Home | History | Annotate | Line # | Download | only in raidframe
rf_dagffrd.c revision 1.4
      1 /*	$NetBSD: rf_dagffrd.c,v 1.4 2000/01/07 03:40:58 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagffrd.c
     31  *
     32  * code for creating fault-free read DAGs
     33  *
     34  */
     35 
     36 #include "rf_types.h"
     37 #include "rf_raid.h"
     38 #include "rf_dag.h"
     39 #include "rf_dagutils.h"
     40 #include "rf_dagfuncs.h"
     41 #include "rf_debugMem.h"
     42 #include "rf_memchunk.h"
     43 #include "rf_general.h"
     44 #include "rf_dagffrd.h"
     45 
     46 /******************************************************************************
     47  *
     48  * General comments on DAG creation:
     49  *
     50  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     51  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     52  * is reached, the execution engine will halt forward execution and work
     53  * backward through the graph, executing the undo functions.  Assuming that
     54  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     55  * does not make changes to permanent state, the graph will fail atomically.
     56  * If an error occurs after the Cmt node executes, the engine will roll-forward
     57  * through the graph, blindly executing nodes until it reaches the end.
     58  * If a graph reaches the end, it is assumed to have completed successfully.
     59  *
     60  * A graph has only 1 Cmt node.
     61  *
     62  */
     63 
     64 
     65 /******************************************************************************
     66  *
     67  * The following wrappers map the standard DAG creation interface to the
     68  * DAG creation routines.  Additionally, these wrappers enable experimentation
     69  * with new DAG structures by providing an extra level of indirection, allowing
     70  * the DAG creation routines to be replaced at this single point.
     71  */
     72 
     73 void
     74 rf_CreateFaultFreeReadDAG(
     75     RF_Raid_t * raidPtr,
     76     RF_AccessStripeMap_t * asmap,
     77     RF_DagHeader_t * dag_h,
     78     void *bp,
     79     RF_RaidAccessFlags_t flags,
     80     RF_AllocListElem_t * allocList)
     81 {
     82 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     83 	    RF_IO_TYPE_READ);
     84 }
     85 
     86 
     87 /******************************************************************************
     88  *
     89  * DAG creation code begins here
     90  */
     91 
     92 /******************************************************************************
     93  *
     94  * creates a DAG to perform a nonredundant read or write of data within one
     95  * stripe.
     96  * For reads, this DAG is as follows:
     97  *
     98  *                   /---- read ----\
     99  *    Header -- Block ---- read ---- Commit -- Terminate
    100  *                   \---- read ----/
    101  *
    102  * For writes, this DAG is as follows:
    103  *
    104  *                    /---- write ----\
    105  *    Header -- Commit ---- write ---- Block -- Terminate
    106  *                    \---- write ----/
    107  *
    108  * There is one disk node per stripe unit accessed, and all disk nodes are in
    109  * parallel.
    110  *
    111  * Tricky point here:  The first disk node (read or write) is created
    112  * normally.  Subsequent disk nodes are created by copying the first one,
    113  * and modifying a few params.  The "succedents" and "antecedents" fields are
    114  * _not_ re-created in each node, but rather left pointing to the same array
    115  * that was malloc'd when the first node was created.  Thus, it's essential
    116  * that when this DAG is freed, the succedents and antecedents fields be freed
    117  * in ONLY ONE of the read nodes.  This does not apply to the "params" field
    118  * because it is recreated for each READ node.
    119  *
    120  * Note that normal-priority accesses do not need to be tagged with their
    121  * parity stripe ID, because they will never be promoted.  Hence, I've
    122  * commented-out the code to do this, and marked it with UNNEEDED.
