Home | History | Annotate | Line # | Download | only in raidframe
rf_dagdegwr.c revision 1.8
      1 /*	$NetBSD: rf_dagdegwr.c,v 1.8 2001/10/04 15:58:52 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagdegwr.c
     31  *
     32  * code for creating degraded write DAGs
     33  *
     34  */
     35 
     36 #include <dev/raidframe/raidframevar.h>
     37 
     38 #include "rf_raid.h"
     39 #include "rf_dag.h"
     40 #include "rf_dagutils.h"
     41 #include "rf_dagfuncs.h"
     42 #include "rf_debugMem.h"
     43 #include "rf_memchunk.h"
     44 #include "rf_general.h"
     45 #include "rf_dagdegwr.h"
     46 
     47 
     48 /******************************************************************************
     49  *
     50  * General comments on DAG creation:
     51  *
     52  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     53  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     54  * is reached, the execution engine will halt forward execution and work
     55  * backward through the graph, executing the undo functions.  Assuming that
     56  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     57  * does not make changes to permanent state, the graph will fail atomically.
     58  * If an error occurs after the Cmt node executes, the engine will roll-forward
     59  * through the graph, blindly executing nodes until it reaches the end.
     60  * If a graph reaches the end, it is assumed to have completed successfully.
     61  *
     62  * A graph has only 1 Cmt node.
     63  *
     64  */
     65 
     66 
     67 /******************************************************************************
     68  *
     69  * The following wrappers map the standard DAG creation interface to the
     70  * DAG creation routines.  Additionally, these wrappers enable experimentation
     71  * with new DAG structures by providing an extra level of indirection, allowing
     72  * the DAG creation routines to be replaced at this single point.
     73  */
     74 
     75 static
     76 RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
     77 {
     78 	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
     79 	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
     80 }
     81 
     82 void
     83 rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
     84 	RF_Raid_t *raidPtr;
     85 	RF_AccessStripeMap_t *asmap;
     86 	RF_DagHeader_t *dag_h;
     87 	void   *bp;
     88 	RF_RaidAccessFlags_t flags;
     89 	RF_AllocListElem_t *allocList;
     90 {
     91 
     92 	RF_ASSERT(asmap->numDataFailed == 1);
     93 	dag_h->creator = "DegradedWriteDAG";
     94 
     95 	/*
     96 	 * if the access writes only a portion of the failed unit, and also
     97 	 * writes some portion of at least one surviving unit, we create two
     98 	 * DAGs, one for the failed component and one for the non-failed
     99 	 * component, and do them sequentially.  Note that the fact that we're
    100 	 * accessing only a portion of the failed unit indicates that the
    101 	 * access either starts or ends in the failed unit, and hence we need
    102 	 * create only two dags.  This is inefficient in that the same data or
    103 	 * parity can get read and written twice using this structure.  I need
    104 	 * to fix this to do the access all at once.
    105 	 */
    106 	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
    107 		    asmap->failedPDAs[0]->numSector !=
    108 			raidPtr->Layout.sectorsPerStripeUnit));
    109 	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    110 	    allocList);
    111 }
    112 
    113 
    114 
    115 /******************************************************************************
    116  *
    117  * DAG creation code begins here
    118  */
    119 
    120 
    121 
    122 /******************************************************************************
    123  *
    124  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
    125  * write, which is as follows
    126  *
    127  *                                        / {Wnq} --\
    128  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
    129  *                  \  {Rod} /            \  Wnd ---/
    130  *                                        \ {Wnd} -/
    131  *
    132  * commit nodes: Xor, Wnd
    133  *
    134  * IMPORTANT:
    135  * This DAG generator does not work for double-degraded archs since it does not
    136  * generate Q
    137  *
    138  * This dag is essentially identical to the large-write dag, except that the
    139  * write to the failed data unit is suppressed.
