rf_dagdegwr.c revision 1.8 1 /* $NetBSD: rf_dagdegwr.c,v 1.8 2001/10/04 15:58:52 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * rf_dagdegwr.c
31 *
32 * code for creating degraded write DAGs
33 *
34 */
35
36 #include <dev/raidframe/raidframevar.h>
37
38 #include "rf_raid.h"
39 #include "rf_dag.h"
40 #include "rf_dagutils.h"
41 #include "rf_dagfuncs.h"
42 #include "rf_debugMem.h"
43 #include "rf_memchunk.h"
44 #include "rf_general.h"
45 #include "rf_dagdegwr.h"
46
47
48 /******************************************************************************
49 *
50 * General comments on DAG creation:
51 *
52 * All DAGs in this file use roll-away error recovery. Each DAG has a single
53 * commit node, usually called "Cmt." If an error occurs before the Cmt node
54 * is reached, the execution engine will halt forward execution and work
55 * backward through the graph, executing the undo functions. Assuming that
56 * each node in the graph prior to the Cmt node are undoable and atomic - or -
57 * does not make changes to permanent state, the graph will fail atomically.
58 * If an error occurs after the Cmt node executes, the engine will roll-forward
59 * through the graph, blindly executing nodes until it reaches the end.
60 * If a graph reaches the end, it is assumed to have completed successfully.
61 *
62 * A graph has only 1 Cmt node.
63 *
64 */
65
66
67 /******************************************************************************
68 *
69 * The following wrappers map the standard DAG creation interface to the
70 * DAG creation routines. Additionally, these wrappers enable experimentation
71 * with new DAG structures by providing an extra level of indirection, allowing
72 * the DAG creation routines to be replaced at this single point.
73 */
74
75 static
76 RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
77 {
78 rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
79 flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
80 }
81
82 void
83 rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
84 RF_Raid_t *raidPtr;
85 RF_AccessStripeMap_t *asmap;
86 RF_DagHeader_t *dag_h;
87 void *bp;
88 RF_RaidAccessFlags_t flags;
89 RF_AllocListElem_t *allocList;
90 {
91
92 RF_ASSERT(asmap->numDataFailed == 1);
93 dag_h->creator = "DegradedWriteDAG";
94
95 /*
96 * if the access writes only a portion of the failed unit, and also
97 * writes some portion of at least one surviving unit, we create two
98 * DAGs, one for the failed component and one for the non-failed
99 * component, and do them sequentially. Note that the fact that we're
100 * accessing only a portion of the failed unit indicates that the
101 * access either starts or ends in the failed unit, and hence we need
102 * create only two dags. This is inefficient in that the same data or
103 * parity can get read and written twice using this structure. I need
104 * to fix this to do the access all at once.
105 */
106 RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
107 asmap->failedPDAs[0]->numSector !=
108 raidPtr->Layout.sectorsPerStripeUnit));
109 rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
110 allocList);
111 }
112
113
114
115 /******************************************************************************
116 *
117 * DAG creation code begins here
118 */
119
120
121
122 /******************************************************************************
123 *
124 * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
125 * write, which is as follows
126 *
127 * / {Wnq} --\
128 * hdr -> blockNode -> Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
129 * \ {Rod} / \ Wnd ---/
130 * \ {Wnd} -/
131 *
132 * commit nodes: Xor, Wnd
133 *
134 * IMPORTANT:
135 * This DAG generator does not work for double-degraded archs since it does not
136 * generate Q
137 *
138 * This dag is essentially identical to the large-write dag, except that the
139 * write to the failed data unit is suppressed.
140 *
141 * IMPORTANT: this dag does not work in the case where the access writes only
142 * a portion of the failed unit, and also writes some portion of at least one
143 * surviving SU. this case is handled in CreateDegradedWriteDAG above.
144 *
145 * The block & unblock nodes are leftovers from a previous version. They
146 * do nothing, but I haven't deleted them because it would be a tremendous
147 * effort to put them back in.
148 *
149 * This dag is used whenever a one of the data units in a write has failed.
150 * If it is the parity unit that failed, the nonredundant write dag (below)
151 * is used.
