rf_dagffwr.c revision 1.11 1 1.11 oster /* $NetBSD: rf_dagffwr.c,v 1.11 2003/07/01 22:43:59 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * rf_dagff.c
31 1.1 oster *
32 1.1 oster * code for creating fault-free DAGs
33 1.1 oster *
34 1.1 oster */
35 1.7 lukem
36 1.7 lukem #include <sys/cdefs.h>
37 1.11 oster __KERNEL_RCSID(0, "$NetBSD: rf_dagffwr.c,v 1.11 2003/07/01 22:43:59 oster Exp $");
38 1.1 oster
39 1.6 oster #include <dev/raidframe/raidframevar.h>
40 1.6 oster
41 1.1 oster #include "rf_raid.h"
42 1.1 oster #include "rf_dag.h"
43 1.1 oster #include "rf_dagutils.h"
44 1.1 oster #include "rf_dagfuncs.h"
45 1.1 oster #include "rf_debugMem.h"
46 1.1 oster #include "rf_dagffrd.h"
47 1.1 oster #include "rf_general.h"
48 1.1 oster #include "rf_dagffwr.h"
49 1.1 oster
50 1.1 oster /******************************************************************************
51 1.1 oster *
52 1.1 oster * General comments on DAG creation:
53 1.3 oster *
54 1.1 oster * All DAGs in this file use roll-away error recovery. Each DAG has a single
55 1.1 oster * commit node, usually called "Cmt." If an error occurs before the Cmt node
56 1.1 oster * is reached, the execution engine will halt forward execution and work
57 1.1 oster * backward through the graph, executing the undo functions. Assuming that
58 1.1 oster * each node in the graph prior to the Cmt node are undoable and atomic - or -
59 1.1 oster * does not make changes to permanent state, the graph will fail atomically.
60 1.1 oster * If an error occurs after the Cmt node executes, the engine will roll-forward
61 1.1 oster * through the graph, blindly executing nodes until it reaches the end.
62 1.1 oster * If a graph reaches the end, it is assumed to have completed successfully.
63 1.1 oster *
64 1.1 oster * A graph has only 1 Cmt node.
65 1.1 oster *
66 1.1 oster */
67 1.1 oster
68 1.1 oster
69 1.1 oster /******************************************************************************
70 1.1 oster *
71 1.1 oster * The following wrappers map the standard DAG creation interface to the
72 1.1 oster * DAG creation routines. Additionally, these wrappers enable experimentation
73 1.1 oster * with new DAG structures by providing an extra level of indirection, allowing
74 1.1 oster * the DAG creation routines to be replaced at this single point.
75 1.1 oster */
76 1.1 oster
77 1.1 oster
78 1.3 oster void
79 1.3 oster rf_CreateNonRedundantWriteDAG(
80 1.3 oster RF_Raid_t * raidPtr,
81 1.3 oster RF_AccessStripeMap_t * asmap,
82 1.3 oster RF_DagHeader_t * dag_h,
83 1.3 oster void *bp,
84 1.3 oster RF_RaidAccessFlags_t flags,
85 1.3 oster RF_AllocListElem_t * allocList,
86 1.3 oster RF_IoType_t type)
87 1.1 oster {
88 1.3 oster rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
89 1.3 oster RF_IO_TYPE_WRITE);
90 1.1 oster }
91 1.1 oster
92 1.3 oster void
93 1.3 oster rf_CreateRAID0WriteDAG(
94 1.3 oster RF_Raid_t * raidPtr,
95 1.3 oster RF_AccessStripeMap_t * asmap,
96 1.3 oster RF_DagHeader_t * dag_h,
97 1.3 oster void *bp,
98 1.3 oster RF_RaidAccessFlags_t flags,
99 1.3 oster RF_AllocListElem_t * allocList,
100 1.3 oster RF_IoType_t type)
101 1.1 oster {
102 1.3 oster rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
103 1.3 oster RF_IO_TYPE_WRITE);
104 1.1 oster }
105 1.1 oster
106 1.3 oster void
107 1.3 oster rf_CreateSmallWriteDAG(
108 1.3 oster RF_Raid_t * raidPtr,
109 1.3 oster RF_AccessStripeMap_t * asmap,
110 1.3 oster RF_DagHeader_t * dag_h,
111 1.3 oster void *bp,
112 1.3 oster RF_RaidAccessFlags_t flags,
