Home | History | Annotate | Line # | Download | only in raidframe
rf_dagffwr.c revision 1.10
      1  1.10  jdolecek /*	$NetBSD: rf_dagffwr.c,v 1.10 2003/02/09 10:04:33 jdolecek Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.1     oster /*
     30   1.1     oster  * rf_dagff.c
     31   1.1     oster  *
     32   1.1     oster  * code for creating fault-free DAGs
     33   1.1     oster  *
     34   1.1     oster  */
     35   1.7     lukem 
     36   1.7     lukem #include <sys/cdefs.h>
     37  1.10  jdolecek __KERNEL_RCSID(0, "$NetBSD: rf_dagffwr.c,v 1.10 2003/02/09 10:04:33 jdolecek Exp $");
     38   1.1     oster 
     39   1.6     oster #include <dev/raidframe/raidframevar.h>
     40   1.6     oster 
     41   1.1     oster #include "rf_raid.h"
     42   1.1     oster #include "rf_dag.h"
     43   1.1     oster #include "rf_dagutils.h"
     44   1.1     oster #include "rf_dagfuncs.h"
     45   1.1     oster #include "rf_debugMem.h"
     46   1.1     oster #include "rf_dagffrd.h"
     47   1.1     oster #include "rf_general.h"
     48   1.1     oster #include "rf_dagffwr.h"
     49   1.1     oster 
     50   1.1     oster /******************************************************************************
     51   1.1     oster  *
     52   1.1     oster  * General comments on DAG creation:
     53   1.3     oster  *
     54   1.1     oster  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     55   1.1     oster  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     56   1.1     oster  * is reached, the execution engine will halt forward execution and work
     57   1.1     oster  * backward through the graph, executing the undo functions.  Assuming that
     58   1.1     oster  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     59   1.1     oster  * does not make changes to permanent state, the graph will fail atomically.
     60   1.1     oster  * If an error occurs after the Cmt node executes, the engine will roll-forward
     61   1.1     oster  * through the graph, blindly executing nodes until it reaches the end.
     62   1.1     oster  * If a graph reaches the end, it is assumed to have completed successfully.
     63   1.1     oster  *
     64   1.1     oster  * A graph has only 1 Cmt node.
     65   1.1     oster  *
     66   1.1     oster  */
     67   1.1     oster 
     68   1.1     oster 
     69   1.1     oster /******************************************************************************
     70   1.1     oster  *
     71   1.1     oster  * The following wrappers map the standard DAG creation interface to the
     72   1.1     oster  * DAG creation routines.  Additionally, these wrappers enable experimentation
     73   1.1     oster  * with new DAG structures by providing an extra level of indirection, allowing
     74   1.1     oster  * the DAG creation routines to be replaced at this single point.
     75   1.1     oster  */
     76   1.1     oster 
     77   1.1     oster 
     78   1.3     oster void
     79   1.3     oster rf_CreateNonRedundantWriteDAG(
     80   1.3     oster     RF_Raid_t * raidPtr,
     81   1.3     oster     RF_AccessStripeMap_t * asmap,
     82   1.3     oster     RF_DagHeader_t * dag_h,
     83   1.3     oster     void *bp,
     84   1.3     oster     RF_RaidAccessFlags_t flags,
     85   1.3     oster     RF_AllocListElem_t * allocList,
     86   1.3     oster     RF_IoType_t type)
     87   1.1     oster {
     88   1.3     oster 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     89   1.3     oster 	    RF_IO_TYPE_WRITE);
     90   1.1     oster }
     91   1.1     oster 
     92   1.3     oster void
     93   1.3     oster rf_CreateRAID0WriteDAG(
     94   1.3     oster     RF_Raid_t * raidPtr,
     95   1.3     oster     RF_AccessStripeMap_t * asmap,
     96   1.3     oster     RF_DagHeader_t * dag_h,
     97   1.3     oster     void *bp,
     98   1.3     oster     RF_RaidAccessFlags_t flags,
     99   1.3     oster     RF_AllocListElem_t * allocList,
    100   1.3     oster     RF_IoType_t type)
    101   1.1     oster {
    102   1.3     oster 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    103   1.3     oster 	    RF_IO_TYPE_WRITE);
    104   1.1     oster }
    105   1.1     oster 
    106   1.3     oster void
    107   1.3     oster rf_CreateSmallWriteDAG(
    108   1.3     oster     RF_Raid_t * raidPtr,
    109   1.3     oster     RF_AccessStripeMap_t * asmap,
    110   1.3     oster     RF_DagHeader_t * dag_h,
    111   1.3     oster     void *bp,
    112   1.3     oster     RF_RaidAccessFlags_t flags,
    113   1.3     oster     RF_AllocListElem_t * allocList)
    114   1.1     oster {
    115   1.3     oster 	/* "normal" rollaway */
    116   1.3     oster 	rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    117   1.3     oster 	    &rf_xorFuncs, NULL);
    118   1.1     oster }
    119   1.1     oster 
    120   1.3     oster void
    121   1.3     oster rf_CreateLargeWriteDAG(
    122   1.3     oster     RF_Raid_t * raidPtr,
    123   1.3     oster     RF_AccessStripeMap_t * asmap,
    124   1.3     oster     RF_DagHeader_t * dag_h,
    125   1.3     oster     void *bp,
    126   1.3     oster     RF_RaidAccessFlags_t flags,
    127   1.3     oster     RF_AllocListElem_t * allocList)
    128   1.1     oster {
    129   1.3     oster 	/* "normal" rollaway */
    130   1.3     oster 	rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    131   1.3     oster 	    1, rf_RegularXorFunc, RF_TRUE);
    132   1.1     oster }
    133   1.1     oster 
    134   1.1     oster 
    135   1.1     oster /******************************************************************************
    136   1.1     oster  *
    137   1.1     oster  * DAG creation code begins here
    138   1.1     oster  */
    139   1.1     oster 
    140   1.1     oster 
    141   1.1     oster /******************************************************************************
    142   1.1     oster  *
    143   1.1     oster  * creates a DAG to perform a large-write operation:
    144   1.1     oster  *
    145   1.1     oster  *           / Rod \           / Wnd \
    146   1.1     oster  * H -- block- Rod - Xor - Cmt - Wnd --- T
    147   1.1     oster  *           \ Rod /          \  Wnp /
    148   1.1     oster  *                             \[Wnq]/
    149   1.1     oster  *
    150   1.1     oster  * The XOR node also does the Q calculation in the P+Q architecture.
    151   1.1     oster  * All nodes are before the commit node (Cmt) are assumed to be atomic and
    152   1.1     oster  * undoable - or - they make no changes to permanent state.
    153   1.1     oster  *
    154   1.1     oster  * Rod = read old data
    155   1.1     oster  * Cmt = commit node
    156   1.1     oster  * Wnp = write new parity
    157   1.1     oster  * Wnd = write new data
    158   1.1     oster  * Wnq = write new "q"
    159   1.1     oster  * [] denotes optional segments in the graph
    160   1.1     oster  *
    161   1.1     oster  * Parameters:  raidPtr   - description of the physical array
    162   1.1     oster  *              asmap     - logical & physical addresses for this access
    163   1.1     oster  *              bp        - buffer ptr (holds write data)
    164   1.3     oster  *              flags     - general flags (e.g. disk locking)
    165   1.1     oster  *              allocList - list of memory allocated in DAG creation
    166   1.1     oster  *              nfaults   - number of faults array can tolerate
    167   1.1     oster  *                          (equal to # redundancy units in stripe)
    168   1.1     oster  *              redfuncs  - list of redundancy generating functions
    169   1.1     oster  *
    170   1.1     oster  *****************************************************************************/
    171   1.1     oster 
    172   1.3     oster void
    173   1.3     oster rf_CommonCreateLargeWriteDAG(
    174   1.3     oster     RF_Raid_t * raidPtr,
    175   1.3     oster     RF_AccessStripeMap_t * asmap,
    176   1.3     oster     RF_DagHeader_t * dag_h,
    177   1.3     oster     void *bp,
    178   1.3     oster     RF_RaidAccessFlags_t flags,
    179   1.3     oster     RF_AllocListElem_t * allocList,
    180   1.3     oster     int nfaults,
    181   1.3     oster     int (*redFunc) (RF_DagNode_t *),
    182   1.3     oster     int allowBufferRecycle)
    183   1.1     oster {
    184   1.3     oster 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
    185   1.3     oster 	RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
    186   1.3     oster 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
    187   1.3     oster 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    188   1.3     oster 	RF_StripeNum_t parityStripeID;
    189   1.3     oster 	char   *sosBuffer, *eosBuffer;
    190   1.3     oster 	RF_ReconUnitNum_t which_ru;
    191   1.3     oster 	RF_RaidLayout_t *layoutPtr;
    192   1.3     oster 	RF_PhysDiskAddr_t *pda;
    193   1.3     oster 
    194   1.3     oster 	layoutPtr = &(raidPtr->Layout);
    195   1.3     oster 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    196   1.3     oster 	    &which_ru);
    197   1.3     oster 
    198   1.3     oster 	if (rf_dagDebug) {
    199   1.3     oster 		printf("[Creating large-write DAG]\n");
    200   1.3     oster 	}
    201   1.3     oster 	dag_h->creator = "LargeWriteDAG";
    202   1.3     oster 
    203   1.3     oster 	dag_h->numCommitNodes = 1;
    204   1.3     oster 	dag_h->numCommits = 0;
    205   1.3     oster 	dag_h->numSuccedents = 1;
    206   1.3     oster 
    207   1.3     oster 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
    208   1.3     oster 	nWndNodes = asmap->numStripeUnitsAccessed;
    209   1.3     oster 	RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t),
    210   1.3     oster 	    (RF_DagNode_t *), allocList);
    211   1.3     oster 	i = 0;
    212   1.3     oster 	wndNodes = &nodes[i];
    213   1.3     oster 	i += nWndNodes;
    214   1.3     oster 	xorNode = &nodes[i];
    215   1.3     oster 	i += 1;
    216   1.3     oster 	wnpNode = &nodes[i];
    217   1.3     oster 	i += 1;
    218   1.3     oster 	blockNode = &nodes[i];
    219   1.3     oster 	i += 1;
    220   1.3     oster 	commitNode = &nodes[i];
    221   1.3     oster 	i += 1;
    222   1.3     oster 	termNode = &nodes[i];
    223   1.3     oster 	i += 1;
    224   1.3     oster 	if (nfaults == 2) {
    225   1.3     oster 		wnqNode = &nodes[i];
    226   1.3     oster 		i += 1;
    227   1.3     oster 	} else {
    228   1.3     oster 		wnqNode = NULL;
    229   1.3     oster 	}
    230   1.3     oster 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h,
    231   1.3     oster 	    &nRodNodes, &sosBuffer, &eosBuffer, allocList);
    232   1.3     oster 	if (nRodNodes > 0) {
    233   1.3     oster 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t),
    234   1.3     oster 		    (RF_DagNode_t *), allocList);
    235   1.3     oster 	} else {
    236   1.3     oster 		rodNodes = NULL;
    237   1.3     oster 	}
    238   1.3     oster 
    239   1.3     oster 	/* begin node initialization */
    240   1.3     oster 	if (nRodNodes > 0) {
    241   1.3     oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    242   1.3     oster 		    NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
    243   1.3     oster 	} else {
    244   1.3     oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    245   1.3     oster 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    246   1.3     oster 	}
    247   1.3     oster 
    248   1.3     oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL,
    249   1.3     oster 	    nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    250   1.3     oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL,
    251   1.3     oster 	    0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
    252   1.3     oster 
    253   1.3     oster 	/* initialize the Rod nodes */
    254   1.3     oster 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
    255   1.3     oster 		if (new_asm_h[asmNum]) {
    256   1.3     oster 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
    257   1.3     oster 			while (pda) {
    258   1.3     oster 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc,
    259   1.3     oster 				    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    260   1.3     oster 				    "Rod", allocList);
    261   1.3     oster 				rodNodes[nodeNum].params[0].p = pda;
    262   1.3     oster 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
    263   1.3     oster 				rodNodes[nodeNum].params[2].v = parityStripeID;
    264   1.3     oster 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    265   1.3     oster 				    0, 0, which_ru);
    266   1.3     oster 				nodeNum++;
    267   1.3     oster 				pda = pda->next;
    268   1.3     oster 			}
    269   1.3     oster 		}
    270   1.3     oster 	}
    271   1.3     oster 	RF_ASSERT(nodeNum == nRodNodes);
    272   1.3     oster 
    273   1.3     oster 	/* initialize the wnd nodes */
    274   1.3     oster 	pda = asmap->physInfo;
    275   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
    276   1.3     oster 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    277   1.3     oster 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    278   1.3     oster 		RF_ASSERT(pda != NULL);
    279   1.3     oster 		wndNodes[i].params[0].p = pda;
    280   1.3     oster 		wndNodes[i].params[1].p = pda->bufPtr;
    281   1.3     oster 		wndNodes[i].params[2].v = parityStripeID;
    282   1.3     oster 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    283   1.3     oster 		pda = pda->next;
    284   1.3     oster 	}
    285   1.3     oster 
    286   1.3     oster 	/* initialize the redundancy node */
    287   1.3     oster 	if (nRodNodes > 0) {
    288   1.3     oster 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    289   1.3     oster 		    nRodNodes, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h,
    290   1.3     oster 		    "Xr ", allocList);
    291   1.3     oster 	} else {
    292   1.3     oster 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    293   1.3     oster 		    1, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
    294   1.3     oster 	}
    295   1.3     oster 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
    296   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
    297   1.3     oster 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
    298   1.3     oster 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
    299   1.3     oster 	}
    300   1.3     oster 	for (i = 0; i < nRodNodes; i++) {
    301   1.3     oster 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
    302   1.3     oster 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
    303   1.3     oster 	}
    304   1.3     oster 	/* xor node needs to get at RAID information */
    305   1.3     oster 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
    306   1.3     oster 
    307   1.3     oster 	/*
    308   1.3     oster          * Look for an Rod node that reads a complete SU. If none, alloc a buffer
    309   1.3     oster          * to receive the parity info. Note that we can't use a new data buffer
    310   1.3     oster          * because it will not have gotten written when the xor occurs.
