNodes[i + j].params[0].p = pda;
    304 			rrdNodes[i + j].params[1].p = pda->bufPtr;
    305 			rrdNodes[i + j].params[2].v = parityStripeID;
    306 			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    307 			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
    308 				xorTargetBuf = pda->bufPtr;
    309 		}
    310 	}
    311 	if (rdnodesFaked) {
    312 		/*
    313 	         * This is where we'll init that fake noop read node
    314 	         * (XXX should the wakeup func be different?)
    315 	         */
    316 		rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    317 		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
    318 	}
    319 	/*
    320          * Make a PDA for the parity unit.  The parity PDA should start at
    321          * the same offset into the SU as the failed PDA.
    322          */
    323 	/* Danner comment: I don't think this copy is really necessary. We are
    324 	 * in one of two cases here. (1) The entire failed unit is written.
    325 	 * Then asmap->parityInfo will describe the entire parity. (2) We are
    326 	 * only writing a subset of the failed unit and nothing else. Then the
    327 	 * asmap->parityInfo describes the failed unit and the copy can also
    328 	 * be avoided. */
    329 
    330 	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    331 	parityPDA->row = asmap->parityInfo->row;
    332 	parityPDA->col = asmap->parityInfo->col;
    333 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    334 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    335 	parityPDA->numSector = failedPDA->numSector;
    336 
    337 	if (!xorTargetBuf) {
    338 		RF_CallocAndAdd(xorTargetBuf, 1,
    339 		    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    340 	}
    341 	/* init the Wnp node */
    342 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    343 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    344 	wnpNode->params[0].p = parityPDA;
    345 	wnpNode->params[1].p = xorTargetBuf;
    346 	wnpNode->params[2].v = parityStripeID;
    347 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    348 
    349 	/* fill in the Wnq Node */
    350 	if (nfaults == 2) {
    351 		{
    352 			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
    353 			    (RF_PhysDiskAddr_t *), allocList);
    354 			parityPDA->row = asmap->qInfo->row;
    355 			parityPDA->col = asmap->qInfo->col;
    356 			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
    357 			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    358 			parityPDA->numSector = failedPDA->numSector;
    359 
    360 			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    361 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    362 			wnqNode->params[0].p = parityPDA;
    363 			RF_CallocAndAdd(xorNode->results[1], 1,
    364 			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    365 			wnqNode->params[1].p = xorNode->results[1];
    366 			wnqNode->params[2].v = parityStripeID;
    367 			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    368 		}
    369 	}
    370 	/* fill in the Wnd nodes */
    371 	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
    372 		if (pda == failedPDA) {
    373 			i--;
    374 			continue;
    375 		}
    376 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    377 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    378 		RF_ASSERT(pda);
    379 		wndNodes[i].params[0].p = pda;
    380 		wndNodes[i].params[1].p = pda->bufPtr;
    381 		wndNodes[i].params[2].v = parityStripeID;
    382 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    383 	}
    384 
    385 	/* fill in the results of the xor node */
    386 	xorNode->results[0] = xorTargetBuf;
    387 
    388 	/* fill in the params of the xor node */
    389 
    390 	paramNum = 0;
    391 	if (rdnodesFaked == 0) {
    392 		for (i = 0; i < nRrdNodes; i++) {
    393 			/* all the Rrd nodes need to be xored together */
    394 			xorNode->params[paramNum++] = rrdNodes[i].params[0];
    395 			xorNode->params[paramNum++] = rrdNodes[i].params[1];
    396 		}
    397 	}
    398 	for (i = 0; i < nWndNodes; i++) {
    399 		/* any Wnd nodes that overlap the failed access need to be
    400 		 * xored in */
    401 		if (overlappingPDAs[i]) {
    402 			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    403 			bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
    404 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    405 			xorNode->params[paramNum++].p = pda;
    406 			xorNode->params[paramNum++].p = pda->bufPtr;
    407 		}
    408 	}
    409 	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
    410 
    411 	/*
    412          * Install the failed PDA into the xor param list so that the
    413          * new data gets xor'd in.
    414          */
    415 	xorNode->params[paramNum++].p = failedPDA;
    416 	xorNode->params[paramNum++].p = failedPDA->bufPtr;
    417 
    418 	/*
    419          * The last 2 params to the recovery xor node are always the failed
    420          * PDA and the raidPtr. install the failedPDA even though we have just
    421          * done so above. This allows us to use the same XOR function for both
    422          * degraded reads and degraded writes.