    140  *
    141  * IMPORTANT:  this dag does not work in the case where the access writes only
    142  * a portion of the failed unit, and also writes some portion of at least one
    143  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
    144  *
    145  * The block & unblock nodes are leftovers from a previous version.  They
    146  * do nothing, but I haven't deleted them because it would be a tremendous
    147  * effort to put them back in.
    148  *
    149  * This dag is used whenever a one of the data units in a write has failed.
    150  * If it is the parity unit that failed, the nonredundant write dag (below)
    151  * is used.
    152  *****************************************************************************/
    153 
    154 void
    155 rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    156     allocList, nfaults, redFunc, allowBufferRecycle)
    157 	RF_Raid_t *raidPtr;
    158 	RF_AccessStripeMap_t *asmap;
    159 	RF_DagHeader_t *dag_h;
    160 	void   *bp;
    161 	RF_RaidAccessFlags_t flags;
    162 	RF_AllocListElem_t *allocList;
    163 	int     nfaults;
    164 	int     (*redFunc) (RF_DagNode_t *);
    165 	int     allowBufferRecycle;
    166 {
    167 	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
    168 	        rdnodesFaked;
    169 	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
    170 	RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
    171 	RF_SectorCount_t sectorsPerSU;
    172 	RF_ReconUnitNum_t which_ru;
    173 	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
    174 					 * operation */
    175 	char   *overlappingPDAs;/* a temporary array of flags */
    176 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    177 	RF_PhysDiskAddr_t *pda, *parityPDA;
    178 	RF_StripeNum_t parityStripeID;
    179 	RF_PhysDiskAddr_t *failedPDA;
    180 	RF_RaidLayout_t *layoutPtr;
    181 
    182 	layoutPtr = &(raidPtr->Layout);
    183 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    184 	    &which_ru);
    185 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    186 	/* failedPDA points to the pda within the asm that targets the failed
    187 	 * disk */
    188 	failedPDA = asmap->failedPDAs[0];
    189 
    190 	if (rf_dagDebug)
    191 		printf("[Creating degraded-write DAG]\n");
    192 
    193 	RF_ASSERT(asmap->numDataFailed == 1);
    194 	dag_h->creator = "SimpleDegradedWriteDAG";
    195 
    196 	/*
    197          * Generate two ASMs identifying the surviving data
    198          * we need in order to recover the lost data.
    199          */
    200 	/* overlappingPDAs array must be zero'd */
    201 	RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
    202 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
    203 	    &nXorBufs, NULL, overlappingPDAs, allocList);
    204 
    205 	/* create all the nodes at once */
    206 	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
    207 							 * generated for the
    208 							 * failed pda */
    209 
    210 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    211 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    212 	/*
    213          * XXX
    214          *
    215          * There's a bug with a complete stripe overwrite- that means 0 reads
    216          * of old data, and the rest of the DAG generation code doesn't like
    217          * that. A release is coming, and I don't wanna risk breaking a critical
    218          * DAG generator, so here's what I'm gonna do- if there's no read nodes,
    219          * I'm gonna fake there being a read node, and I'm gonna swap in a
    220          * no-op node in its place (to make all the link-up code happy).
