Home | History | Annotate | Line # | Download | only in raidframe
rf_dagffrd.c revision 1.4.6.3
      1 /*	$NetBSD: rf_dagffrd.c,v 1.4.6.3 2002/08/13 02:19:49 nathanw Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagffrd.c
     31  *
     32  * code for creating fault-free read DAGs
     33  *
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: rf_dagffrd.c,v 1.4.6.3 2002/08/13 02:19:49 nathanw Exp $");
     38 
     39 #include <dev/raidframe/raidframevar.h>
     40 
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_general.h"
     47 #include "rf_dagffrd.h"
     48 
     49 /******************************************************************************
     50  *
     51  * General comments on DAG creation:
     52  *
     53  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     54  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     55  * is reached, the execution engine will halt forward execution and work
     56  * backward through the graph, executing the undo functions.  Assuming that
     57  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     58  * does not make changes to permanent state, the graph will fail atomically.
     59  * If an error occurs after the Cmt node executes, the engine will roll-forward
     60  * through the graph, blindly executing nodes until it reaches the end.
     61  * If a graph reaches the end, it is assumed to have completed successfully.
     62  *
     63  * A graph has only 1 Cmt node.
     64  *
     65  */
     66 
     67 
     68 /******************************************************************************
     69  *
     70  * The following wrappers map the standard DAG creation interface to the
     71  * DAG creation routines.  Additionally, these wrappers enable experimentation
     72  * with new DAG structures by providing an extra level of indirection, allowing
     73  * the DAG creation routines to be replaced at this single point.
     74  */
     75 
     76 void
     77 rf_CreateFaultFreeReadDAG(
     78     RF_Raid_t * raidPtr,
     79     RF_AccessStripeMap_t * asmap,
     80     RF_DagHeader_t * dag_h,
     81     void *bp,
     82     RF_RaidAccessFlags_t flags,
     83     RF_AllocListElem_t * allocList)
     84 {
     85 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     86 	    RF_IO_TYPE_READ);
     87 }
     88 
     89 
     90 /******************************************************************************
     91  *
     92  * DAG creation code begins here
     93  */
     94 
     95 /******************************************************************************
     96  *
     97  * creates a DAG to perform a nonredundant read or write of data within one
     98  * stripe.
     99  * For reads, this DAG is as follows:
    100  *
    101  *                   /---- read ----\
    102  *    Header -- Block ---- read ---- Commit -- Terminate
    103  *                   \---- read ----/
    104  *
    105  * For writes, this DAG is as follows:
    106  *
    107  *                    /---- write ----\
    108  *    Header -- Commit ---- write ---- Block -- Terminate
    109  *                    \---- write ----/
    110  *
    111  * There is one disk node per stripe unit accessed, and all disk nodes are in
    112  * parallel.
    113  *
    114  * Tricky point here:  The first disk node (read or write) is created
    115  * normally.  Subsequent disk nodes are created by copying the first one,
    116  * and modifying a few params.  The "succedents" and "antecedents" fields are
    117  * _not_ re-created in each node, but rather left pointing to the same array
    118  * that was malloc'd when the first node was created.  Thus, it's essential
    119  * that when this DAG is freed, the succedents and antecedents fields be freed
    120  * in ONLY ONE of the read nodes.  This does not apply to the "params" field
    121  * because it is recreated for each READ node.
    122  *
    123  * Note that normal-priority accesses do not need to be tagged with their
    124  * parity stripe ID, because they will never be promoted.  Hence, I've
    125  * commented-out the code to do this, and marked it with UNNEEDED.