    423          */
    424 	xorNode->params[paramNum++].p = failedPDA;
    425 	xorNode->params[paramNum++].p = raidPtr;
    426 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    427 
    428 	/*
    429          * Code to link nodes begins here
    430          */
    431 
    432 	/* link header to block node */
    433 	RF_ASSERT(blockNode->numAntecedents == 0);
    434 	dag_h->succedents[0] = blockNode;
    435 
    436 	/* link block node to rd nodes */
    437 	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
    438 	for (i = 0; i < nRrdNodes; i++) {
    439 		RF_ASSERT(rrdNodes[i].numAntecedents == 1);
    440 		blockNode->succedents[i] = &rrdNodes[i];
    441 		rrdNodes[i].antecedents[0] = blockNode;
    442 		rrdNodes[i].antType[0] = rf_control;
    443 	}
    444 
    445 	/* link read nodes to xor node */
    446 	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
    447 	for (i = 0; i < nRrdNodes; i++) {
    448 		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
    449 		rrdNodes[i].succedents[0] = xorNode;
    450 		xorNode->antecedents[i] = &rrdNodes[i];
    451 		xorNode->antType[i] = rf_trueData;
    452 	}
    453 
    454 	/* link xor node to commit node */
    455 	RF_ASSERT(xorNode->numSuccedents == 1);
    456 	RF_ASSERT(commitNode->numAntecedents == 1);
    457 	xorNode->succedents[0] = commitNode;
    458 	commitNode->antecedents[0] = xorNode;
    459 	commitNode->antType[0] = rf_control;
    460 
    461 	/* link commit node to wnd nodes */
    462 	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
    463 	for (i = 0; i < nWndNodes; i++) {
    464 		RF_ASSERT(wndNodes[i].numAntecedents == 1);
    465 		commitNode->succedents[i] = &wndNodes[i];
    466 		wndNodes[i].antecedents[0] = commitNode;
    467 		wndNodes[i].antType[0] = rf_control;
    468 	}
    469 
    470 	/* link the commit node to wnp, wnq nodes */
    471 	RF_ASSERT(wnpNode->numAntecedents == 1);
    472 	commitNode->succedents[nWndNodes] = wnpNode;
    473 	wnpNode->antecedents[0] = commitNode;
    474 	wnpNode->antType[0] = rf_control;
    475 	if (nfaults == 2) {
    476 		RF_ASSERT(wnqNode->numAntecedents == 1);
    477 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    478 		wnqNode->antecedents[0] = commitNode;
    479 		wnqNode->antType[0] = rf_control;
    480 	}
    481 	/* link write new data nodes to unblock node */
    482 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
    483 	for (i = 0; i < nWndNodes; i++) {
    484 		RF_ASSERT(wndNodes[i].numSuccedents == 1);
    485 		wndNodes[i].succedents[0] = unblockNode;
    486 		unblockNode->antecedents[i] = &wndNodes[i];
    487 		unblockNode->antType[i] = rf_control;
    488 	}
    489 
    490 	/* link write new parity node to unblock node */
    491 	RF_ASSERT(wnpNode->numSuccedents == 1);
    492 	wnpNode->succedents[0] = unblockNode;
    493 	unblockNode->antecedents[nWndNodes] = wnpNode;
    494 	unblockNode->antType[nWndNodes] = rf_control;
    495 
    496 	/* link write new q node to unblock node */
    497 	if (nfaults == 2) {
    498 		RF_ASSERT(wnqNode->numSuccedents == 1);
    499 		wnqNode->succedents[0] = unblockNode;
    500 		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
    501 		unblockNode->antType[nWndNodes + 1] = rf_control;
    502 	}
    503 	/* link unblock node to term node */
    504 	RF_ASSERT(unblockNode->numSuccedents == 1);
    505 	RF_ASSERT(termNode->numAntecedents == 1);
    506 	RF_ASSERT(termNode->numSuccedents == 0);
    507 	unblockNode->succedents[0] = termNode;
    508 	termNode->antecedents[0] = unblockNode;
    509 	termNode->antType[0] = rf_control;
    510 }
    511 #define CONS_PDA(if,start,num) \
    512   pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
    513   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    514   pda_p->numSector = num; \
    515   pda_p->next = NULL; \
    516   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
    517 #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
    518 void
    519 rf_WriteGenerateFailedAccessASMs(
    520     RF_Raid_t * raidPtr,