113 1.3 oster RF_AllocListElem_t * allocList)
114 1.1 oster {
115 1.3 oster /* "normal" rollaway */
116 1.3 oster rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
117 1.3 oster &rf_xorFuncs, NULL);
118 1.1 oster }
119 1.1 oster
120 1.3 oster void
121 1.3 oster rf_CreateLargeWriteDAG(
122 1.3 oster RF_Raid_t * raidPtr,
123 1.3 oster RF_AccessStripeMap_t * asmap,
124 1.3 oster RF_DagHeader_t * dag_h,
125 1.3 oster void *bp,
126 1.3 oster RF_RaidAccessFlags_t flags,
127 1.3 oster RF_AllocListElem_t * allocList)
128 1.1 oster {
129 1.3 oster /* "normal" rollaway */
130 1.3 oster rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
131 1.3 oster 1, rf_RegularXorFunc, RF_TRUE);
132 1.1 oster }
133 1.1 oster
134 1.1 oster
135 1.1 oster /******************************************************************************
136 1.1 oster *
137 1.1 oster * DAG creation code begins here
138 1.1 oster */
139 1.1 oster
140 1.1 oster
141 1.1 oster /******************************************************************************
142 1.1 oster *
143 1.1 oster * creates a DAG to perform a large-write operation:
144 1.1 oster *
145 1.1 oster * / Rod \ / Wnd \
146 1.1 oster * H -- block- Rod - Xor - Cmt - Wnd --- T
147 1.1 oster * \ Rod / \ Wnp /
148 1.1 oster * \[Wnq]/
149 1.1 oster *
150 1.1 oster * The XOR node also does the Q calculation in the P+Q architecture.
151 1.1 oster * All nodes are before the commit node (Cmt) are assumed to be atomic and
152 1.1 oster * undoable - or - they make no changes to permanent state.
153 1.1 oster *
154 1.1 oster * Rod = read old data
155 1.1 oster * Cmt = commit node
156 1.1 oster * Wnp = write new parity
157 1.1 oster * Wnd = write new data
158 1.1 oster * Wnq = write new "q"
159 1.1 oster * [] denotes optional segments in the graph
160 1.1 oster *
161 1.1 oster * Parameters: raidPtr - description of the physical array
162 1.1 oster * asmap - logical & physical addresses for this access
163 1.1 oster * bp - buffer ptr (holds write data)
164 1.3 oster * flags - general flags (e.g. disk locking)
165 1.1 oster * allocList - list of memory allocated in DAG creation
166 1.1 oster * nfaults - number of faults array can tolerate
167 1.1 oster * (equal to # redundancy units in stripe)
168 1.1 oster * redfuncs - list of redundancy generating functions
169 1.1 oster *
170 1.1 oster *****************************************************************************/
171 1.1 oster
172 1.3 oster void
173 1.3 oster rf_CommonCreateLargeWriteDAG(
174 1.3 oster RF_Raid_t * raidPtr,
175 1.3 oster RF_AccessStripeMap_t * asmap,
176 1.3 oster RF_DagHeader_t * dag_h,
177 1.3 oster void *bp,
178 1.3 oster RF_RaidAccessFlags_t flags,
179 1.3 oster RF_AllocListElem_t * allocList,
180 1.3 oster int nfaults,
181 1.3 oster int (*redFunc) (RF_DagNode_t *),
182 1.3 oster int allowBufferRecycle)
183 1.1 oster {
184 1.3 oster RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
185 1.3 oster RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
186 1.3 oster int nWndNodes, nRodNodes, i, nodeNum, asmNum;
187 1.3 oster RF_AccessStripeMapHeader_t *new_asm_h[2];
188 1.3 oster RF_StripeNum_t parityStripeID;
189 1.3 oster char *sosBuffer, *eosBuffer;
190 1.3 oster RF_ReconUnitNum_t which_ru;
191 1.3 oster RF_RaidLayout_t *layoutPtr;
192 1.3 oster RF_PhysDiskAddr_t *pda;
193 1.3 oster
194 1.3 oster layoutPtr = &(raidPtr->Layout);
195 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
196 1.3 oster &which_ru);
197 1.3 oster
198 1.3 oster if (rf_dagDebug) {