    126  *
    127  *****************************************************************************/
    128 
    129 void
    130 rf_CreateNonredundantDAG(
    131     RF_Raid_t * raidPtr,
    132     RF_AccessStripeMap_t * asmap,
    133     RF_DagHeader_t * dag_h,
    134     void *bp,
    135     RF_RaidAccessFlags_t flags,
    136     RF_AllocListElem_t * allocList,
    137     RF_IoType_t type)
    138 {
    139 	RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode;
    140 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
    141 	int     (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    142 	int     i, n, totalNumNodes;
    143 	char   *name;
    144 
    145 	n = asmap->numStripeUnitsAccessed;
    146 	dag_h->creator = "NonredundantDAG";
    147 
    148 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
    149 	switch (type) {
    150 	case RF_IO_TYPE_READ:
    151 		doFunc = rf_DiskReadFunc;
    152 		undoFunc = rf_DiskReadUndoFunc;
    153 		name = "R  ";
    154 		if (rf_dagDebug)
    155 			printf("[Creating non-redundant read DAG]\n");
    156 		break;
    157 	case RF_IO_TYPE_WRITE:
    158 		doFunc = rf_DiskWriteFunc;
    159 		undoFunc = rf_DiskWriteUndoFunc;
    160 		name = "W  ";
    161 		if (rf_dagDebug)
    162 			printf("[Creating non-redundant write DAG]\n");
    163 		break;
    164 	default:
    165 		RF_PANIC();
    166 	}
    167 
    168 	/*
    169          * For reads, the dag can not commit until the block node is reached.
    170          * for writes, the dag commits immediately.
    171          */
    172 	dag_h->numCommitNodes = 1;
    173 	dag_h->numCommits = 0;
    174 	dag_h->numSuccedents = 1;
    175 
    176 	/*
    177          * Node count:
    178          * 1 block node
    179          * n data reads (or writes)
    180          * 1 commit node
    181          * 1 terminator node
    182          */
    183 	RF_ASSERT(n > 0);
    184 	totalNumNodes = n + 3;
    185 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
    186 	    (RF_DagNode_t *), allocList);
    187 	i = 0;
    188 	diskNodes = &nodes[i];
    189 	i += n;
    190 	blockNode = &nodes[i];
    191 	i += 1;
    192 	commitNode = &nodes[i];
    193 	i += 1;
    194 	termNode = &nodes[i];
    195 	i += 1;
    196 	RF_ASSERT(i == totalNumNodes);
    197 
    198 	/* initialize nodes */
    199 	switch (type) {
    200 	case RF_IO_TYPE_READ:
    201 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    202 		    NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
    203 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    204 		    NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
    205 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    206 		    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    207 		break;
    208 	case RF_IO_TYPE_WRITE:
    209 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    210 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    211 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    212 		    NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
    213 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    214 		    NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
    215 		break;
    216 	default:
    217 		RF_PANIC();
    218 	}
    219 
    220 	for (i = 0; i < n; i++) {
    221 		RF_ASSERT(pda != NULL);
    222 		rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
    223 		    1, 1, 4, 0, dag_h, name, allocList);
    224 		diskNodes[i].params[0].p = pda;
    225 		diskNodes[i].params[1].p = pda->bufPtr;
    226 		/* parity stripe id is not necessary */
    227 		diskNodes[i].params[2].v = 0;
    228 		diskNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
    229 		pda = pda->next;
    230 	}
    231 
    232 	/*
    233          * Connect nodes.
