Home | History | Annotate | Line # | Download | only in raidframe
rf_dagffrd.c revision 1.4.6.2
      1 /*	$NetBSD: rf_dagffrd.c,v 1.4.6.2 2001/11/14 19:15:46 nathanw Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagffrd.c
     31  *
     32  * code for creating fault-free read DAGs
     33  *
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: rf_dagffrd.c,v 1.4.6.2 2001/11/14 19:15:46 nathanw Exp $");
     38 
     39 #include <dev/raidframe/raidframevar.h>
     40 
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_memchunk.h"
     47 #include "rf_general.h"
     48 #include "rf_dagffrd.h"
     49 
     50 /******************************************************************************
     51  *
     52  * General comments on DAG creation:
     53  *
     54  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     55  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     56  * is reached, the execution engine will halt forward execution and work
     57  * backward through the graph, executing the undo functions.  Assuming that
     58  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     59  * does not make changes to permanent state, the graph will fail atomically.
     60  * If an error occurs after the Cmt node executes, the engine will roll-forward
     61  * through the graph, blindly executing nodes until it reaches the end.
     62  * If a graph reaches the end, it is assumed to have completed successfully.
     63  *
     64  * A graph has only 1 Cmt node.
     65  *
     66  */
     67 
     68 
     69 /******************************************************************************
     70  *
     71  * The following wrappers map the standard DAG creation interface to the
     72  * DAG creation routines.  Additionally, these wrappers enable experimentation
     73  * with new DAG structures by providing an extra level of indirection, allowing
     74  * the DAG creation routines to be replaced at this single point.
     75  */
     76 
     77 void
     78 rf_CreateFaultFreeReadDAG(
     79     RF_Raid_t * raidPtr,
     80     RF_AccessStripeMap_t * asmap,
     81     RF_DagHeader_t * dag_h,
     82     void *bp,
     83     RF_RaidAccessFlags_t flags,
     84     RF_AllocListElem_t * allocList)
     85 {
     86 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     87 	    RF_IO_TYPE_READ);
     88 }
     89 
     90 
     91 /******************************************************************************
     92  *
     93  * DAG creation code begins here
     94  */
     95 
     96 /******************************************************************************
     97  *
     98  * creates a DAG to perform a nonredundant read or write of data within one
     99  * stripe.
    100  * For reads, this DAG is as follows:
    101  *
    102  *                   /---- read ----\
    103  *    Header -- Block ---- read ---- Commit -- Terminate
    104  *                   \---- read ----/
    105  *
    106  * For writes, this DAG is as follows:
    107  *
    108  *                    /---- write ----\
    109  *    Header -- Commit ---- write ---- Block -- Terminate
    110  *                    \---- write ----/
    111  *
    112  * There is one disk node per stripe unit accessed, and all disk nodes are in
    113  * parallel.
    114  *
    115  * Tricky point here:  The first disk node (read or write) is created
    116  * normally.  Subsequent disk nodes are created by copying the first one,
    117  * and modifying a few params.  The "succedents" and "antecedents" fields are
    118  * _not_ re-created in each node, but rather left pointing to the same array
    119  * that was malloc'd when the first node was created.  Thus, it's essential
    120  * that when this DAG is freed, the succedents and antecedents fields be freed
    121  * in ONLY ONE of the read nodes.  This does not apply to the "params" field
    122  * because it is recreated for each READ node.
    123  *
    124  * Note that normal-priority accesses do not need to be tagged with their
    125  * parity stripe ID, because they will never be promoted.  Hence, I've
    126  * commented-out the code to do this, and marked it with UNNEEDED.
