rf_dagffrd.c revision 1.6.8.1 1 /* $NetBSD: rf_dagffrd.c,v 1.6.8.1 2002/08/29 05:22:48 gehenna Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * rf_dagffrd.c
31 *
32 * code for creating fault-free read DAGs
33 *
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rf_dagffrd.c,v 1.6.8.1 2002/08/29 05:22:48 gehenna Exp $");
38
39 #include <dev/raidframe/raidframevar.h>
40
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_debugMem.h"
46 #include "rf_general.h"
47 #include "rf_dagffrd.h"
48
49 /******************************************************************************
50 *
51 * General comments on DAG creation:
52 *
53 * All DAGs in this file use roll-away error recovery. Each DAG has a single
54 * commit node, usually called "Cmt." If an error occurs before the Cmt node
55 * is reached, the execution engine will halt forward execution and work
56 * backward through the graph, executing the undo functions. Assuming that
57 * each node in the graph prior to the Cmt node are undoable and atomic - or -
58 * does not make changes to permanent state, the graph will fail atomically.
59 * If an error occurs after the Cmt node executes, the engine will roll-forward
60 * through the graph, blindly executing nodes until it reaches the end.
61 * If a graph reaches the end, it is assumed to have completed successfully.
62 *
63 * A graph has only 1 Cmt node.
64 *
65 */
66
67
68 /******************************************************************************
69 *
70 * The following wrappers map the standard DAG creation interface to the
71 * DAG creation routines. Additionally, these wrappers enable experimentation
72 * with new DAG structures by providing an extra level of indirection, allowing
73 * the DAG creation routines to be replaced at this single point.
74 */
75
76 void
77 rf_CreateFaultFreeReadDAG(
78 RF_Raid_t * raidPtr,
79 RF_AccessStripeMap_t * asmap,
80 RF_DagHeader_t * dag_h,
81 void *bp,
82 RF_RaidAccessFlags_t flags,
83 RF_AllocListElem_t * allocList)
84 {
85 rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
86 RF_IO_TYPE_READ);
87 }
88
89
90 /******************************************************************************
91 *
92 * DAG creation code begins here
93 */
94
95 /******************************************************************************
96 *
97 * creates a DAG to perform a nonredundant read or write of data within one
98 * stripe.
99 * For reads, this DAG is as follows:
100 *
101 * /---- read ----\
102 * Header -- Block ---- read ---- Commit -- Terminate
103 * \---- read ----/
104 *
105 * For writes, this DAG is as follows:
106 *
107 * /---- write ----\
108 * Header -- Commit ---- write ---- Block -- Terminate
109 * \---- write ----/
110 *
111 * There is one disk node per stripe unit accessed, and all disk nodes are in
112 * parallel.
113 *
114 * Tricky point here: The first disk node (read or write) is created
115 * normally. Subsequent disk nodes are created by copying the first one,
116 * and modifying a few params. The "succedents" and "antecedents" fields are
117 * _not_ re-created in each node, but rather left pointing to the same array
118 * that was malloc'd when the first node was created. Thus, it's essential
119 * that when this DAG is freed, the succedents and antecedents fields be freed
120 * in ONLY ONE of the read nodes. This does not apply to the "params" field
121 * because it is recreated for each READ node.
122 *
123 * Note that normal-priority accesses do not need to be tagged with their
124 * parity stripe ID, because they will never be promoted. Hence, I've
125 * commented-out the code to do this, and marked it with UNNEEDED.
126 *
127 *****************************************************************************/
128
129 void
130 rf_CreateNonredundantDAG(
131 RF_Raid_t * raidPtr,
132 RF_AccessStripeMap_t * asmap,
133 RF_DagHeader_t * dag_h,
134 void *bp,
135 RF_RaidAccessFlags_t flags,
136 RF_AllocListElem_t * allocList,
137 RF_IoType_t type)
138 {
139 RF_DagNode_t *nodes, *diskNodes, *blockNode, *commitNode, *termNode;
140 RF_PhysDiskAddr_t *pda = asmap->physInfo;
141 int (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
142 int i, n, totalNumNodes;
143 char *name;
144
145 n = asmap->numStripeUnitsAccessed;
146 dag_h->creator = "NonredundantDAG";
147
148 RF_ASSERT(RF_IO_IS_R_OR_W(type));
149 switch (type) {
150 case RF_IO_TYPE_READ:
151 doFunc = rf_DiskReadFunc;
152 undoFunc = rf_DiskReadUndoFunc;
153 name = "R ";
154 if (rf_dagDebug)
155 printf("[Creating non-redundant read DAG]\n");
156 break;
157 case RF_IO_TYPE_WRITE:
158 doFunc = rf_DiskWriteFunc;
159 undoFunc = rf_DiskWriteUndoFunc;
160 name = "W ";
161 if (rf_dagDebug)
162 printf("[Creating non-redundant write DAG]\n");
163 break;
164 default:
165 RF_PANIC();
166 }
167
168 /*
169 * For reads, the dag can not commit until the block node is reached.