    123  *
    124  *****************************************************************************/
    125 
    126 void
    127 rf_CreateNonredundantDAG(
    128     RF_Raid_t * raidPtr,
    129     RF_AccessStripeMap_t * asmap,
    130     RF_DagHeader_t * dag_h,
    131     void *bp,
    132     RF_RaidAccessFlags_t flags,
    133     RF_AllocListElem_t * allocList,
    134     RF_IoType_t type)
    135 {
    136 	RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode;
    137 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
    138 	int     (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    139 	int     i, n, totalNumNodes;
    140 	char   *name;
    141 
    142 	n = asmap->numStripeUnitsAccessed;
    143 	dag_h->creator = "NonredundantDAG";
    144 
    145 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    146 	switch (type) {
    147 	case RF_IO_TYPE_READ:
    148 		doFunc = rf_DiskReadFunc;
    149 		undoFunc = rf_DiskReadUndoFunc;
    150 		name = "R  ";
    151 		if (rf_dagDebug)
    152 			printf("[Creating non-redundant read DAG]\n");
    153 		break;
    154 	case RF_IO_TYPE_WRITE:
    155 		doFunc = rf_DiskWriteFunc;
    156 		undoFunc = rf_DiskWriteUndoFunc;
    157 		name = "W  ";
    158 		if (rf_dagDebug)
    159 			printf("[Creating non-redundant write DAG]\n");
    160 		break;
    161 	default:
    162 		RF_PANIC();
    163 	}
    164 
    165 	/*
    166          * For reads, the dag can not commit until the block node is reached.
    167          * for writes, the dag commits immediately.
    168          */
    169 	dag_h->numCommitNodes = 1;
    170 	dag_h->numCommits = 0;
    171 	dag_h->numSuccedents = 1;
    172 
    173 	/*
    174          * Node count:
    175          * 1 block node
    176          * n data reads (or writes)
    177          * 1 commit node
    178          * 1 terminator node
    179          */
    180 	RF_ASSERT(n > 0);
    181 	totalNumNodes = n + 3;
    182 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
    183 	    (RF_DagNode_t *), allocList);
    184 	i = 0;
    185 	diskNodes = &nodes[i];
    186 	i += n;
    187 	blockNode = &nodes[i];
    188 	i += 1;
    189 	commitNode = &nodes[i];
    190 	i += 1;
    191 	termNode = &nodes[i];
    192 	i += 1;
    193 	RF_ASSERT(i == totalNumNodes);
    194 
    195 	/* initialize nodes */
    196 	switch (type) {
    197 	case RF_IO_TYPE_READ:
    198 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    199 		    NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
    200 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    201 		    NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
    202 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    203 		    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    204 		break;
    205 	case RF_IO_TYPE_WRITE:
    206 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    207 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    208 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    209 		    NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
    210 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    211 		    NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
    212 		break;
    213 	default:
    214 		RF_PANIC();
    215 	}
    216 
    217 	for (i = 0; i < n; i++) {
    218 		RF_ASSERT(pda != NULL);
    219 		rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
    220 		    1, 1, 4, 0, dag_h, name, allocList);
    221 		diskNodes[i].params[0].p = pda;
    222 		diskNodes[i].params[1].p = pda->bufPtr;
    223 		/* parity stripe id is not necessary */
    224 		diskNodes[i].params[2].v = 0;
    225 		diskNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
    226 		pda = pda->next;
    227 	}
    228 
    229 	/*
    230          * Connect nodes.