    234          */
    235 
    236 	/* connect hdr to block node */
    237 	RF_ASSERT(blockNode->numAntecedents == 0);
    238 	dag_h->succedents[0] = blockNode;
    239 
    240 	if (type == RF_IO_TYPE_READ) {
    241 		/* connecting a nonredundant read DAG */
    242 		RF_ASSERT(blockNode->numSuccedents == n);
    243 		RF_ASSERT(commitNode->numAntecedents == n);
    244 		for (i = 0; i < n; i++) {
    245 			/* connect block node to each read node */
    246 			RF_ASSERT(diskNodes[i].numAntecedents == 1);
    247 			blockNode->succedents[i] = &diskNodes[i];
    248 			diskNodes[i].antecedents[0] = blockNode;
    249 			diskNodes[i].antType[0] = rf_control;
    250 
    251 			/* connect each read node to the commit node */
    252 			RF_ASSERT(diskNodes[i].numSuccedents == 1);
    253 			diskNodes[i].succedents[0] = commitNode;
    254 			commitNode->antecedents[i] = &diskNodes[i];
    255 			commitNode->antType[i] = rf_control;
    256 		}
    257 		/* connect the commit node to the term node */
    258 		RF_ASSERT(commitNode->numSuccedents == 1);
    259 		RF_ASSERT(termNode->numAntecedents == 1);
    260 		RF_ASSERT(termNode->numSuccedents == 0);
    261 		commitNode->succedents[0] = termNode;
    262 		termNode->antecedents[0] = commitNode;
    263 		termNode->antType[0] = rf_control;
    264 	} else {
    265 		/* connecting a nonredundant write DAG */
    266 		/* connect the block node to the commit node */
    267 		RF_ASSERT(blockNode->numSuccedents == 1);
    268 		RF_ASSERT(commitNode->numAntecedents == 1);
    269 		blockNode->succedents[0] = commitNode;
    270 		commitNode->antecedents[0] = blockNode;
    271 		commitNode->antType[0] = rf_control;
    272 
    273 		RF_ASSERT(commitNode->numSuccedents == n);
    274 		RF_ASSERT(termNode->numAntecedents == n);
    275 		RF_ASSERT(termNode->numSuccedents == 0);
    276 		for (i = 0; i < n; i++) {
    277 			/* connect the commit node to each write node */
    278 			RF_ASSERT(diskNodes[i].numAntecedents == 1);
    279 			commitNode->succedents[i] = &diskNodes[i];
    280 			diskNodes[i].antecedents[0] = commitNode;
    281 			diskNodes[i].antType[0] = rf_control;
    282 
    283 			/* connect each write node to the term node */
    284 			RF_ASSERT(diskNodes[i].numSuccedents == 1);
    285 			diskNodes[i].succedents[0] = termNode;
    286 			termNode->antecedents[i] = &diskNodes[i];
    287 			termNode->antType[i] = rf_control;
    288 		}
    289 	}
    290 }
    291 /******************************************************************************
    292  * Create a fault-free read DAG for RAID level 1
    293  *
    294  * Hdr -> Nil -> Rmir -> Cmt -> Trm
    295  *
    296  * The "Rmir" node schedules a read from the disk in the mirror pair with the
    297  * shortest disk queue.  the proper queue is selected at Rmir execution.  this
    298  * deferred mapping is unlike other archs in RAIDframe which generally fix
    299  * mapping at DAG creation time.
    300  *
    301  * Parameters:  raidPtr   - description of the physical array
    302  *              asmap     - logical & physical addresses for this access
    303  *              bp        - buffer ptr (for holding read data)
    304  *              flags     - general flags (e.g. disk locking)
    305  *              allocList - list of memory allocated in DAG creation
    306  *****************************************************************************/
    307 
    308 static void
    309 CreateMirrorReadDAG(
    310     RF_Raid_t * raidPtr,
    311     RF_AccessStripeMap_t * asmap,
    312     RF_DagHeader_t * dag_h,
    313     void *bp,
    314     RF_RaidAccessFlags_t flags,
    315     RF_AllocListElem_t * allocList,
    316     int (*readfunc) (RF_DagNode_t * node))
    317 {
    318 	RF_DagNode_t *readNodes, *nodes, *blockNode, *commitNode, *termNode;
    319 	RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
    320 	RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
    321 	int     i, n, totalNumNodes;
    322 
    323 	n = asmap->numStripeUnitsAccessed;
    324 	dag_h->creator = "RaidOneReadDAG";
    325 	if (rf_dagDebug) {
    326 		printf("[Creating RAID level 1 read DAG]\n");
    327 	}
    328 	/*
    329          * This dag can not commit until the commit node is reached
    330          * errors prior to the commit point imply the dag has failed.