    311   1.3     oster          */
    312   1.3     oster 	if (allowBufferRecycle) {
    313   1.3     oster 		for (i = 0; i < nRodNodes; i++) {
    314   1.3     oster 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
    315   1.3     oster 				break;
    316   1.3     oster 		}
    317   1.3     oster 	}
    318   1.3     oster 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
    319   1.3     oster 		RF_CallocAndAdd(xorNode->results[0], 1,
    320   1.3     oster 		    rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    321   1.3     oster 		    (void *), allocList);
    322   1.3     oster 	} else {
    323   1.3     oster 		xorNode->results[0] = rodNodes[i].params[1].p;
    324   1.3     oster 	}
    325   1.3     oster 
    326   1.3     oster 	/* initialize the Wnp node */
    327   1.3     oster 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    328   1.3     oster 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    329   1.3     oster 	wnpNode->params[0].p = asmap->parityInfo;
    330   1.3     oster 	wnpNode->params[1].p = xorNode->results[0];
    331   1.3     oster 	wnpNode->params[2].v = parityStripeID;
    332   1.3     oster 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    333   1.3     oster 	/* parityInfo must describe entire parity unit */
    334   1.3     oster 	RF_ASSERT(asmap->parityInfo->next == NULL);
    335   1.3     oster 
    336   1.3     oster 	if (nfaults == 2) {
    337   1.3     oster 		/*
    338   1.3     oster 	         * We never try to recycle a buffer for the Q calcuation
    339   1.3     oster 	         * in addition to the parity. This would cause two buffers
    340   1.3     oster 	         * to get smashed during the P and Q calculation, guaranteeing
    341   1.3     oster 	         * one would be wrong.
    342   1.3     oster 	         */
    343   1.3     oster 		RF_CallocAndAdd(xorNode->results[1], 1,
    344   1.3     oster 		    rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    345   1.3     oster 		    (void *), allocList);
    346   1.3     oster 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    347   1.3     oster 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    348   1.3     oster 		wnqNode->params[0].p = asmap->qInfo;
    349   1.3     oster 		wnqNode->params[1].p = xorNode->results[1];
    350   1.3     oster 		wnqNode->params[2].v = parityStripeID;
    351   1.3     oster 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    352   1.3     oster 		/* parityInfo must describe entire parity unit */
    353   1.3     oster 		RF_ASSERT(asmap->parityInfo->next == NULL);
    354   1.3     oster 	}
    355   1.3     oster 	/*
    356   1.3     oster          * Connect nodes to form graph.
    357   1.3     oster          */
    358   1.3     oster 
    359   1.3     oster 	/* connect dag header to block node */
    360   1.3     oster 	RF_ASSERT(blockNode->numAntecedents == 0);
    361   1.3     oster 	dag_h->succedents[0] = blockNode;
    362   1.3     oster 
    363   1.3     oster 	if (nRodNodes > 0) {
    364   1.3     oster 		/* connect the block node to the Rod nodes */
    365   1.3     oster 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
    366   1.3     oster 		RF_ASSERT(xorNode->numAntecedents == nRodNodes);
    367   1.3     oster 		for (i = 0; i < nRodNodes; i++) {
    368   1.3     oster 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
    369   1.3     oster 			blockNode->succedents[i] = &rodNodes[i];
    370   1.3     oster 			rodNodes[i].antecedents[0] = blockNode;
    371   1.3     oster 			rodNodes[i].antType[0] = rf_control;
    372   1.3     oster 
    373   1.3     oster 			/* connect the Rod nodes to the Xor node */
    374   1.3     oster 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
    375   1.3     oster 			rodNodes[i].succedents[0] = xorNode;
    376   1.3     oster 			xorNode->antecedents[i] = &rodNodes[i];
    377   1.3     oster 			xorNode->antType[i] = rf_trueData;
    378   1.3     oster 		}
    379   1.3     oster 	} else {
    380   1.3     oster 		/* connect the block node to the Xor node */
    381   1.3     oster 		RF_ASSERT(blockNode->numSuccedents == 1);
    382   1.3     oster 		RF_ASSERT(xorNode->numAntecedents == 1);
    383   1.3     oster 		blockNode->succedents[0] = xorNode;
    384   1.3     oster 		xorNode->antecedents[0] = blockNode;
    385   1.3     oster 		xorNode->antType[0] = rf_control;
    386   1.3     oster 	}
    387   1.3     oster 
    388   1.3     oster 	/* connect the xor node to the commit node */
    389   1.3     oster 	RF_ASSERT(xorNode->numSuccedents == 1);
    390   1.3     oster 	RF_ASSERT(commitNode->numAntecedents == 1);
    391   1.3     oster 	xorNode->succedents[0] = commitNode;
    392   1.3     oster 	commitNode->antecedents[0] = xorNode;
    393   1.3     oster 	commitNode->antType[0] = rf_control;
    394   1.3     oster 
    395   1.3     oster 	/* connect the commit node to the write nodes */
    396   1.3     oster 	RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
    397   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
    398   1.3     oster 		RF_ASSERT(wndNodes->numAntecedents == 1);
    399   1.3     oster 		commitNode->succedents[i] = &wndNodes[i];
    400   1.3     oster 		wndNodes[i].antecedents[0] = commitNode;
    401   1.3     oster 		wndNodes[i].antType[0] = rf_control;
    402   1.3     oster 	}
    403   1.3     oster 	RF_ASSERT(wnpNode->numAntecedents == 1);
    404   1.3     oster 	commitNode->succedents[nWndNodes] = wnpNode;
    405   1.3     oster 	wnpNode->antecedents[0] = commitNode;
    406   1.3     oster 	wnpNode->antType[0] = rf_trueData;
    407   1.3     oster 	if (nfaults == 2) {
    408   1.3     oster 		RF_ASSERT(wnqNode->numAntecedents == 1);
    409   1.3     oster 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    410   1.3     oster 		wnqNode->antecedents[0] = commitNode;
    411   1.3     oster 		wnqNode->antType[0] = rf_trueData;
    412   1.3     oster 	}
    413   1.3     oster 	/* connect the write nodes to the term node */
    414   1.3     oster 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
    415   1.3     oster 	RF_ASSERT(termNode->numSuccedents == 0);
    416   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
    417   1.3     oster 		RF_ASSERT(wndNodes->numSuccedents == 1);
    418   1.3     oster 		wndNodes[i].succedents[0] = termNode;
    419   1.3     oster 		termNode->antecedents[i] = &wndNodes[i];
    420   1.3     oster 		termNode->antType[i] = rf_control;
    421   1.3     oster 	}
    422   1.3     oster 	RF_ASSERT(wnpNode->numSuccedents == 1);
    423   1.3     oster 	wnpNode->succedents[0] = termNode;
    424   1.3     oster 	termNode->antecedents[nWndNodes] = wnpNode;
    425   1.3     oster 	termNode->antType[nWndNodes] = rf_control;
    426   1.3     oster 	if (nfaults == 2) {
    427   1.3     oster 		RF_ASSERT(wnqNode->numSuccedents == 1);
    428   1.3     oster 		wnqNode->succedents[0] = termNode;
    429   1.3     oster 		termNode->antecedents[nWndNodes + 1] = wnqNode;
    430   1.3     oster 		termNode->antType[nWndNodes + 1] = rf_control;
    431   1.3     oster 	}
    432   1.1     oster }
    433   1.1     oster /******************************************************************************
    434   1.1     oster  *
    435   1.1     oster  * creates a DAG to perform a small-write operation (either raid 5 or pq),
    436   1.1     oster  * which is as follows:
    437   1.1     oster  *
    438   1.1     oster  * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
    439   1.1     oster  *            \- Rod X      /     \----> Wnd [Und]-/
    440   1.1     oster  *           [\- Rod X     /       \---> Wnd [Und]-/]
    441   1.1     oster  *           [\- Roq -> Q /         \--> Wnq [Unq]-/]
    442   1.1     oster  *
    443   1.1     oster  * Rop = read old parity
    444   1.1     oster  * Rod = read old data
    445   1.1     oster  * Roq = read old "q"
    446   1.1     oster  * Cmt = commit node
    447   1.1     oster  * Und = unlock data disk
    448   1.1     oster  * Unp = unlock parity disk
    449   1.1     oster  * Unq = unlock q disk
    450   1.1     oster  * Wnp = write new parity
    451   1.1     oster  * Wnd = write new data
    452   1.1     oster  * Wnq = write new "q"
    453   1.1     oster  * [ ] denotes optional segments in the graph
    454   1.1     oster  *
    455   1.1     oster  * Parameters:  raidPtr   - description of the physical array
    456   1.1     oster  *              asmap     - logical & physical addresses for this access
    457   1.1     oster  *              bp        - buffer ptr (holds write data)
    458   1.3     oster  *              flags     - general flags (e.g. disk locking)
    459   1.1     oster  *              allocList - list of memory allocated in DAG creation
    460   1.1     oster  *              pfuncs    - list of parity generating functions
    461   1.1     oster  *              qfuncs    - list of q generating functions
    462   1.1     oster  *
    463   1.1     oster  * A null qfuncs indicates single fault tolerant
    464   1.1     oster  *****************************************************************************/
    465   1.1     oster 
    466   1.3     oster void
    467   1.3     oster rf_CommonCreateSmallWriteDAG(
    468   1.3     oster     RF_Raid_t * raidPtr,
    469   1.3     oster     RF_AccessStripeMap_t * asmap,
    470   1.3     oster     RF_DagHeader_t * dag_h,
    471   1.3     oster     void *bp,
    472   1.3     oster     RF_RaidAccessFlags_t flags,
    473   1.3     oster     RF_AllocListElem_t * allocList,
    474  1.10  jdolecek     const RF_RedFuncs_t * pfuncs,
    475  1.10  jdolecek     const RF_RedFuncs_t * qfuncs)
    476   1.1     oster {
    477   1.3     oster 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
    478   1.3     oster 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
    479   1.3     oster 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes;
    480   1.3     oster 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
    481   1.3     oster 	int     i, j, nNodes, totalNumNodes, lu_flag;
    482   1.3     oster 	RF_ReconUnitNum_t which_ru;
    483   1.3     oster 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    484   1.3     oster 	int     (*qfunc) (RF_DagNode_t *);
    485   1.3     oster 	int     numDataNodes, numParityNodes;
    486   1.3     oster 	RF_StripeNum_t parityStripeID;
    487   1.3     oster 	RF_PhysDiskAddr_t *pda;
    488   1.3     oster 	char   *name, *qname;
    489   1.3     oster 	long    nfaults;
    490   1.3     oster 
    491   1.3     oster 	nfaults = qfuncs ? 2 : 1;
    492   1.3     oster 	lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
    493   1.3     oster 
    494   1.3     oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    495   1.3     oster 	    asmap->raidAddress, &which_ru);
    496   1.3     oster 	pda = asmap->physInfo;
    497   1.3     oster 	numDataNodes = asmap->numStripeUnitsAccessed;
    498   1.3     oster 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
    499   1.3     oster 
    500   1.3     oster 	if (rf_dagDebug) {
    501   1.3     oster 		printf("[Creating small-write DAG]\n");
    502   1.3     oster 	}
    503   1.3     oster 	RF_ASSERT(numDataNodes > 0);
    504   1.3     oster 	dag_h->creator = "SmallWriteDAG";
    505   1.3     oster 
    506   1.3     oster 	dag_h->numCommitNodes = 1;
    507   1.3     oster 	dag_h->numCommits = 0;
    508   1.3     oster 	dag_h->numSuccedents = 1;
    509   1.3     oster 
    510   1.3     oster 	/*
    511   1.3     oster          * DAG creation occurs in four steps:
    512   1.3     oster          * 1. count the number of nodes in the DAG
    513   1.3     oster          * 2. create the nodes
    514   1.3     oster          * 3. initialize the nodes
    515   1.3     oster          * 4. connect the nodes
    516   1.3     oster          */
    517   1.3     oster 
    518   1.3     oster 	/*
    519   1.3     oster          * Step 1. compute number of nodes in the graph
    520   1.3     oster          */
    521   1.3     oster 
    522   1.3     oster 	/* number of nodes: a read and write for each data unit a redundancy
    523   1.3     oster 	 * computation node for each parity node (nfaults * nparity) a read
    524   1.3     oster 	 * and write for each parity unit a block and commit node (2) a
    525   1.3     oster 	 * terminate node if atomic RMW an unlock node for each data unit,
    526   1.3     oster 	 * redundancy unit */
    527   1.3     oster 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
    528   1.3     oster 	    + (nfaults * 2 * numParityNodes) + 3;
    529   1.3     oster 	if (lu_flag) {
    530   1.3     oster 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
    531   1.3     oster 	}
    532   1.3     oster 	/*
    533   1.3     oster          * Step 2. create the nodes
    534   1.3     oster          */
    535   1.3     oster 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
    536   1.3     oster 	    (RF_DagNode_t *), allocList);
    537   1.3     oster 	i = 0;
    538   1.3     oster 	blockNode = &nodes[i];
    539   1.3     oster 	i += 1;
    540   1.3     oster 	commitNode = &nodes[i];
    541   1.3     oster 	i += 1;
    542   1.3     oster 	readDataNodes = &nodes[i];
    543   1.3     oster 	i += numDataNodes;
    544   1.3     oster 	readParityNodes = &nodes[i];
    545   1.3     oster 	i += numParityNodes;
    546   1.3     oster 	writeDataNodes = &nodes[i];
    547   1.3     oster 	i += numDataNodes;
    548   1.3     oster 	writeParityNodes = &nodes[i];
    549   1.3     oster 	i += numParityNodes;
    550   1.3     oster 	xorNodes = &nodes[i];
    551   1.3     oster 	i += numParityNodes;
    552   1.3     oster 	termNode = &nodes[i];
    553   1.3     oster 	i += 1;
    554   1.3     oster 	if (lu_flag) {
    555   1.3     oster 		unlockDataNodes = &nodes[i];
    556   1.3     oster 		i += numDataNodes;
    557   1.3     oster 		unlockParityNodes = &nodes[i];
    558   1.3     oster 		i += numParityNodes;
    559   1.3     oster 	} else {
    560   1.3     oster 		unlockDataNodes = unlockParityNodes = NULL;
    561   1.3     oster 	}
    562   1.3     oster 	if (nfaults == 2) {
    563   1.3     oster 		readQNodes = &nodes[i];
    564   1.3     oster 		i += numParityNodes;
    565   1.3     oster 		writeQNodes = &nodes[i];
    566   1.3     oster 		i += numParityNodes;
    567   1.3     oster 		qNodes = &nodes[i];
    568   1.3     oster 		i += numParityNodes;
    569   1.3     oster 		if (lu_flag) {
    570   1.3     oster 			unlockQNodes = &nodes[i];
    571   1.3     oster 			i += numParityNodes;
    572   1.3     oster 		} else {
    573   1.3     oster 			unlockQNodes = NULL;
    574   1.3     oster 		}
    575   1.3     oster 	} else {
    576   1.3     oster 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
    577   1.3     oster 	}
    578   1.3     oster 	RF_ASSERT(i == totalNumNodes);
    579   1.3     oster 
    580   1.3     oster 	/*
    581   1.3     oster          * Step 3. initialize the nodes
    582   1.3     oster          */
    583   1.3     oster 	/* initialize block node (Nil) */
    584   1.3     oster 	nNodes = numDataNodes + (nfaults * numParityNodes);
    585   1.3     oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    586   1.3     oster 	    NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
    587   1.3     oster 
    588   1.3     oster 	/* initialize commit node (Cmt) */
    589   1.3     oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    590   1.3     oster 	    NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
    591   1.3     oster 
    592   1.3     oster 	/* initialize terminate node (Trm) */
    593   1.3     oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    594   1.3     oster 	    NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
    595   1.3     oster 