152 *****************************************************************************/
153
154 void
155 rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
156 allocList, nfaults, redFunc, allowBufferRecycle)
157 RF_Raid_t *raidPtr;
158 RF_AccessStripeMap_t *asmap;
159 RF_DagHeader_t *dag_h;
160 void *bp;
161 RF_RaidAccessFlags_t flags;
162 RF_AllocListElem_t *allocList;
163 int nfaults;
164 int (*redFunc) (RF_DagNode_t *);
165 int allowBufferRecycle;
166 {
167 int nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
168 rdnodesFaked;
169 RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
170 RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
171 RF_SectorCount_t sectorsPerSU;
172 RF_ReconUnitNum_t which_ru;
173 char *xorTargetBuf = NULL; /* the target buffer for the XOR
174 * operation */
175 char *overlappingPDAs;/* a temporary array of flags */
176 RF_AccessStripeMapHeader_t *new_asm_h[2];
177 RF_PhysDiskAddr_t *pda, *parityPDA;
178 RF_StripeNum_t parityStripeID;
179 RF_PhysDiskAddr_t *failedPDA;
180 RF_RaidLayout_t *layoutPtr;
181
182 layoutPtr = &(raidPtr->Layout);
183 parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
184 &which_ru);
185 sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
186 /* failedPDA points to the pda within the asm that targets the failed
187 * disk */
188 failedPDA = asmap->failedPDAs[0];
189
190 if (rf_dagDebug)
191 printf("[Creating degraded-write DAG]\n");
192
193 RF_ASSERT(asmap->numDataFailed == 1);
194 dag_h->creator = "SimpleDegradedWriteDAG";
195
196 /*
197 * Generate two ASMs identifying the surviving data
198 * we need in order to recover the lost data.
199 */
200 /* overlappingPDAs array must be zero'd */
201 RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
202 rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
203 &nXorBufs, NULL, overlappingPDAs, allocList);
204
205 /* create all the nodes at once */
206 nWndNodes = asmap->numStripeUnitsAccessed - 1; /* no access is
207 * generated for the
208 * failed pda */
209
210 nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
211 ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
212 /*
213 * XXX
214 *
215 * There's a bug with a complete stripe overwrite- that means 0 reads
216 * of old data, and the rest of the DAG generation code doesn't like
217 * that. A release is coming, and I don't wanna risk breaking a critical
218 * DAG generator, so here's what I'm gonna do- if there's no read nodes,
219 * I'm gonna fake there being a read node, and I'm gonna swap in a
220 * no-op node in its place (to make all the link-up code happy).
221 * This should be fixed at some point. --jimz
222 */
223 if (nRrdNodes == 0) {
224 nRrdNodes = 1;
225 rdnodesFaked = 1;
226 } else {
227 rdnodesFaked = 0;
228 }
229 /* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
230 nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
231 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
232 (RF_DagNode_t *), allocList);
233 i = 0;
234 blockNode = &nodes[i];
235 i += 1;
236 commitNode = &nodes[i];
237 i += 1;
238 unblockNode = &nodes[i];
239 i += 1;
240 termNode = &nodes[i];
241 i += 1;
242 xorNode = &nodes[i];
243 i += 1;
244 wnpNode = &nodes[i];
245 i += 1;
246 wndNodes = &nodes[i];
247 i += nWndNodes;
248 rrdNodes = &nodes[i];
249 i += nRrdNodes;
250 if (nfaults == 2) {
251 wnqNode = &nodes[i];
252 i += 1;
253 } else {
254 wnqNode = NULL;
255 }
256 RF_ASSERT(i == nNodes);
257
258 /* this dag can not commit until all rrd and xor Nodes have completed */
259 dag_h->numCommitNodes = 1;
260 dag_h->numCommits = 0;
261 dag_h->numSuccedents = 1;
262
263 RF_ASSERT(nRrdNodes > 0);
264 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
265 NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
266 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
267 NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
268 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
269 NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
270 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
271 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
272 rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
273 nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
274
275 /*
276 * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
277 * the failed buffer, save a pointer to it so we can use it as the target
278 * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
279 * a buffer is the same size as the failed buffer, it must also be at the
280 * same alignment within the SU.