    221          * This should be fixed at some point.  --jimz
    222          */
    223 	if (nRrdNodes == 0) {
    224 		nRrdNodes = 1;
    225 		rdnodesFaked = 1;
    226 	} else {
    227 		rdnodesFaked = 0;
    228 	}
    229 	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
    230 	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
    231 	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
    232 	    (RF_DagNode_t *), allocList);
    233 	i = 0;
    234 	blockNode = &nodes[i];
    235 	i += 1;
    236 	commitNode = &nodes[i];
    237 	i += 1;
    238 	unblockNode = &nodes[i];
    239 	i += 1;
    240 	termNode = &nodes[i];
    241 	i += 1;
    242 	xorNode = &nodes[i];
    243 	i += 1;
    244 	wnpNode = &nodes[i];
    245 	i += 1;
    246 	wndNodes = &nodes[i];
    247 	i += nWndNodes;
    248 	rrdNodes = &nodes[i];
    249 	i += nRrdNodes;
    250 	if (nfaults == 2) {
    251 		wnqNode = &nodes[i];
    252 		i += 1;
    253 	} else {
    254 		wnqNode = NULL;
    255 	}
    256 	RF_ASSERT(i == nNodes);
    257 
    258 	/* this dag can not commit until all rrd and xor Nodes have completed */
    259 	dag_h->numCommitNodes = 1;
    260 	dag_h->numCommits = 0;
    261 	dag_h->numSuccedents = 1;
    262 
    263 	RF_ASSERT(nRrdNodes > 0);
    264 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    265 	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
    266 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    267 	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    268 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    269 	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
    270 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    271 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    272 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    273 	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
    274 
    275 	/*
    276          * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
    277          * the failed buffer, save a pointer to it so we can use it as the target
    278          * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
    279          * a buffer is the same size as the failed buffer, it must also be at the
    280          * same alignment within the SU.
    281          */
    282 	i = 0;
    283 	if (new_asm_h[0]) {
    284 		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
    285 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    286 		    i++, pda = pda->next) {
    287 			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    288 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    289 			RF_ASSERT(pda);
    290 			rrdNodes[i].params[0].p = pda;
    291 			rrdNodes[i].params[1].p = pda->bufPtr;
    292 			rrdNodes[i].params[2].v = parityStripeID;
    293 			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    294 		}
    295 	}
    296 	/* i now equals the number of stripe units accessed in new_asm_h[0] */
    297 	if (new_asm_h[1]) {
    298 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    299 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    300 		    j++, pda = pda->next) {
    301 			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    302 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    303 			RF_ASSERT(pda);
    304 			rrdNodes[i + j].params[0].p = pda;
    305 			rrdNodes[i + j].params[1].p = pda->bufPtr;
    306 			rrdNodes[i + j].params[2].v = parityStripeID;
    307 			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    308 			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
    309 				xorTargetBuf = pda->bufPtr;
    310 		}
    311 	}
    312 	if (rdnodesFaked) {
    313 		/*
    314 	         * This is where we'll init that fake noop read node
    315 	         * (XXX should the wakeup func be different?)
    316 	         */
    317 		rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    318 		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
    319 	}
    320 	/*
    321          * Make a PDA for the parity unit.  The parity PDA should start at
    322          * the same offset into the SU as the failed PDA.
    323          */