    596   1.3     oster 	/* initialize nodes which read old data (Rod) */
    597   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
    598   1.3     oster 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    599   1.3     oster 		    rf_GenericWakeupFunc, (nfaults * numParityNodes), 1, 4, 0, dag_h,
    600   1.3     oster 		    "Rod", allocList);
    601   1.3     oster 		RF_ASSERT(pda != NULL);
    602   1.3     oster 		/* physical disk addr desc */
    603   1.3     oster 		readDataNodes[i].params[0].p = pda;
    604   1.3     oster 		/* buffer to hold old data */
    605   1.3     oster 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    606   1.3     oster 		    dag_h, pda, allocList);
    607   1.3     oster 		readDataNodes[i].params[2].v = parityStripeID;
    608   1.3     oster 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    609   1.3     oster 		    lu_flag, 0, which_ru);
    610   1.3     oster 		pda = pda->next;
    611   1.3     oster 		for (j = 0; j < readDataNodes[i].numSuccedents; j++) {
    612   1.3     oster 			readDataNodes[i].propList[j] = NULL;
    613   1.3     oster 		}
    614   1.3     oster 	}
    615   1.3     oster 
    616   1.3     oster 	/* initialize nodes which read old parity (Rop) */
    617   1.3     oster 	pda = asmap->parityInfo;
    618   1.3     oster 	i = 0;
    619   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
    620   1.3     oster 		RF_ASSERT(pda != NULL);
    621   1.3     oster 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
    622   1.3     oster 		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4,
    623   1.3     oster 		    0, dag_h, "Rop", allocList);
    624   1.3     oster 		readParityNodes[i].params[0].p = pda;
    625   1.3     oster 		/* buffer to hold old parity */
    626   1.3     oster 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    627   1.3     oster 		    dag_h, pda, allocList);
    628   1.3     oster 		readParityNodes[i].params[2].v = parityStripeID;
    629   1.3     oster 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    630   1.3     oster 		    lu_flag, 0, which_ru);
    631   1.3     oster 		pda = pda->next;
    632   1.3     oster 		for (j = 0; j < readParityNodes[i].numSuccedents; j++) {
    633   1.3     oster 			readParityNodes[i].propList[0] = NULL;
    634   1.3     oster 		}
    635   1.3     oster 	}
    636   1.3     oster 
    637   1.3     oster 	/* initialize nodes which read old Q (Roq) */
    638   1.3     oster 	if (nfaults == 2) {
    639   1.3     oster 		pda = asmap->qInfo;
    640   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
    641   1.3     oster 			RF_ASSERT(pda != NULL);
    642   1.3     oster 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    643   1.3     oster 			    rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
    644   1.3     oster 			readQNodes[i].params[0].p = pda;
    645   1.3     oster 			/* buffer to hold old Q */
    646   1.3     oster 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda,
    647   1.3     oster 			    allocList);
    648   1.3     oster 			readQNodes[i].params[2].v = parityStripeID;
    649   1.3     oster 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    650   1.3     oster 			    lu_flag, 0, which_ru);
    651   1.3     oster 			pda = pda->next;
    652   1.3     oster 			for (j = 0; j < readQNodes[i].numSuccedents; j++) {
    653   1.3     oster 				readQNodes[i].propList[0] = NULL;
    654   1.3     oster 			}
    655   1.3     oster 		}
    656   1.3     oster 	}
    657   1.3     oster 	/* initialize nodes which write new data (Wnd) */
    658   1.3     oster 	pda = asmap->physInfo;
    659   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
    660   1.3     oster 		RF_ASSERT(pda != NULL);
    661   1.3     oster 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    662   1.3     oster 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    663   1.3     oster 		    "Wnd", allocList);
    664   1.3     oster 		/* physical disk addr desc */
    665   1.3     oster 		writeDataNodes[i].params[0].p = pda;
    666   1.3     oster 		/* buffer holding new data to be written */
    667   1.3     oster 		writeDataNodes[i].params[1].p = pda->bufPtr;
    668   1.3     oster 		writeDataNodes[i].params[2].v = parityStripeID;
    669   1.3     oster 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    670   1.3     oster 		    0, 0, which_ru);
    671   1.3     oster 		if (lu_flag) {
    672   1.3     oster 			/* initialize node to unlock the disk queue */
    673   1.3     oster 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    674   1.3     oster 			    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    675   1.3     oster 			    "Und", allocList);
    676   1.3     oster 			/* physical disk addr desc */
    677   1.3     oster 			unlockDataNodes[i].params[0].p = pda;
    678   1.3     oster 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    679   1.3     oster 			    0, lu_flag, which_ru);
    680   1.3     oster 		}
    681   1.3     oster 		pda = pda->next;
    682   1.3     oster 	}
    683   1.3     oster 
    684   1.3     oster 	/*
    685   1.3     oster          * Initialize nodes which compute new parity and Q.
    686   1.3     oster          */
    687   1.3     oster 	/*
    688   1.3     oster          * We use the simple XOR func in the double-XOR case, and when
    689   1.3     oster          * we're accessing only a portion of one stripe unit. The distinction
    690   1.3     oster          * between the two is that the regular XOR func assumes that the targbuf
    691   1.3     oster          * is a full SU in size, and examines the pda associated with the buffer
    692   1.3     oster          * to decide where within the buffer to XOR the data, whereas
    693   1.3     oster          * the simple XOR func just XORs the data into the start of the buffer.
    694   1.3     oster          */
    695   1.3     oster 	if ((numParityNodes == 2) || ((numDataNodes == 1)
    696   1.3     oster 		&& (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
    697   1.3     oster 		func = pfuncs->simple;
    698   1.3     oster 		undoFunc = rf_NullNodeUndoFunc;
    699   1.3     oster 		name = pfuncs->SimpleName;
    700   1.3     oster 		if (qfuncs) {
    701   1.3     oster 			qfunc = qfuncs->simple;
    702   1.3     oster 			qname = qfuncs->SimpleName;
    703   1.3     oster 		} else {
    704   1.3     oster 			qfunc = NULL;
    705   1.3     oster 			qname = NULL;
    706   1.3     oster 		}
    707   1.3     oster 	} else {
    708   1.3     oster 		func = pfuncs->regular;
    709   1.3     oster 		undoFunc = rf_NullNodeUndoFunc;
    710   1.3     oster 		name = pfuncs->RegularName;
    711   1.3     oster 		if (qfuncs) {
    712   1.3     oster 			qfunc = qfuncs->regular;
    713   1.3     oster 			qname = qfuncs->RegularName;
    714   1.3     oster 		} else {
    715   1.3     oster 			qfunc = NULL;
    716   1.3     oster 			qname = NULL;
    717   1.3     oster 		}
    718   1.3     oster 	}
    719   1.3     oster 	/*
    720   1.3     oster          * Initialize the xor nodes: params are {pda,buf}
    721   1.3     oster          * from {Rod,Wnd,Rop} nodes, and raidPtr
    722   1.3     oster          */
    723   1.3     oster 	if (numParityNodes == 2) {
    724   1.3     oster 		/* double-xor case */
    725   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
    726   1.3     oster 			/* note: no wakeup func for xor */
    727   1.3     oster 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL,
    728   1.3     oster 			    1, (numDataNodes + numParityNodes), 7, 1, dag_h, name, allocList);
    729   1.3     oster 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
    730   1.3     oster 			xorNodes[i].params[0] = readDataNodes[i].params[0];
    731   1.3     oster 			xorNodes[i].params[1] = readDataNodes[i].params[1];
    732   1.3     oster 			xorNodes[i].params[2] = readParityNodes[i].params[0];
    733   1.3     oster 			xorNodes[i].params[3] = readParityNodes[i].params[1];
    734   1.3     oster 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
    735   1.3     oster 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
    736   1.3     oster 			xorNodes[i].params[6].p = raidPtr;
    737   1.3     oster 			/* use old parity buf as target buf */
    738   1.3     oster 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;
    739   1.3     oster 			if (nfaults == 2) {
    740   1.3     oster 				/* note: no wakeup func for qor */
    741   1.3     oster 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
    742   1.3     oster 				    (numDataNodes + numParityNodes), 7, 1, dag_h, qname, allocList);
    743   1.3     oster 				qNodes[i].params[0] = readDataNodes[i].params[0];
    744   1.3     oster 				qNodes[i].params[1] = readDataNodes[i].params[1];
    745   1.3     oster 				qNodes[i].params[2] = readQNodes[i].params[0];
    746   1.3     oster 				qNodes[i].params[3] = readQNodes[i].params[1];
    747   1.3     oster 				qNodes[i].params[4] = writeDataNodes[i].params[0];
    748   1.3     oster 				qNodes[i].params[5] = writeDataNodes[i].params[1];
    749   1.3     oster 				qNodes[i].params[6].p = raidPtr;
    750   1.3     oster 				/* use old Q buf as target buf */
    751   1.3     oster 				qNodes[i].results[0] = readQNodes[i].params[1].p;
    752   1.3     oster 			}
    753   1.3     oster 		}
    754   1.3     oster 	} else {
    755   1.3     oster 		/* there is only one xor node in this case */
    756   1.3     oster 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, 1,
    757   1.3     oster 		    (numDataNodes + numParityNodes),
    758   1.3     oster 		    (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
    759   1.3     oster 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
    760   1.3     oster 		for (i = 0; i < numDataNodes + 1; i++) {
    761   1.3     oster 			/* set up params related to Rod and Rop nodes */
    762   1.3     oster 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    763   1.3     oster 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    764   1.3     oster 		}
    765   1.3     oster 		for (i = 0; i < numDataNodes; i++) {
    766   1.3     oster 			/* set up params related to Wnd and Wnp nodes */
    767   1.3     oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    768   1.3     oster 			    writeDataNodes[i].params[0];
    769   1.3     oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    770   1.3     oster 			    writeDataNodes[i].params[1];
    771   1.3     oster 		}
    772   1.3     oster 		/* xor node needs to get at RAID information */
    773   1.3     oster 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    774   1.3     oster 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
    775   1.3     oster 		if (nfaults == 2) {
    776   1.3     oster 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
    777   1.3     oster 			    (numDataNodes + numParityNodes),
    778   1.3     oster 			    (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h,
    779   1.3     oster 			    qname, allocList);
    780   1.3     oster 			for (i = 0; i < numDataNodes; i++) {
    781   1.3     oster 				/* set up params related to Rod */
    782   1.3     oster 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    783   1.3     oster 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    784   1.3     oster 			}
    785   1.3     oster 			/* and read old q */
    786   1.3     oster 			qNodes[0].params[2 * numDataNodes + 0] =	/* pda */
    787   1.3     oster 			    readQNodes[0].params[0];
    788   1.3     oster 			qNodes[0].params[2 * numDataNodes + 1] =	/* buffer ptr */
    789   1.3     oster 			    readQNodes[0].params[1];
    790   1.3     oster 			for (i = 0; i < numDataNodes; i++) {
    791   1.3     oster 				/* set up params related to Wnd nodes */
    792   1.3     oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    793   1.3     oster 				    writeDataNodes[i].params[0];
    794   1.3     oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    795   1.3     oster 				    writeDataNodes[i].params[1];
    796   1.3     oster 			}
    797   1.3     oster 			/* xor node needs to get at RAID information */
    798   1.3     oster 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    799   1.3     oster 			qNodes[0].results[0] = readQNodes[0].params[1].p;
    800   1.3     oster 		}
    801   1.3     oster 	}
    802   1.3     oster 
    803   1.3     oster 	/* initialize nodes which write new parity (Wnp) */
    804   1.3     oster 	pda = asmap->parityInfo;
    805   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
    806   1.3     oster 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    807   1.3     oster 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    808   1.3     oster 		    "Wnp", allocList);
    809   1.3     oster 		RF_ASSERT(pda != NULL);
    810   1.3     oster 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    811   1.3     oster 							 * filled in by xor node */
    812   1.3     oster 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
    813   1.3     oster 										 * parity write
    814   1.3     oster 										 * operation */
    815   1.3     oster 		writeParityNodes[i].params[2].v = parityStripeID;
    816   1.3     oster 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    817   1.3     oster 		    0, 0, which_ru);
    818   1.3     oster 		if (lu_flag) {
    819   1.3     oster 			/* initialize node to unlock the disk queue */
    820   1.3     oster 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    821   1.3     oster 			    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    822   1.3     oster 			    "Unp", allocList);
    823   1.3     oster 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
    824   1.3     oster 								 * desc */
    825   1.3     oster 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    826   1.3     oster 			    0, lu_flag, which_ru);
    827   1.3     oster 		}
    828   1.3     oster 		pda = pda->next;
    829   1.3     oster 	}
    830   1.3     oster 
    831   1.3     oster 	/* initialize nodes which write new Q (Wnq) */
    832   1.3     oster 	if (nfaults == 2) {
    833   1.3     oster 		pda = asmap->qInfo;
    834   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
    835   1.3     oster 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    836   1.3     oster 			    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    837   1.3     oster 			    "Wnq", allocList);
    838   1.3     oster 			RF_ASSERT(pda != NULL);
    839   1.3     oster 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    840   1.3     oster 								 * filled in by xor node */
    841   1.3     oster 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
    842   1.3     oster 										 * parity write
    843   1.3     oster 										 * operation */
    844   1.3     oster 			writeQNodes[i].params[2].v = parityStripeID;
    845   1.3     oster 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    846   1.3     oster 			    0, 0, which_ru);
    847   1.3     oster 			if (lu_flag) {
    848   1.3     oster 				/* initialize node to unlock the disk queue */
    849   1.3     oster 				rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    850   1.3     oster 				    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    851   1.3     oster 				    "Unq", allocList);
    852   1.3     oster 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
    853   1.3     oster 									 * desc */
    854   1.3     oster 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    855   1.3     oster 				    0, lu_flag, which_ru);
    856   1.3     oster 			}
    857   1.3     oster 			pda = pda->next;
    858   1.3     oster 		}
    859   1.3     oster 	}
    860   1.3     oster 	/*
    861   1.3     oster          * Step 4. connect the nodes.