281 */
282 i = 0;
283 if (new_asm_h[0]) {
284 for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
285 i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
286 i++, pda = pda->next) {
287 rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
288 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
289 RF_ASSERT(pda);
290 rrdNodes[i].params[0].p = pda;
291 rrdNodes[i].params[1].p = pda->bufPtr;
292 rrdNodes[i].params[2].v = parityStripeID;
293 rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
294 }
295 }
296 /* i now equals the number of stripe units accessed in new_asm_h[0] */
297 if (new_asm_h[1]) {
298 for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
299 j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
300 j++, pda = pda->next) {
301 rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
302 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
303 RF_ASSERT(pda);
304 rrdNodes[i + j].params[0].p = pda;
305 rrdNodes[i + j].params[1].p = pda->bufPtr;
306 rrdNodes[i + j].params[2].v = parityStripeID;
307 rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
308 if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
309 xorTargetBuf = pda->bufPtr;
310 }
311 }
312 if (rdnodesFaked) {
313 /*
314 * This is where we'll init that fake noop read node
315 * (XXX should the wakeup func be different?)
316 */
317 rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
318 NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
319 }
320 /*
321 * Make a PDA for the parity unit. The parity PDA should start at
322 * the same offset into the SU as the failed PDA.
323 */
324 /* Danner comment: I don't think this copy is really necessary. We are
325 * in one of two cases here. (1) The entire failed unit is written.
326 * Then asmap->parityInfo will describe the entire parity. (2) We are
327 * only writing a subset of the failed unit and nothing else. Then the
328 * asmap->parityInfo describes the failed unit and the copy can also
329 * be avoided. */
330
331 RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
332 parityPDA->row = asmap->parityInfo->row;
333 parityPDA->col = asmap->parityInfo->col;
334 parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
335 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
336 parityPDA->numSector = failedPDA->numSector;
337
338 if (!xorTargetBuf) {
339 RF_CallocAndAdd(xorTargetBuf, 1,
340 rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
341 }
342 /* init the Wnp node */
343 rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
344 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
345 wnpNode->params[0].p = parityPDA;
346 wnpNode->params[1].p = xorTargetBuf;
347 wnpNode->params[2].v = parityStripeID;
348 wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
349
350 /* fill in the Wnq Node */
351 if (nfaults == 2) {
352 {
353 RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
354 (RF_PhysDiskAddr_t *), allocList);
355 parityPDA->row = asmap->qInfo->row;
356 parityPDA->col = asmap->qInfo->col;
357 parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
358 * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
359 parityPDA->numSector = failedPDA->numSector;
360
361 rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
362 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
363 wnqNode->params[0].p = parityPDA;
364 RF_CallocAndAdd(xorNode->results[1], 1,
365 rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
366 wnqNode->params[1].p = xorNode->results[1];
367 wnqNode->params[2].v = parityStripeID;
368 wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
369 }
370 }
371 /* fill in the Wnd nodes */
372 for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
373 if (pda == failedPDA) {
374 i--;
375 continue;
376 }
377 rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
378 rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
379 RF_ASSERT(pda);
380 wndNodes[i].params[0].p = pda;
381 wndNodes[i].params[1].p = pda->bufPtr;
382 wndNodes[i].params[2].v = parityStripeID;
383 wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
384 }
385
386 /* fill in the results of the xor node */
387 xorNode->results[0] = xorTargetBuf;
388
389 /* fill in the params of the xor node */
390
391 paramNum = 0;
392 if (rdnodesFaked == 0) {
393 for (i = 0; i < nRrdNodes; i++) {
394 /* all the Rrd nodes need to be xored together */
395 xorNode->params[paramNum++] = rrdNodes[i].params[0];
396 xorNode->params[paramNum++] = rrdNodes[i].params[1];
397 }
398 }
399 for (i = 0; i < nWndNodes; i++) {
400 /* any Wnd nodes that overlap the failed access need to be
401 * xored in */
402 if (overlappingPDAs[i]) {
403 RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
404 bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
405 rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
406 xorNode->params[paramNum++].p = pda;
407 xorNode->params[paramNum++].p = pda->bufPtr;
408 }
409 }
410 RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
411
412 /*
413 * Install the failed PDA into the xor param list so that the
414 * new data gets xor'd in.
