Home | History | Annotate | Line # | Download | only in raidframe
rf_dagffrd.c revision 1.11
      1 /*	$NetBSD: rf_dagffrd.c,v 1.11 2004/01/10 00:56:27 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagffrd.c
     31  *
     32  * code for creating fault-free read DAGs
     33  *
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: rf_dagffrd.c,v 1.11 2004/01/10 00:56:27 oster Exp $");
     38 
     39 #include <dev/raidframe/raidframevar.h>
     40 
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_general.h"
     47 #include "rf_dagffrd.h"
     48 
     49 /******************************************************************************
     50  *
     51  * General comments on DAG creation:
     52  *
     53  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     54  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     55  * is reached, the execution engine will halt forward execution and work
     56  * backward through the graph, executing the undo functions.  Assuming that
     57  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     58  * does not make changes to permanent state, the graph will fail atomically.
     59  * If an error occurs after the Cmt node executes, the engine will roll-forward
     60  * through the graph, blindly executing nodes until it reaches the end.
     61  * If a graph reaches the end, it is assumed to have completed successfully.
     62  *
     63  * A graph has only 1 Cmt node.
     64  *
     65  */
     66 
     67 
     68 /******************************************************************************
     69  *
     70  * The following wrappers map the standard DAG creation interface to the
     71  * DAG creation routines.  Additionally, these wrappers enable experimentation
     72  * with new DAG structures by providing an extra level of indirection, allowing
     73  * the DAG creation routines to be replaced at this single point.
     74  */
     75 
     76 void
     77 rf_CreateFaultFreeReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
     78 			  RF_DagHeader_t *dag_h, void *bp,
     79 			  RF_RaidAccessFlags_t flags,
     80 			  RF_AllocListElem_t *allocList)
     81 {
     82 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     83 	    RF_IO_TYPE_READ);
     84 }
     85 
     86 
     87 /******************************************************************************
     88  *
     89  * DAG creation code begins here
     90  */
     91 
     92 /******************************************************************************
     93  *
     94  * creates a DAG to perform a nonredundant read or write of data within one
     95  * stripe.
     96  * For reads, this DAG is as follows:
     97  *
     98  *                   /---- read ----\
     99  *    Header -- Block ---- read ---- Commit -- Terminate
    100  *                   \---- read ----/
    101  *
    102  * For writes, this DAG is as follows:
    103  *
    104  *                    /---- write ----\
    105  *    Header -- Commit ---- write ---- Block -- Terminate
    106  *                    \---- write ----/
    107  *
    108  * There is one disk node per stripe unit accessed, and all disk nodes are in
    109  * parallel.
    110  *
    111  * Tricky point here:  The first disk node (read or write) is created
    112  * normally.  Subsequent disk nodes are created by copying the first one,
    113  * and modifying a few params.  The "succedents" and "antecedents" fields are
    114  * _not_ re-created in each node, but rather left pointing to the same array
    115  * that was malloc'd when the first node was created.  Thus, it's essential
    116  * that when this DAG is freed, the succedents and antecedents fields be freed
    117  * in ONLY ONE of the read nodes.  This does not apply to the "params" field
    118  * because it is recreated for each READ node.
    119  *
    120  * Note that normal-priority accesses do not need to be tagged with their
    121  * parity stripe ID, because they will never be promoted.  Hence, I've
    122  * commented-out the code to do this, and marked it with UNNEEDED.
