Home | History | Annotate | Line # | Download | only in raidframe
rf_dagdegwr.c revision 1.9
      1 /*	$NetBSD: rf_dagdegwr.c,v 1.9 2001/11/13 07:11:13 lukem Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagdegwr.c
     31  *
     32  * code for creating degraded write DAGs
     33  *
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: rf_dagdegwr.c,v 1.9 2001/11/13 07:11:13 lukem Exp $");
     38 
     39 #include <dev/raidframe/raidframevar.h>
     40 
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_memchunk.h"
     47 #include "rf_general.h"
     48 #include "rf_dagdegwr.h"
     49 
     50 
     51 /******************************************************************************
     52  *
     53  * General comments on DAG creation:
     54  *
     55  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     56  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     57  * is reached, the execution engine will halt forward execution and work
     58  * backward through the graph, executing the undo functions.  Assuming that
     59  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     60  * does not make changes to permanent state, the graph will fail atomically.
     61  * If an error occurs after the Cmt node executes, the engine will roll-forward
     62  * through the graph, blindly executing nodes until it reaches the end.
     63  * If a graph reaches the end, it is assumed to have completed successfully.
     64  *
     65  * A graph has only 1 Cmt node.
     66  *
     67  */
     68 
     69 
     70 /******************************************************************************
     71  *
     72  * The following wrappers map the standard DAG creation interface to the
     73  * DAG creation routines.  Additionally, these wrappers enable experimentation
     74  * with new DAG structures by providing an extra level of indirection, allowing
     75  * the DAG creation routines to be replaced at this single point.
     76  */
     77 
     78 static
     79 RF_CREATE_DAG_FUNC_DECL(rf_CreateSimpleDegradedWriteDAG)
     80 {
     81 	rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp,
     82 	    flags, allocList, 1, rf_RecoveryXorFunc, RF_TRUE);
     83 }
     84 
     85 void
     86 rf_CreateDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList)
     87 	RF_Raid_t *raidPtr;
     88 	RF_AccessStripeMap_t *asmap;
     89 	RF_DagHeader_t *dag_h;
     90 	void   *bp;
     91 	RF_RaidAccessFlags_t flags;
     92 	RF_AllocListElem_t *allocList;
     93 {
     94 
     95 	RF_ASSERT(asmap->numDataFailed == 1);
     96 	dag_h->creator = "DegradedWriteDAG";
     97 
     98 	/*
     99 	 * if the access writes only a portion of the failed unit, and also
    100 	 * writes some portion of at least one surviving unit, we create two
    101 	 * DAGs, one for the failed component and one for the non-failed
    102 	 * component, and do them sequentially.  Note that the fact that we're
    103 	 * accessing only a portion of the failed unit indicates that the
    104 	 * access either starts or ends in the failed unit, and hence we need
    105 	 * create only two dags.  This is inefficient in that the same data or
    106 	 * parity can get read and written twice using this structure.  I need
    107 	 * to fix this to do the access all at once.
    108 	 */
    109 	RF_ASSERT(!(asmap->numStripeUnitsAccessed != 1 &&
    110 		    asmap->failedPDAs[0]->numSector !=
    111 			raidPtr->Layout.sectorsPerStripeUnit));
    112 	rf_CreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    113 	    allocList);
    114 }
    115 
    116 
    117 
    118 /******************************************************************************
    119  *
    120  * DAG creation code begins here
    121  */
    122 
    123 
    124 
    125 /******************************************************************************
    126  *
    127  * CommonCreateSimpleDegradedWriteDAG -- creates a DAG to do a degraded-mode
    128  * write, which is as follows
    129  *
    130  *                                        / {Wnq} --\
    131  * hdr -> blockNode ->  Rod -> Xor -> Cmt -> Wnp ----> unblock -> term
    132  *                  \  {Rod} /            \  Wnd ---/
    133  *                                        \ {Wnd} -/
    134  *
    135  * commit nodes: Xor, Wnd
    136  *
    137  * IMPORTANT:
    138  * This DAG generator does not work for double-degraded archs since it does not
    139  * generate Q
    140  *
    141  * This dag is essentially identical to the large-write dag, except that the
    142  * write to the failed data unit is suppressed.
    143  *
    144  * IMPORTANT:  this dag does not work in the case where the access writes only
    145  * a portion of the failed unit, and also writes some portion of at least one
    146  * surviving SU.  this case is handled in CreateDegradedWriteDAG above.
    147  *
    148  * The block & unblock nodes are leftovers from a previous version.  They
    149  * do nothing, but I haven't deleted them because it would be a tremendous
    150  * effort to put them back in.
    151  *
    152  * This dag is used whenever a one of the data units in a write has failed.
    153  * If it is the parity unit that failed, the nonredundant write dag (below)
    154  * is used.