415 */
416 xorNode->params[paramNum++].p = failedPDA;
417 xorNode->params[paramNum++].p = failedPDA->bufPtr;
418
419 /*
420 * The last 2 params to the recovery xor node are always the failed
421 * PDA and the raidPtr. install the failedPDA even though we have just
422 * done so above. This allows us to use the same XOR function for both
423 * degraded reads and degraded writes.
424 */
425 xorNode->params[paramNum++].p = failedPDA;
426 xorNode->params[paramNum++].p = raidPtr;
427 RF_ASSERT(paramNum == 2 * nXorBufs + 2);
428
429 /*
430 * Code to link nodes begins here
431 */
432
433 /* link header to block node */
434 RF_ASSERT(blockNode->numAntecedents == 0);
435 dag_h->succedents[0] = blockNode;
436
437 /* link block node to rd nodes */
438 RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
439 for (i = 0; i < nRrdNodes; i++) {
440 RF_ASSERT(rrdNodes[i].numAntecedents == 1);
441 blockNode->succedents[i] = &rrdNodes[i];
442 rrdNodes[i].antecedents[0] = blockNode;
443 rrdNodes[i].antType[0] = rf_control;
444 }
445
446 /* link read nodes to xor node */
447 RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
448 for (i = 0; i < nRrdNodes; i++) {
449 RF_ASSERT(rrdNodes[i].numSuccedents == 1);
450 rrdNodes[i].succedents[0] = xorNode;
451 xorNode->antecedents[i] = &rrdNodes[i];
452 xorNode->antType[i] = rf_trueData;
453 }
454
455 /* link xor node to commit node */
456 RF_ASSERT(xorNode->numSuccedents == 1);
457 RF_ASSERT(commitNode->numAntecedents == 1);
458 xorNode->succedents[0] = commitNode;
459 commitNode->antecedents[0] = xorNode;
460 commitNode->antType[0] = rf_control;
461
462 /* link commit node to wnd nodes */
463 RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
464 for (i = 0; i < nWndNodes; i++) {
465 RF_ASSERT(wndNodes[i].numAntecedents == 1);
466 commitNode->succedents[i] = &wndNodes[i];
467 wndNodes[i].antecedents[0] = commitNode;
468 wndNodes[i].antType[0] = rf_control;
469 }
470
471 /* link the commit node to wnp, wnq nodes */
472 RF_ASSERT(wnpNode->numAntecedents == 1);
473 commitNode->succedents[nWndNodes] = wnpNode;
474 wnpNode->antecedents[0] = commitNode;
475 wnpNode->antType[0] = rf_control;
476 if (nfaults == 2) {
477 RF_ASSERT(wnqNode->numAntecedents == 1);
478 commitNode->succedents[nWndNodes + 1] = wnqNode;
479 wnqNode->antecedents[0] = commitNode;
480 wnqNode->antType[0] = rf_control;
481 }
482 /* link write new data nodes to unblock node */
483 RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
484 for (i = 0; i < nWndNodes; i++) {
485 RF_ASSERT(wndNodes[i].numSuccedents == 1);
486 wndNodes[i].succedents[0] = unblockNode;
487 unblockNode->antecedents[i] = &wndNodes[i];
488 unblockNode->antType[i] = rf_control;
489 }
490
491 /* link write new parity node to unblock node */
492 RF_ASSERT(wnpNode->numSuccedents == 1);
493 wnpNode->succedents[0] = unblockNode;
494 unblockNode->antecedents[nWndNodes] = wnpNode;
495 unblockNode->antType[nWndNodes] = rf_control;
496
497 /* link write new q node to unblock node */
498 if (nfaults == 2) {
499 RF_ASSERT(wnqNode->numSuccedents == 1);
500 wnqNode->succedents[0] = unblockNode;
501 unblockNode->antecedents[nWndNodes + 1] = wnqNode;
502 unblockNode->antType[nWndNodes + 1] = rf_control;
503 }
504 /* link unblock node to term node */
505 RF_ASSERT(unblockNode->numSuccedents == 1);
506 RF_ASSERT(termNode->numAntecedents == 1);
507 RF_ASSERT(termNode->numSuccedents == 0);
508 unblockNode->succedents[0] = termNode;
509 termNode->antecedents[0] = unblockNode;
510 termNode->antType[0] = rf_control;
511 }
512 #define CONS_PDA(if,start,num) \
513 pda_p->row = asmap->if->row; pda_p->col = asmap->if->col; \