    324 	/* Danner comment: I don't think this copy is really necessary. We are
    325 	 * in one of two cases here. (1) The entire failed unit is written.
    326 	 * Then asmap->parityInfo will describe the entire parity. (2) We are
    327 	 * only writing a subset of the failed unit and nothing else. Then the
    328 	 * asmap->parityInfo describes the failed unit and the copy can also
    329 	 * be avoided. */
    330 
    331 	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    332 	parityPDA->row = asmap->parityInfo->row;
    333 	parityPDA->col = asmap->parityInfo->col;
    334 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    335 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    336 	parityPDA->numSector = failedPDA->numSector;
    337 
    338 	if (!xorTargetBuf) {
    339 		RF_CallocAndAdd(xorTargetBuf, 1,
    340 		    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    341 	}
    342 	/* init the Wnp node */
    343 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    344 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    345 	wnpNode->params[0].p = parityPDA;
    346 	wnpNode->params[1].p = xorTargetBuf;
    347 	wnpNode->params[2].v = parityStripeID;
    348 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    349 
    350 	/* fill in the Wnq Node */
    351 	if (nfaults == 2) {
    352 		{
    353 			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
    354 			    (RF_PhysDiskAddr_t *), allocList);
    355 			parityPDA->row = asmap->qInfo->row;
    356 			parityPDA->col = asmap->qInfo->col;
    357 			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
    358 			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    359 			parityPDA->numSector = failedPDA->numSector;
    360 
    361 			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    362 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    363 			wnqNode->params[0].p = parityPDA;
    364 			RF_CallocAndAdd(xorNode->results[1], 1,
    365 			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    366 			wnqNode->params[1].p = xorNode->results[1];
    367 			wnqNode->params[2].v = parityStripeID;
    368 			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    369 		}
    370 	}
    371 	/* fill in the Wnd nodes */
    372 	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
    373 		if (pda == failedPDA) {
    374 			i--;
    375 			continue;
    376 		}
    377 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    378 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    379 		RF_ASSERT(pda);
    380 		wndNodes[i].params[0].p = pda;
    381 		wndNodes[i].params[1].p = pda->bufPtr;
    382 		wndNodes[i].params[2].v = parityStripeID;
    383 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    384 	}
    385 
    386 	/* fill in the results of the xor node */
    387 	xorNode->results[0] = xorTargetBuf;
    388 
    389 	/* fill in the params of the xor node */
    390 
    391 	paramNum = 0;
    392 	if (rdnodesFaked == 0) {
    393 		for (i = 0; i < nRrdNodes; i++) {
    394 			/* all the Rrd nodes need to be xored together */
    395 			xorNode->params[paramNum++] = rrdNodes[i].params[0];
    396 			xorNode->params[paramNum++] = rrdNodes[i].params[1];
    397 		}
    398 	}
    399 	for (i = 0; i < nWndNodes; i++) {
    400 		/* any Wnd nodes that overlap the failed access need to be
    401 		 * xored in */
    402 		if (overlappingPDAs[i]) {
    403 			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    404 			bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
    405 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    406 			xorNode->params[paramNum++].p = pda;
    407 			xorNode->params[paramNum++].p = pda->bufPtr;
    408 		}
    409 	}
    410 	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
    411 
    412 	/*
    413          * Install the failed PDA into the xor param list so that the
    414          * new data gets xor'd in.
    415          */
    416 	xorNode->params[paramNum++].p = failedPDA;
    417 	xorNode->params[paramNum++].p = failedPDA->bufPtr;
    418 
    419 	/*
    420          * The last 2 params to the recovery xor node are always the failed