    155  *****************************************************************************/
    156 
    157 void
    158 rf_CommonCreateSimpleDegradedWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    159     allocList, nfaults, redFunc, allowBufferRecycle)
    160 	RF_Raid_t *raidPtr;
    161 	RF_AccessStripeMap_t *asmap;
    162 	RF_DagHeader_t *dag_h;
    163 	void   *bp;
    164 	RF_RaidAccessFlags_t flags;
    165 	RF_AllocListElem_t *allocList;
    166 	int     nfaults;
    167 	int     (*redFunc) (RF_DagNode_t *);
    168 	int     allowBufferRecycle;
    169 {
    170 	int     nNodes, nRrdNodes, nWndNodes, nXorBufs, i, j, paramNum,
    171 	        rdnodesFaked;
    172 	RF_DagNode_t *blockNode, *unblockNode, *wnpNode, *wnqNode, *termNode;
    173 	RF_DagNode_t *nodes, *wndNodes, *rrdNodes, *xorNode, *commitNode;
    174 	RF_SectorCount_t sectorsPerSU;
    175 	RF_ReconUnitNum_t which_ru;
    176 	char   *xorTargetBuf = NULL;	/* the target buffer for the XOR
    177 					 * operation */
    178 	char   *overlappingPDAs;/* a temporary array of flags */
    179 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    180 	RF_PhysDiskAddr_t *pda, *parityPDA;
    181 	RF_StripeNum_t parityStripeID;
    182 	RF_PhysDiskAddr_t *failedPDA;
    183 	RF_RaidLayout_t *layoutPtr;
    184 
    185 	layoutPtr = &(raidPtr->Layout);
    186 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    187 	    &which_ru);
    188 	sectorsPerSU = layoutPtr->sectorsPerStripeUnit;
    189 	/* failedPDA points to the pda within the asm that targets the failed
    190 	 * disk */
    191 	failedPDA = asmap->failedPDAs[0];
    192 
    193 	if (rf_dagDebug)
    194 		printf("[Creating degraded-write DAG]\n");
    195 
    196 	RF_ASSERT(asmap->numDataFailed == 1);
    197 	dag_h->creator = "SimpleDegradedWriteDAG";
    198 
    199 	/*
    200          * Generate two ASMs identifying the surviving data
    201          * we need in order to recover the lost data.
    202          */
    203 	/* overlappingPDAs array must be zero'd */
    204 	RF_Calloc(overlappingPDAs, asmap->numStripeUnitsAccessed, sizeof(char), (char *));
    205 	rf_GenerateFailedAccessASMs(raidPtr, asmap, failedPDA, dag_h, new_asm_h,
    206 	    &nXorBufs, NULL, overlappingPDAs, allocList);
    207 
    208 	/* create all the nodes at once */
    209 	nWndNodes = asmap->numStripeUnitsAccessed - 1;	/* no access is
    210 							 * generated for the
    211 							 * failed pda */
    212 
    213 	nRrdNodes = ((new_asm_h[0]) ? new_asm_h[0]->stripeMap->numStripeUnitsAccessed : 0) +
    214 	    ((new_asm_h[1]) ? new_asm_h[1]->stripeMap->numStripeUnitsAccessed : 0);
    215 	/*
    216          * XXX
    217          *
    218          * There's a bug with a complete stripe overwrite- that means 0 reads
    219          * of old data, and the rest of the DAG generation code doesn't like
    220          * that. A release is coming, and I don't wanna risk breaking a critical
    221          * DAG generator, so here's what I'm gonna do- if there's no read nodes,
    222          * I'm gonna fake there being a read node, and I'm gonna swap in a
    223          * no-op node in its place (to make all the link-up code happy).
    224          * This should be fixed at some point.  --jimz
    225          */
    226 	if (nRrdNodes == 0) {
    227 		nRrdNodes = 1;
    228 		rdnodesFaked = 1;
    229 	} else {
    230 		rdnodesFaked = 0;
    231 	}
    232 	/* lock, unlock, xor, Wnd, Rrd, W(nfaults) */
    233 	nNodes = 5 + nfaults + nWndNodes + nRrdNodes;
    234 	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t),
    235 	    (RF_DagNode_t *), allocList);
    236 	i = 0;
    237 	blockNode = &nodes[i];
    238 	i += 1;
    239 	commitNode = &nodes[i];
    240 	i += 1;
    241 	unblockNode = &nodes[i];
    242 	i += 1;
    243 	termNode = &nodes[i];
    244 	i += 1;
    245 	xorNode = &nodes[i];
    246 	i += 1;
    247 	wnpNode = &nodes[i];
    248 	i += 1;
    249 	wndNodes = &nodes[i];
    250 	i += nWndNodes;
    251 	rrdNodes = &nodes[i];
    252 	i += nRrdNodes;
    253 	if (nfaults == 2) {
    254 		wnqNode = &nodes[i];
    255 		i += 1;
    256 	} else {
    257 		wnqNode = NULL;
    258 	}
    259 	RF_ASSERT(i == nNodes);
    260 
    261 	/* this dag can not commit until all rrd and xor Nodes have completed */
    262 	dag_h->numCommitNodes = 1;
    263 	dag_h->numCommits = 0;
    264 	dag_h->numSuccedents = 1;
    265 
    266 	RF_ASSERT(nRrdNodes > 0);
    267 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    268 	    NULL, nRrdNodes, 0, 0, 0, dag_h, "Nil", allocList);
    269 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    270 	    NULL, nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    271 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    272 	    NULL, 1, nWndNodes + nfaults, 0, 0, dag_h, "Nil", allocList);
    273 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    274 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    275 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    276 	    nRrdNodes, 2 * nXorBufs + 2, nfaults, dag_h, "Xrc", allocList);
    277 
    278 	/*
    279          * Fill in the Rrd nodes. If any of the rrd buffers are the same size as
    280          * the failed buffer, save a pointer to it so we can use it as the target
    281          * of the XOR. The pdas in the rrd nodes have been range-restricted, so if
    282          * a buffer is the same size as the failed buffer, it must also be at the
    283          * same alignment within the SU.