514 pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
515 pda_p->numSector = num; \
516 pda_p->next = NULL; \
517 RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
518 #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
519 void
520 rf_WriteGenerateFailedAccessASMs(
521 RF_Raid_t * raidPtr,
522 RF_AccessStripeMap_t * asmap,
523 RF_PhysDiskAddr_t ** pdap,
524 int *nNodep,
525 RF_PhysDiskAddr_t ** pqpdap,
526 int *nPQNodep,
527 RF_AllocListElem_t * allocList)
528 {
529 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
530 int PDAPerDisk, i;
531 RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
532 int numDataCol = layoutPtr->numDataCol;
533 int state;
534 unsigned napdas;
535 RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
536 RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
537 RF_PhysDiskAddr_t *pda_p;
538 RF_RaidAddr_t sosAddr;
539
540 /* determine how many pda's we will have to generate per unaccess
541 * stripe. If there is only one failed data unit, it is one; if two,
542 * possibly two, depending wether they overlap. */
543
544 fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
545 fone_end = fone_start + fone->numSector;
546
547 if (asmap->numDataFailed == 1) {
548 PDAPerDisk = 1;
549 state = 1;
550 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
551 pda_p = *pqpdap;
552 /* build p */
553 CONS_PDA(parityInfo, fone_start, fone->numSector);
554 pda_p->type = RF_PDA_TYPE_PARITY;
555 pda_p++;
556 /* build q */
557 CONS_PDA(qInfo, fone_start, fone->numSector);
558 pda_p->type = RF_PDA_TYPE_Q;
559 } else {
560 ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
561 ftwo_end = ftwo_start + ftwo->numSector;
562 if (fone->numSector + ftwo->numSector > secPerSU) {
563 PDAPerDisk = 1;
564 state = 2;
565 RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
566 pda_p = *pqpdap;
567 CONS_PDA(parityInfo, 0, secPerSU);
568 pda_p->type = RF_PDA_TYPE_PARITY;
569 pda_p++;
570 CONS_PDA(qInfo, 0, secPerSU);
571 pda_p->type = RF_PDA_TYPE_Q;
572 } else {
573 PDAPerDisk = 2;
574 state = 3;
575 /* four of them, fone, then ftwo */
576 RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
577 pda_p = *pqpdap;
578 CONS_PDA(parityInfo, fone_start, fone->numSector);
579 pda_p->type = RF_PDA_TYPE_PARITY;
580 pda_p++;
581 CONS_PDA(qInfo, fone_start, fone->numSector);
582 pda_p->type = RF_PDA_TYPE_Q;
583 pda_p++;
584 CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
585 pda_p->type = RF_PDA_TYPE_PARITY;
586 pda_p++;
587 CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
588 pda_p->type = RF_PDA_TYPE_Q;
589 }
590 }
591 /* figure out number of nonaccessed pda */
592 napdas = PDAPerDisk * (numDataCol - 2);
593 *nPQNodep = PDAPerDisk;
594
595 *nNodep = napdas;
596 if (napdas == 0)
597 return; /* short circuit */
598
599 /* allocate up our list of pda's */
600
601 RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
602 *pdap = pda_p;
603
604 /* linkem together */
605 for (i = 0; i < (napdas - 1); i++)
606 pda_p[i].next = pda_p + (i + 1);
607
608 sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
609 for (i = 0; i < numDataCol; i++) {
610 if ((pda_p - (*pdap)) == napdas)
611 continue;
612 pda_p->type = RF_PDA_TYPE_DATA;
613 pda_p->raidAddress = sosAddr + (i * secPerSU);
614 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
615 /* skip over dead disks */
616 if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
617 continue;
618 switch (state) {
619 case 1: /* fone */
620 pda_p->numSector = fone->numSector;
621 pda_p->raidAddress += fone_start;
622 pda_p->startSector += fone_start;
623 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