    123  *
    124  *****************************************************************************/
    125 
    126 void
    127 rf_CreateNonredundantDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    128 			 RF_DagHeader_t *dag_h, void *bp,
    129 			 RF_RaidAccessFlags_t flags,
    130 			 RF_AllocListElem_t *allocList,
    131 			 RF_IoType_t type)
    132 {
    133 	RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode;
    134 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
    135 	int     (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    136 	int     i, n, totalNumNodes;
    137 	char   *name;
    138 
    139 	n = asmap->numStripeUnitsAccessed;
    140 	dag_h->creator = "NonredundantDAG";
    141 
    142 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    143 	switch (type) {
    144 	case RF_IO_TYPE_READ:
    145 		doFunc = rf_DiskReadFunc;
    146 		undoFunc = rf_DiskReadUndoFunc;
    147 		name = "R  ";
    148 		if (rf_dagDebug)
    149 			printf("[Creating non-redundant read DAG]\n");
    150 		break;
    151 	case RF_IO_TYPE_WRITE:
    152 		doFunc = rf_DiskWriteFunc;
    153 		undoFunc = rf_DiskWriteUndoFunc;
    154 		name = "W  ";
    155 		if (rf_dagDebug)
    156 			printf("[Creating non-redundant write DAG]\n");
    157 		break;
    158 	default:
    159 		RF_PANIC();
    160 	}
    161 
    162 	/*
    163          * For reads, the dag can not commit until the block node is reached.
    164          * for writes, the dag commits immediately.
    165          */
    166 	dag_h->numCommitNodes = 1;
    167 	dag_h->numCommits = 0;
    168 	dag_h->numSuccedents = 1;
    169 
    170 	/*
    171          * Node count:
    172          * 1 block node
    173          * n data reads (or writes)
    174          * 1 commit node
    175          * 1 terminator node
    176          */
    177 	RF_ASSERT(n > 0);
    178 	totalNumNodes = n + 3;
    179 	RF_MallocAndAdd(nodes, totalNumNodes * sizeof(RF_DagNode_t),
    180 	    (RF_DagNode_t *), allocList);
    181 	i = 0;
    182 	diskNodes = &nodes[i];
    183 	i += n;
    184 	blockNode = &nodes[i];
    185 	i += 1;
    186 	commitNode = &nodes[i];
    187 	i += 1;
    188 	termNode = &nodes[i];
    189 	i += 1;
    190 	RF_ASSERT(i == totalNumNodes);
    191 
    192 	/* initialize nodes */
    193 	switch (type) {
    194 	case RF_IO_TYPE_READ:
    195 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    196 		    NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
    197 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    198 		    NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
    199 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    200 		    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    201 		break;
    202 	case RF_IO_TYPE_WRITE:
    203 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    204 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    205 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    206 		    NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
    207 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    208 		    NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
    209 		break;
    210 	default:
    211 		RF_PANIC();
    212 	}
    213 
    214 	for (i = 0; i < n; i++) {
    215 		RF_ASSERT(pda != NULL);
    216 		rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
    217 		    1, 1, 4, 0, dag_h, name, allocList);
    218 		diskNodes[i].params[0].p = pda;
    219 		diskNodes[i].params[1].p = pda->bufPtr;
    220 		/* parity stripe id is not necessary */
    221 		diskNodes[i].params[2].v = 0;
    222 		diskNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
    223 		pda = pda->next;
    224 	}
    225 
    226 	/*
    227          * Connect nodes.