    284          */
    285 	i = 0;
    286 	if (new_asm_h[0]) {
    287 		for (i = 0, pda = new_asm_h[0]->stripeMap->physInfo;
    288 		    i < new_asm_h[0]->stripeMap->numStripeUnitsAccessed;
    289 		    i++, pda = pda->next) {
    290 			rf_InitNode(&rrdNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    291 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    292 			RF_ASSERT(pda);
    293 			rrdNodes[i].params[0].p = pda;
    294 			rrdNodes[i].params[1].p = pda->bufPtr;
    295 			rrdNodes[i].params[2].v = parityStripeID;
    296 			rrdNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    297 		}
    298 	}
    299 	/* i now equals the number of stripe units accessed in new_asm_h[0] */
    300 	if (new_asm_h[1]) {
    301 		for (j = 0, pda = new_asm_h[1]->stripeMap->physInfo;
    302 		    j < new_asm_h[1]->stripeMap->numStripeUnitsAccessed;
    303 		    j++, pda = pda->next) {
    304 			rf_InitNode(&rrdNodes[i + j], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    305 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rrd", allocList);
    306 			RF_ASSERT(pda);
    307 			rrdNodes[i + j].params[0].p = pda;
    308 			rrdNodes[i + j].params[1].p = pda->bufPtr;
    309 			rrdNodes[i + j].params[2].v = parityStripeID;
    310 			rrdNodes[i + j].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    311 			if (allowBufferRecycle && (pda->numSector == failedPDA->numSector))
    312 				xorTargetBuf = pda->bufPtr;
    313 		}
    314 	}
    315 	if (rdnodesFaked) {
    316 		/*
    317 	         * This is where we'll init that fake noop read node
    318 	         * (XXX should the wakeup func be different?)
    319 	         */
    320 		rf_InitNode(&rrdNodes[0], rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    321 		    NULL, 1, 1, 0, 0, dag_h, "RrN", allocList);
    322 	}
    323 	/*
    324          * Make a PDA for the parity unit.  The parity PDA should start at
    325          * the same offset into the SU as the failed PDA.
    326          */
    327 	/* Danner comment: I don't think this copy is really necessary. We are
    328 	 * in one of two cases here. (1) The entire failed unit is written.
    329 	 * Then asmap->parityInfo will describe the entire parity. (2) We are
    330 	 * only writing a subset of the failed unit and nothing else. Then the
    331 	 * asmap->parityInfo describes the failed unit and the copy can also
    332 	 * be avoided. */
    333 
    334 	RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    335 	parityPDA->row = asmap->parityInfo->row;
    336 	parityPDA->col = asmap->parityInfo->col;
    337 	parityPDA->startSector = ((asmap->parityInfo->startSector / sectorsPerSU)
    338 	    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    339 	parityPDA->numSector = failedPDA->numSector;
    340 
    341 	if (!xorTargetBuf) {
    342 		RF_CallocAndAdd(xorTargetBuf, 1,
    343 		    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    344 	}
    345 	/* init the Wnp node */
    346 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    347 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    348 	wnpNode->params[0].p = parityPDA;
    349 	wnpNode->params[1].p = xorTargetBuf;
    350 	wnpNode->params[2].v = parityStripeID;
    351 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    352 
    353 	/* fill in the Wnq Node */
    354 	if (nfaults == 2) {
    355 		{
    356 			RF_MallocAndAdd(parityPDA, sizeof(RF_PhysDiskAddr_t),
    357 			    (RF_PhysDiskAddr_t *), allocList);
    358 			parityPDA->row = asmap->qInfo->row;
    359 			parityPDA->col = asmap->qInfo->col;
    360 			parityPDA->startSector = ((asmap->qInfo->startSector / sectorsPerSU)
    361 			    * sectorsPerSU) + (failedPDA->startSector % sectorsPerSU);
    362 			parityPDA->numSector = failedPDA->numSector;
    363 
    364 			rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    365 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    366 			wnqNode->params[0].p = parityPDA;