624 break;
625 case 2: /* full stripe */
626 pda_p->numSector = secPerSU;
627 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
628 break;
629 case 3: /* two slabs */
630 pda_p->numSector = fone->numSector;
631 pda_p->raidAddress += fone_start;
632 pda_p->startSector += fone_start;
633 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
634 pda_p++;
635 pda_p->type = RF_PDA_TYPE_DATA;
636 pda_p->raidAddress = sosAddr + (i * secPerSU);
637 (raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
638 pda_p->numSector = ftwo->numSector;
639 pda_p->raidAddress += ftwo_start;
640 pda_p->startSector += ftwo_start;
641 RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
642 break;
643 default:
644 RF_PANIC();
645 }
646 pda_p++;
647 }
648
649 RF_ASSERT(pda_p - *pdap == napdas);
650 return;
651 }
652 #define DISK_NODE_PDA(node) ((node)->params[0].p)
653
654 #define DISK_NODE_PARAMS(_node_,_p_) \
655 (_node_).params[0].p = _p_ ; \
656 (_node_).params[1].p = (_p_)->bufPtr; \
657 (_node_).params[2].v = parityStripeID; \
658 (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
659
660 void
661 rf_DoubleDegSmallWrite(
662 RF_Raid_t * raidPtr,
663 RF_AccessStripeMap_t * asmap,
664 RF_DagHeader_t * dag_h,
665 void *bp,
666 RF_RaidAccessFlags_t flags,
667 RF_AllocListElem_t * allocList,
668 char *redundantReadNodeName,
669 char *redundantWriteNodeName,
670 char *recoveryNodeName,
671 int (*recovFunc) (RF_DagNode_t *))
672 {
673 RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
674 RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
675 *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
676 RF_PhysDiskAddr_t *pda, *pqPDAs;
677 RF_PhysDiskAddr_t *npdas;
678 int nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
679 RF_ReconUnitNum_t which_ru;
680 int nPQNodes;
681 RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
682
683 /* simple small write case - First part looks like a reconstruct-read
684 * of the failed data units. Then a write of all data units not
685 * failed. */
686
687
688 /* Hdr | ------Block- / / \ Rrd Rrd ... Rrd Rp Rq \ \
689 * / -------PQ----- / \ \ Wud Wp WQ \ | /
690 * --Unblock- | T
691 *
692 * Rrd = read recovery data (potentially none) Wud = write user data
693 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
694 * (could be two)
695 *
696 */
697
698 rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
699
700 RF_ASSERT(asmap->numDataFailed == 1);
701
702 nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
703 nReadNodes = nRrdNodes + 2 * nPQNodes;
704 nWriteNodes = nWudNodes + 2 * nPQNodes;
705 nNodes = 4 + nReadNodes + nWriteNodes;
706
707 RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
708 blockNode = nodes;
709 unblockNode = blockNode + 1;
710 termNode = unblockNode + 1;
711 recoveryNode = termNode + 1;
712 rrdNodes = recoveryNode + 1;
713 rpNodes = rrdNodes + nRrdNodes;
714 rqNodes = rpNodes + nPQNodes;
715 wudNodes = rqNodes + nPQNodes;
716 wpNodes = wudNodes + nWudNodes;
717 wqNodes = wpNodes + nPQNodes;
718
719 dag_h->creator = "PQ_DDSimpleSmallWrite";
720 dag_h->numSuccedents = 1;
721 dag_h->succedents[0] = blockNode;
722 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
723 termNode->antecedents[0] = unblockNode;
724 termNode->antType[0] = rf_control;
725
726 /* init the block and unblock nodes */
727 /* The block node has all the read nodes as successors */
728 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
729 for (i = 0; i < nReadNodes; i++)
730 blockNode->succedents[i] = rrdNodes + i;
731
732 /* The unblock node has all the writes as successors */