    862   1.3     oster          */
    863   1.3     oster 
    864   1.3     oster 	/* connect header to block node */
    865   1.3     oster 	dag_h->succedents[0] = blockNode;
    866   1.3     oster 
    867   1.3     oster 	/* connect block node to read old data nodes */
    868   1.3     oster 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
    869   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
    870   1.3     oster 		blockNode->succedents[i] = &readDataNodes[i];
    871   1.3     oster 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
    872   1.3     oster 		readDataNodes[i].antecedents[0] = blockNode;
    873   1.3     oster 		readDataNodes[i].antType[0] = rf_control;
    874   1.3     oster 	}
    875   1.3     oster 
    876   1.3     oster 	/* connect block node to read old parity nodes */
    877   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
    878   1.3     oster 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
    879   1.3     oster 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
    880   1.3     oster 		readParityNodes[i].antecedents[0] = blockNode;
    881   1.3     oster 		readParityNodes[i].antType[0] = rf_control;
    882   1.3     oster 	}
    883   1.3     oster 
    884   1.3     oster 	/* connect block node to read old Q nodes */
    885   1.3     oster 	if (nfaults == 2) {
    886   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
    887   1.3     oster 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
    888   1.3     oster 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
    889   1.3     oster 			readQNodes[i].antecedents[0] = blockNode;
    890   1.3     oster 			readQNodes[i].antType[0] = rf_control;
    891   1.3     oster 		}
    892   1.3     oster 	}
    893   1.3     oster 	/* connect read old data nodes to xor nodes */
    894   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
    895   1.3     oster 		RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes));
    896   1.3     oster 		for (j = 0; j < numParityNodes; j++) {
    897   1.3     oster 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
    898   1.3     oster 			readDataNodes[i].succedents[j] = &xorNodes[j];
    899   1.3     oster 			xorNodes[j].antecedents[i] = &readDataNodes[i];
    900   1.3     oster 			xorNodes[j].antType[i] = rf_trueData;
    901   1.3     oster 		}
    902   1.3     oster 	}
    903   1.3     oster 
    904   1.3     oster 	/* connect read old data nodes to q nodes */
    905   1.3     oster 	if (nfaults == 2) {
    906   1.3     oster 		for (i = 0; i < numDataNodes; i++) {
    907   1.3     oster 			for (j = 0; j < numParityNodes; j++) {
    908   1.3     oster 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
    909   1.3     oster 				readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j];
    910   1.3     oster 				qNodes[j].antecedents[i] = &readDataNodes[i];
    911   1.3     oster 				qNodes[j].antType[i] = rf_trueData;
    912   1.3     oster 			}
    913   1.3     oster 		}
    914   1.3     oster 	}
    915   1.3     oster 	/* connect read old parity nodes to xor nodes */
    916   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
    917   1.3     oster 		RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    918   1.3     oster 		for (j = 0; j < numParityNodes; j++) {
    919   1.3     oster 			readParityNodes[i].succedents[j] = &xorNodes[j];
    920   1.3     oster 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    921   1.3     oster 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
    922   1.3     oster 		}
    923   1.3     oster 	}
    924   1.3     oster 
    925   1.3     oster 	/* connect read old q nodes to q nodes */
    926   1.3     oster 	if (nfaults == 2) {
    927   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
    928   1.3     oster 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    929   1.3     oster 			for (j = 0; j < numParityNodes; j++) {
    930   1.3     oster 				readQNodes[i].succedents[j] = &qNodes[j];
    931   1.3     oster 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
    932   1.3     oster 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
    933   1.3     oster 			}
    934   1.3     oster 		}
    935   1.3     oster 	}
    936   1.3     oster 	/* connect xor nodes to commit node */
    937   1.3     oster 	RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
    938   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
    939   1.3     oster 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
    940   1.3     oster 		xorNodes[i].succedents[0] = commitNode;
    941   1.3     oster 		commitNode->antecedents[i] = &xorNodes[i];
    942   1.3     oster 		commitNode->antType[i] = rf_control;
    943   1.3     oster 	}
    944   1.3     oster 
    945   1.3     oster 	/* connect q nodes to commit node */
    946   1.3     oster 	if (nfaults == 2) {
    947   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
    948   1.3     oster 			RF_ASSERT(qNodes[i].numSuccedents == 1);
    949   1.3     oster 			qNodes[i].succedents[0] = commitNode;
    950   1.3     oster 			commitNode->antecedents[i + numParityNodes] = &qNodes[i];
    951   1.3     oster 			commitNode->antType[i + numParityNodes] = rf_control;
    952   1.3     oster 		}
    953   1.3     oster 	}
    954   1.3     oster 	/* connect commit node to write nodes */
    955   1.3     oster 	RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
    956   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
    957   1.3     oster 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
    958   1.3     oster 		commitNode->succedents[i] = &writeDataNodes[i];
    959   1.3     oster 		writeDataNodes[i].antecedents[0] = commitNode;
    960   1.3     oster 		writeDataNodes[i].antType[0] = rf_trueData;
    961   1.3     oster 	}
    962   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
    963   1.3     oster 		RF_ASSERT(writeParityNodes[i].numAntecedents == 1);
    964   1.3     oster 		commitNode->succedents[i + numDataNodes] = &writeParityNodes[i];
    965   1.3     oster 		writeParityNodes[i].antecedents[0] = commitNode;
    966   1.3     oster 		writeParityNodes[i].antType[0] = rf_trueData;
    967   1.3     oster 	}
    968   1.3     oster 	if (nfaults == 2) {
    969   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
    970   1.3     oster 			RF_ASSERT(writeQNodes[i].numAntecedents == 1);
    971   1.3     oster 			commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i];
    972   1.3     oster 			writeQNodes[i].antecedents[0] = commitNode;
    973   1.3     oster 			writeQNodes[i].antType[0] = rf_trueData;
    974   1.3     oster 		}
    975   1.3     oster 	}
    976   1.3     oster 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    977   1.3     oster 	RF_ASSERT(termNode->numSuccedents == 0);
    978   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
    979   1.3     oster 		if (lu_flag) {
    980   1.3     oster 			/* connect write new data nodes to unlock nodes */
    981   1.3     oster 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    982   1.3     oster 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
    983   1.3     oster 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
    984   1.3     oster 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
    985   1.3     oster 			unlockDataNodes[i].antType[0] = rf_control;
    986   1.3     oster 
    987   1.3     oster 			/* connect unlock nodes to term node */
    988   1.3     oster 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
    989   1.3     oster 			unlockDataNodes[i].succedents[0] = termNode;
    990   1.3     oster 			termNode->antecedents[i] = &unlockDataNodes[i];
    991   1.3     oster 			termNode->antType[i] = rf_control;
    992   1.3     oster 		} else {
    993   1.3     oster 			/* connect write new data nodes to term node */
    994   1.3     oster 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    995   1.3     oster 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    996   1.3     oster 			writeDataNodes[i].succedents[0] = termNode;
    997   1.3     oster 			termNode->antecedents[i] = &writeDataNodes[i];
    998   1.3     oster 			termNode->antType[i] = rf_control;
    999   1.3     oster 		}
   1000   1.3     oster 	}
   1001   1.3     oster 
   1002   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
   1003   1.3     oster 		if (lu_flag) {
   1004   1.3     oster 			/* connect write new parity nodes to unlock nodes */
   1005   1.3     oster 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1006   1.3     oster 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1007   1.3     oster 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1008   1.3     oster 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1009   1.3     oster 			unlockParityNodes[i].antType[0] = rf_control;
   1010   1.3     oster 
   1011   1.3     oster 			/* connect unlock nodes to term node */
   1012   1.3     oster 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1013   1.3     oster 			unlockParityNodes[i].succedents[0] = termNode;
   1014   1.3     oster 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1015   1.3     oster 			termNode->antType[numDataNodes + i] = rf_control;
   1016   1.3     oster 		} else {
   1017   1.3     oster 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1018   1.3     oster 			writeParityNodes[i].succedents[0] = termNode;
   1019   1.3     oster 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1020   1.3     oster 			termNode->antType[numDataNodes + i] = rf_control;
   1021   1.3     oster 		}
   1022   1.3     oster 	}
   1023   1.3     oster 
   1024   1.3     oster 	if (nfaults == 2) {
   1025   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
   1026   1.3     oster 			if (lu_flag) {
   1027   1.3     oster 				/* connect write new Q nodes to unlock nodes */
   1028   1.3     oster 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1029   1.3     oster 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1030   1.3     oster 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1031   1.3     oster 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1032   1.3     oster 				unlockQNodes[i].antType[0] = rf_control;
   1033   1.3     oster 
   1034   1.3     oster 				/* connect unlock nodes to unblock node */
   1035   1.3     oster 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1036   1.3     oster 				unlockQNodes[i].succedents[0] = termNode;
   1037   1.3     oster 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1038   1.3     oster 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1039   1.3     oster 			} else {
   1040   1.3     oster 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1041   1.3     oster 				writeQNodes[i].succedents[0] = termNode;
   1042   1.3     oster 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1043   1.3     oster 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1044   1.3     oster 			}
   1045   1.3     oster 		}
   1046   1.3     oster 	}
   1047   1.1     oster }
   1048   1.1     oster 
   1049   1.1     oster 
   1050   1.1     oster /******************************************************************************
   1051   1.1     oster  * create a write graph (fault-free or degraded) for RAID level 1
   1052   1.1     oster  *
   1053   1.1     oster  * Hdr -> Commit -> Wpd -> Nil -> Trm
   1054   1.1     oster  *               -> Wsd ->
   1055   1.1     oster  *
   1056   1.1     oster  * The "Wpd" node writes data to the primary copy in the mirror pair
   1057   1.1     oster  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1058   1.1     oster  *
   1059   1.1     oster  * Parameters:  raidPtr   - description of the physical array
   1060   1.1     oster  *              asmap     - logical & physical addresses for this access
   1061   1.1     oster  *              bp        - buffer ptr (holds write data)
   1062   1.3     oster  *              flags     - general flags (e.g. disk locking)
   1063   1.1     oster  *              allocList - list of memory allocated in DAG creation
   1064   1.1     oster  *****************************************************************************/
   1065   1.1     oster 
   1066   1.3     oster void
   1067   1.3     oster rf_CreateRaidOneWriteDAG(
   1068   1.3     oster     RF_Raid_t * raidPtr,
   1069   1.3     oster     RF_AccessStripeMap_t * asmap,
   1070   1.3     oster     RF_DagHeader_t * dag_h,
   1071   1.3     oster     void *bp,
   1072   1.3     oster     RF_RaidAccessFlags_t flags,
   1073   1.3     oster     RF_AllocListElem_t * allocList)
   1074   1.1     oster {
   1075   1.3     oster 	RF_DagNode_t *unblockNode, *termNode, *commitNode;
   1076   1.3     oster 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   1077   1.3     oster 	int     nWndNodes, nWmirNodes, i;
   1078   1.3     oster 	RF_ReconUnitNum_t which_ru;
   1079   1.3     oster 	RF_PhysDiskAddr_t *pda, *pdaP;
   1080   1.3     oster 	RF_StripeNum_t parityStripeID;
   1081   1.3     oster 
   1082   1.3     oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   1083   1.3     oster 	    asmap->raidAddress, &which_ru);
   1084   1.3     oster 	if (rf_dagDebug) {
   1085   1.3     oster 		printf("[Creating RAID level 1 write DAG]\n");
   1086   1.3     oster 	}
   1087   1.3     oster 	dag_h->creator = "RaidOneWriteDAG";
   1088   1.3     oster 
   1089   1.3     oster 	/* 2 implies access not SU aligned */
   1090   1.3     oster 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
   1091   1.3     oster 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   1092   1.3     oster 
   1093   1.3     oster 	/* alloc the Wnd nodes and the Wmir node */
   1094   1.3     oster 	if (asmap->numDataFailed == 1)
   1095   1.3     oster 		nWndNodes--;
   1096   1.3     oster 	if (asmap->numParityFailed == 1)
   1097   1.3     oster 		nWmirNodes--;
   1098   1.3     oster 
   1099   1.3     oster 	/* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
   1100   1.3     oster 	 * + terminator) */
   1101   1.3     oster 	RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t),
   1102   1.3     oster 	    (RF_DagNode_t *), allocList);
   1103   1.3     oster 	i = 0;
   1104   1.3     oster 	wndNode = &nodes[i];
   1105   1.3     oster 	i += nWndNodes;
   1106   1.3     oster 	wmirNode = &nodes[i];
   1107   1.3     oster 	i += nWmirNodes;
   1108   1.3     oster 	commitNode = &nodes[i];
   1109   1.3     oster 	i += 1;
   1110   1.3     oster 	unblockNode = &nodes[i];
   1111   1.3     oster 	i += 1;
   1112   1.3     oster 	termNode = &nodes[i];