    228          */
    229 
    230 	/* connect hdr to block node */
    231 	RF_ASSERT(blockNode->numAntecedents == 0);
    232 	dag_h->succedents[0] = blockNode;
    233 
    234 	if (type == RF_IO_TYPE_READ) {
    235 		/* connecting a nonredundant read DAG */
    236 		RF_ASSERT(blockNode->numSuccedents == n);
    237 		RF_ASSERT(commitNode->numAntecedents == n);
    238 		for (i = 0; i < n; i++) {
    239 			/* connect block node to each read node */
    240 			RF_ASSERT(diskNodes[i].numAntecedents == 1);
    241 			blockNode->succedents[i] = &diskNodes[i];
    242 			diskNodes[i].antecedents[0] = blockNode;
    243 			diskNodes[i].antType[0] = rf_control;
    244 
    245 			/* connect each read node to the commit node */
    246 			RF_ASSERT(diskNodes[i].numSuccedents == 1);
    247 			diskNodes[i].succedents[0] = commitNode;
    248 			commitNode->antecedents[i] = &diskNodes[i];
    249 			commitNode->antType[i] = rf_control;
    250 		}
    251 		/* connect the commit node to the term node */
    252 		RF_ASSERT(commitNode->numSuccedents == 1);
    253 		RF_ASSERT(termNode->numAntecedents == 1);
    254 		RF_ASSERT(termNode->numSuccedents == 0);
    255 		commitNode->succedents[0] = termNode;
    256 		termNode->antecedents[0] = commitNode;
    257 		termNode->antType[0] = rf_control;
    258 	} else {
    259 		/* connecting a nonredundant write DAG */
    260 		/* connect the block node to the commit node */
    261 		RF_ASSERT(blockNode->numSuccedents == 1);
    262 		RF_ASSERT(commitNode->numAntecedents == 1);
    263 		blockNode->succedents[0] = commitNode;
    264 		commitNode->antecedents[0] = blockNode;
    265 		commitNode->antType[0] = rf_control;
    266 
    267 		RF_ASSERT(commitNode->numSuccedents == n);
    268 		RF_ASSERT(termNode->numAntecedents == n);
    269 		RF_ASSERT(termNode->numSuccedents == 0);
    270 		for (i = 0; i < n; i++) {
    271 			/* connect the commit node to each write node */
    272 			RF_ASSERT(diskNodes[i].numAntecedents == 1);
    273 			commitNode->succedents[i] = &diskNodes[i];
    274 			diskNodes[i].antecedents[0] = commitNode;
    275 			diskNodes[i].antType[0] = rf_control;
    276 
    277 			/* connect each write node to the term node */
    278 			RF_ASSERT(diskNodes[i].numSuccedents == 1);
    279 			diskNodes[i].succedents[0] = termNode;
    280 			termNode->antecedents[i] = &diskNodes[i];
    281 			termNode->antType[i] = rf_control;
    282 		}
    283 	}
    284 }
    285 /******************************************************************************
    286  * Create a fault-free read DAG for RAID level 1
    287  *
    288  * Hdr -> Nil -> Rmir -> Cmt -> Trm
    289  *
    290  * The "Rmir" node schedules a read from the disk in the mirror pair with the
    291  * shortest disk queue.  the proper queue is selected at Rmir execution.  this
    292  * deferred mapping is unlike other archs in RAIDframe which generally fix
    293  * mapping at DAG creation time.
    294  *
    295  * Parameters:  raidPtr   - description of the physical array
    296  *              asmap     - logical & physical addresses for this access
    297  *              bp        - buffer ptr (for holding read data)
    298  *              flags     - general flags (e.g. disk locking)
    299  *              allocList - list of memory allocated in DAG creation
    300  *****************************************************************************/
    301 
    302 static void
    303 CreateMirrorReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    304 		    RF_DagHeader_t *dag_h, void *bp,
    305 		    RF_RaidAccessFlags_t flags,
    306 		    RF_AllocListElem_t *allocList,
    307 		    int (*readfunc) (RF_DagNode_t * node))
    308 {
    309 	RF_DagNode_t *readNodes, *nodes, *blockNode, *commitNode, *termNode;
    310 	RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
    311 	RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
    312 	int     i, n, totalNumNodes;
    313 
    314 	n = asmap->numStripeUnitsAccessed;
    315 	dag_h->creator = "RaidOneReadDAG";
    316 	if (rf_dagDebug) {
    317 		printf("[Creating RAID level 1 read DAG]\n");
    318 	}
    319 	/*
    320          * This dag can not commit until the commit node is reached
    321          * errors prior to the commit point imply the dag has failed.