    421          * PDA and the raidPtr. install the failedPDA even though we have just
    422          * done so above. This allows us to use the same XOR function for both
    423          * degraded reads and degraded writes.
    424          */
    425 	xorNode->params[paramNum++].p = failedPDA;
    426 	xorNode->params[paramNum++].p = raidPtr;
    427 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    428 
    429 	/*
    430          * Code to link nodes begins here
    431          */
    432 
    433 	/* link header to block node */
    434 	RF_ASSERT(blockNode->numAntecedents == 0);
    435 	dag_h->succedents[0] = blockNode;
    436 
    437 	/* link block node to rd nodes */
    438 	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
    439 	for (i = 0; i < nRrdNodes; i++) {
    440 		RF_ASSERT(rrdNodes[i].numAntecedents == 1);
    441 		blockNode->succedents[i] = &rrdNodes[i];
    442 		rrdNodes[i].antecedents[0] = blockNode;
    443 		rrdNodes[i].antType[0] = rf_control;
    444 	}
    445 
    446 	/* link read nodes to xor node */
    447 	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
    448 	for (i = 0; i < nRrdNodes; i++) {
    449 		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
    450 		rrdNodes[i].succedents[0] = xorNode;
    451 		xorNode->antecedents[i] = &rrdNodes[i];
    452 		xorNode->antType[i] = rf_trueData;
    453 	}
    454 
    455 	/* link xor node to commit node */
    456 	RF_ASSERT(xorNode->numSuccedents == 1);
    457 	RF_ASSERT(commitNode->numAntecedents == 1);
    458 	xorNode->succedents[0] = commitNode;
    459 	commitNode->antecedents[0] = xorNode;
    460 	commitNode->antType[0] = rf_control;
    461 
    462 	/* link commit node to wnd nodes */
    463 	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
    464 	for (i = 0; i < nWndNodes; i++) {
    465 		RF_ASSERT(wndNodes[i].numAntecedents == 1);
    466 		commitNode->succedents[i] = &wndNodes[i];
    467 		wndNodes[i].antecedents[0] = commitNode;
    468 		wndNodes[i].antType[0] = rf_control;
    469 	}
    470 
    471 	/* link the commit node to wnp, wnq nodes */
    472 	RF_ASSERT(wnpNode->numAntecedents == 1);
    473 	commitNode->succedents[nWndNodes] = wnpNode;
    474 	wnpNode->antecedents[0] = commitNode;
    475 	wnpNode->antType[0] = rf_control;
    476 	if (nfaults == 2) {
    477 		RF_ASSERT(wnqNode->numAntecedents == 1);
    478 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    479 		wnqNode->antecedents[0] = commitNode;
    480 		wnqNode->antType[0] = rf_control;
    481 	}
    482 	/* link write new data nodes to unblock node */
    483 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
    484 	for (i = 0; i < nWndNodes; i++) {
    485 		RF_ASSERT(wndNodes[i].numSuccedents == 1);
    486 		wndNodes[i].succedents[0] = unblockNode;
    487 		unblockNode->antecedents[i] = &wndNodes[i];
    488 		unblockNode->antType[i] = rf_control;
    489 	}
    490 
    491 	/* link write new parity node to unblock node */
    492 	RF_ASSERT(wnpNode->numSuccedents == 1);
    493 	wnpNode->succedents[0] = unblockNode;
    494 	unblockNode->antecedents[nWndNodes] = wnpNode;
    495 	unblockNode->antType[nWndNodes] = rf_control;
    496 
    497 	/* link write new q node to unblock node */
    498 	if (nfaults == 2) {
    499 		RF_ASSERT(wnqNode->numSuccedents == 1);
    500 		wnqNode->succedents[0] = unblockNode;
    501 		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
    502 		unblockNode->antType[nWndNodes + 1] = rf_control;
    503 	}
    504 	/* link unblock node to term node */
    505 	RF_ASSERT(unblockNode->numSuccedents == 1);
    506 	RF_ASSERT(termNode->numAntecedents == 1);
    507 	RF_ASSERT(termNode->numSuccedents == 0);
    508 	unblockNode->succedents[0] = termNode;
    509 	termNode->antecedents[0] = unblockNode;
    510 	termNode->antType[0] = rf_control;
    511 }
    512 #define CONS_PDA(if,start,num) \
    513   pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
    514   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    515   pda_p->numSector = num; \
    516   pda_p->next = NULL; \