   1113   1.3     oster 	i += 1;
   1114   1.3     oster 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   1115   1.3     oster 
   1116   1.3     oster 	/* this dag can commit immediately */
   1117   1.3     oster 	dag_h->numCommitNodes = 1;
   1118   1.3     oster 	dag_h->numCommits = 0;
   1119   1.3     oster 	dag_h->numSuccedents = 1;
   1120   1.3     oster 
   1121   1.3     oster 	/* initialize the commit, unblock, and term nodes */
   1122   1.3     oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
   1123   1.3     oster 	    NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Cmt", allocList);
   1124   1.3     oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
   1125   1.3     oster 	    NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
   1126   1.3     oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
   1127   1.3     oster 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
   1128   1.3     oster 
   1129   1.3     oster 	/* initialize the wnd nodes */
   1130   1.3     oster 	if (nWndNodes > 0) {
   1131   1.3     oster 		pda = asmap->physInfo;
   1132   1.3     oster 		for (i = 0; i < nWndNodes; i++) {
   1133   1.3     oster 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1134   1.3     oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
   1135   1.3     oster 			RF_ASSERT(pda != NULL);
   1136   1.3     oster 			wndNode[i].params[0].p = pda;
   1137   1.3     oster 			wndNode[i].params[1].p = pda->bufPtr;
   1138   1.3     oster 			wndNode[i].params[2].v = parityStripeID;
   1139   1.3     oster 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1140   1.3     oster 			pda = pda->next;
   1141   1.3     oster 		}
   1142   1.3     oster 		RF_ASSERT(pda == NULL);
   1143   1.3     oster 	}
   1144   1.3     oster 	/* initialize the mirror nodes */
   1145   1.3     oster 	if (nWmirNodes > 0) {
   1146   1.3     oster 		pda = asmap->physInfo;
   1147   1.3     oster 		pdaP = asmap->parityInfo;
   1148   1.3     oster 		for (i = 0; i < nWmirNodes; i++) {
   1149   1.3     oster 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1150   1.3     oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
   1151   1.3     oster 			RF_ASSERT(pda != NULL);
   1152   1.3     oster 			wmirNode[i].params[0].p = pdaP;
   1153   1.3     oster 			wmirNode[i].params[1].p = pda->bufPtr;
   1154   1.3     oster 			wmirNode[i].params[2].v = parityStripeID;
   1155   1.3     oster 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1156   1.3     oster 			pda = pda->next;
   1157   1.3     oster 			pdaP = pdaP->next;
   1158   1.3     oster 		}
   1159   1.3     oster 		RF_ASSERT(pda == NULL);
   1160   1.3     oster 		RF_ASSERT(pdaP == NULL);
   1161   1.3     oster 	}
   1162   1.3     oster 	/* link the header node to the commit node */
   1163   1.3     oster 	RF_ASSERT(dag_h->numSuccedents == 1);
   1164   1.3     oster 	RF_ASSERT(commitNode->numAntecedents == 0);
   1165   1.3     oster 	dag_h->succedents[0] = commitNode;
   1166   1.3     oster 
   1167   1.3     oster 	/* link the commit node to the write nodes */
   1168   1.3     oster 	RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
   1169   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
   1170   1.3     oster 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   1171   1.3     oster 		commitNode->succedents[i] = &wndNode[i];
   1172   1.3     oster 		wndNode[i].antecedents[0] = commitNode;
   1173   1.3     oster 		wndNode[i].antType[0] = rf_control;
   1174   1.3     oster 	}
   1175   1.3     oster 	for (i = 0; i < nWmirNodes; i++) {
   1176   1.3     oster 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   1177   1.3     oster 		commitNode->succedents[i + nWndNodes] = &wmirNode[i];
   1178   1.3     oster 		wmirNode[i].antecedents[0] = commitNode;
   1179   1.3     oster 		wmirNode[i].antType[0] = rf_control;
   1180   1.3     oster 	}
   1181   1.3     oster 
   1182   1.3     oster 	/* link the write nodes to the unblock node */
   1183   1.3     oster 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   1184   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
   1185   1.3     oster 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   1186   1.3     oster 		wndNode[i].succedents[0] = unblockNode;
   1187   1.3     oster 		unblockNode->antecedents[i] = &wndNode[i];
   1188   1.3     oster 		unblockNode->antType[i] = rf_control;
   1189   1.3     oster 	}
   1190   1.3     oster 	for (i = 0; i < nWmirNodes; i++) {
   1191   1.3     oster 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   1192   1.3     oster 		wmirNode[i].succedents[0] = unblockNode;
   1193   1.3     oster 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   1194   1.3     oster 		unblockNode->antType[i + nWndNodes] = rf_control;
   1195   1.3     oster 	}
   1196   1.3     oster 
   1197   1.3     oster 	/* link the unblock node to the term node */
   1198   1.3     oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
   1199   1.3     oster 	RF_ASSERT(termNode->numAntecedents == 1);
   1200   1.3     oster 	RF_ASSERT(termNode->numSuccedents == 0);
   1201   1.3     oster 	unblockNode->succedents[0] = termNode;
   1202   1.3     oster 	termNode->antecedents[0] = unblockNode;
   1203   1.3     oster 	termNode->antType[0] = rf_control;
   1204   1.1     oster }
   1205   1.1     oster 
   1206   1.1     oster 
   1207   1.9     oster #if 0
   1208   1.1     oster /* DAGs which have no commit points.
   1209   1.1     oster  *
   1210   1.1     oster  * The following DAGs are used in forward and backward error recovery experiments.
   1211   1.1     oster  * They are identical to the DAGs above this comment with the exception that the
   1212   1.1     oster  * the commit points have been removed.
   1213   1.1     oster  */
   1214   1.1     oster 
   1215   1.1     oster 
   1216   1.1     oster 
   1217   1.3     oster void
   1218   1.3     oster rf_CommonCreateLargeWriteDAGFwd(
   1219   1.3     oster     RF_Raid_t * raidPtr,
   1220   1.3     oster     RF_AccessStripeMap_t * asmap,
   1221   1.3     oster     RF_DagHeader_t * dag_h,
   1222   1.3     oster     void *bp,
   1223   1.3     oster     RF_RaidAccessFlags_t flags,
   1224   1.3     oster     RF_AllocListElem_t * allocList,
   1225   1.3     oster     int nfaults,
   1226   1.3     oster     int (*redFunc) (RF_DagNode_t *),
   1227   1.3     oster     int allowBufferRecycle)
   1228   1.1     oster {
   1229   1.3     oster 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
   1230   1.3     oster 	RF_DagNode_t *wnqNode, *blockNode, *syncNode, *termNode;
   1231   1.3     oster 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
   1232   1.3     oster 	RF_AccessStripeMapHeader_t *new_asm_h[2];
   1233   1.3     oster 	RF_StripeNum_t parityStripeID;
   1234   1.3     oster 	char   *sosBuffer, *eosBuffer;
   1235   1.3     oster 	RF_ReconUnitNum_t which_ru;
   1236   1.3     oster 	RF_RaidLayout_t *layoutPtr;
   1237   1.3     oster 	RF_PhysDiskAddr_t *pda;
   1238   1.3     oster 
   1239   1.3     oster 	layoutPtr = &(raidPtr->Layout);
   1240   1.3     oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
   1241   1.3     oster 
   1242   1.3     oster 	if (rf_dagDebug)
   1243   1.3     oster 		printf("[Creating large-write DAG]\n");
   1244   1.3     oster 	dag_h->creator = "LargeWriteDAGFwd";
   1245   1.3     oster 
   1246   1.3     oster 	dag_h->numCommitNodes = 0;
   1247   1.3     oster 	dag_h->numCommits = 0;
   1248   1.3     oster 	dag_h->numSuccedents = 1;
   1249   1.3     oster 
   1250   1.3     oster 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
   1251   1.3     oster 	nWndNodes = asmap->numStripeUnitsAccessed;
   1252   1.3     oster 	RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1253   1.3     oster 	i = 0;
   1254   1.3     oster 	wndNodes = &nodes[i];
   1255   1.3     oster 	i += nWndNodes;
   1256   1.3     oster 	xorNode = &nodes[i];
   1257   1.3     oster 	i += 1;
   1258   1.3     oster 	wnpNode = &nodes[i];
   1259   1.3     oster 	i += 1;
   1260   1.3     oster 	blockNode = &nodes[i];
   1261   1.3     oster 	i += 1;
   1262   1.3     oster 	syncNode = &nodes[i];
   1263   1.3     oster 	i += 1;
   1264   1.3     oster 	termNode = &nodes[i];
   1265   1.3     oster 	i += 1;
   1266   1.3     oster 	if (nfaults == 2) {
   1267   1.3     oster 		wnqNode = &nodes[i];
   1268   1.3     oster 		i += 1;
   1269   1.3     oster 	} else {
   1270   1.3     oster 		wnqNode = NULL;
   1271   1.3     oster 	}
   1272   1.3     oster 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
   1273   1.3     oster 	if (nRodNodes > 0) {
   1274   1.3     oster 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1275   1.3     oster 	} else {
   1276   1.3     oster 		rodNodes = NULL;
   1277   1.3     oster 	}
   1278   1.3     oster 
   1279   1.3     oster 	/* begin node initialization */
   1280   1.3     oster 	if (nRodNodes > 0) {
   1281   1.3     oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1282   1.3     oster 		rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes, 0, 0, dag_h, "Nil", allocList);
   1283   1.3     oster 	} else {
   1284   1.3     oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
   1285   1.3     oster 		rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, 1, 0, 0, dag_h, "Nil", allocList);
   1286   1.3     oster 	}
   1287   1.3     oster 
   1288   1.3     oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
   1289   1.3     oster 
   1290   1.3     oster 	/* initialize the Rod nodes */
   1291   1.3     oster 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
   1292   1.3     oster 		if (new_asm_h[asmNum]) {
   1293   1.3     oster 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
   1294   1.3     oster 			while (pda) {
   1295   1.3     oster 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
   1296   1.3     oster 				rodNodes[nodeNum].params[0].p = pda;
   1297   1.3     oster 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
   1298   1.3     oster 				rodNodes[nodeNum].params[2].v = parityStripeID;
   1299   1.3     oster 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1300   1.3     oster 				nodeNum++;
   1301   1.3     oster 				pda = pda->next;
   1302   1.3     oster 			}
   1303   1.3     oster 		}
   1304   1.3     oster 	}
   1305   1.3     oster 	RF_ASSERT(nodeNum == nRodNodes);
   1306   1.3     oster 
   1307   1.3     oster 	/* initialize the wnd nodes */
   1308   1.3     oster 	pda = asmap->physInfo;
   1309   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
   1310   1.3     oster 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
   1311   1.3     oster 		RF_ASSERT(pda != NULL);
   1312   1.3     oster 		wndNodes[i].params[0].p = pda;
   1313   1.3     oster 		wndNodes[i].params[1].p = pda->bufPtr;
   1314   1.3     oster 		wndNodes[i].params[2].v = parityStripeID;
   1315   1.3     oster 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1316   1.3     oster 		pda = pda->next;
   1317   1.3     oster 	}
   1318   1.3     oster 
   1319   1.3     oster 	/* initialize the redundancy node */
   1320   1.3     oster 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nfaults, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
   1321   1.3     oster 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
   1322   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
   1323   1.3     oster 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
   1324   1.3     oster 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
   1325   1.3     oster 	}
   1326   1.3     oster 	for (i = 0; i < nRodNodes; i++) {
   1327   1.3     oster 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
   1328   1.3     oster 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
   1329   1.3     oster 	}
   1330   1.3     oster 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
   1331   1.3     oster 									 * at RAID information */
   1332   1.3     oster 
   1333   1.3     oster 	/* look for an Rod node that reads a complete SU.  If none, alloc a
   1334   1.3     oster 	 * buffer to receive the parity info. Note that we can't use a new
   1335   1.3     oster 	 * data buffer because it will not have gotten written when the xor
   1336   1.3     oster 	 * occurs. */
   1337   1.3     oster 	if (allowBufferRecycle) {
   1338   1.3     oster 		for (i = 0; i < nRodNodes; i++)
   1339   1.3     oster 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
   1340   1.3     oster 				break;
   1341   1.3     oster 	}
   1342   1.3     oster 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
   1343   1.3     oster 		RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
   1344   1.3     oster 	} else
   1345   1.3     oster 		xorNode->results[0] = rodNodes[i].params[1].p;
   1346   1.3     oster 
   1347   1.3     oster 	/* initialize the Wnp node */
   1348   1.3     oster 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
   1349   1.3     oster 	wnpNode->params[0].p = asmap->parityInfo;
   1350   1.3     oster 	wnpNode->params[1].p = xorNode->results[0];
   1351   1.3     oster 	wnpNode->params[2].v = parityStripeID;
   1352   1.3     oster 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1353   1.3     oster 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
   1354   1.3     oster 							 * describe entire
   1355   1.3     oster 							 * parity unit */
   1356   1.3     oster 
   1357   1.3     oster 	if (nfaults == 2) {
   1358   1.3     oster 		/* we never try to recycle a buffer for the Q calcuation in
   1359   1.3     oster 		 * addition to the parity. This would cause two buffers to get
   1360   1.3     oster 		 * smashed during the P and Q calculation, guaranteeing one
   1361   1.3     oster 		 * would be wrong. */
   1362   1.3     oster 		RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
   1363   1.3     oster 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
   1364   1.3     oster 		wnqNode->params[0].p = asmap->qInfo;
   1365   1.3     oster 		wnqNode->params[1].p = xorNode->results[1];
   1366   1.3     oster 		wnqNode->params[2].v = parityStripeID;
   1367   1.3     oster 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1368   1.3     oster 		RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
   1369   1.3     oster 								 * describe entire
   1370   1.3     oster 								 * parity unit */
   1371   1.3     oster 	}
   1372   1.3     oster 	/* connect nodes to form graph */
   1373   1.3     oster 
   1374   1.3     oster 	/* connect dag header to block node */
   1375   1.3     oster 	RF_ASSERT(blockNode->numAntecedents == 0);