    521     RF_AccessStripeMap_t * asmap,
    522     RF_PhysDiskAddr_t ** pdap,
    523     int *nNodep,
    524     RF_PhysDiskAddr_t ** pqpdap,
    525     int *nPQNodep,
    526     RF_AllocListElem_t * allocList)
    527 {
    528 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    529 	int     PDAPerDisk, i;
    530 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    531 	int     numDataCol = layoutPtr->numDataCol;
    532 	int     state;
    533 	unsigned napdas;
    534 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
    535 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    536 	RF_PhysDiskAddr_t *pda_p;
    537 	RF_RaidAddr_t sosAddr;
    538 
    539 	/* determine how many pda's we will have to generate per unaccess
    540 	 * stripe. If there is only one failed data unit, it is one; if two,
    541 	 * possibly two, depending wether they overlap. */
    542 
    543 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    544 	fone_end = fone_start + fone->numSector;
    545 
    546 	if (asmap->numDataFailed == 1) {
    547 		PDAPerDisk = 1;
    548 		state = 1;
    549 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    550 		pda_p = *pqpdap;
    551 		/* build p */
    552 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    553 		pda_p->type = RF_PDA_TYPE_PARITY;
    554 		pda_p++;
    555 		/* build q */
    556 		CONS_PDA(qInfo, fone_start, fone->numSector);
    557 		pda_p->type = RF_PDA_TYPE_Q;
    558 	} else {
    559 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    560 		ftwo_end = ftwo_start + ftwo->numSector;
    561 		if (fone->numSector + ftwo->numSector > secPerSU) {
    562 			PDAPerDisk = 1;
    563 			state = 2;
    564 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    565 			pda_p = *pqpdap;
    566 			CONS_PDA(parityInfo, 0, secPerSU);
    567 			pda_p->type = RF_PDA_TYPE_PARITY;
    568 			pda_p++;
    569 			CONS_PDA(qInfo, 0, secPerSU);
    570 			pda_p->type = RF_PDA_TYPE_Q;
    571 		} else {
    572 			PDAPerDisk = 2;
    573 			state = 3;
    574 			/* four of them, fone, then ftwo */
    575 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    576 			pda_p = *pqpdap;
    577 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    578 			pda_p->type = RF_PDA_TYPE_PARITY;
    579 			pda_p++;
    580 			CONS_PDA(qInfo, fone_start, fone->numSector);
    581 			pda_p->type = RF_PDA_TYPE_Q;
    582 			pda_p++;
    583 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    584 			pda_p->type = RF_PDA_TYPE_PARITY;
    585 			pda_p++;
    586 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    587 			pda_p->type = RF_PDA_TYPE_Q;
    588 		}
    589 	}
    590 	/* figure out number of nonaccessed pda */
    591 	napdas = PDAPerDisk * (numDataCol - 2);
    592 	*nPQNodep = PDAPerDisk;
    593 
    594 	*nNodep = napdas;
    595 	if (napdas == 0)
    596 		return;		/* short circuit */
    597 
    598 	/* allocate up our list of pda's */
    599 
    600 	RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    601 	*pdap = pda_p;
    602 
    603 	/* linkem together */
    604 	for (i = 0; i < (napdas - 1); i++)
    605 		pda_p[i].next = pda_p + (i + 1);
    606 
    607 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    608 	for (i = 0; i < numDataCol; i++) {
    609 		if ((pda_p - (*pdap)) == napdas)
    610 			continue;
    611 		pda_p->type = RF_PDA_TYPE_DATA;
    612 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    613 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    614 		/* skip over dead disks */
    615 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
    616 			continue;
    617 		switch (state) {
    618 		case 1:	/* fone */
    619 			pda_p->numSector = fone->numSector;
    620 			pda_p->raidAddress += fone_start;
    621 			pda_p->startSector += fone_start;
    622 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    623 			break;
    624 		case 2:	/* full stripe */
    625 			pda_p->numSector = secPerSU;
    626 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    627 			break;
    628 		case 3:	/* two slabs */