    367 			RF_CallocAndAdd(xorNode->results[1], 1,
    368 			    rf_RaidAddressToByte(raidPtr, failedPDA->numSector), (char *), allocList);
    369 			wnqNode->params[1].p = xorNode->results[1];
    370 			wnqNode->params[2].v = parityStripeID;
    371 			wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    372 		}
    373 	}
    374 	/* fill in the Wnd nodes */
    375 	for (pda = asmap->physInfo, i = 0; i < nWndNodes; i++, pda = pda->next) {
    376 		if (pda == failedPDA) {
    377 			i--;
    378 			continue;
    379 		}
    380 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    381 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    382 		RF_ASSERT(pda);
    383 		wndNodes[i].params[0].p = pda;
    384 		wndNodes[i].params[1].p = pda->bufPtr;
    385 		wndNodes[i].params[2].v = parityStripeID;
    386 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    387 	}
    388 
    389 	/* fill in the results of the xor node */
    390 	xorNode->results[0] = xorTargetBuf;
    391 
    392 	/* fill in the params of the xor node */
    393 
    394 	paramNum = 0;
    395 	if (rdnodesFaked == 0) {
    396 		for (i = 0; i < nRrdNodes; i++) {
    397 			/* all the Rrd nodes need to be xored together */
    398 			xorNode->params[paramNum++] = rrdNodes[i].params[0];
    399 			xorNode->params[paramNum++] = rrdNodes[i].params[1];
    400 		}
    401 	}
    402 	for (i = 0; i < nWndNodes; i++) {
    403 		/* any Wnd nodes that overlap the failed access need to be
    404 		 * xored in */
    405 		if (overlappingPDAs[i]) {
    406 			RF_MallocAndAdd(pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    407 			bcopy((char *) wndNodes[i].params[0].p, (char *) pda, sizeof(RF_PhysDiskAddr_t));
    408 			rf_RangeRestrictPDA(raidPtr, failedPDA, pda, RF_RESTRICT_DOBUFFER, 0);
    409 			xorNode->params[paramNum++].p = pda;
    410 			xorNode->params[paramNum++].p = pda->bufPtr;
    411 		}
    412 	}
    413 	RF_Free(overlappingPDAs, asmap->numStripeUnitsAccessed * sizeof(char));
    414 
    415 	/*
    416          * Install the failed PDA into the xor param list so that the
    417          * new data gets xor'd in.
    418          */
    419 	xorNode->params[paramNum++].p = failedPDA;
    420 	xorNode->params[paramNum++].p = failedPDA->bufPtr;
    421 
    422 	/*
    423          * The last 2 params to the recovery xor node are always the failed
    424          * PDA and the raidPtr. install the failedPDA even though we have just
    425          * done so above. This allows us to use the same XOR function for both
    426          * degraded reads and degraded writes.
    427          */
    428 	xorNode->params[paramNum++].p = failedPDA;
    429 	xorNode->params[paramNum++].p = raidPtr;
    430 	RF_ASSERT(paramNum == 2 * nXorBufs + 2);
    431 
    432 	/*
    433          * Code to link nodes begins here
    434          */
    435 
    436 	/* link header to block node */
    437 	RF_ASSERT(blockNode->numAntecedents == 0);
    438 	dag_h->succedents[0] = blockNode;
    439 
    440 	/* link block node to rd nodes */
    441 	RF_ASSERT(blockNode->numSuccedents == nRrdNodes);
    442 	for (i = 0; i < nRrdNodes; i++) {
    443 		RF_ASSERT(rrdNodes[i].numAntecedents == 1);
    444 		blockNode->succedents[i] = &rrdNodes[i];
    445 		rrdNodes[i].antecedents[0] = blockNode;
    446 		rrdNodes[i].antType[0] = rf_control;
    447 	}
    448 
    449 	/* link read nodes to xor node */
    450 	RF_ASSERT(xorNode->numAntecedents == nRrdNodes);
    451 	for (i = 0; i < nRrdNodes; i++) {
    452 		RF_ASSERT(rrdNodes[i].numSuccedents == 1);
    453 		rrdNodes[i].succedents[0] = xorNode;
    454 		xorNode->antecedents[i] = &rrdNodes[i];
    455 		xorNode->antType[i] = rf_trueData;
    456 	}
    457 
    458 	/* link xor node to commit node */
    459 	RF_ASSERT(xorNode->numSuccedents == 1);
    460 	RF_ASSERT(commitNode->numAntecedents == 1);
    461 	xorNode->succedents[0] = commitNode;