   1376   1.3     oster 	dag_h->succedents[0] = blockNode;
   1377   1.3     oster 
   1378   1.3     oster 	if (nRodNodes > 0) {
   1379   1.3     oster 		/* connect the block node to the Rod nodes */
   1380   1.3     oster 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
   1381   1.3     oster 		RF_ASSERT(syncNode->numAntecedents == nRodNodes);
   1382   1.3     oster 		for (i = 0; i < nRodNodes; i++) {
   1383   1.3     oster 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
   1384   1.3     oster 			blockNode->succedents[i] = &rodNodes[i];
   1385   1.3     oster 			rodNodes[i].antecedents[0] = blockNode;
   1386   1.3     oster 			rodNodes[i].antType[0] = rf_control;
   1387   1.3     oster 
   1388   1.3     oster 			/* connect the Rod nodes to the Nil node */
   1389   1.3     oster 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
   1390   1.3     oster 			rodNodes[i].succedents[0] = syncNode;
   1391   1.3     oster 			syncNode->antecedents[i] = &rodNodes[i];
   1392   1.3     oster 			syncNode->antType[i] = rf_trueData;
   1393   1.3     oster 		}
   1394   1.3     oster 	} else {
   1395   1.3     oster 		/* connect the block node to the Nil node */
   1396   1.3     oster 		RF_ASSERT(blockNode->numSuccedents == 1);
   1397   1.3     oster 		RF_ASSERT(syncNode->numAntecedents == 1);
   1398   1.3     oster 		blockNode->succedents[0] = syncNode;
   1399   1.3     oster 		syncNode->antecedents[0] = blockNode;
   1400   1.3     oster 		syncNode->antType[0] = rf_control;
   1401   1.3     oster 	}
   1402   1.3     oster 
   1403   1.3     oster 	/* connect the sync node to the Wnd nodes */
   1404   1.3     oster 	RF_ASSERT(syncNode->numSuccedents == (1 + nWndNodes));
   1405   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
   1406   1.3     oster 		RF_ASSERT(wndNodes->numAntecedents == 1);
   1407   1.3     oster 		syncNode->succedents[i] = &wndNodes[i];
   1408   1.3     oster 		wndNodes[i].antecedents[0] = syncNode;
   1409   1.3     oster 		wndNodes[i].antType[0] = rf_control;
   1410   1.3     oster 	}
   1411   1.3     oster 
   1412   1.3     oster 	/* connect the sync node to the Xor node */
   1413   1.3     oster 	RF_ASSERT(xorNode->numAntecedents == 1);
   1414   1.3     oster 	syncNode->succedents[nWndNodes] = xorNode;
   1415   1.3     oster 	xorNode->antecedents[0] = syncNode;
   1416   1.3     oster 	xorNode->antType[0] = rf_control;
   1417   1.3     oster 
   1418   1.3     oster 	/* connect the xor node to the write parity node */
   1419   1.3     oster 	RF_ASSERT(xorNode->numSuccedents == nfaults);
   1420   1.3     oster 	RF_ASSERT(wnpNode->numAntecedents == 1);
   1421   1.3     oster 	xorNode->succedents[0] = wnpNode;
   1422   1.3     oster 	wnpNode->antecedents[0] = xorNode;
   1423   1.3     oster 	wnpNode->antType[0] = rf_trueData;
   1424   1.3     oster 	if (nfaults == 2) {
   1425   1.3     oster 		RF_ASSERT(wnqNode->numAntecedents == 1);
   1426   1.3     oster 		xorNode->succedents[1] = wnqNode;
   1427   1.3     oster 		wnqNode->antecedents[0] = xorNode;
   1428   1.3     oster 		wnqNode->antType[0] = rf_trueData;
   1429   1.3     oster 	}
   1430   1.3     oster 	/* connect the write nodes to the term node */
   1431   1.3     oster 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
   1432   1.3     oster 	RF_ASSERT(termNode->numSuccedents == 0);
   1433   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
   1434   1.3     oster 		RF_ASSERT(wndNodes->numSuccedents == 1);
   1435   1.3     oster 		wndNodes[i].succedents[0] = termNode;
   1436   1.3     oster 		termNode->antecedents[i] = &wndNodes[i];
   1437   1.3     oster 		termNode->antType[i] = rf_control;
   1438   1.3     oster 	}
   1439   1.3     oster 	RF_ASSERT(wnpNode->numSuccedents == 1);
   1440   1.3     oster 	wnpNode->succedents[0] = termNode;
   1441   1.3     oster 	termNode->antecedents[nWndNodes] = wnpNode;
   1442   1.3     oster 	termNode->antType[nWndNodes] = rf_control;
   1443   1.3     oster 	if (nfaults == 2) {
   1444   1.3     oster 		RF_ASSERT(wnqNode->numSuccedents == 1);
   1445   1.3     oster 		wnqNode->succedents[0] = termNode;
   1446   1.3     oster 		termNode->antecedents[nWndNodes + 1] = wnqNode;
   1447   1.3     oster 		termNode->antType[nWndNodes + 1] = rf_control;
   1448   1.3     oster 	}
   1449   1.1     oster }
   1450   1.1     oster 
   1451   1.1     oster 
   1452   1.1     oster /******************************************************************************
   1453   1.1     oster  *
   1454   1.1     oster  * creates a DAG to perform a small-write operation (either raid 5 or pq),
   1455   1.1     oster  * which is as follows:
   1456   1.1     oster  *
   1457   1.1     oster  * Hdr -> Nil -> Rop - Xor - Wnp [Unp] -- Trm
   1458   1.1     oster  *            \- Rod X- Wnd [Und] -------/
   1459   1.1     oster  *           [\- Rod X- Wnd [Und] ------/]
   1460   1.1     oster  *           [\- Roq - Q --> Wnq [Unq]-/]
   1461   1.1     oster  *
   1462   1.1     oster  * Rop = read old parity
   1463   1.1     oster  * Rod = read old data
   1464   1.1     oster  * Roq = read old "q"
   1465   1.1     oster  * Cmt = commit node
   1466   1.1     oster  * Und = unlock data disk
   1467   1.1     oster  * Unp = unlock parity disk
   1468   1.1     oster  * Unq = unlock q disk
   1469   1.1     oster  * Wnp = write new parity
   1470   1.1     oster  * Wnd = write new data
   1471   1.1     oster  * Wnq = write new "q"
   1472   1.1     oster  * [ ] denotes optional segments in the graph
   1473   1.1     oster  *
   1474   1.1     oster  * Parameters:  raidPtr   - description of the physical array
   1475   1.1     oster  *              asmap     - logical & physical addresses for this access
   1476   1.1     oster  *              bp        - buffer ptr (holds write data)
   1477   1.3     oster  *              flags     - general flags (e.g. disk locking)
   1478   1.1     oster  *              allocList - list of memory allocated in DAG creation
   1479   1.1     oster  *              pfuncs    - list of parity generating functions
   1480   1.1     oster  *              qfuncs    - list of q generating functions
   1481   1.1     oster  *
   1482   1.1     oster  * A null qfuncs indicates single fault tolerant
   1483   1.1     oster  *****************************************************************************/
   1484   1.1     oster 
   1485   1.3     oster void
   1486   1.3     oster rf_CommonCreateSmallWriteDAGFwd(
   1487   1.3     oster     RF_Raid_t * raidPtr,
   1488   1.3     oster     RF_AccessStripeMap_t * asmap,
   1489   1.3     oster     RF_DagHeader_t * dag_h,
   1490   1.3     oster     void *bp,
   1491   1.3     oster     RF_RaidAccessFlags_t flags,
   1492   1.3     oster     RF_AllocListElem_t * allocList,
   1493   1.3     oster     RF_RedFuncs_t * pfuncs,
   1494   1.3     oster     RF_RedFuncs_t * qfuncs)
   1495   1.1     oster {
   1496   1.3     oster 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
   1497   1.3     oster 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
   1498   1.3     oster 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *nodes;
   1499   1.3     oster 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
   1500   1.3     oster 	int     i, j, nNodes, totalNumNodes, lu_flag;
   1501   1.3     oster 	RF_ReconUnitNum_t which_ru;
   1502   1.3     oster 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
   1503   1.3     oster 	int     (*qfunc) (RF_DagNode_t *);
   1504   1.3     oster 	int     numDataNodes, numParityNodes;
   1505   1.3     oster 	RF_StripeNum_t parityStripeID;
   1506   1.3     oster 	RF_PhysDiskAddr_t *pda;
   1507   1.3     oster 	char   *name, *qname;
   1508   1.3     oster 	long    nfaults;
   1509   1.3     oster 
   1510   1.3     oster 	nfaults = qfuncs ? 2 : 1;
   1511   1.3     oster 	lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
   1512   1.3     oster 
   1513   1.3     oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
   1514   1.3     oster 	pda = asmap->physInfo;
   1515   1.3     oster 	numDataNodes = asmap->numStripeUnitsAccessed;
   1516   1.3     oster 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
   1517   1.3     oster 
   1518   1.3     oster 	if (rf_dagDebug)
   1519   1.3     oster 		printf("[Creating small-write DAG]\n");
   1520   1.3     oster 	RF_ASSERT(numDataNodes > 0);
   1521   1.3     oster 	dag_h->creator = "SmallWriteDAGFwd";
   1522   1.3     oster 
   1523   1.3     oster 	dag_h->numCommitNodes = 0;
   1524   1.3     oster 	dag_h->numCommits = 0;
   1525   1.3     oster 	dag_h->numSuccedents = 1;
   1526   1.3     oster 
   1527   1.3     oster 	qfunc = NULL;
   1528   1.3     oster 	qname = NULL;
   1529   1.3     oster 
   1530   1.3     oster 	/* DAG creation occurs in four steps: 1. count the number of nodes in
   1531   1.3     oster 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
   1532   1.3     oster 	 * nodes */
   1533   1.3     oster 
   1534   1.3     oster 	/* Step 1. compute number of nodes in the graph */
   1535   1.3     oster 
   1536   1.3     oster 	/* number of nodes: a read and write for each data unit a redundancy
   1537   1.3     oster 	 * computation node for each parity node (nfaults * nparity) a read
   1538   1.3     oster 	 * and write for each parity unit a block node a terminate node if
   1539   1.3     oster 	 * atomic RMW an unlock node for each data unit, redundancy unit */
   1540   1.3     oster 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 2;
   1541   1.3     oster 	if (lu_flag)
   1542   1.3     oster 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
   1543   1.3     oster 
   1544   1.3     oster 
   1545   1.3     oster 	/* Step 2. create the nodes */
   1546   1.3     oster 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1547   1.3     oster 	i = 0;
   1548   1.3     oster 	blockNode = &nodes[i];
   1549   1.3     oster 	i += 1;
   1550   1.3     oster 	readDataNodes = &nodes[i];
   1551   1.3     oster 	i += numDataNodes;
   1552   1.3     oster 	readParityNodes = &nodes[i];
   1553   1.3     oster 	i += numParityNodes;
   1554   1.3     oster 	writeDataNodes = &nodes[i];
   1555   1.3     oster 	i += numDataNodes;
   1556   1.3     oster 	writeParityNodes = &nodes[i];
   1557   1.3     oster 	i += numParityNodes;
   1558   1.3     oster 	xorNodes = &nodes[i];
   1559   1.3     oster 	i += numParityNodes;
   1560   1.3     oster 	termNode = &nodes[i];
   1561   1.3     oster 	i += 1;
   1562   1.3     oster 	if (lu_flag) {
   1563   1.3     oster 		unlockDataNodes = &nodes[i];
   1564   1.3     oster 		i += numDataNodes;
   1565   1.3     oster 		unlockParityNodes = &nodes[i];
   1566   1.3     oster 		i += numParityNodes;
   1567   1.3     oster 	} else {
   1568   1.3     oster 		unlockDataNodes = unlockParityNodes = NULL;
   1569   1.3     oster 	}
   1570   1.3     oster 	if (nfaults == 2) {
   1571   1.3     oster 		readQNodes = &nodes[i];
   1572   1.3     oster 		i += numParityNodes;
   1573   1.3     oster 		writeQNodes = &nodes[i];
   1574   1.3     oster 		i += numParityNodes;
   1575   1.3     oster 		qNodes = &nodes[i];
   1576   1.3     oster 		i += numParityNodes;
   1577   1.3     oster 		if (lu_flag) {
   1578   1.3     oster 			unlockQNodes = &nodes[i];
   1579   1.3     oster 			i += numParityNodes;
   1580   1.3     oster 		} else {
   1581   1.3     oster 			unlockQNodes = NULL;
   1582   1.3     oster 		}
   1583   1.3     oster 	} else {
   1584   1.3     oster 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
   1585   1.3     oster 	}
   1586   1.3     oster 	RF_ASSERT(i == totalNumNodes);
   1587   1.1     oster 
   1588   1.3     oster 	/* Step 3. initialize the nodes */
   1589   1.3     oster 	/* initialize block node (Nil) */
   1590   1.3     oster 	nNodes = numDataNodes + (nfaults * numParityNodes);
   1591   1.3     oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1592   1.3     oster 
   1593   1.3     oster 	/* initialize terminate node (Trm) */
   1594   1.3     oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
   1595   1.3     oster 
   1596   1.3     oster 	/* initialize nodes which read old data (Rod) */
   1597   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
   1598   1.3     oster 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, (numParityNodes * nfaults) + 1, 1, 4, 0, dag_h, "Rod", allocList);
   1599   1.3     oster 		RF_ASSERT(pda != NULL);
   1600   1.3     oster 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
   1601   1.3     oster 							 * desc */
   1602   1.3     oster 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
   1603   1.3     oster 												 * data */
   1604   1.3     oster 		readDataNodes[i].params[2].v = parityStripeID;
   1605   1.3     oster 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1606   1.3     oster 		pda = pda->next;
   1607   1.3     oster 		for (j = 0; j < readDataNodes[i].numSuccedents; j++)
   1608   1.3     oster 			readDataNodes[i].propList[j] = NULL;
   1609   1.3     oster 	}
   1610   1.3     oster 
   1611   1.3     oster 	/* initialize nodes which read old parity (Rop) */
   1612   1.3     oster 	pda = asmap->parityInfo;
   1613   1.3     oster 	i = 0;
   1614   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
   1615   1.3     oster 		RF_ASSERT(pda != NULL);
   1616   1.3     oster 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Rop", allocList);
   1617   1.3     oster 		readParityNodes[i].params[0].p = pda;
   1618   1.3     oster 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
   1619   1.3     oster 													 * parity */
   1620   1.3     oster 		readParityNodes[i].params[2].v = parityStripeID;
   1621   1.3     oster 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1622   1.3     oster 		for (j = 0; j < readParityNodes[i].numSuccedents; j++)
   1623   1.3     oster 			readParityNodes[i].propList[0] = NULL;
   1624   1.3     oster 		pda = pda->next;
   1625   1.3     oster 	}
   1626   1.3     oster 
   1627   1.3     oster 	/* initialize nodes which read old Q (Roq) */
   1628   1.3     oster 	if (nfaults == 2) {
   1629   1.3     oster 		pda = asmap->qInfo;
   1630   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
   1631   1.3     oster 			RF_ASSERT(pda != NULL);
   1632   1.3     oster 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
   1633   1.3     oster 			readQNodes[i].params[0].p = pda;
   1634   1.3     oster 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old Q */
   1635   1.3     oster 			readQNodes[i].params[2].v = parityStripeID;