733 rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
734 for (i = 0; i < nWriteNodes; i++) {
735 unblockNode->antecedents[i] = wudNodes + i;
736 unblockNode->antType[i] = rf_control;
737 }
738 unblockNode->succedents[0] = termNode;
739
740 #define INIT_READ_NODE(node,name) \
741 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
742 (node)->succedents[0] = recoveryNode; \
743 (node)->antecedents[0] = blockNode; \
744 (node)->antType[0] = rf_control;
745
746 /* build the read nodes */
747 pda = npdas;
748 for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
749 INIT_READ_NODE(rrdNodes + i, "rrd");
750 DISK_NODE_PARAMS(rrdNodes[i], pda);
751 }
752
753 /* read redundancy pdas */
754 pda = pqPDAs;
755 INIT_READ_NODE(rpNodes, "Rp");
756 RF_ASSERT(pda);
757 DISK_NODE_PARAMS(rpNodes[0], pda);
758 pda++;
759 INIT_READ_NODE(rqNodes, redundantReadNodeName);
760 RF_ASSERT(pda);
761 DISK_NODE_PARAMS(rqNodes[0], pda);
762 if (nPQNodes == 2) {
763 pda++;
764 INIT_READ_NODE(rpNodes + 1, "Rp");
765 RF_ASSERT(pda);
766 DISK_NODE_PARAMS(rpNodes[1], pda);
767 pda++;
768 INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
769 RF_ASSERT(pda);
770 DISK_NODE_PARAMS(rqNodes[1], pda);
771 }
772 /* the recovery node has all reads as precedessors and all writes as
773 * successors. It generates a result for every write P or write Q
774 * node. As parameters, it takes a pda per read and a pda per stripe
775 * of user data written. It also takes as the last params the raidPtr
776 * and asm. For results, it takes PDA for P & Q. */
777
778
779 rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
780 nWriteNodes, /* succesors */
781 nReadNodes, /* preds */
782 nReadNodes + nWudNodes + 3, /* params */
783 2 * nPQNodes, /* results */
784 dag_h, recoveryNodeName, allocList);
785
786
787
788 for (i = 0; i < nReadNodes; i++) {
789 recoveryNode->antecedents[i] = rrdNodes + i;
790 recoveryNode->antType[i] = rf_control;
791 recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
792 }
793 for (i = 0; i < nWudNodes; i++) {
794 recoveryNode->succedents[i] = wudNodes + i;
795 }
796 recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
797 recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
798 recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
799
800 for (; i < nWriteNodes; i++)
801 recoveryNode->succedents[i] = wudNodes + i;
802
803 pda = pqPDAs;
804 recoveryNode->results[0] = pda;
805 pda++;
806 recoveryNode->results[1] = pda;
807 if (nPQNodes == 2) {
808 pda++;
809 recoveryNode->results[2] = pda;
810 pda++;
811 recoveryNode->results[3] = pda;
812 }
813 /* fill writes */
814 #define INIT_WRITE_NODE(node,name) \
815 rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
816 (node)->succedents[0] = unblockNode; \
817 (node)->antecedents[0] = recoveryNode; \
818 (node)->antType[0] = rf_control;
819
820 pda = asmap->physInfo;
821 for (i = 0; i < nWudNodes; i++) {
822 INIT_WRITE_NODE(wudNodes + i, "Wd");
823 DISK_NODE_PARAMS(wudNodes[i], pda);
824 recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
825 pda = pda->next;
826 }
827 /* write redundancy pdas */
828 pda = pqPDAs;
829 INIT_WRITE_NODE(wpNodes, "Wp");
830 RF_ASSERT(pda);
831 DISK_NODE_PARAMS(wpNodes[0], pda);
832 pda++;
833 INIT_WRITE_NODE(wqNodes, "Wq");
834 RF_ASSERT(pda);
835 DISK_NODE_PARAMS(wqNodes[0], pda);
836 if (nPQNodes == 2) {
837 pda++;
838 INIT_WRITE_NODE(wpNodes + 1, "Wp");
839 RF_ASSERT(pda);
840 DISK_NODE_PARAMS(wpNodes[1], pda);
841 pda++;
842 INIT_WRITE_NODE(wqNodes + 1, "Wq");
843 RF_ASSERT(pda);
844 DISK_NODE_PARAMS(wqNodes[1], pda);
845 }
846 }
847 #endif /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
848