    462 	commitNode->antecedents[0] = xorNode;
    463 	commitNode->antType[0] = rf_control;
    464 
    465 	/* link commit node to wnd nodes */
    466 	RF_ASSERT(commitNode->numSuccedents == nfaults + nWndNodes);
    467 	for (i = 0; i < nWndNodes; i++) {
    468 		RF_ASSERT(wndNodes[i].numAntecedents == 1);
    469 		commitNode->succedents[i] = &wndNodes[i];
    470 		wndNodes[i].antecedents[0] = commitNode;
    471 		wndNodes[i].antType[0] = rf_control;
    472 	}
    473 
    474 	/* link the commit node to wnp, wnq nodes */
    475 	RF_ASSERT(wnpNode->numAntecedents == 1);
    476 	commitNode->succedents[nWndNodes] = wnpNode;
    477 	wnpNode->antecedents[0] = commitNode;
    478 	wnpNode->antType[0] = rf_control;
    479 	if (nfaults == 2) {
    480 		RF_ASSERT(wnqNode->numAntecedents == 1);
    481 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    482 		wnqNode->antecedents[0] = commitNode;
    483 		wnqNode->antType[0] = rf_control;
    484 	}
    485 	/* link write new data nodes to unblock node */
    486 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nfaults));
    487 	for (i = 0; i < nWndNodes; i++) {
    488 		RF_ASSERT(wndNodes[i].numSuccedents == 1);
    489 		wndNodes[i].succedents[0] = unblockNode;
    490 		unblockNode->antecedents[i] = &wndNodes[i];
    491 		unblockNode->antType[i] = rf_control;
    492 	}
    493 
    494 	/* link write new parity node to unblock node */
    495 	RF_ASSERT(wnpNode->numSuccedents == 1);
    496 	wnpNode->succedents[0] = unblockNode;
    497 	unblockNode->antecedents[nWndNodes] = wnpNode;
    498 	unblockNode->antType[nWndNodes] = rf_control;
    499 
    500 	/* link write new q node to unblock node */
    501 	if (nfaults == 2) {
    502 		RF_ASSERT(wnqNode->numSuccedents == 1);
    503 		wnqNode->succedents[0] = unblockNode;
    504 		unblockNode->antecedents[nWndNodes + 1] = wnqNode;
    505 		unblockNode->antType[nWndNodes + 1] = rf_control;
    506 	}
    507 	/* link unblock node to term node */
    508 	RF_ASSERT(unblockNode->numSuccedents == 1);
    509 	RF_ASSERT(termNode->numAntecedents == 1);
    510 	RF_ASSERT(termNode->numSuccedents == 0);
    511 	unblockNode->succedents[0] = termNode;
    512 	termNode->antecedents[0] = unblockNode;
    513 	termNode->antType[0] = rf_control;
    514 }
    515 #define CONS_PDA(if,start,num) \
    516   pda_p->row = asmap->if->row;    pda_p->col = asmap->if->col; \
    517   pda_p->startSector = ((asmap->if->startSector / secPerSU) * secPerSU) + start; \
    518   pda_p->numSector = num; \
    519   pda_p->next = NULL; \
    520   RF_MallocAndAdd(pda_p->bufPtr,rf_RaidAddressToByte(raidPtr,num),(char *), allocList)
    521 #if (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0)
    522 void
    523 rf_WriteGenerateFailedAccessASMs(
    524     RF_Raid_t * raidPtr,
    525     RF_AccessStripeMap_t * asmap,
    526     RF_PhysDiskAddr_t ** pdap,
    527     int *nNodep,
    528     RF_PhysDiskAddr_t ** pqpdap,
    529     int *nPQNodep,
    530     RF_AllocListElem_t * allocList)
    531 {
    532 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    533 	int     PDAPerDisk, i;
    534 	RF_SectorCount_t secPerSU = layoutPtr->sectorsPerStripeUnit;
    535 	int     numDataCol = layoutPtr->numDataCol;
    536 	int     state;
    537 	unsigned napdas;
    538 	RF_SectorNum_t fone_start, fone_end, ftwo_start = 0, ftwo_end;
    539 	RF_PhysDiskAddr_t *fone = asmap->failedPDAs[0], *ftwo = asmap->failedPDAs[1];
    540 	RF_PhysDiskAddr_t *pda_p;
    541 	RF_RaidAddr_t sosAddr;
    542 
    543 	/* determine how many pda's we will have to generate per unaccess
    544 	 * stripe. If there is only one failed data unit, it is one; if two,
    545 	 * possibly two, depending wether they overlap. */
    546 
    547 	fone_start = rf_StripeUnitOffset(layoutPtr, fone->startSector);
    548 	fone_end = fone_start + fone->numSector;
    549 
    550 	if (asmap->numDataFailed == 1) {
    551 		PDAPerDisk = 1;
    552 		state = 1;