   1636   1.3     oster 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1637   1.3     oster 			for (j = 0; j < readQNodes[i].numSuccedents; j++)
   1638   1.3     oster 				readQNodes[i].propList[0] = NULL;
   1639   1.3     oster 			pda = pda->next;
   1640   1.3     oster 		}
   1641   1.3     oster 	}
   1642   1.3     oster 	/* initialize nodes which write new data (Wnd) */
   1643   1.3     oster 	pda = asmap->physInfo;
   1644   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
   1645   1.3     oster 		RF_ASSERT(pda != NULL);
   1646   1.3     oster 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
   1647   1.3     oster 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
   1648   1.3     oster 							 * desc */
   1649   1.3     oster 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
   1650   1.3     oster 								 * data to be written */
   1651   1.3     oster 		writeDataNodes[i].params[2].v = parityStripeID;
   1652   1.3     oster 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1653   1.3     oster 
   1654   1.3     oster 		if (lu_flag) {
   1655   1.3     oster 			/* initialize node to unlock the disk queue */
   1656   1.3     oster 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
   1657   1.3     oster 			unlockDataNodes[i].params[0].p = pda;	/* physical disk addr
   1658   1.3     oster 								 * desc */
   1659   1.3     oster 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1660   1.3     oster 		}
   1661   1.3     oster 		pda = pda->next;
   1662   1.3     oster 	}
   1663   1.3     oster 
   1664   1.3     oster 
   1665   1.3     oster 	/* initialize nodes which compute new parity and Q */
   1666   1.3     oster 	/* we use the simple XOR func in the double-XOR case, and when we're
   1667   1.3     oster 	 * accessing only a portion of one stripe unit. the distinction
   1668   1.3     oster 	 * between the two is that the regular XOR func assumes that the
   1669   1.3     oster 	 * targbuf is a full SU in size, and examines the pda associated with
   1670   1.3     oster 	 * the buffer to decide where within the buffer to XOR the data,
   1671   1.3     oster 	 * whereas the simple XOR func just XORs the data into the start of
   1672   1.3     oster 	 * the buffer. */
   1673   1.3     oster 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
   1674   1.3     oster 		func = pfuncs->simple;
   1675   1.3     oster 		undoFunc = rf_NullNodeUndoFunc;
   1676   1.3     oster 		name = pfuncs->SimpleName;
   1677   1.3     oster 		if (qfuncs) {
   1678   1.3     oster 			qfunc = qfuncs->simple;
   1679   1.3     oster 			qname = qfuncs->SimpleName;
   1680   1.3     oster 		}
   1681   1.3     oster 	} else {
   1682   1.3     oster 		func = pfuncs->regular;
   1683   1.3     oster 		undoFunc = rf_NullNodeUndoFunc;
   1684   1.3     oster 		name = pfuncs->RegularName;
   1685   1.3     oster 		if (qfuncs) {
   1686   1.3     oster 			qfunc = qfuncs->regular;
   1687   1.3     oster 			qname = qfuncs->RegularName;
   1688   1.3     oster 		}
   1689   1.3     oster 	}
   1690   1.3     oster 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
   1691   1.3     oster 	 * nodes, and raidPtr  */
   1692   1.3     oster 	if (numParityNodes == 2) {	/* double-xor case */
   1693   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
   1694   1.3     oster 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
   1695   1.3     oster 																						 * xor */
   1696   1.3     oster 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
   1697   1.3     oster 			xorNodes[i].params[0] = readDataNodes[i].params[0];
   1698   1.3     oster 			xorNodes[i].params[1] = readDataNodes[i].params[1];
   1699   1.3     oster 			xorNodes[i].params[2] = readParityNodes[i].params[0];
   1700   1.3     oster 			xorNodes[i].params[3] = readParityNodes[i].params[1];
   1701   1.3     oster 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
   1702   1.3     oster 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
   1703   1.3     oster 			xorNodes[i].params[6].p = raidPtr;
   1704   1.3     oster 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
   1705   1.3     oster 											 * target buf */
   1706   1.3     oster 			if (nfaults == 2) {
   1707   1.3     oster 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, qname, allocList);	/* no wakeup func for
   1708   1.3     oster 																							 * xor */
   1709   1.3     oster 				qNodes[i].params[0] = readDataNodes[i].params[0];
   1710   1.3     oster 				qNodes[i].params[1] = readDataNodes[i].params[1];
   1711   1.3     oster 				qNodes[i].params[2] = readQNodes[i].params[0];
   1712   1.3     oster 				qNodes[i].params[3] = readQNodes[i].params[1];
   1713   1.3     oster 				qNodes[i].params[4] = writeDataNodes[i].params[0];
   1714   1.3     oster 				qNodes[i].params[5] = writeDataNodes[i].params[1];
   1715   1.3     oster 				qNodes[i].params[6].p = raidPtr;
   1716   1.3     oster 				qNodes[i].results[0] = readQNodes[i].params[1].p;	/* use old Q buf as
   1717   1.3     oster 											 * target buf */
   1718   1.3     oster 			}
   1719   1.3     oster 		}
   1720   1.3     oster 	} else {
   1721   1.3     oster 		/* there is only one xor node in this case */
   1722   1.3     oster 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
   1723   1.3     oster 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
   1724   1.3     oster 		for (i = 0; i < numDataNodes + 1; i++) {
   1725   1.3     oster 			/* set up params related to Rod and Rop nodes */
   1726   1.3     oster 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
   1727   1.3     oster 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
   1728   1.3     oster 		}
   1729   1.3     oster 		for (i = 0; i < numDataNodes; i++) {
   1730   1.3     oster 			/* set up params related to Wnd and Wnp nodes */
   1731   1.3     oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
   1732   1.3     oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
   1733   1.3     oster 		}
   1734   1.3     oster 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
   1735   1.3     oster 											 * at RAID information */
   1736   1.3     oster 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
   1737   1.3     oster 		if (nfaults == 2) {
   1738   1.3     oster 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, qname, allocList);
   1739   1.3     oster 			for (i = 0; i < numDataNodes; i++) {
   1740   1.3     oster 				/* set up params related to Rod */
   1741   1.3     oster 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
   1742   1.3     oster 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
   1743   1.3     oster 			}
   1744   1.3     oster 			/* and read old q */
   1745   1.3     oster 			qNodes[0].params[2 * numDataNodes + 0] = readQNodes[0].params[0];	/* pda */
   1746   1.3     oster 			qNodes[0].params[2 * numDataNodes + 1] = readQNodes[0].params[1];	/* buffer pointer */
   1747   1.3     oster 			for (i = 0; i < numDataNodes; i++) {
   1748   1.3     oster 				/* set up params related to Wnd nodes */
   1749   1.3     oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
   1750   1.3     oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
   1751   1.3     oster 			}
   1752   1.3     oster 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
   1753   1.3     oster 												 * at RAID information */
   1754   1.3     oster 			qNodes[0].results[0] = readQNodes[0].params[1].p;
   1755   1.3     oster 		}
   1756   1.3     oster 	}
   1757   1.3     oster 
   1758   1.3     oster 	/* initialize nodes which write new parity (Wnp) */
   1759   1.3     oster 	pda = asmap->parityInfo;
   1760   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
   1761   1.3     oster 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnp", allocList);
   1762   1.3     oster 		RF_ASSERT(pda != NULL);
   1763   1.3     oster 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
   1764   1.3     oster 							 * filled in by xor node */
   1765   1.3     oster 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
   1766   1.3     oster 										 * parity write
   1767   1.3     oster 										 * operation */
   1768   1.3     oster 		writeParityNodes[i].params[2].v = parityStripeID;
   1769   1.3     oster 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1770   1.3     oster 
   1771   1.3     oster 		if (lu_flag) {
   1772   1.3     oster 			/* initialize node to unlock the disk queue */
   1773   1.3     oster 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unp", allocList);
   1774   1.3     oster 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
   1775   1.3     oster 								 * desc */
   1776   1.3     oster 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1777   1.3     oster 		}
   1778   1.3     oster 		pda = pda->next;
   1779   1.3     oster 	}
   1780   1.3     oster 
   1781   1.3     oster 	/* initialize nodes which write new Q (Wnq) */
   1782   1.3     oster 	if (nfaults == 2) {
   1783   1.3     oster 		pda = asmap->qInfo;
   1784   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
   1785   1.3     oster 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnq", allocList);
   1786   1.3     oster 			RF_ASSERT(pda != NULL);
   1787   1.3     oster 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
   1788   1.3     oster 								 * filled in by xor node */
   1789   1.3     oster 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
   1790   1.3     oster 										 * parity write
   1791   1.3     oster 										 * operation */
   1792   1.3     oster 			writeQNodes[i].params[2].v = parityStripeID;
   1793   1.3     oster 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1794   1.3     oster 
   1795   1.3     oster 			if (lu_flag) {
   1796   1.3     oster 				/* initialize node to unlock the disk queue */
   1797   1.3     oster 				rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unq", allocList);
   1798   1.3     oster 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
   1799   1.3     oster 									 * desc */
   1800   1.3     oster 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1801   1.3     oster 			}
   1802   1.3     oster 			pda = pda->next;
   1803   1.3     oster 		}
   1804   1.3     oster 	}
   1805   1.3     oster 	/* Step 4. connect the nodes */
   1806   1.3     oster 
   1807   1.3     oster 	/* connect header to block node */
   1808   1.3     oster 	dag_h->succedents[0] = blockNode;
   1809   1.3     oster 
   1810   1.3     oster 	/* connect block node to read old data nodes */
   1811   1.3     oster 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
   1812   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
   1813   1.3     oster 		blockNode->succedents[i] = &readDataNodes[i];
   1814   1.3     oster 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
   1815   1.3     oster 		readDataNodes[i].antecedents[0] = blockNode;
   1816   1.3     oster 		readDataNodes[i].antType[0] = rf_control;
   1817   1.3     oster 	}
   1818   1.3     oster 
   1819   1.3     oster 	/* connect block node to read old parity nodes */
   1820   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
   1821   1.3     oster 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
   1822   1.3     oster 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
   1823   1.3     oster 		readParityNodes[i].antecedents[0] = blockNode;
   1824   1.3     oster 		readParityNodes[i].antType[0] = rf_control;
   1825   1.3     oster 	}
   1826   1.3     oster 
   1827   1.3     oster 	/* connect block node to read old Q nodes */
   1828   1.3     oster 	if (nfaults == 2)
   1829   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
   1830   1.3     oster 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
   1831   1.3     oster 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
   1832   1.3     oster 			readQNodes[i].antecedents[0] = blockNode;
   1833   1.3     oster 			readQNodes[i].antType[0] = rf_control;
   1834   1.3     oster 		}
   1835   1.3     oster 
   1836   1.3     oster 	/* connect read old data nodes to write new data nodes */
   1837   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
   1838   1.3     oster 		RF_ASSERT(readDataNodes[i].numSuccedents == ((nfaults * numParityNodes) + 1));
   1839   1.3     oster 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
   1840   1.3     oster 		readDataNodes[i].succedents[0] = &writeDataNodes[i];
   1841   1.3     oster 		writeDataNodes[i].antecedents[0] = &readDataNodes[i];
   1842   1.3     oster 		writeDataNodes[i].antType[0] = rf_antiData;
   1843   1.3     oster 	}
   1844   1.3     oster 
   1845   1.3     oster 	/* connect read old data nodes to xor nodes */
   1846   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
   1847   1.3     oster 		for (j = 0; j < numParityNodes; j++) {
   1848   1.3     oster 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
   1849   1.3     oster 			readDataNodes[i].succedents[1 + j] = &xorNodes[j];
   1850   1.3     oster 			xorNodes[j].antecedents[i] = &readDataNodes[i];
   1851   1.3     oster 			xorNodes[j].antType[i] = rf_trueData;
   1852   1.3     oster 		}
   1853   1.3     oster 	}
   1854   1.3     oster 
   1855   1.3     oster 	/* connect read old data nodes to q nodes */
   1856   1.3     oster 	if (nfaults == 2)
   1857   1.3     oster 		for (i = 0; i < numDataNodes; i++)
   1858   1.3     oster 			for (j = 0; j < numParityNodes; j++) {
   1859   1.3     oster 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
   1860   1.3     oster 				readDataNodes[i].succedents[1 + numParityNodes + j] = &qNodes[j];
   1861   1.3     oster 				qNodes[j].antecedents[i] = &readDataNodes[i];
   1862   1.3     oster 				qNodes[j].antType[i] = rf_trueData;
   1863   1.3     oster 			}
   1864   1.3     oster 
   1865   1.3     oster 	/* connect read old parity nodes to xor nodes */
   1866   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
   1867   1.3     oster 		for (j = 0; j < numParityNodes; j++) {
   1868   1.3     oster 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
   1869   1.3     oster 			readParityNodes[i].succedents[j] = &xorNodes[j];
   1870   1.3     oster 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
   1871   1.3     oster 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
   1872   1.3     oster 		}
   1873   1.3     oster 	}
   1874   1.3     oster 
   1875   1.3     oster 	/* connect read old q nodes to q nodes */
   1876   1.3     oster 	if (nfaults == 2)
   1877   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