    629 			pda_p->numSector = fone->numSector;
    630 			pda_p->raidAddress += fone_start;
    631 			pda_p->startSector += fone_start;
    632 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    633 			pda_p++;
    634 			pda_p->type = RF_PDA_TYPE_DATA;
    635 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    636 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    637 			pda_p->numSector = ftwo->numSector;
    638 			pda_p->raidAddress += ftwo_start;
    639 			pda_p->startSector += ftwo_start;
    640 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    641 			break;
    642 		default:
    643 			RF_PANIC();
    644 		}
    645 		pda_p++;
    646 	}
    647 
    648 	RF_ASSERT(pda_p - *pdap == napdas);
    649 	return;
    650 }
    651 #define DISK_NODE_PDA(node)  ((node)->params[0].p)
    652 
    653 #define DISK_NODE_PARAMS(_node_,_p_) \
    654   (_node_).params[0].p = _p_ ; \
    655   (_node_).params[1].p = (_p_)->bufPtr; \
    656   (_node_).params[2].v = parityStripeID; \
    657   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
    658 
    659 void
    660 rf_DoubleDegSmallWrite(
    661     RF_Raid_t * raidPtr,
    662     RF_AccessStripeMap_t * asmap,
    663     RF_DagHeader_t * dag_h,
    664     void *bp,
    665     RF_RaidAccessFlags_t flags,
    666     RF_AllocListElem_t * allocList,
    667     char *redundantReadNodeName,
    668     char *redundantWriteNodeName,
    669     char *recoveryNodeName,
    670     int (*recovFunc) (RF_DagNode_t *))
    671 {
    672 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    673 	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
    674 	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
    675 	RF_PhysDiskAddr_t *pda, *pqPDAs;
    676 	RF_PhysDiskAddr_t *npdas;
    677 	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
    678 	RF_ReconUnitNum_t which_ru;
    679 	int     nPQNodes;
    680 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
    681 
    682 	/* simple small write case - First part looks like a reconstruct-read
    683 	 * of the failed data units. Then a write of all data units not
    684 	 * failed. */
    685 
    686 
    687 	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
    688 	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
    689 	 * --Unblock- | T
    690 	 *
    691 	 * Rrd = read recovery data  (potentially none) Wud = write user data
    692 	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
    693 	 * (could be two)
    694 	 *
    695 	 */
    696 
    697 	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
    698 
    699 	RF_ASSERT(asmap->numDataFailed == 1);
    700 
    701 	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
    702 	nReadNodes = nRrdNodes + 2 * nPQNodes;
    703 	nWriteNodes = nWudNodes + 2 * nPQNodes;
    704 	nNodes = 4 + nReadNodes + nWriteNodes;
    705 
    706 	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    707 	blockNode = nodes;
    708 	unblockNode = blockNode + 1;
    709 	termNode = unblockNode + 1;
    710 	recoveryNode = termNode + 1;
    711 	rrdNodes = recoveryNode + 1;
    712 	rpNodes = rrdNodes + nRrdNodes;
    713 	rqNodes = rpNodes + nPQNodes;
    714 	wudNodes = rqNodes + nPQNodes;
    715 	wpNodes = wudNodes + nWudNodes;
    716 	wqNodes = wpNodes + nPQNodes;
    717 
    718 	dag_h->creator = "PQ_DDSimpleSmallWrite";
    719 	dag_h->numSuccedents = 1;
    720 	dag_h->succedents[0] = blockNode;
    721 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    722 	termNode->antecedents[0] = unblockNode;
    723 	termNode->antType[0] = rf_control;
    724 
    725 	/* init the block and unblock nodes */
    726 	/* The block node has all the read nodes as successors */
    727 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
    728 	for (i = 0; i < nReadNodes; i++)
    729 		blockNode->succedents[i] = rrdNodes + i;
    730 
    731 	/* The unblock node has all the writes as successors */
    732 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
    733 	for (i = 0; i < nWriteNodes; i++) {
    734 		unblockNode->antecedents[i] = wudNodes + i;