    231          */
    232 
    233 	/* connect hdr to block node */
    234 	RF_ASSERT(blockNode->numAntecedents == 0);
    235 	dag_h->succedents[0] = blockNode;
    236 
    237 	if (type == RF_IO_TYPE_READ) {
    238 		/* connecting a nonredundant read DAG */
    239 		RF_ASSERT(blockNode->numSuccedents == n);
    240 		RF_ASSERT(commitNode->numAntecedents == n);
    241 		for (i = 0; i < n; i++) {
    242 			/* connect block node to each read node */
    243 			RF_ASSERT(diskNodes[i].numAntecedents == 1);
    244 			blockNode->succedents[i] = &diskNodes[i];
    245 			diskNodes[i].antecedents[0] = blockNode;
    246 			diskNodes[i].antType[0] = rf_control;
    247 
    248 			/* connect each read node to the commit node */
    249 			RF_ASSERT(diskNodes[i].numSuccedents == 1);
    250 			diskNodes[i].succedents[0] = commitNode;
    251 			commitNode->antecedents[i] = &diskNodes[i];
    252 			commitNode->antType[i] = rf_control;
    253 		}
    254 		/* connect the commit node to the term node */
    255 		RF_ASSERT(commitNode->numSuccedents == 1);
    256 		RF_ASSERT(termNode->numAntecedents == 1);
    257 		RF_ASSERT(termNode->numSuccedents == 0);
    258 		commitNode->succedents[0] = termNode;
    259 		termNode->antecedents[0] = commitNode;
    260 		termNode->antType[0] = rf_control;
    261 	} else {
    262 		/* connecting a nonredundant write DAG */
    263 		/* connect the block node to the commit node */
    264 		RF_ASSERT(blockNode->numSuccedents == 1);
    265 		RF_ASSERT(commitNode->numAntecedents == 1);
    266 		blockNode->succedents[0] = commitNode;
    267 		commitNode->antecedents[0] = blockNode;
    268 		commitNode->antType[0] = rf_control;
    269 
    270 		RF_ASSERT(commitNode->numSuccedents == n);
    271 		RF_ASSERT(termNode->numAntecedents == n);
    272 		RF_ASSERT(termNode->numSuccedents == 0);
    273 		for (i = 0; i < n; i++) {
    274 			/* connect the commit node to each write node */
    275 			RF_ASSERT(diskNodes[i].numAntecedents == 1);
    276 			commitNode->succedents[i] = &diskNodes[i];
    277 			diskNodes[i].antecedents[0] = commitNode;
    278 			diskNodes[i].antType[0] = rf_control;
    279 
    280 			/* connect each write node to the term node */
    281 			RF_ASSERT(diskNodes[i].numSuccedents == 1);
    282 			diskNodes[i].succedents[0] = termNode;
    283 			termNode->antecedents[i] = &diskNodes[i];
    284 			termNode->antType[i] = rf_control;
    285 		}
    286 	}
    287 }
    288 /******************************************************************************
    289  * Create a fault-free read DAG for RAID level 1
    290  *
    291  * Hdr -> Nil -> Rmir -> Cmt -> Trm
    292  *
    293  * The "Rmir" node schedules a read from the disk in the mirror pair with the
    294  * shortest disk queue.  the proper queue is selected at Rmir execution.  this
    295  * deferred mapping is unlike other archs in RAIDframe which generally fix
    296  * mapping at DAG creation time.
    297  *
    298  * Parameters:  raidPtr   - description of the physical array
    299  *              asmap     - logical & physical addresses for this access
    300  *              bp        - buffer ptr (for holding read data)
    301  *              flags     - general flags (e.g. disk locking)
    302  *              allocList - list of memory allocated in DAG creation
    303  *****************************************************************************/
    304 
    305 static void
    306 CreateMirrorReadDAG(
    307     RF_Raid_t * raidPtr,
    308     RF_AccessStripeMap_t * asmap,
    309     RF_DagHeader_t * dag_h,
    310     void *bp,
    311     RF_RaidAccessFlags_t flags,
    312     RF_AllocListElem_t * allocList,
    313     int (*readfunc) (RF_DagNode_t * node))
    314 {
    315 	RF_DagNode_t *readNodes, *nodes, *blockNode, *commitNode, *termNode;
    316 	RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
    317 	RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
    318 	int     i, n, totalNumNodes;
    319 
    320 	n = asmap->numStripeUnitsAccessed;
    321 	dag_h->creator = "RaidOneReadDAG";
    322 	if (rf_dagDebug) {
    323 		printf("[Creating RAID level 1 read DAG]\n");
    324 	}
    325 	/*
    326          * This dag can not commit until the commit node is reached
    327          * errors prior to the commit point imply the dag has failed.