170 * for writes, the dag commits immediately.
171 */
172 dag_h->numCommitNodes = 1;
173 dag_h->numCommits = 0;
174 dag_h->numSuccedents = 1;
175
176 /*
177 * Node count:
178 * 1 block node
179 * n data reads (or writes)
180 * 1 commit node
181 * 1 terminator node
182 */
183 RF_ASSERT(n > 0);
184 totalNumNodes = n + 3;
185 RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
186 (RF_DagNode_t *), allocList);
187 i = 0;
188 diskNodes = &nodes[i];
189 i += n;
190 blockNode = &nodes[i];
191 i += 1;
192 commitNode = &nodes[i];
193 i += 1;
194 termNode = &nodes[i];
195 i += 1;
196 RF_ASSERT(i == totalNumNodes);
197
198 /* initialize nodes */
199 switch (type) {
200 case RF_IO_TYPE_READ:
201 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
202 NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
203 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
204 NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
205 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
206 NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
207 break;
208 case RF_IO_TYPE_WRITE:
209 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
210 NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
211 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
212 NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
213 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
214 NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
215 break;
216 default:
217 RF_PANIC();
218 }
219
220 for (i = 0; i < n; i++) {
221 RF_ASSERT(pda != NULL);
222 rf_InitNode(&diskNodes[i], rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
223 1, 1, 4, 0, dag_h, name, allocList);
224 diskNodes[i].params[0].p = pda;
225 diskNodes[i].params[1].p = pda->bufPtr;
226 /* parity stripe id is not necessary */
227 diskNodes[i].params[2].v = 0;
228 diskNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
229 pda = pda->next;
230 }
231
232 /*
233 * Connect nodes.
234 */
235
236 /* connect hdr to block node */
237 RF_ASSERT(blockNode->numAntecedents == 0);
238 dag_h->succedents[0] = blockNode;
239
240 if (type == RF_IO_TYPE_READ) {
241 /* connecting a nonredundant read DAG */
242 RF_ASSERT(blockNode->numSuccedents == n);
243 RF_ASSERT(commitNode->numAntecedents == n);
244 for (i = 0; i < n; i++) {
245 /* connect block node to each read node */
246 RF_ASSERT(diskNodes[i].numAntecedents == 1);
247 blockNode->succedents[i] = &diskNodes[i];
248 diskNodes[i].antecedents[0] = blockNode;
249 diskNodes[i].antType[0] = rf_control;
250
251 /* connect each read node to the commit node */
252 RF_ASSERT(diskNodes[i].numSuccedents == 1);
253 diskNodes[i].succedents[0] = commitNode;
254 commitNode->antecedents[i] = &diskNodes[i];
255 commitNode->antType[i] = rf_control;
256 }
257 /* connect the commit node to the term node */
258 RF_ASSERT(commitNode->numSuccedents == 1);
259 RF_ASSERT(termNode->numAntecedents == 1);
260 RF_ASSERT(termNode->numSuccedents == 0);
261 commitNode->succedents[0] = termNode;
262 termNode->antecedents[0] = commitNode;
263 termNode->antType[0] = rf_control;
264 } else {
265 /* connecting a nonredundant write DAG */
266 /* connect the block node to the commit node */
267 RF_ASSERT(blockNode->numSuccedents == 1);
268 RF_ASSERT(commitNode->numAntecedents == 1);
269 blockNode->succedents[0] = commitNode;
270 commitNode->antecedents[0] = blockNode;
271 commitNode->antType[0] = rf_control;
272
273 RF_ASSERT(commitNode->numSuccedents == n);
274 RF_ASSERT(termNode->numAntecedents == n);
275 RF_ASSERT(termNode->numSuccedents == 0);
276 for (i = 0; i < n; i++) {
277 /* connect the commit node to each write node */
278 RF_ASSERT(diskNodes[i].numAntecedents == 1);
279 commitNode->succedents[i] = &diskNodes[i];
280 diskNodes[i].antecedents[0] = commitNode;
281 diskNodes[i].antType[0] = rf_control;
282
283 /* connect each write node to the term node */
284 RF_ASSERT(diskNodes[i].numSuccedents == 1);
285 diskNodes[i].succedents[0] = termNode;
286 termNode->antecedents[i] = &diskNodes[i];
287 termNode->antType[i] = rf_control;
288 }
289 }
290 }
291 /******************************************************************************
292 * Create a fault-free read DAG for RAID level 1
293 *
294 * Hdr -> Nil -> Rmir -> Cmt -> Trm
295 *
296 * The "Rmir" node schedules a read from the disk in the mirror pair with the
297 * shortest disk queue. the proper queue is selected at Rmir execution. this
298 * deferred mapping is unlike other archs in RAIDframe which generally fix
299 * mapping at DAG creation time.