199 1.3 oster printf("[Creating large-write DAG]\n");
200 1.3 oster }
201 1.3 oster dag_h->creator = "LargeWriteDAG";
202 1.3 oster
203 1.3 oster dag_h->numCommitNodes = 1;
204 1.3 oster dag_h->numCommits = 0;
205 1.3 oster dag_h->numSuccedents = 1;
206 1.3 oster
207 1.3 oster /* alloc the nodes: Wnd, xor, commit, block, term, and Wnp */
208 1.3 oster nWndNodes = asmap->numStripeUnitsAccessed;
209 1.3 oster RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t),
210 1.3 oster (RF_DagNode_t *), allocList);
211 1.3 oster i = 0;
212 1.3 oster wndNodes = &nodes[i];
213 1.3 oster i += nWndNodes;
214 1.3 oster xorNode = &nodes[i];
215 1.3 oster i += 1;
216 1.3 oster wnpNode = &nodes[i];
217 1.3 oster i += 1;
218 1.3 oster blockNode = &nodes[i];
219 1.3 oster i += 1;
220 1.3 oster commitNode = &nodes[i];
221 1.3 oster i += 1;
222 1.3 oster termNode = &nodes[i];
223 1.3 oster i += 1;
224 1.3 oster if (nfaults == 2) {
225 1.3 oster wnqNode = &nodes[i];
226 1.3 oster i += 1;
227 1.3 oster } else {
228 1.3 oster wnqNode = NULL;
229 1.3 oster }
230 1.3 oster rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h,
231 1.3 oster &nRodNodes, &sosBuffer, &eosBuffer, allocList);
232 1.3 oster if (nRodNodes > 0) {
233 1.3 oster RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t),
234 1.3 oster (RF_DagNode_t *), allocList);
235 1.3 oster } else {
236 1.3 oster rodNodes = NULL;
237 1.3 oster }
238 1.3 oster
239 1.3 oster /* begin node initialization */
240 1.3 oster if (nRodNodes > 0) {
241 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
242 1.3 oster NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
243 1.3 oster } else {
244 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
245 1.3 oster NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
246 1.3 oster }
247 1.3 oster
248 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL,
249 1.3 oster nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
250 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL,
251 1.3 oster 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
252 1.3 oster
253 1.3 oster /* initialize the Rod nodes */
254 1.3 oster for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
255 1.3 oster if (new_asm_h[asmNum]) {
256 1.3 oster pda = new_asm_h[asmNum]->stripeMap->physInfo;
257 1.3 oster while (pda) {
258 1.3 oster rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc,
259 1.3 oster rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
260 1.3 oster "Rod", allocList);
261 1.3 oster rodNodes[nodeNum].params[0].p = pda;
262 1.3 oster rodNodes[nodeNum].params[1].p = pda->bufPtr;
263 1.3 oster rodNodes[nodeNum].params[2].v = parityStripeID;
264 1.3 oster rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
265 1.3 oster 0, 0, which_ru);
266 1.3 oster nodeNum++;
267 1.3 oster pda = pda->next;
268 1.3 oster }
269 1.3 oster }
270 1.3 oster }
271 1.3 oster RF_ASSERT(nodeNum == nRodNodes);
272 1.3 oster
273 1.3 oster /* initialize the wnd nodes */
274 1.3 oster pda = asmap->physInfo;
275 1.3 oster for (i = 0; i < nWndNodes; i++) {
276 1.3 oster rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
277 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
278 1.3 oster RF_ASSERT(pda != NULL);
279 1.3 oster wndNodes[i].params[0].p = pda;
280 1.3 oster wndNodes[i].params[1].p = pda->bufPtr;
281 1.3 oster wndNodes[i].params[2].v = parityStripeID;
282 1.3 oster wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
283 1.3 oster pda = pda->next;
284 1.3 oster }
285 1.3 oster
