rf_dagffrd.c revision 1.3 1 /* $NetBSD: rf_dagffrd.c,v 1.3 1999/02/05 00:06:07 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * rf_dagffrd.c
31 *
32 * code for creating fault-free read DAGs
33 *
34 */
35
36 #include "rf_types.h"
37 #include "rf_raid.h"
38 #include "rf_dag.h"
39 #include "rf_dagutils.h"
40 #include "rf_dagfuncs.h"
41 #include "rf_threadid.h"
42 #include "rf_debugMem.h"
43 #include "rf_memchunk.h"
44 #include "rf_general.h"
45 #include "rf_dagffrd.h"
46
47 /******************************************************************************
48 *
49 * General comments on DAG creation:
50 *
51 * All DAGs in this file use roll-away error recovery. Each DAG has a single
52 * commit node, usually called "Cmt." If an error occurs before the Cmt node
53 * is reached, the execution engine will halt forward execution and work
54 * backward through the graph, executing the undo functions. Assuming that
55 * each node in the graph prior to the Cmt node are undoable and atomic - or -
56 * does not make changes to permanent state, the graph will fail atomically.
57 * If an error occurs after the Cmt node executes, the engine will roll-forward
58 * through the graph, blindly executing nodes until it reaches the end.
59 * If a graph reaches the end, it is assumed to have completed successfully.
60 *
61 * A graph has only 1 Cmt node.
62 *
63 */
64
65
66 /******************************************************************************
67 *
68 * The following wrappers map the standard DAG creation interface to the
69 * DAG creation routines. Additionally, these wrappers enable experimentation
70 * with new DAG structures by providing an extra level of indirection, allowing
71 * the DAG creation routines to be replaced at this single point.
72 */
73
74 void
75 rf_CreateFaultFreeReadDAG(
76 RF_Raid_t * raidPtr,
77 RF_AccessStripeMap_t * asmap,
78 RF_DagHeader_t * dag_h,
79 void *bp,
80 RF_RaidAccessFlags_t flags,
81 RF_AllocListElem_t * allocList)
82 {
83 rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
84 RF_IO_TYPE_READ);
85 }
86
87
88 /******************************************************************************
89 *
90 * DAG creation code begins here
91 */
92
93 /******************************************************************************
94 *
95 * creates a DAG to perform a nonredundant read or write of data within one
96 * stripe.
97 * For reads, this DAG is as follows:
98 *
99 * /---- read ----\
100 * Header -- Block ---- read ---- Commit -- Terminate
101 * \---- read ----/
102 *
103 * For writes, this DAG is as follows:
104 *
105 * /---- write ----\
106 * Header -- Commit ---- write ---- Block -- Terminate
107 * \---- write ----/
108 *
109 * There is one disk node per stripe unit accessed, and all disk nodes are in
110 * parallel.
111 *
112 * Tricky point here: The first disk node (read or write) is created
113 * normally. Subsequent disk nodes are created by copying the first one,
114 * and modifying a few params. The "succedents" and "antecedents" fields are
115 * _not_ re-created in each node, but rather left pointing to the same array
116 * that was malloc'd when the first node was created. Thus, it's essential
117 * that when this DAG is freed, the succedents and antecedents fields be freed
118 * in ONLY ONE of the read nodes. This does not apply to the "params" field
119 * because it is recreated for each READ node.
120 *
121 * Note that normal-priority accesses do not need to be tagged with their
122 * parity stripe ID, because they will never be promoted. Hence, I've
123 * commented-out the code to do this, and marked it with UNNEEDED.
124 *
125 *****************************************************************************/
126
127 void
128 rf_CreateNonredundantDAG(
129 RF_Raid_t * raidPtr,
130 RF_AccessStripeMap_t * asmap,
131 RF_DagHeader_t * dag_h,
132 void *bp,
133 RF_RaidAccessFlags_t flags,
134 RF_AllocListElem_t * allocList,
135 RF_IoType_t type)
136 {
137 RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode;
138 RF_PhysDiskAddr_t *pda = asmap->physInfo;
139 int (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
140 int i, n, totalNumNodes;
141 char *name;
142
143 n = asmap->numStripeUnitsAccessed;
144 dag_h->creator = "NonredundantDAG";
145
146 RF_ASSERT(RF_IO_IS_R_OR_W(type));
147 switch (type) {
148 case RF_IO_TYPE_READ:
149 doFunc = rf_DiskReadFunc;
150 undoFunc = rf_DiskReadUndoFunc;
151 name = "R ";
152 if (rf_dagDebug)
153 printf("[Creating non-redundant read DAG]\n");
154 break;
155 case RF_IO_TYPE_WRITE:
156 doFunc = rf_DiskWriteFunc;
157 undoFunc = rf_DiskWriteUndoFunc;
158 name = "W ";
159 if (rf_dagDebug)
160 printf("[Creating non-redundant write DAG]\n");
161 break;
162 default:
163 RF_PANIC();
164 }
165
166 /*
167 * For reads, the dag can not commit until the block node is reached.