    331          */
    332 	dag_h->numCommitNodes = 1;
    333 	dag_h->numCommits = 0;
    334 	dag_h->numSuccedents = 1;
    335 
    336 	/*
    337          * Node count:
    338          * n data reads
    339          * 1 block node
    340          * 1 commit node
    341          * 1 terminator node
    342          */
    343 	RF_ASSERT(n > 0);
    344 	totalNumNodes = n + 3;
    345 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
    346 	    (RF_DagNode_t *), allocList);
    347 	i = 0;
    348 	readNodes = &nodes[i];
    349 	i += n;
    350 	blockNode = &nodes[i];
    351 	i += 1;
    352 	commitNode = &nodes[i];
    353 	i += 1;
    354 	termNode = &nodes[i];
    355 	i += 1;
    356 	RF_ASSERT(i == totalNumNodes);
    357 
    358 	/* initialize nodes */
    359 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
    360 	    rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
    361 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
    362 	    rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
    363 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
    364 	    rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
    365 
    366 	for (i = 0; i < n; i++) {
    367 		RF_ASSERT(data_pda != NULL);
    368 		RF_ASSERT(parity_pda != NULL);
    369 		rf_InitNode(&readNodes[i], rf_wait, RF_FALSE, readfunc,
    370 		    rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
    371 		    "Rmir", allocList);
    372 		readNodes[i].params[0].p = data_pda;
    373 		readNodes[i].params[1].p = data_pda->bufPtr;
    374 		/* parity stripe id is not necessary */
    375 		readNodes[i].params[2].p = 0;
    376 		readNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
    377 		readNodes[i].params[4].p = parity_pda;
    378 		data_pda = data_pda->next;
    379 		parity_pda = parity_pda->next;
    380 	}
    381 
    382 	/*
    383          * Connect nodes
    384          */
    385 
    386 	/* connect hdr to block node */
    387 	RF_ASSERT(blockNode->numAntecedents == 0);
    388 	dag_h->succedents[0] = blockNode;
    389 
    390 	/* connect block node to read nodes */
    391 	RF_ASSERT(blockNode->numSuccedents == n);
    392 	for (i = 0; i < n; i++) {
    393 		RF_ASSERT(readNodes[i].numAntecedents == 1);
    394 		blockNode->succedents[i] = &readNodes[i];
    395 		readNodes[i].antecedents[0] = blockNode;
    396 		readNodes[i].antType[0] = rf_control;
    397 	}
    398 
    399 	/* connect read nodes to commit node */
    400 	RF_ASSERT(commitNode->numAntecedents == n);
    401 	for (i = 0; i < n; i++) {
    402 		RF_ASSERT(readNodes[i].numSuccedents == 1);
    403 		readNodes[i].succedents[0] = commitNode;
    404 		commitNode->antecedents[i] = &readNodes[i];
    405 		commitNode->antType[i] = rf_control;
    406 	}
    407 
    408 	/* connect commit node to term node */
    409 	RF_ASSERT(commitNode->numSuccedents == 1);
    410 	RF_ASSERT(termNode->numAntecedents == 1);
    411 	RF_ASSERT(termNode->numSuccedents == 0);
    412 	commitNode->succedents[0] = termNode;
    413 	termNode->antecedents[0] = commitNode;
    414 	termNode->antType[0] = rf_control;
    415 }
    416 
    417 void
    418 rf_CreateMirrorIdleReadDAG(
    419     RF_Raid_t * raidPtr,
    420     RF_AccessStripeMap_t * asmap,
    421     RF_DagHeader_t * dag_h,
    422     void *bp,
    423     RF_RaidAccessFlags_t flags,
    424     RF_AllocListElem_t * allocList)
    425 {
    426 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    427 	    rf_DiskReadMirrorIdleFunc);
    428 }
    429 
    430 void
    431 rf_CreateMirrorPartitionReadDAG(
    432     RF_Raid_t * raidPtr,
    433     RF_AccessStripeMap_t * asmap,
    434     RF_DagHeader_t * dag_h,
    435     void *bp,
    436     RF_RaidAccessFlags_t flags,
    437     RF_AllocListElem_t * allocList)
    438 {
    439 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    440 	    rf_DiskReadMirrorPartitionFunc);
    441 }
    442