286 1.3 oster /* initialize the redundancy node */
287 1.3 oster if (nRodNodes > 0) {
288 1.3 oster rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
289 1.3 oster nRodNodes, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h,
290 1.3 oster "Xr ", allocList);
291 1.3 oster } else {
292 1.3 oster rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
293 1.3 oster 1, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
294 1.3 oster }
295 1.3 oster xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
296 1.3 oster for (i = 0; i < nWndNodes; i++) {
297 1.3 oster xorNode->params[2 * i + 0] = wndNodes[i].params[0]; /* pda */
298 1.3 oster xorNode->params[2 * i + 1] = wndNodes[i].params[1]; /* buf ptr */
299 1.3 oster }
300 1.3 oster for (i = 0; i < nRodNodes; i++) {
301 1.3 oster xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0]; /* pda */
302 1.3 oster xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1]; /* buf ptr */
303 1.3 oster }
304 1.3 oster /* xor node needs to get at RAID information */
305 1.3 oster xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
306 1.3 oster
307 1.3 oster /*
308 1.3 oster * Look for an Rod node that reads a complete SU. If none, alloc a buffer
309 1.3 oster * to receive the parity info. Note that we can't use a new data buffer
310 1.3 oster * because it will not have gotten written when the xor occurs.
311 1.3 oster */
312 1.3 oster if (allowBufferRecycle) {
313 1.3 oster for (i = 0; i < nRodNodes; i++) {
314 1.3 oster if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
315 1.3 oster break;
316 1.3 oster }
317 1.3 oster }
318 1.3 oster if ((!allowBufferRecycle) || (i == nRodNodes)) {
319 1.3 oster RF_CallocAndAdd(xorNode->results[0], 1,
320 1.3 oster rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
321 1.3 oster (void *), allocList);
322 1.3 oster } else {
323 1.3 oster xorNode->results[0] = rodNodes[i].params[1].p;
324 1.3 oster }
325 1.3 oster
326 1.3 oster /* initialize the Wnp node */
327 1.3 oster rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
328 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
329 1.3 oster wnpNode->params[0].p = asmap->parityInfo;
330 1.3 oster wnpNode->params[1].p = xorNode->results[0];
331 1.3 oster wnpNode->params[2].v = parityStripeID;
332 1.3 oster wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
333 1.3 oster /* parityInfo must describe entire parity unit */
334 1.3 oster RF_ASSERT(asmap->parityInfo->next == NULL);
335 1.3 oster
336 1.3 oster if (nfaults == 2) {
337 1.3 oster /*
338 1.3 oster * We never try to recycle a buffer for the Q calcuation
339 1.3 oster * in addition to the parity. This would cause two buffers
340 1.3 oster * to get smashed during the P and Q calculation, guaranteeing
341 1.3 oster * one would be wrong.
342 1.3 oster */
343 1.3 oster RF_CallocAndAdd(xorNode->results[1], 1,
344 1.3 oster rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
345 1.3 oster (void *), allocList);
346 1.3 oster rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
347 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
348 1.3 oster wnqNode->params[0].p = asmap->qInfo;
349 1.3 oster wnqNode->params[1].p = xorNode->results[1];
350 1.3 oster wnqNode->params[2].v = parityStripeID;
351 1.3 oster wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
352 1.3 oster /* parityInfo must describe entire parity unit */
353 1.3 oster RF_ASSERT(asmap->parityInfo->next == NULL);
354 1.3 oster }
355 1.3 oster /*
356 1.3 oster * Connect nodes to form graph.