    322          */
    323 	dag_h->numCommitNodes = 1;
    324 	dag_h->numCommits = 0;
    325 	dag_h->numSuccedents = 1;
    326 
    327 	/*
    328          * Node count:
    329          * n data reads
    330          * 1 block node
    331          * 1 commit node
    332          * 1 terminator node
    333          */
    334 	RF_ASSERT(n > 0);
    335 	totalNumNodes = n + 3;
    336 	RF_MallocAndAdd(nodes, totalNumNodes * sizeof(RF_DagNode_t),
    337 	    (RF_DagNode_t *), allocList);
    338 	i = 0;
    339 	readNodes = &nodes[i];
    340 	i += n;
    341 	blockNode = &nodes[i];
    342 	i += 1;
    343 	commitNode = &nodes[i];
    344 	i += 1;
    345 	termNode = &nodes[i];
    346 	i += 1;
    347 	RF_ASSERT(i == totalNumNodes);
    348 
    349 	/* initialize nodes */
    350 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
    351 	    rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
    352 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
    353 	    rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
    354 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
    355 	    rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    356 
    357 	for (i = 0; i < n; i++) {
    358 		RF_ASSERT(data_pda != NULL);
    359 		RF_ASSERT(parity_pda != NULL);
    360 		rf_InitNode(&readNodes[i], rf_wait, RF_FALSE, readfunc,
    361 		    rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
    362 		    "Rmir", allocList);
    363 		readNodes[i].params[0].p = data_pda;
    364 		readNodes[i].params[1].p = data_pda->bufPtr;
    365 		/* parity stripe id is not necessary */
    366 		readNodes[i].params[2].p = 0;
    367 		readNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
    368 		readNodes[i].params[4].p = parity_pda;
    369 		data_pda = data_pda->next;
    370 		parity_pda = parity_pda->next;
    371 	}
    372 
    373 	/*
    374          * Connect nodes
    375          */
    376 
    377 	/* connect hdr to block node */
    378 	RF_ASSERT(blockNode->numAntecedents == 0);
    379 	dag_h->succedents[0] = blockNode;
    380 
    381 	/* connect block node to read nodes */
    382 	RF_ASSERT(blockNode->numSuccedents == n);
    383 	for (i = 0; i < n; i++) {
    384 		RF_ASSERT(readNodes[i].numAntecedents == 1);
    385 		blockNode->succedents[i] = &readNodes[i];
    386 		readNodes[i].antecedents[0] = blockNode;
    387 		readNodes[i].antType[0] = rf_control;
    388 	}
    389 
    390 	/* connect read nodes to commit node */
    391 	RF_ASSERT(commitNode->numAntecedents == n);
    392 	for (i = 0; i < n; i++) {
    393 		RF_ASSERT(readNodes[i].numSuccedents == 1);
    394 		readNodes[i].succedents[0] = commitNode;
    395 		commitNode->antecedents[i] = &readNodes[i];
    396 		commitNode->antType[i] = rf_control;
    397 	}
    398 
    399 	/* connect commit node to term node */
    400 	RF_ASSERT(commitNode->numSuccedents == 1);
    401 	RF_ASSERT(termNode->numAntecedents == 1);
    402 	RF_ASSERT(termNode->numSuccedents == 0);
    403 	commitNode->succedents[0] = termNode;
    404 	termNode->antecedents[0] = commitNode;
    405 	termNode->antType[0] = rf_control;
    406 }
    407 
    408 void
    409 rf_CreateMirrorIdleReadDAG(
    410     RF_Raid_t * raidPtr,
    411     RF_AccessStripeMap_t * asmap,
    412     RF_DagHeader_t * dag_h,
    413     void *bp,
    414     RF_RaidAccessFlags_t flags,
    415     RF_AllocListElem_t * allocList)
    416 {
    417 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    418 	    rf_DiskReadMirrorIdleFunc);
    419 }
    420 
    421 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0)
    422 
    423 void
    424 rf_CreateMirrorPartitionReadDAG(RF_Raid_t *raidPtr,
    425 				RF_AccessStripeMap_t *asmap,
    426 				RF_DagHeader_t *dag_h, void *bp,
    427 				RF_RaidAccessFlags_t flags,
    428 				RF_AllocListElem_t *allocList)
    429 {
    430 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    431 	    rf_DiskReadMirrorPartitionFunc);
    432 }
    433 #endif
    434