    127  *
    128  *****************************************************************************/
    129 
    130 void
    131 rf_CreateNonredundantDAG(
    132     RF_Raid_t * raidPtr,
    133     RF_AccessStripeMap_t * asmap,
    134     RF_DagHeader_t * dag_h,
    135     void *bp,
    136     RF_RaidAccessFlags_t flags,
    137     RF_AllocListElem_t * allocList,
    138     RF_IoType_t type)
    139 {
    140 	RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode;
    141 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
    142 	int     (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    143 	int     i, n, totalNumNodes;
    144 	char   *name;
    145 
    146 	n = asmap->numStripeUnitsAccessed;
    147 	dag_h->creator = "NonredundantDAG";
    148 
    149 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    150 	switch (type) {
    151 	case RF_IO_TYPE_READ:
    152 		doFunc = rf_DiskReadFunc;
    153 		undoFunc = rf_DiskReadUndoFunc;
    154 		name = "R  ";
    155 		if (rf_dagDebug)
    156 			printf("[Creating non-redundant read DAG]\n");
    157 		break;
    158 	case RF_IO_TYPE_WRITE:
    159 		doFunc = rf_DiskWriteFunc;
    160 		undoFunc = rf_DiskWriteUndoFunc;
    161 		name = "W  ";
    162 		if (rf_dagDebug)
    163 			printf("[Creating non-redundant write DAG]\n");
    164 		break;
    165 	default:
    166 		RF_PANIC();
    167 	}
    168 
    169 	/*
    170          * For reads, the dag can not commit until the block node is reached.
    171          * for writes, the dag commits immediately.
    172          */
    173 	dag_h->numCommitNodes = 1;
    174 	dag_h->numCommits = 0;
    175 	dag_h->numSuccedents = 1;
    176 
    177 	/*
    178          * Node count:
    179          * 1 block node
    180          * n data reads (or writes)
    181          * 1 commit node
    182          * 1 terminator node
    183          */
    184 	RF_ASSERT(n > 0);
    185 	totalNumNodes = n + 3;
    186 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
    187 	    (RF_DagNode_t *), allocList);
    188 	i = 0;
    189 	diskNodes = &nodes[i];
    190 	i += n;
    191 	blockNode = &nodes[i];
    192 	i += 1;
    193 	commitNode = &nodes[i];
    194 	i += 1;
    195 	termNode = &nodes[i];
    196 	i += 1;
    197 	RF_ASSERT(i == totalNumNodes);
    198 
    199 	/* initialize nodes */
    200 	switch (type) {
    201 	case RF_IO_TYPE_READ:
    202 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    203 		    NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
    204 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    205 		    NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
    206 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    207 		    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    208 		break;
    209 	case RF_IO_TYPE_WRITE:
    210 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    211 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    212 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    213 		    NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
    214 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    215 		    NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
    216 		break;
    217 	default:
    218 		RF_PANIC();
    219 	}
    220 
    221 	for (i = 0; i < n; i++) {
    222 		RF_ASSERT(pda != NULL);
    223 		rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
    224 		    1, 1, 4, 0, dag_h, name, allocList);
    225 		diskNodes[i].params[0].p = pda;
    226 		diskNodes[i].params[1].p = pda->bufPtr;
    227 		/* parity stripe id is not necessary */
    228 		diskNodes[i].params[2].v = 0;
    229 		diskNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
    230 		pda = pda->next;
    231 	}
    232 
    233 	/*
    234          * Connect nodes.