300 *
301 * Parameters: raidPtr - description of the physical array
302 * asmap - logical & physical addresses for this access
303 * bp - buffer ptr (for holding read data)
304 * flags - general flags (e.g. disk locking)
305 * allocList - list of memory allocated in DAG creation
306 *****************************************************************************/
307
308 static void
309 CreateMirrorReadDAG(
310 RF_Raid_t * raidPtr,
311 RF_AccessStripeMap_t * asmap,
312 RF_DagHeader_t * dag_h,
313 void *bp,
314 RF_RaidAccessFlags_t flags,
315 RF_AllocListElem_t * allocList,
316 int (*readfunc) (RF_DagNode_t * node))
317 {
318 RF_DagNode_t *readNodes, *nodes, *blockNode, *commitNode, *termNode;
319 RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
320 RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
321 int i, n, totalNumNodes;
322
323 n = asmap->numStripeUnitsAccessed;
324 dag_h->creator = "RaidOneReadDAG";
325 if (rf_dagDebug) {
326 printf("[Creating RAID level 1 read DAG]\n");
327 }
328 /*
329 * This dag can not commit until the commit node is reached
330 * errors prior to the commit point imply the dag has failed.
331 */
332 dag_h->numCommitNodes = 1;
333 dag_h->numCommits = 0;
334 dag_h->numSuccedents = 1;
335
336 /*
337 * Node count:
338 * n data reads
339 * 1 block node
340 * 1 commit node
341 * 1 terminator node
342 */
343 RF_ASSERT(n > 0);
344 totalNumNodes = n + 3;
345 RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
346 (RF_DagNode_t *), allocList);
347 i = 0;
348 readNodes = &nodes[i];
349 i += n;
350 blockNode = &nodes[i];
351 i += 1;
352 commitNode = &nodes[i];
353 i += 1;
354 termNode = &nodes[i];
355 i += 1;
356 RF_ASSERT(i == totalNumNodes);
357
358 /* initialize nodes */
359 rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
360 rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
361 rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
362 rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
363 rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
364 rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
365
366 for (i = 0; i < n; i++) {
367 RF_ASSERT(data_pda != NULL);
368 RF_ASSERT(parity_pda != NULL);
369 rf_InitNode(&readNodes[i], rf_wait, RF_FALSE, readfunc,
370 rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
371 "Rmir", allocList);
372 readNodes[i].params[0].p = data_pda;
373 readNodes[i].params[1].p = data_pda->bufPtr;
374 /* parity stripe id is not necessary */
375 readNodes[i].params[2].p = 0;
376 readNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
377 readNodes[i].params[4].p = parity_pda;
378 data_pda = data_pda->next;
379 parity_pda = parity_pda->next;
380 }
381
382 /*
383 * Connect nodes
384 */
385
386 /* connect hdr to block node */
387 RF_ASSERT(blockNode->numAntecedents == 0);
388 dag_h->succedents[0] = blockNode;
389
390 /* connect block node to read nodes */
391 RF_ASSERT(blockNode->numSuccedents == n);
392 for (i = 0; i < n; i++) {
393 RF_ASSERT(readNodes[i].numAntecedents == 1);
394 blockNode->succedents[i] = &readNodes[i];
395 readNodes[i].antecedents[0] = blockNode;
396 readNodes[i].antType[0] = rf_control;
397 }
398
399 /* connect read nodes to commit node */
400 RF_ASSERT(commitNode->numAntecedents == n);
401 for (i = 0; i < n; i++) {
402 RF_ASSERT(readNodes[i].numSuccedents == 1);
403 readNodes[i].succedents[0] = commitNode;
404 commitNode->antecedents[i] = &readNodes[i];
405 commitNode->antType[i] = rf_control;
406 }
407
408 /* connect commit node to term node */
409 RF_ASSERT(commitNode->numSuccedents == 1);
410 RF_ASSERT(termNode->numAntecedents == 1);
411 RF_ASSERT(termNode->numSuccedents == 0);
412 commitNode->succedents[0] = termNode;
413 termNode->antecedents[0] = commitNode;
414 termNode->antType[0] = rf_control;
415 }
416
417 void
418 rf_CreateMirrorIdleReadDAG(
419 RF_Raid_t * raidPtr,
420 RF_AccessStripeMap_t * asmap,
421 RF_DagHeader_t * dag_h,
422 void *bp,
423 RF_RaidAccessFlags_t flags,
424 RF_AllocListElem_t * allocList)
425 {
426 CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
427 rf_DiskReadMirrorIdleFunc);
428 }
429
430 void
431 rf_CreateMirrorPartitionReadDAG(
432 RF_Raid_t * raidPtr,
433 RF_AccessStripeMap_t * asmap,
434 RF_DagHeader_t * dag_h,
435 void *bp,
436 RF_RaidAccessFlags_t flags,
437 RF_AllocListElem_t * allocList)
438 {
439 CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
440 rf_DiskReadMirrorPartitionFunc);
441 }
442