    517   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
    518 #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
    519 void
    520 rf_WriteGenerateFailedAccessASMs(
    521     RF_Raid_t * raidPtr,
    522     RF_AccessStripeMap_t * asmap,
    523     RF_PhysDiskAddr_t ** pdap,
    524     int *nNodep,
    525     RF_PhysDiskAddr_t ** pqpdap,
    526     int *nPQNodep,
    527     RF_AllocListElem_t * allocList)
    528 {
    529 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    530 	int     PDAPerDisk, i;
    531 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    532 	int     numDataCol = layoutPtr->numDataCol;
    533 	int     state;
    534 	unsigned napdas;
    535 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
    536 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    537 	RF_PhysDiskAddr_t *pda_p;
    538 	RF_RaidAddr_t sosAddr;
    539 
    540 	/* determine how many pda's we will have to generate per unaccess
    541 	 * stripe. If there is only one failed data unit, it is one; if two,
    542 	 * possibly two, depending wether they overlap. */
    543 
    544 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    545 	fone_end = fone_start + fone->numSector;
    546 
    547 	if (asmap->numDataFailed == 1) {
    548 		PDAPerDisk = 1;
    549 		state = 1;
    550 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    551 		pda_p = *pqpdap;
    552 		/* build p */
    553 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    554 		pda_p->type = RF_PDA_TYPE_PARITY;
    555 		pda_p++;
    556 		/* build q */
    557 		CONS_PDA(qInfo, fone_start, fone->numSector);
    558 		pda_p->type = RF_PDA_TYPE_Q;
    559 	} else {
    560 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    561 		ftwo_end = ftwo_start + ftwo->numSector;
    562 		if (fone->numSector + ftwo->numSector > secPerSU) {
    563 			PDAPerDisk = 1;
    564 			state = 2;
    565 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    566 			pda_p = *pqpdap;
    567 			CONS_PDA(parityInfo, 0, secPerSU);
    568 			pda_p->type = RF_PDA_TYPE_PARITY;
    569 			pda_p++;
    570 			CONS_PDA(qInfo, 0, secPerSU);
    571 			pda_p->type = RF_PDA_TYPE_Q;
    572 		} else {
    573 			PDAPerDisk = 2;
    574 			state = 3;
    575 			/* four of them, fone, then ftwo */
    576 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    577 			pda_p = *pqpdap;
    578 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    579 			pda_p->type = RF_PDA_TYPE_PARITY;
    580 			pda_p++;
    581 			CONS_PDA(qInfo, fone_start, fone->numSector);
    582 			pda_p->type = RF_PDA_TYPE_Q;
    583 			pda_p++;
    584 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    585 			pda_p->type = RF_PDA_TYPE_PARITY;
    586 			pda_p++;
    587 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    588 			pda_p->type = RF_PDA_TYPE_Q;
    589 		}
    590 	}
    591 	/* figure out number of nonaccessed pda */
    592 	napdas = PDAPerDisk * (numDataCol - 2);
    593 	*nPQNodep = PDAPerDisk;
    594 
    595 	*nNodep = napdas;
    596 	if (napdas == 0)
    597 		return;		/* short circuit */
    598 
    599 	/* allocate up our list of pda's */
    600 
    601 	RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    602 	*pdap = pda_p;
    603 
    604 	/* linkem together */
    605 	for (i = 0; i < (napdas - 1); i++)
    606 		pda_p[i].next = pda_p + (i + 1);
    607 
    608 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    609 	for (i = 0; i < numDataCol; i++) {
    610 		if ((pda_p - (*pdap)) == napdas)
    611 			continue;
    612 		pda_p->type = RF_PDA_TYPE_DATA;
    613 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    614 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    615 		/* skip over dead disks */
    616 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
    617 			continue;
    618 		switch (state) {
    619 		case 1:	/* fone */
    620 			pda_p->numSector = fone->numSector;
    621 			pda_p->raidAddress += fone_start;
    622 			pda_p->startSector += fone_start;
    623 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    624 			break;
    625 		case 2:	/* full stripe */
    626 			pda_p->numSector = secPerSU;