168 * for writes, the dag commits immediately.
169 */
170 dag_h->numCommitNodes = 1;
171 dag_h->numCommits = 0;
172 dag_h->numSuccedents = 1;
173
174 /*
175 * Node count:
176 * 1 block node
177 * n data reads (or writes)
178 * 1 commit node
179 * 1 terminator node
180 */
181 RF_ASSERT(n > 0);
182 totalNumNodes = n + 3;
183 RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
184 (RF_DagNode_t *), allocList);
185 i = 0;
186 diskNodes = &nodes[i];
187 i += n;
188 blockNode = &nodes[i];
189 i += 1;
190 commitNode = &nodes[i];
191 i += 1;
192 termNode = &nodes[i];
193 i += 1;
194 RF_ASSERT(i == totalNumNodes);
195
196 /* initialize nodes */
197 switch (type) {
198 case RF_IO_TYPE_READ:
199 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
200 NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
201 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
202 NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
203 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
204 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
205 break;
206 case RF_IO_TYPE_WRITE:
207 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
208 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
209 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
210 NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
211 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
212 NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
213 break;
214 default:
215 RF_PANIC();
216 }
217
218 for (i = 0; i < n; i++) {
219 RF_ASSERT(pda != NULL);
220 rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
221 1, 1, 4, 0, dag_h, name, allocList);
222 diskNodes[i].params[0].p = pda;
223 diskNodes[i].params[1].p = pda->bufPtr;
224 /* parity stripe id is not necessary */
225 diskNodes[i].params[2].v = 0;
226 diskNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
227 pda = pda->next;
228 }
229
230 /*
231 * Connect nodes.
232 */
233
234 /* connect hdr to block node */
235 RF_ASSERT(blockNode->numAntecedents == 0);
236 dag_h->succedents[0] = blockNode;
237
238 if (type == RF_IO_TYPE_READ) {
239 /* connecting a nonredundant read DAG */
240 RF_ASSERT(blockNode->numSuccedents == n);
241 RF_ASSERT(commitNode->numAntecedents == n);
242 for (i = 0; i < n; i++) {
243 /* connect block node to each read node */
244 RF_ASSERT(diskNodes[i].numAntecedents == 1);
245 blockNode->succedents[i] = &diskNodes[i];
246 diskNodes[i].antecedents[0] = blockNode;
247 diskNodes[i].antType[0] = rf_control;
248
249 /* connect each read node to the commit node */
250 RF_ASSERT(diskNodes[i].numSuccedents == 1);
251 diskNodes[i].succedents[0] = commitNode;
252 commitNode->antecedents[i] = &diskNodes[i];
253 commitNode->antType[i] = rf_control;
254 }
255 /* connect the commit node to the term node */
256 RF_ASSERT(commitNode->numSuccedents == 1);
257 RF_ASSERT(termNode->numAntecedents == 1);
258 RF_ASSERT(termNode->numSuccedents == 0);
259 commitNode->succedents[0] = termNode;
260 termNode->antecedents[0] = commitNode;
261 termNode->antType[0] = rf_control;
262 } else {
263 /* connecting a nonredundant write DAG */
264 /* connect the block node to the commit node */
265 RF_ASSERT(blockNode->numSuccedents == 1);
266 RF_ASSERT(commitNode->numAntecedents == 1);
267 blockNode->succedents[0] = commitNode;
268 commitNode->antecedents[0] = blockNode;
269 commitNode->antType[0] = rf_control;
270
271 RF_ASSERT(commitNode->numSuccedents == n);
272 RF_ASSERT(termNode->numAntecedents == n);
273 RF_ASSERT(termNode->numSuccedents == 0);
274 for (i = 0; i < n; i++) {
275 /* connect the commit node to each write node */
276 RF_ASSERT(diskNodes[i].numAntecedents == 1);
277 commitNode->succedents[i] = &diskNodes[i];
278 diskNodes[i].antecedents[0] = commitNode;
279 diskNodes[i].antType[0] = rf_control;
280
281 /* connect each write node to the term node */
282 RF_ASSERT(diskNodes[i].numSuccedents == 1);
283 diskNodes[i].succedents[0] = termNode;
284 termNode->antecedents[i] = &diskNodes[i];
285 termNode->antType[i] = rf_control;
286 }
287 }
288 }
289 /******************************************************************************
290 * Create a fault-free read DAG for RAID level 1
291 *
292 * Hdr -> Nil -> Rmir -> Cmt -> Trm
293 *
294 * The "Rmir" node schedules a read from the disk in the mirror pair with the
295 * shortest disk queue. the proper queue is selected at Rmir execution. this
296 * deferred mapping is unlike other archs in RAIDframe which generally fix
297 * mapping at DAG creation time.