   1878   1.3     oster 			for (j = 0; j < numParityNodes; j++) {
   1879   1.3     oster 				RF_ASSERT(readQNodes[i].numSuccedents == numParityNodes);
   1880   1.3     oster 				readQNodes[i].succedents[j] = &qNodes[j];
   1881   1.3     oster 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
   1882   1.3     oster 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
   1883   1.3     oster 			}
   1884   1.3     oster 		}
   1885   1.3     oster 
   1886   1.3     oster 	/* connect xor nodes to the write new parity nodes */
   1887   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
   1888   1.3     oster 		RF_ASSERT(writeParityNodes[i].numAntecedents == numParityNodes);
   1889   1.3     oster 		for (j = 0; j < numParityNodes; j++) {
   1890   1.3     oster 			RF_ASSERT(xorNodes[j].numSuccedents == numParityNodes);
   1891   1.3     oster 			xorNodes[i].succedents[j] = &writeParityNodes[j];
   1892   1.3     oster 			writeParityNodes[j].antecedents[i] = &xorNodes[i];
   1893   1.3     oster 			writeParityNodes[j].antType[i] = rf_trueData;
   1894   1.3     oster 		}
   1895   1.3     oster 	}
   1896   1.3     oster 
   1897   1.3     oster 	/* connect q nodes to the write new q nodes */
   1898   1.3     oster 	if (nfaults == 2)
   1899   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
   1900   1.3     oster 			RF_ASSERT(writeQNodes[i].numAntecedents == numParityNodes);
   1901   1.3     oster 			for (j = 0; j < numParityNodes; j++) {
   1902   1.3     oster 				RF_ASSERT(qNodes[j].numSuccedents == 1);
   1903   1.3     oster 				qNodes[i].succedents[j] = &writeQNodes[j];
   1904   1.3     oster 				writeQNodes[j].antecedents[i] = &qNodes[i];
   1905   1.3     oster 				writeQNodes[j].antType[i] = rf_trueData;
   1906   1.3     oster 			}
   1907   1.3     oster 		}
   1908   1.3     oster 
   1909   1.3     oster 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1910   1.3     oster 	RF_ASSERT(termNode->numSuccedents == 0);
   1911   1.3     oster 	for (i = 0; i < numDataNodes; i++) {
   1912   1.3     oster 		if (lu_flag) {
   1913   1.3     oster 			/* connect write new data nodes to unlock nodes */
   1914   1.3     oster 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1915   1.3     oster 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
   1916   1.3     oster 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
   1917   1.3     oster 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
   1918   1.3     oster 			unlockDataNodes[i].antType[0] = rf_control;
   1919   1.3     oster 
   1920   1.3     oster 			/* connect unlock nodes to term node */
   1921   1.3     oster 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
   1922   1.3     oster 			unlockDataNodes[i].succedents[0] = termNode;
   1923   1.3     oster 			termNode->antecedents[i] = &unlockDataNodes[i];
   1924   1.3     oster 			termNode->antType[i] = rf_control;
   1925   1.3     oster 		} else {
   1926   1.3     oster 			/* connect write new data nodes to term node */
   1927   1.3     oster 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1928   1.3     oster 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1929   1.3     oster 			writeDataNodes[i].succedents[0] = termNode;
   1930   1.3     oster 			termNode->antecedents[i] = &writeDataNodes[i];
   1931   1.3     oster 			termNode->antType[i] = rf_control;
   1932   1.3     oster 		}
   1933   1.3     oster 	}
   1934   1.3     oster 
   1935   1.3     oster 	for (i = 0; i < numParityNodes; i++) {
   1936   1.3     oster 		if (lu_flag) {
   1937   1.3     oster 			/* connect write new parity nodes to unlock nodes */
   1938   1.3     oster 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1939   1.3     oster 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1940   1.3     oster 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1941   1.3     oster 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1942   1.3     oster 			unlockParityNodes[i].antType[0] = rf_control;
   1943   1.3     oster 
   1944   1.3     oster 			/* connect unlock nodes to term node */
   1945   1.3     oster 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1946   1.3     oster 			unlockParityNodes[i].succedents[0] = termNode;
   1947   1.3     oster 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1948   1.3     oster 			termNode->antType[numDataNodes + i] = rf_control;
   1949   1.3     oster 		} else {
   1950   1.3     oster 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1951   1.3     oster 			writeParityNodes[i].succedents[0] = termNode;
   1952   1.3     oster 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1953   1.3     oster 			termNode->antType[numDataNodes + i] = rf_control;
   1954   1.3     oster 		}
   1955   1.3     oster 	}
   1956   1.3     oster 
   1957   1.3     oster 	if (nfaults == 2)
   1958   1.3     oster 		for (i = 0; i < numParityNodes; i++) {
   1959   1.3     oster 			if (lu_flag) {
   1960   1.3     oster 				/* connect write new Q nodes to unlock nodes */
   1961   1.3     oster 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1962   1.3     oster 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1963   1.3     oster 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1964   1.3     oster 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1965   1.3     oster 				unlockQNodes[i].antType[0] = rf_control;
   1966   1.3     oster 
   1967   1.3     oster 				/* connect unlock nodes to unblock node */
   1968   1.3     oster 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1969   1.3     oster 				unlockQNodes[i].succedents[0] = termNode;
   1970   1.3     oster 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1971   1.3     oster 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1972   1.3     oster 			} else {
   1973   1.3     oster 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1974   1.3     oster 				writeQNodes[i].succedents[0] = termNode;
   1975   1.3     oster 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1976   1.3     oster 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1977   1.3     oster 			}
   1978   1.3     oster 		}
   1979   1.1     oster }
   1980   1.1     oster 
   1981   1.1     oster 
   1982   1.1     oster 
   1983   1.1     oster /******************************************************************************
   1984   1.1     oster  * create a write graph (fault-free or degraded) for RAID level 1
   1985   1.1     oster  *
   1986   1.1     oster  * Hdr  Nil -> Wpd -> Nil -> Trm
   1987   1.1     oster  *      Nil -> Wsd ->
   1988   1.1     oster  *
   1989   1.1     oster  * The "Wpd" node writes data to the primary copy in the mirror pair
   1990   1.1     oster  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1991   1.1     oster  *
   1992   1.1     oster  * Parameters:  raidPtr   - description of the physical array
   1993   1.1     oster  *              asmap     - logical & physical addresses for this access
   1994   1.1     oster  *              bp        - buffer ptr (holds write data)
   1995   1.3     oster  *              flags     - general flags (e.g. disk locking)
   1996   1.1     oster  *              allocList - list of memory allocated in DAG creation
   1997   1.1     oster  *****************************************************************************/
   1998   1.1     oster 
   1999   1.3     oster void
   2000   1.3     oster rf_CreateRaidOneWriteDAGFwd(
   2001   1.3     oster     RF_Raid_t * raidPtr,
   2002   1.3     oster     RF_AccessStripeMap_t * asmap,
   2003   1.3     oster     RF_DagHeader_t * dag_h,
   2004   1.3     oster     void *bp,
   2005   1.3     oster     RF_RaidAccessFlags_t flags,
   2006   1.3     oster     RF_AllocListElem_t * allocList)
   2007   1.1     oster {
   2008   1.3     oster 	RF_DagNode_t *blockNode, *unblockNode, *termNode;
   2009   1.3     oster 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   2010   1.3     oster 	int     nWndNodes, nWmirNodes, i;
   2011   1.3     oster 	RF_ReconUnitNum_t which_ru;
   2012   1.3     oster 	RF_PhysDiskAddr_t *pda, *pdaP;
   2013   1.3     oster 	RF_StripeNum_t parityStripeID;
   2014   1.3     oster 
   2015   1.3     oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   2016   1.3     oster 	    asmap->raidAddress, &which_ru);
   2017   1.3     oster 	if (rf_dagDebug) {
   2018   1.3     oster 		printf("[Creating RAID level 1 write DAG]\n");
   2019   1.3     oster 	}
   2020   1.3     oster 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;	/* 2 implies access not
   2021   1.3     oster 							 * SU aligned */
   2022   1.3     oster 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   2023   1.3     oster 
   2024   1.3     oster 	/* alloc the Wnd nodes and the Wmir node */
   2025   1.3     oster 	if (asmap->numDataFailed == 1)
   2026   1.3     oster 		nWndNodes--;
   2027   1.3     oster 	if (asmap->numParityFailed == 1)
   2028   1.3     oster 		nWmirNodes--;
   2029   1.3     oster 
   2030   1.3     oster 	/* total number of nodes = nWndNodes + nWmirNodes + (block + unblock +
   2031   1.3     oster 	 * terminator) */
   2032   1.3     oster 	RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   2033   1.3     oster 	i = 0;
   2034   1.3     oster 	wndNode = &nodes[i];
   2035   1.3     oster 	i += nWndNodes;
   2036   1.3     oster 	wmirNode = &nodes[i];
   2037   1.3     oster 	i += nWmirNodes;
   2038   1.3     oster 	blockNode = &nodes[i];
   2039   1.3     oster 	i += 1;
   2040   1.3     oster 	unblockNode = &nodes[i];
   2041   1.3     oster 	i += 1;
   2042   1.3     oster 	termNode = &nodes[i];
   2043   1.3     oster 	i += 1;
   2044   1.3     oster 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   2045   1.3     oster 
   2046   1.3     oster 	/* this dag can commit immediately */
   2047   1.3     oster 	dag_h->numCommitNodes = 0;
   2048   1.3     oster 	dag_h->numCommits = 0;
   2049   1.3     oster 	dag_h->numSuccedents = 1;
   2050   1.3     oster 
   2051   1.3     oster 	/* initialize the unblock and term nodes */
   2052   1.3     oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Nil", allocList);
   2053   1.3     oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
   2054   1.3     oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
   2055   1.3     oster 
   2056   1.3     oster 	/* initialize the wnd nodes */
   2057   1.3     oster 	if (nWndNodes > 0) {
   2058   1.3     oster 		pda = asmap->physInfo;
   2059   1.3     oster 		for (i = 0; i < nWndNodes; i++) {
   2060   1.3     oster 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
   2061   1.3     oster 			RF_ASSERT(pda != NULL);
   2062   1.3     oster 			wndNode[i].params[0].p = pda;
   2063   1.3     oster 			wndNode[i].params[1].p = pda->bufPtr;
   2064   1.3     oster 			wndNode[i].params[2].v = parityStripeID;
   2065   1.3     oster 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   2066   1.3     oster 			pda = pda->next;
   2067   1.3     oster 		}
   2068   1.3     oster 		RF_ASSERT(pda == NULL);
   2069   1.3     oster 	}
   2070   1.3     oster 	/* initialize the mirror nodes */
   2071   1.3     oster 	if (nWmirNodes > 0) {
   2072   1.3     oster 		pda = asmap->physInfo;
   2073   1.3     oster 		pdaP = asmap->parityInfo;
   2074   1.3     oster 		for (i = 0; i < nWmirNodes; i++) {
   2075   1.3     oster 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
   2076   1.3     oster 			RF_ASSERT(pda != NULL);
   2077   1.3     oster 			wmirNode[i].params[0].p = pdaP;
   2078   1.3     oster 			wmirNode[i].params[1].p = pda->bufPtr;
   2079   1.3     oster 			wmirNode[i].params[2].v = parityStripeID;
   2080   1.3     oster 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   2081   1.3     oster 			pda = pda->next;
   2082   1.3     oster 			pdaP = pdaP->next;
   2083   1.3     oster 		}
   2084   1.3     oster 		RF_ASSERT(pda == NULL);
   2085   1.3     oster 		RF_ASSERT(pdaP == NULL);
   2086   1.3     oster 	}
   2087   1.3     oster 	/* link the header node to the block node */
   2088   1.3     oster 	RF_ASSERT(dag_h->numSuccedents == 1);
   2089   1.3     oster 	RF_ASSERT(blockNode->numAntecedents == 0);
   2090   1.3     oster 	dag_h->succedents[0] = blockNode;
   2091   1.3     oster 
   2092   1.3     oster 	/* link the block node to the write nodes */
   2093   1.3     oster 	RF_ASSERT(blockNode->numSuccedents == (nWndNodes + nWmirNodes));
   2094   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
   2095   1.3     oster 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   2096   1.3     oster 		blockNode->succedents[i] = &wndNode[i];
   2097   1.3     oster 		wndNode[i].antecedents[0] = blockNode;
   2098   1.3     oster 		wndNode[i].antType[0] = rf_control;
   2099   1.3     oster 	}
   2100   1.3     oster 	for (i = 0; i < nWmirNodes; i++) {
   2101   1.3     oster 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   2102   1.3     oster 		blockNode->succedents[i + nWndNodes] = &wmirNode[i];
   2103   1.3     oster 		wmirNode[i].antecedents[0] = blockNode;
   2104   1.3     oster 		wmirNode[i].antType[0] = rf_control;
   2105   1.3     oster 	}
   2106   1.3     oster 
   2107   1.3     oster 	/* link the write nodes to the unblock node */
   2108   1.3     oster 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   2109   1.3     oster 	for (i = 0; i < nWndNodes; i++) {
   2110   1.3     oster 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   2111   1.3     oster 		wndNode[i].succedents[0] = unblockNode;
   2112   1.3     oster 		unblockNode->antecedents[i] = &wndNode[i];
   2113   1.3     oster 		unblockNode->antType[i] = rf_control;
   2114   1.3     oster 	}
   2115   1.3     oster 	for (i = 0; i < nWmirNodes; i++) {
   2116   1.3     oster 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   2117   1.3     oster 		wmirNode[i].succedents[0] = unblockNode;
   2118   1.3     oster 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   2119   1.3     oster 		unblockNode->antType[i + nWndNodes] = rf_control;
   2120   1.3     oster 	}
   2121   1.3     oster 
   2122   1.3     oster 	/* link the unblock node to the term node */
   2123   1.3     oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
   2124   1.3     oster 	RF_ASSERT(termNode->numAntecedents == 1);
   2125   1.3     oster 	RF_ASSERT(termNode->numSuccedents == 0);
   2126   1.3     oster 	unblockNode->succedents[0] = termNode;
   2127   1.3     oster 	termNode->antecedents[0] = unblockNode;
   2128   1.3     oster 	termNode->antType[0] = rf_control;
   2129   1.1     oster 
   2130   1.3     oster 	return;
   2131   1.1     oster }
   2132   1.9     oster #endif
   2133