    627 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    628 			break;
    629 		case 3:	/* two slabs */
    630 			pda_p->numSector = fone->numSector;
    631 			pda_p->raidAddress += fone_start;
    632 			pda_p->startSector += fone_start;
    633 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    634 			pda_p++;
    635 			pda_p->type = RF_PDA_TYPE_DATA;
    636 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    637 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    638 			pda_p->numSector = ftwo->numSector;
    639 			pda_p->raidAddress += ftwo_start;
    640 			pda_p->startSector += ftwo_start;
    641 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    642 			break;
    643 		default:
    644 			RF_PANIC();
    645 		}
    646 		pda_p++;
    647 	}
    648 
    649 	RF_ASSERT(pda_p - *pdap == napdas);
    650 	return;
    651 }
    652 #define DISK_NODE_PDA(node)  ((node)->params[0].p)
    653 
    654 #define DISK_NODE_PARAMS(_node_,_p_) \
    655   (_node_).params[0].p = _p_ ; \
    656   (_node_).params[1].p = (_p_)->bufPtr; \
    657   (_node_).params[2].v = parityStripeID; \
    658   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
    659 
    660 void
    661 rf_DoubleDegSmallWrite(
    662     RF_Raid_t * raidPtr,
    663     RF_AccessStripeMap_t * asmap,
    664     RF_DagHeader_t * dag_h,
    665     void *bp,
    666     RF_RaidAccessFlags_t flags,
    667     RF_AllocListElem_t * allocList,
    668     char *redundantReadNodeName,
    669     char *redundantWriteNodeName,
    670     char *recoveryNodeName,
    671     int (*recovFunc) (RF_DagNode_t *))
    672 {
    673 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    674 	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
    675 	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
    676 	RF_PhysDiskAddr_t *pda, *pqPDAs;
    677 	RF_PhysDiskAddr_t *npdas;
    678 	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
    679 	RF_ReconUnitNum_t which_ru;
    680 	int     nPQNodes;
    681 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
    682 
    683 	/* simple small write case - First part looks like a reconstruct-read
    684 	 * of the failed data units. Then a write of all data units not
    685 	 * failed. */
    686 
    687 
    688 	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
    689 	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
    690 	 * --Unblock- | T
    691 	 *
    692 	 * Rrd = read recovery data  (potentially none) Wud = write user data
    693 	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
    694 	 * (could be two)
    695 	 *
    696 	 */
    697 
    698 	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
    699 
    700 	RF_ASSERT(asmap->numDataFailed == 1);
    701 
    702 	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
    703 	nReadNodes = nRrdNodes + 2 * nPQNodes;
    704 	nWriteNodes = nWudNodes + 2 * nPQNodes;
    705 	nNodes = 4 + nReadNodes + nWriteNodes;
    706 
    707 	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    708 	blockNode = nodes;
    709 	unblockNode = blockNode + 1;
    710 	termNode = unblockNode + 1;
    711 	recoveryNode = termNode + 1;
    712 	rrdNodes = recoveryNode + 1;
    713 	rpNodes = rrdNodes + nRrdNodes;
    714 	rqNodes = rpNodes + nPQNodes;
    715 	wudNodes = rqNodes + nPQNodes;
    716 	wpNodes = wudNodes + nWudNodes;
    717 	wqNodes = wpNodes + nPQNodes;
    718 
    719 	dag_h->creator = "PQ_DDSimpleSmallWrite";
    720 	dag_h->numSuccedents = 1;
    721 	dag_h->succedents[0] = blockNode;
    722 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    723 	termNode->antecedents[0] = unblockNode;
    724 	termNode->antType[0] = rf_control;
    725 
    726 	/* init the block and unblock nodes */
    727 	/* The block node has all the read nodes as successors */
    728 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
    729 	for (i = 0; i < nReadNodes; i++)
    730 		blockNode->succedents[i] = rrdNodes + i;
    731 
    732 	/* The unblock node has all the writes as successors */
    733 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