    553 		RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    554 		pda_p = *pqpdap;
    555 		/* build p */
    556 		CONS_PDA(parityInfo, fone_start, fone->numSector);
    557 		pda_p->type = RF_PDA_TYPE_PARITY;
    558 		pda_p++;
    559 		/* build q */
    560 		CONS_PDA(qInfo, fone_start, fone->numSector);
    561 		pda_p->type = RF_PDA_TYPE_Q;
    562 	} else {
    563 		ftwo_start = rf_StripeUnitOffset(layoutPtr, ftwo->startSector);
    564 		ftwo_end = ftwo_start + ftwo->numSector;
    565 		if (fone->numSector + ftwo->numSector > secPerSU) {
    566 			PDAPerDisk = 1;
    567 			state = 2;
    568 			RF_MallocAndAdd(*pqpdap, 2 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    569 			pda_p = *pqpdap;
    570 			CONS_PDA(parityInfo, 0, secPerSU);
    571 			pda_p->type = RF_PDA_TYPE_PARITY;
    572 			pda_p++;
    573 			CONS_PDA(qInfo, 0, secPerSU);
    574 			pda_p->type = RF_PDA_TYPE_Q;
    575 		} else {
    576 			PDAPerDisk = 2;
    577 			state = 3;
    578 			/* four of them, fone, then ftwo */
    579 			RF_MallocAndAdd(*pqpdap, 4 * sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    580 			pda_p = *pqpdap;
    581 			CONS_PDA(parityInfo, fone_start, fone->numSector);
    582 			pda_p->type = RF_PDA_TYPE_PARITY;
    583 			pda_p++;
    584 			CONS_PDA(qInfo, fone_start, fone->numSector);
    585 			pda_p->type = RF_PDA_TYPE_Q;
    586 			pda_p++;
    587 			CONS_PDA(parityInfo, ftwo_start, ftwo->numSector);
    588 			pda_p->type = RF_PDA_TYPE_PARITY;
    589 			pda_p++;
    590 			CONS_PDA(qInfo, ftwo_start, ftwo->numSector);
    591 			pda_p->type = RF_PDA_TYPE_Q;
    592 		}
    593 	}
    594 	/* figure out number of nonaccessed pda */
    595 	napdas = PDAPerDisk * (numDataCol - 2);
    596 	*nPQNodep = PDAPerDisk;
    597 
    598 	*nNodep = napdas;
    599 	if (napdas == 0)
    600 		return;		/* short circuit */
    601 
    602 	/* allocate up our list of pda's */
    603 
    604 	RF_CallocAndAdd(pda_p, napdas, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t *), allocList);
    605 	*pdap = pda_p;
    606 
    607 	/* linkem together */
    608 	for (i = 0; i < (napdas - 1); i++)
    609 		pda_p[i].next = pda_p + (i + 1);
    610 
    611 	sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress);
    612 	for (i = 0; i < numDataCol; i++) {
    613 		if ((pda_p - (*pdap)) == napdas)
    614 			continue;
    615 		pda_p->type = RF_PDA_TYPE_DATA;
    616 		pda_p->raidAddress = sosAddr + (i * secPerSU);
    617 		(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    618 		/* skip over dead disks */
    619 		if (RF_DEAD_DISK(raidPtr->Disks[pda_p->row][pda_p->col].status))
    620 			continue;
    621 		switch (state) {
    622 		case 1:	/* fone */
    623 			pda_p->numSector = fone->numSector;
    624 			pda_p->raidAddress += fone_start;
    625 			pda_p->startSector += fone_start;
    626 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    627 			break;
    628 		case 2:	/* full stripe */
    629 			pda_p->numSector = secPerSU;
    630 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, secPerSU), (char *), allocList);
    631 			break;
    632 		case 3:	/* two slabs */
    633 			pda_p->numSector = fone->numSector;
    634 			pda_p->raidAddress += fone_start;
    635 			pda_p->startSector += fone_start;
    636 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    637 			pda_p++;
    638 			pda_p->type = RF_PDA_TYPE_DATA;
    639 			pda_p->raidAddress = sosAddr + (i * secPerSU);
    640 			(raidPtr->Layout.map->MapSector) (raidPtr, pda_p->raidAddress, &(pda_p->row), &(pda_p->col), &(pda_p->startSector), 0);
    641 			pda_p->numSector = ftwo->numSector;
    642 			pda_p->raidAddress += ftwo_start;
    643 			pda_p->startSector += ftwo_start;
    644 			RF_MallocAndAdd(pda_p->bufPtr, rf_RaidAddressToByte(raidPtr, pda_p->numSector), (char *), allocList);
    645 			break;
    646 		default:
    647 			RF_PANIC();
    648 		}
    649 		pda_p++;
    650 	}
    651 