357 1.3 oster */
358 1.3 oster
359 1.3 oster /* connect dag header to block node */
360 1.3 oster RF_ASSERT(blockNode->numAntecedents == 0);
361 1.3 oster dag_h->succedents[0] = blockNode;
362 1.3 oster
363 1.3 oster if (nRodNodes > 0) {
364 1.3 oster /* connect the block node to the Rod nodes */
365 1.3 oster RF_ASSERT(blockNode->numSuccedents == nRodNodes);
366 1.3 oster RF_ASSERT(xorNode->numAntecedents == nRodNodes);
367 1.3 oster for (i = 0; i < nRodNodes; i++) {
368 1.3 oster RF_ASSERT(rodNodes[i].numAntecedents == 1);
369 1.3 oster blockNode->succedents[i] = &rodNodes[i];
370 1.3 oster rodNodes[i].antecedents[0] = blockNode;
371 1.3 oster rodNodes[i].antType[0] = rf_control;
372 1.3 oster
373 1.3 oster /* connect the Rod nodes to the Xor node */
374 1.3 oster RF_ASSERT(rodNodes[i].numSuccedents == 1);
375 1.3 oster rodNodes[i].succedents[0] = xorNode;
376 1.3 oster xorNode->antecedents[i] = &rodNodes[i];
377 1.3 oster xorNode->antType[i] = rf_trueData;
378 1.3 oster }
379 1.3 oster } else {
380 1.3 oster /* connect the block node to the Xor node */
381 1.3 oster RF_ASSERT(blockNode->numSuccedents == 1);
382 1.3 oster RF_ASSERT(xorNode->numAntecedents == 1);
383 1.3 oster blockNode->succedents[0] = xorNode;
384 1.3 oster xorNode->antecedents[0] = blockNode;
385 1.3 oster xorNode->antType[0] = rf_control;
386 1.3 oster }
387 1.3 oster
388 1.3 oster /* connect the xor node to the commit node */
389 1.3 oster RF_ASSERT(xorNode->numSuccedents == 1);
390 1.3 oster RF_ASSERT(commitNode->numAntecedents == 1);
391 1.3 oster xorNode->succedents[0] = commitNode;
392 1.3 oster commitNode->antecedents[0] = xorNode;
393 1.3 oster commitNode->antType[0] = rf_control;
394 1.3 oster
395 1.3 oster /* connect the commit node to the write nodes */
396 1.3 oster RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
397 1.3 oster for (i = 0; i < nWndNodes; i++) {
398 1.3 oster RF_ASSERT(wndNodes->numAntecedents == 1);
399 1.3 oster commitNode->succedents[i] = &wndNodes[i];
400 1.3 oster wndNodes[i].antecedents[0] = commitNode;
401 1.3 oster wndNodes[i].antType[0] = rf_control;
402 1.3 oster }
403 1.3 oster RF_ASSERT(wnpNode->numAntecedents == 1);
404 1.3 oster commitNode->succedents[nWndNodes] = wnpNode;
405 1.3 oster wnpNode->antecedents[0] = commitNode;
406 1.3 oster wnpNode->antType[0] = rf_trueData;
407 1.3 oster if (nfaults == 2) {
408 1.3 oster RF_ASSERT(wnqNode->numAntecedents == 1);
409 1.3 oster commitNode->succedents[nWndNodes + 1] = wnqNode;
410 1.3 oster wnqNode->antecedents[0] = commitNode;
411 1.3 oster wnqNode->antType[0] = rf_trueData;
412 1.3 oster }
413 1.3 oster /* connect the write nodes to the term node */
414 1.3 oster RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
415 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
416 1.3 oster for (i = 0; i < nWndNodes; i++) {
417 1.3 oster RF_ASSERT(wndNodes->numSuccedents == 1);
418 1.3 oster wndNodes[i].succedents[0] = termNode;
419 1.3 oster termNode->antecedents[i] = &wndNodes[i];
420 1.3 oster termNode->antType[i] = rf_control;
421 1.3 oster }
422 1.3 oster RF_ASSERT(wnpNode->numSuccedents == 1);