298 *
299 * Parameters: raidPtr - description of the physical array
300 * asmap - logical & physical addresses for this access
301 * bp - buffer ptr (for holding read data)
302 * flags - general flags (e.g. disk locking)
303 * allocList - list of memory allocated in DAG creation
304 *****************************************************************************/
305
306 static void
307 CreateMirrorReadDAG(
308 RF_Raid_t * raidPtr,
309 RF_AccessStripeMap_t * asmap,
310 RF_DagHeader_t * dag_h,
311 void *bp,
312 RF_RaidAccessFlags_t flags,
313 RF_AllocListElem_t * allocList,
314 int (*readfunc) (RF_DagNode_t * node))
315 {
316 RF_DagNode_t *readNodes, *nodes, *blockNode, *commitNode, *termNode;
317 RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
318 RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
319 int i, n, totalNumNodes;
320
321 n = asmap->numStripeUnitsAccessed;
322 dag_h->creator = "RaidOneReadDAG";
323 if (rf_dagDebug) {
324 printf("[Creating RAID level 1 read DAG]\n");
325 }
326 /*
327 * This dag can not commit until the commit node is reached
328 * errors prior to the commit point imply the dag has failed.
329 */
330 dag_h->numCommitNodes = 1;
331 dag_h->numCommits = 0;
332 dag_h->numSuccedents = 1;
333
334 /*
335 * Node count:
336 * n data reads
337 * 1 block node
338 * 1 commit node
339 * 1 terminator node
340 */
341 RF_ASSERT(n > 0);
342 totalNumNodes = n + 3;
343 RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
344 (RF_DagNode_t *), allocList);
345 i = 0;
346 readNodes = &nodes[i];
347 i += n;
348 blockNode = &nodes[i];
349 i += 1;
350 commitNode = &nodes[i];
351 i += 1;
352 termNode = &nodes[i];
353 i += 1;
354 RF_ASSERT(i == totalNumNodes);
355
356 /* initialize nodes */
357 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
358 rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
359 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
360 rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
361 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
362 rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
363
364 for (i = 0; i < n; i++) {
365 RF_ASSERT(data_pda != NULL);
366 RF_ASSERT(parity_pda != NULL);
367 rf_InitNode(&readNodes[i], rf_wait, RF_FALSE, readfunc,
368 rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
369 "Rmir", allocList);
370 readNodes[i].params[0].p = data_pda;
371 readNodes[i].params[1].p = data_pda->bufPtr;
372 /* parity stripe id is not necessary */
373 readNodes[i].params[2].p = 0;
374 readNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
375 readNodes[i].params[4].p = parity_pda;
376 data_pda = data_pda->next;
377 parity_pda = parity_pda->next;
378 }
379
380 /*
381 * Connect nodes
382 */
383
384 /* connect hdr to block node */
385 RF_ASSERT(blockNode->numAntecedents == 0);
386 dag_h->succedents[0] = blockNode;
387
388 /* connect block node to read nodes */
389 RF_ASSERT(blockNode->numSuccedents == n);
390 for (i = 0; i < n; i++) {
391 RF_ASSERT(readNodes[i].numAntecedents == 1);
392 blockNode->succedents[i] = &readNodes[i];
393 readNodes[i].antecedents[0] = blockNode;
394 readNodes[i].antType[0] = rf_control;
395 }
396
397 /* connect read nodes to commit node */
398 RF_ASSERT(commitNode->numAntecedents == n);
399 for (i = 0; i < n; i++) {
400 RF_ASSERT(readNodes[i].numSuccedents == 1);
401 readNodes[i].succedents[0] = commitNode;
402 commitNode->antecedents[i] = &readNodes[i];
403 commitNode->antType[i] = rf_control;
404 }
405
406 /* connect commit node to term node */
407 RF_ASSERT(commitNode->numSuccedents == 1);
408 RF_ASSERT(termNode->numAntecedents == 1);
409 RF_ASSERT(termNode->numSuccedents == 0);
410 commitNode->succedents[0] = termNode;
411 termNode->antecedents[0] = commitNode;
412 termNode->antType[0] = rf_control;
413 }
414
415 void
416 rf_CreateMirrorIdleReadDAG(
417 RF_Raid_t * raidPtr,
418 RF_AccessStripeMap_t * asmap,
419 RF_DagHeader_t * dag_h,
420 void *bp,
421 RF_RaidAccessFlags_t flags,
422 RF_AllocListElem_t * allocList)
423 {
424 CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
425 rf_DiskReadMirrorIdleFunc);
426 }
427
428 void
429 rf_CreateMirrorPartitionReadDAG(
430 RF_Raid_t * raidPtr,
431 RF_AccessStripeMap_t * asmap,
432 RF_DagHeader_t * dag_h,
433 void *bp,
434 RF_RaidAccessFlags_t flags,
435 RF_AllocListElem_t * allocList)
436 {
437 CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
438 rf_DiskReadMirrorPartitionFunc);
439 }
440