    652 	RF_ASSERT(pda_p - *pdap == napdas);
    653 	return;
    654 }
    655 #define DISK_NODE_PDA(node)  ((node)->params[0].p)
    656 
    657 #define DISK_NODE_PARAMS(_node_,_p_) \
    658   (_node_).params[0].p = _p_ ; \
    659   (_node_).params[1].p = (_p_)->bufPtr; \
    660   (_node_).params[2].v = parityStripeID; \
    661   (_node_).params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru)
    662 
    663 void
    664 rf_DoubleDegSmallWrite(
    665     RF_Raid_t * raidPtr,
    666     RF_AccessStripeMap_t * asmap,
    667     RF_DagHeader_t * dag_h,
    668     void *bp,
    669     RF_RaidAccessFlags_t flags,
    670     RF_AllocListElem_t * allocList,
    671     char *redundantReadNodeName,
    672     char *redundantWriteNodeName,
    673     char *recoveryNodeName,
    674     int (*recovFunc) (RF_DagNode_t *))
    675 {
    676 	RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout);
    677 	RF_DagNode_t *nodes, *wudNodes, *rrdNodes, *recoveryNode, *blockNode,
    678 	       *unblockNode, *rpNodes, *rqNodes, *wpNodes, *wqNodes, *termNode;
    679 	RF_PhysDiskAddr_t *pda, *pqPDAs;
    680 	RF_PhysDiskAddr_t *npdas;
    681 	int     nWriteNodes, nNodes, nReadNodes, nRrdNodes, nWudNodes, i;
    682 	RF_ReconUnitNum_t which_ru;
    683 	int     nPQNodes;
    684 	RF_StripeNum_t parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress, &which_ru);
    685 
    686 	/* simple small write case - First part looks like a reconstruct-read
    687 	 * of the failed data units. Then a write of all data units not
    688 	 * failed. */
    689 
    690 
    691 	/* Hdr | ------Block- /  /         \   Rrd  Rrd ...  Rrd  Rp Rq \  \
    692 	 * /  -------PQ----- /   \   \ Wud   Wp  WQ	     \    |   /
    693 	 * --Unblock- | T
    694 	 *
    695 	 * Rrd = read recovery data  (potentially none) Wud = write user data
    696 	 * (not incl. failed disks) Wp = Write P (could be two) Wq = Write Q
    697 	 * (could be two)
    698 	 *
    699 	 */
    700 
    701 	rf_WriteGenerateFailedAccessASMs(raidPtr, asmap, &npdas, &nRrdNodes, &pqPDAs, &nPQNodes, allocList);
    702 
    703 	RF_ASSERT(asmap->numDataFailed == 1);
    704 
    705 	nWudNodes = asmap->numStripeUnitsAccessed - (asmap->numDataFailed);
    706 	nReadNodes = nRrdNodes + 2 * nPQNodes;
    707 	nWriteNodes = nWudNodes + 2 * nPQNodes;
    708 	nNodes = 4 + nReadNodes + nWriteNodes;
    709 
    710 	RF_CallocAndAdd(nodes, nNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
    711 	blockNode = nodes;
    712 	unblockNode = blockNode + 1;
    713 	termNode = unblockNode + 1;
    714 	recoveryNode = termNode + 1;
    715 	rrdNodes = recoveryNode + 1;
    716 	rpNodes = rrdNodes + nRrdNodes;
    717 	rqNodes = rpNodes + nPQNodes;
    718 	wudNodes = rqNodes + nPQNodes;
    719 	wpNodes = wudNodes + nWudNodes;
    720 	wqNodes = wpNodes + nPQNodes;
    721 
    722 	dag_h->creator = "PQ_DDSimpleSmallWrite";
    723 	dag_h->numSuccedents = 1;
    724 	dag_h->succedents[0] = blockNode;
    725 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    726 	termNode->antecedents[0] = unblockNode;
    727 	termNode->antType[0] = rf_control;
    728 
    729 	/* init the block and unblock nodes */
    730 	/* The block node has all the read nodes as successors */
    731 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nReadNodes, 0, 0, 0, dag_h, "Nil", allocList);
    732 	for (i = 0; i < nReadNodes; i++)
    733 		blockNode->succedents[i] = rrdNodes + i;
    734 
    735 	/* The unblock node has all the writes as successors */
    736 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, nWriteNodes, 0, 0, dag_h, "Nil", allocList);
    737 	for (i = 0; i < nWriteNodes; i++) {
    738 		unblockNode->antecedents[i] = wudNodes + i;
    739 		unblockNode->antType[i] = rf_control;
    740 	}
    741 	unblockNode->succedents[0] = termNode;
    742 
    743 #define INIT_READ_NODE(node,name) \
    744   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    745   (node)->succedents[0] = recoveryNode; \