    235          */
    236 
    237 	/* connect hdr to block node */
    238 	RF_ASSERT(blockNode->numAntecedents == 0);
    239 	dag_h->succedents[0] = blockNode;
    240 
    241 	if (type == RF_IO_TYPE_READ) {
    242 		/* connecting a nonredundant read DAG */
    243 		RF_ASSERT(blockNode->numSuccedents == n);
    244 		RF_ASSERT(commitNode->numAntecedents == n);
    245 		for (i = 0; i < n; i++) {
    246 			/* connect block node to each read node */
    247 			RF_ASSERT(diskNodes[i].numAntecedents == 1);
    248 			blockNode->succedents[i] = &diskNodes[i];
    249 			diskNodes[i].antecedents[0] = blockNode;
    250 			diskNodes[i].antType[0] = rf_control;
    251 
    252 			/* connect each read node to the commit node */
    253 			RF_ASSERT(diskNodes[i].numSuccedents == 1);
    254 			diskNodes[i].succedents[0] = commitNode;
    255 			commitNode->antecedents[i] = &diskNodes[i];
    256 			commitNode->antType[i] = rf_control;
    257 		}
    258 		/* connect the commit node to the term node */
    259 		RF_ASSERT(commitNode->numSuccedents == 1);
    260 		RF_ASSERT(termNode->numAntecedents == 1);
    261 		RF_ASSERT(termNode->numSuccedents == 0);
    262 		commitNode->succedents[0] = termNode;
    263 		termNode->antecedents[0] = commitNode;
    264 		termNode->antType[0] = rf_control;
    265 	} else {
    266 		/* connecting a nonredundant write DAG */
    267 		/* connect the block node to the commit node */
    268 		RF_ASSERT(blockNode->numSuccedents == 1);
    269 		RF_ASSERT(commitNode->numAntecedents == 1);
    270 		blockNode->succedents[0] = commitNode;
    271 		commitNode->antecedents[0] = blockNode;
    272 		commitNode->antType[0] = rf_control;
    273 
    274 		RF_ASSERT(commitNode->numSuccedents == n);
    275 		RF_ASSERT(termNode->numAntecedents == n);
    276 		RF_ASSERT(termNode->numSuccedents == 0);
    277 		for (i = 0; i < n; i++) {
    278 			/* connect the commit node to each write node */
    279 			RF_ASSERT(diskNodes[i].numAntecedents == 1);
    280 			commitNode->succedents[i] = &diskNodes[i];
    281 			diskNodes[i].antecedents[0] = commitNode;
    282 			diskNodes[i].antType[0] = rf_control;
    283 
    284 			/* connect each write node to the term node */
    285 			RF_ASSERT(diskNodes[i].numSuccedents == 1);
    286 			diskNodes[i].succedents[0] = termNode;
    287 			termNode->antecedents[i] = &diskNodes[i];
    288 			termNode->antType[i] = rf_control;
    289 		}
    290 	}
    291 }
    292 /******************************************************************************
    293  * Create a fault-free read DAG for RAID level 1
    294  *
    295  * Hdr -> Nil -> Rmir -> Cmt -> Trm
    296  *
    297  * The "Rmir" node schedules a read from the disk in the mirror pair with the
    298  * shortest disk queue.  the proper queue is selected at Rmir execution.  this
    299  * deferred mapping is unlike other archs in RAIDframe which generally fix
    300  * mapping at DAG creation time.
    301  *
    302  * Parameters:  raidPtr   - description of the physical array
    303  *              asmap     - logical & physical addresses for this access
    304  *              bp        - buffer ptr (for holding read data)
    305  *              flags     - general flags (e.g. disk locking)
    306  *              allocList - list of memory allocated in DAG creation
    307  *****************************************************************************/
    308 
    309 static void
    310 CreateMirrorReadDAG(
    311     RF_Raid_t * raidPtr,
    312     RF_AccessStripeMap_t * asmap,
    313     RF_DagHeader_t * dag_h,
    314     void *bp,
    315     RF_RaidAccessFlags_t flags,
    316     RF_AllocListElem_t * allocList,
    317     int (*readfunc) (RF_DagNode_t * node))
    318 {
    319 	RF_DagNode_t *readNodes, *nodes, *blockNode, *commitNode, *termNode;
    320 	RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
    321 	RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
    322 	int     i, n, totalNumNodes;
    323 
    324 	n = asmap->numStripeUnitsAccessed;
    325 	dag_h->creator = "RaidOneReadDAG";
    326 	if (rf_dagDebug) {
    327 		printf("[Creating RAID level 1 read DAG]\n");
    328 	}
    329 	/*
    330          * This dag can not commit until the commit node is reached
    331          * errors prior to the commit point imply the dag has failed.