    735 		unblockNode->antType[i] = rf_control;
    736 	}
    737 	unblockNode->succedents[0] = termNode;
    738 
    739 #define INIT_READ_NODE(node,name) \
    740   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    741   (node)->succedents[0] = recoveryNode; \
    742   (node)->antecedents[0] = blockNode; \
    743   (node)->antType[0] = rf_control;
    744 
    745 	/* build the read nodes */
    746 	pda = npdas;
    747 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
    748 		INIT_READ_NODE(rrdNodes + i, "rrd");
    749 		DISK_NODE_PARAMS(rrdNodes[i], pda);
    750 	}
    751 
    752 	/* read redundancy pdas */
    753 	pda = pqPDAs;
    754 	INIT_READ_NODE(rpNodes, "Rp");
    755 	RF_ASSERT(pda);
    756 	DISK_NODE_PARAMS(rpNodes[0], pda);
    757 	pda++;
    758 	INIT_READ_NODE(rqNodes, redundantReadNodeName);
    759 	RF_ASSERT(pda);
    760 	DISK_NODE_PARAMS(rqNodes[0], pda);
    761 	if (nPQNodes == 2) {
    762 		pda++;
    763 		INIT_READ_NODE(rpNodes + 1, "Rp");
    764 		RF_ASSERT(pda);
    765 		DISK_NODE_PARAMS(rpNodes[1], pda);
    766 		pda++;
    767 		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
    768 		RF_ASSERT(pda);
    769 		DISK_NODE_PARAMS(rqNodes[1], pda);
    770 	}
    771 	/* the recovery node has all reads as precedessors and all writes as
    772 	 * successors. It generates a result for every write P or write Q
    773 	 * node. As parameters, it takes a pda per read and a pda per stripe
    774 	 * of user data written. It also takes as the last params the raidPtr
    775 	 * and asm. For results, it takes PDA for P & Q. */
    776 
    777 
    778 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
    779 	    nWriteNodes,	/* succesors */
    780 	    nReadNodes,		/* preds */
    781 	    nReadNodes + nWudNodes + 3,	/* params */
    782 	    2 * nPQNodes,	/* results */
    783 	    dag_h, recoveryNodeName, allocList);
    784 
    785 
    786 
    787 	for (i = 0; i < nReadNodes; i++) {
    788 		recoveryNode->antecedents[i] = rrdNodes + i;
    789 		recoveryNode->antType[i] = rf_control;
    790 		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
    791 	}
    792 	for (i = 0; i < nWudNodes; i++) {
    793 		recoveryNode->succedents[i] = wudNodes + i;
    794 	}
    795 	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
    796 	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
    797 	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
    798 
    799 	for (; i < nWriteNodes; i++)
    800 		recoveryNode->succedents[i] = wudNodes + i;
    801 
    802 	pda = pqPDAs;
    803 	recoveryNode->results[0] = pda;
    804 	pda++;
    805 	recoveryNode->results[1] = pda;
    806 	if (nPQNodes == 2) {
    807 		pda++;
    808 		recoveryNode->results[2] = pda;
    809 		pda++;
    810 		recoveryNode->results[3] = pda;
    811 	}
    812 	/* fill writes */
    813 #define INIT_WRITE_NODE(node,name) \
    814   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    815     (node)->succedents[0] = unblockNode; \
    816     (node)->antecedents[0] = recoveryNode; \
    817     (node)->antType[0] = rf_control;
    818 
    819 	pda = asmap->physInfo;
    820 	for (i = 0; i < nWudNodes; i++) {
    821 		INIT_WRITE_NODE(wudNodes + i, "Wd");
    822 		DISK_NODE_PARAMS(wudNodes[i], pda);
    823 		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
    824 		pda = pda->next;
    825 	}
    826 	/* write redundancy pdas */
    827 	pda = pqPDAs;
    828 	INIT_WRITE_NODE(wpNodes, "Wp");
    829 	RF_ASSERT(pda);
    830 	DISK_NODE_PARAMS(wpNodes[0], pda);
    831 	pda++;
    832 	INIT_WRITE_NODE(wqNodes, "Wq");
    833 	RF_ASSERT(pda);
    834 	DISK_NODE_PARAMS(wqNodes[0], pda);
    835 	if (nPQNodes == 2) {
    836 		pda++;
    837 		INIT_WRITE_NODE(wpNodes + 1, "Wp");
    838 		RF_ASSERT(pda);
    839 		DISK_NODE_PARAMS(wpNodes[1], pda);
    840 		pda++;
    841 		INIT_WRITE_NODE(wqNodes + 1, "Wq");
    842 		RF_ASSERT(pda);
    843 		DISK_NODE_PARAMS(wqNodes[1], pda);
    844 	}
    845 }
    846 #endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
    847