    328          */
    329 	dag_h->numCommitNodes = 1;
    330 	dag_h->numCommits = 0;
    331 	dag_h->numSuccedents = 1;
    332 
    333 	/*
    334          * Node count:
    335          * n data reads
    336          * 1 block node
    337          * 1 commit node
    338          * 1 terminator node
    339          */
    340 	RF_ASSERT(n > 0);
    341 	totalNumNodes = n + 3;
    342 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
    343 	    (RF_DagNode_t *), allocList);
    344 	i = 0;
    345 	readNodes = &nodes[i];
    346 	i += n;
    347 	blockNode = &nodes[i];
    348 	i += 1;
    349 	commitNode = &nodes[i];
    350 	i += 1;
    351 	termNode = &nodes[i];
    352 	i += 1;
    353 	RF_ASSERT(i == totalNumNodes);
    354 
    355 	/* initialize nodes */
    356 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
    357 	    rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
    358 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
    359 	    rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
    360 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
    361 	    rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    362 
    363 	for (i = 0; i < n; i++) {
    364 		RF_ASSERT(data_pda != NULL);
    365 		RF_ASSERT(parity_pda != NULL);
    366 		rf_InitNode(&readNodes[i], rf_wait, RF_FALSE, readfunc,
    367 		    rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
    368 		    "Rmir", allocList);
    369 		readNodes[i].params[0].p = data_pda;
    370 		readNodes[i].params[1].p = data_pda->bufPtr;
    371 		/* parity stripe id is not necessary */
    372 		readNodes[i].params[2].p = 0;
    373 		readNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
    374 		readNodes[i].params[4].p = parity_pda;
    375 		data_pda = data_pda->next;
    376 		parity_pda = parity_pda->next;
    377 	}
    378 
    379 	/*
    380          * Connect nodes
    381          */
    382 
    383 	/* connect hdr to block node */
    384 	RF_ASSERT(blockNode->numAntecedents == 0);
    385 	dag_h->succedents[0] = blockNode;
    386 
    387 	/* connect block node to read nodes */
    388 	RF_ASSERT(blockNode->numSuccedents == n);
    389 	for (i = 0; i < n; i++) {
    390 		RF_ASSERT(readNodes[i].numAntecedents == 1);
    391 		blockNode->succedents[i] = &readNodes[i];
    392 		readNodes[i].antecedents[0] = blockNode;
    393 		readNodes[i].antType[0] = rf_control;
    394 	}
    395 
    396 	/* connect read nodes to commit node */
    397 	RF_ASSERT(commitNode->numAntecedents == n);
    398 	for (i = 0; i < n; i++) {
    399 		RF_ASSERT(readNodes[i].numSuccedents == 1);
    400 		readNodes[i].succedents[0] = commitNode;
    401 		commitNode->antecedents[i] = &readNodes[i];
    402 		commitNode->antType[i] = rf_control;
    403 	}
    404 
    405 	/* connect commit node to term node */
    406 	RF_ASSERT(commitNode->numSuccedents == 1);
    407 	RF_ASSERT(termNode->numAntecedents == 1);
    408 	RF_ASSERT(termNode->numSuccedents == 0);
    409 	commitNode->succedents[0] = termNode;
    410 	termNode->antecedents[0] = commitNode;
    411 	termNode->antType[0] = rf_control;
    412 }
    413 
    414 void
    415 rf_CreateMirrorIdleReadDAG(
    416     RF_Raid_t * raidPtr,
    417     RF_AccessStripeMap_t * asmap,
    418     RF_DagHeader_t * dag_h,
    419     void *bp,
    420     RF_RaidAccessFlags_t flags,
    421     RF_AllocListElem_t * allocList)
    422 {
    423 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    424 	    rf_DiskReadMirrorIdleFunc);
    425 }
    426 
    427 void
    428 rf_CreateMirrorPartitionReadDAG(
    429     RF_Raid_t * raidPtr,
    430     RF_AccessStripeMap_t * asmap,
    431     RF_DagHeader_t * dag_h,
    432     void *bp,
    433     RF_RaidAccessFlags_t flags,
    434     RF_AllocListElem_t * allocList)
    435 {
    436 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    437 	    rf_DiskReadMirrorPartitionFunc);
    438 }
    439