    332          */
    333 	dag_h->numCommitNodes = 1;
    334 	dag_h->numCommits = 0;
    335 	dag_h->numSuccedents = 1;
    336 
    337 	/*
    338          * Node count:
    339          * n data reads
    340          * 1 block node
    341          * 1 commit node
    342          * 1 terminator node
    343          */
    344 	RF_ASSERT(n > 0);
    345 	totalNumNodes = n + 3;
    346 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
    347 	    (RF_DagNode_t *), allocList);
    348 	i = 0;
    349 	readNodes = &nodes[i];
    350 	i += n;
    351 	blockNode = &nodes[i];
    352 	i += 1;
    353 	commitNode = &nodes[i];
    354 	i += 1;
    355 	termNode = &nodes[i];
    356 	i += 1;
    357 	RF_ASSERT(i == totalNumNodes);
    358 
    359 	/* initialize nodes */
    360 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
    361 	    rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
    362 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
    363 	    rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
    364 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
    365 	    rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    366 
    367 	for (i = 0; i < n; i++) {
    368 		RF_ASSERT(data_pda != NULL);
    369 		RF_ASSERT(parity_pda != NULL);
    370 		rf_InitNode(&readNodes[i], rf_wait, RF_FALSE, readfunc,
    371 		    rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
    372 		    "Rmir", allocList);
    373 		readNodes[i].params[0].p = data_pda;
    374 		readNodes[i].params[1].p = data_pda->bufPtr;
    375 		/* parity stripe id is not necessary */
    376 		readNodes[i].params[2].p = 0;
    377 		readNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
    378 		readNodes[i].params[4].p = parity_pda;
    379 		data_pda = data_pda->next;
    380 		parity_pda = parity_pda->next;
    381 	}
    382 
    383 	/*
    384          * Connect nodes
    385          */
    386 
    387 	/* connect hdr to block node */
    388 	RF_ASSERT(blockNode->numAntecedents == 0);
    389 	dag_h->succedents[0] = blockNode;
    390 
    391 	/* connect block node to read nodes */
    392 	RF_ASSERT(blockNode->numSuccedents == n);
    393 	for (i = 0; i < n; i++) {
    394 		RF_ASSERT(readNodes[i].numAntecedents == 1);
    395 		blockNode->succedents[i] = &readNodes[i];
    396 		readNodes[i].antecedents[0] = blockNode;
    397 		readNodes[i].antType[0] = rf_control;
    398 	}
    399 
    400 	/* connect read nodes to commit node */
    401 	RF_ASSERT(commitNode->numAntecedents == n);
    402 	for (i = 0; i < n; i++) {
    403 		RF_ASSERT(readNodes[i].numSuccedents == 1);
    404 		readNodes[i].succedents[0] = commitNode;
    405 		commitNode->antecedents[i] = &readNodes[i];
    406 		commitNode->antType[i] = rf_control;
    407 	}
    408 
    409 	/* connect commit node to term node */
    410 	RF_ASSERT(commitNode->numSuccedents == 1);
    411 	RF_ASSERT(termNode->numAntecedents == 1);
    412 	RF_ASSERT(termNode->numSuccedents == 0);
    413 	commitNode->succedents[0] = termNode;
    414 	termNode->antecedents[0] = commitNode;
    415 	termNode->antType[0] = rf_control;
    416 }
    417 
    418 void
    419 rf_CreateMirrorIdleReadDAG(
    420     RF_Raid_t * raidPtr,
    421     RF_AccessStripeMap_t * asmap,
    422     RF_DagHeader_t * dag_h,
    423     void *bp,
    424     RF_RaidAccessFlags_t flags,
    425     RF_AllocListElem_t * allocList)
    426 {
    427 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    428 	    rf_DiskReadMirrorIdleFunc);
    429 }
    430 
    431 void
    432 rf_CreateMirrorPartitionReadDAG(
    433     RF_Raid_t * raidPtr,
    434     RF_AccessStripeMap_t * asmap,
    435     RF_DagHeader_t * dag_h,
    436     void *bp,
    437     RF_RaidAccessFlags_t flags,
    438     RF_AllocListElem_t * allocList)
    439 {
    440 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    441 	    rf_DiskReadMirrorPartitionFunc);
    442 }
    443