    746   (node)->antecedents[0] = blockNode; \
    747   (node)->antType[0] = rf_control;
    748 
    749 	/* build the read nodes */
    750 	pda = npdas;
    751 	for (i = 0; i < nRrdNodes; i++, pda = pda->next) {
    752 		INIT_READ_NODE(rrdNodes + i, "rrd");
    753 		DISK_NODE_PARAMS(rrdNodes[i], pda);
    754 	}
    755 
    756 	/* read redundancy pdas */
    757 	pda = pqPDAs;
    758 	INIT_READ_NODE(rpNodes, "Rp");
    759 	RF_ASSERT(pda);
    760 	DISK_NODE_PARAMS(rpNodes[0], pda);
    761 	pda++;
    762 	INIT_READ_NODE(rqNodes, redundantReadNodeName);
    763 	RF_ASSERT(pda);
    764 	DISK_NODE_PARAMS(rqNodes[0], pda);
    765 	if (nPQNodes == 2) {
    766 		pda++;
    767 		INIT_READ_NODE(rpNodes + 1, "Rp");
    768 		RF_ASSERT(pda);
    769 		DISK_NODE_PARAMS(rpNodes[1], pda);
    770 		pda++;
    771 		INIT_READ_NODE(rqNodes + 1, redundantReadNodeName);
    772 		RF_ASSERT(pda);
    773 		DISK_NODE_PARAMS(rqNodes[1], pda);
    774 	}
    775 	/* the recovery node has all reads as precedessors and all writes as
    776 	 * successors. It generates a result for every write P or write Q
    777 	 * node. As parameters, it takes a pda per read and a pda per stripe
    778 	 * of user data written. It also takes as the last params the raidPtr
    779 	 * and asm. For results, it takes PDA for P & Q. */
    780 
    781 
    782 	rf_InitNode(recoveryNode, rf_wait, RF_FALSE, recovFunc, rf_NullNodeUndoFunc, NULL,
    783 	    nWriteNodes,	/* succesors */
    784 	    nReadNodes,		/* preds */
    785 	    nReadNodes + nWudNodes + 3,	/* params */
    786 	    2 * nPQNodes,	/* results */
    787 	    dag_h, recoveryNodeName, allocList);
    788 
    789 
    790 
    791 	for (i = 0; i < nReadNodes; i++) {
    792 		recoveryNode->antecedents[i] = rrdNodes + i;
    793 		recoveryNode->antType[i] = rf_control;
    794 		recoveryNode->params[i].p = DISK_NODE_PDA(rrdNodes + i);
    795 	}
    796 	for (i = 0; i < nWudNodes; i++) {
    797 		recoveryNode->succedents[i] = wudNodes + i;
    798 	}
    799 	recoveryNode->params[nReadNodes + nWudNodes].p = asmap->failedPDAs[0];
    800 	recoveryNode->params[nReadNodes + nWudNodes + 1].p = raidPtr;
    801 	recoveryNode->params[nReadNodes + nWudNodes + 2].p = asmap;
    802 
    803 	for (; i < nWriteNodes; i++)
    804 		recoveryNode->succedents[i] = wudNodes + i;
    805 
    806 	pda = pqPDAs;
    807 	recoveryNode->results[0] = pda;
    808 	pda++;
    809 	recoveryNode->results[1] = pda;
    810 	if (nPQNodes == 2) {
    811 		pda++;
    812 		recoveryNode->results[2] = pda;
    813 		pda++;
    814 		recoveryNode->results[3] = pda;
    815 	}
    816 	/* fill writes */
    817 #define INIT_WRITE_NODE(node,name) \
    818   rf_InitNode(node, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, name, allocList); \
    819     (node)->succedents[0] = unblockNode; \
    820     (node)->antecedents[0] = recoveryNode; \
    821     (node)->antType[0] = rf_control;
    822 
    823 	pda = asmap->physInfo;
    824 	for (i = 0; i < nWudNodes; i++) {
    825 		INIT_WRITE_NODE(wudNodes + i, "Wd");
    826 		DISK_NODE_PARAMS(wudNodes[i], pda);
    827 		recoveryNode->params[nReadNodes + i].p = DISK_NODE_PDA(wudNodes + i);
    828 		pda = pda->next;
    829 	}
    830 	/* write redundancy pdas */
    831 	pda = pqPDAs;
    832 	INIT_WRITE_NODE(wpNodes, "Wp");
    833 	RF_ASSERT(pda);
    834 	DISK_NODE_PARAMS(wpNodes[0], pda);
    835 	pda++;
    836 	INIT_WRITE_NODE(wqNodes, "Wq");
    837 	RF_ASSERT(pda);
    838 	DISK_NODE_PARAMS(wqNodes[0], pda);
    839 	if (nPQNodes == 2) {
    840 		pda++;
    841 		INIT_WRITE_NODE(wpNodes + 1, "Wp");
    842 		RF_ASSERT(pda);
    843 		DISK_NODE_PARAMS(wpNodes[1], pda);
    844 		pda++;
    845 		INIT_WRITE_NODE(wqNodes + 1, "Wq");
    846 		RF_ASSERT(pda);
    847 		DISK_NODE_PARAMS(wqNodes[1], pda);
    848 	}
    849 }
    850 #endif   /* (RF_INCLUDE_PQ > 0) || (RF_INCLUDE_EVENODD > 0) */
    851