    734 	for (i = 0; i < nWriteNodes; i++) {
    735 		unblockNode->antecedents[i] = wudNodes + i;
    736 		unblockNode->antType[i] = rf_control;
    737 	}
    738 	unblockNode->succedents[0] = termNode;
    739 
    740 #define INIT_READ_NODE(node,name) \
    741   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    742   (node)->succedents[0] = recoveryNode; \
    743   (node)->antecedents[0] = blockNode; \
    744   (node)->antType[0] = rf_control;
    745 
    746 	/* build the read nodes */
    747 	pda = npdas;
    748 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
    749 		INIT_READ_NODE(rrdNodes + i, "rrd");
    750 		DISK_NODE_PARAMS(rrdNodes[i], pda);
    751 	}
    752 
    753 	/* read redundancy pdas */
    754 	pda = pqPDAs;
    755 	INIT_READ_NODE(rpNodes, "Rp");
    756 	RF_ASSERT(pda);
    757 	DISK_NODE_PARAMS(rpNodes[0], pda);
    758 	pda++;
    759 	INIT_READ_NODE(rqNodes, redundantReadNodeName);
    760 	RF_ASSERT(pda);
    761 	DISK_NODE_PARAMS(rqNodes[0], pda);
    762 	if (nPQNodes == 2) {
    763 		pda++;
    764 		INIT_READ_NODE(rpNodes + 1, "Rp");
    765 		RF_ASSERT(pda);
    766 		DISK_NODE_PARAMS(rpNodes[1], pda);
    767 		pda++;
    768 		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
    769 		RF_ASSERT(pda);
    770 		DISK_NODE_PARAMS(rqNodes[1], pda);
    771 	}
    772 	/* the recovery node has all reads as precedessors and all writes as
    773 	 * successors. It generates a result for every write P or write Q
    774 	 * node. As parameters, it takes a pda per read and a pda per stripe
    775 	 * of user data written. It also takes as the last params the raidPtr
    776 	 * and asm. For results, it takes PDA for P & Q. */
    777 
    778 
    779 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
    780 	    nWriteNodes,	/* succesors */
    781 	    nReadNodes,		/* preds */
    782 	    nReadNodes + nWudNodes + 3,	/* params */
    783 	    2 * nPQNodes,	/* results */
    784 	    dag_h, recoveryNodeName, allocList);
    785 
    786 
    787 
    788 	for (i = 0; i < nReadNodes; i++) {
    789 		recoveryNode->antecedents[i] = rrdNodes + i;
    790 		recoveryNode->antType[i] = rf_control;
    791 		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
    792 	}
    793 	for (i = 0; i < nWudNodes; i++) {
    794 		recoveryNode->succedents[i] = wudNodes + i;
    795 	}
    796 	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
    797 	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
    798 	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
    799 
    800 	for (; i < nWriteNodes; i++)
    801 		recoveryNode->succedents[i] = wudNodes + i;
    802 
    803 	pda = pqPDAs;
    804 	recoveryNode->results[0] = pda;
    805 	pda++;
    806 	recoveryNode->results[1] = pda;
    807 	if (nPQNodes == 2) {
    808 		pda++;
    809 		recoveryNode->results[2] = pda;
    810 		pda++;
    811 		recoveryNode->results[3] = pda;
    812 	}
    813 	/* fill writes */
    814 #define INIT_WRITE_NODE(node,name) \
    815   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    816     (node)->succedents[0] = unblockNode; \
    817     (node)->antecedents[0] = recoveryNode; \
    818     (node)->antType[0] = rf_control;
    819 
    820 	pda = asmap->physInfo;
    821 	for (i = 0; i < nWudNodes; i++) {
    822 		INIT_WRITE_NODE(wudNodes + i, "Wd");
    823 		DISK_NODE_PARAMS(wudNodes[i], pda);
    824 		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
    825 		pda = pda->next;
    826 	}
    827 	/* write redundancy pdas */
    828 	pda = pqPDAs;
    829 	INIT_WRITE_NODE(wpNodes, "Wp");
    830 	RF_ASSERT(pda);
    831 	DISK_NODE_PARAMS(wpNodes[0], pda);
    832 	pda++;
    833 	INIT_WRITE_NODE(wqNodes, "Wq");
    834 	RF_ASSERT(pda);
    835 	DISK_NODE_PARAMS(wqNodes[0], pda);
    836 	if (nPQNodes == 2) {
    837 		pda++;
    838 		INIT_WRITE_NODE(wpNodes + 1, "Wp");
    839 		RF_ASSERT(pda);
    840 		DISK_NODE_PARAMS(wpNodes[1], pda);
    841 		pda++;
    842 		INIT_WRITE_NODE(wqNodes + 1, "Wq");
    843 		RF_ASSERT(pda);
    844 		DISK_NODE_PARAMS(wqNodes[1], pda);
    845 	}
    846 }
    847 #endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
    848