423 1.3 oster wnpNode->succedents[0] = termNode;
424 1.3 oster termNode->antecedents[nWndNodes] = wnpNode;
425 1.3 oster termNode->antType[nWndNodes] = rf_control;
426 1.3 oster if (nfaults == 2) {
427 1.3 oster RF_ASSERT(wnqNode->numSuccedents == 1);
428 1.3 oster wnqNode->succedents[0] = termNode;
429 1.3 oster termNode->antecedents[nWndNodes + 1] = wnqNode;
430 1.3 oster termNode->antType[nWndNodes + 1] = rf_control;
431 1.3 oster }
432 1.1 oster }
433 1.1 oster /******************************************************************************
434 1.1 oster *
435 1.1 oster * creates a DAG to perform a small-write operation (either raid 5 or pq),
436 1.1 oster * which is as follows:
437 1.1 oster *
438 1.1 oster * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
439 1.1 oster * \- Rod X / \----> Wnd [Und]-/
440 1.1 oster * [\- Rod X / \---> Wnd [Und]-/]
441 1.1 oster * [\- Roq -> Q / \--> Wnq [Unq]-/]
442 1.1 oster *
443 1.1 oster * Rop = read old parity
444 1.1 oster * Rod = read old data
445 1.1 oster * Roq = read old "q"
446 1.1 oster * Cmt = commit node
447 1.1 oster * Und = unlock data disk
448 1.1 oster * Unp = unlock parity disk
449 1.1 oster * Unq = unlock q disk
450 1.1 oster * Wnp = write new parity
451 1.1 oster * Wnd = write new data
452 1.1 oster * Wnq = write new "q"
453 1.1 oster * [ ] denotes optional segments in the graph
454 1.1 oster *
455 1.1 oster * Parameters: raidPtr - description of the physical array
456 1.1 oster * asmap - logical & physical addresses for this access
457 1.1 oster * bp - buffer ptr (holds write data)
458 1.3 oster * flags - general flags (e.g. disk locking)
459 1.1 oster * allocList - list of memory allocated in DAG creation
460 1.1 oster * pfuncs - list of parity generating functions
461 1.1 oster * qfuncs - list of q generating functions
462 1.1 oster *
463 1.1 oster * A null qfuncs indicates single fault tolerant
464 1.1 oster *****************************************************************************/
465 1.1 oster
466 1.3 oster void
467 1.3 oster rf_CommonCreateSmallWriteDAG(
468 1.3 oster RF_Raid_t * raidPtr,
469 1.3 oster RF_AccessStripeMap_t * asmap,
470 1.3 oster RF_DagHeader_t * dag_h,
471 1.3 oster void *bp,
472 1.3 oster RF_RaidAccessFlags_t flags,
473 1.3 oster RF_AllocListElem_t * allocList,
474 1.10 jdolecek const RF_RedFuncs_t * pfuncs,
475 1.10 jdolecek const RF_RedFuncs_t * qfuncs)
476 1.1 oster {
477 1.3 oster RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
478 1.3 oster RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
479 1.3 oster RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes;
480 1.3 oster RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
481 1.3 oster int i, j, nNodes, totalNumNodes, lu_flag;
482 1.3 oster RF_ReconUnitNum_t which_ru;
483 1.3 oster int (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
484 1.3 oster int (*qfunc) (RF_DagNode_t *);
485 1.3 oster int numDataNodes, numParityNodes;
486 1.3 oster RF_StripeNum_t parityStripeID;
487 1.3 oster RF_PhysDiskAddr_t *pda;
488 1.3 oster char *name, *qname;
489 1.3 oster long nfaults;
490 1.3 oster
491 1.3 oster nfaults = qfuncs ? 2 : 1;
492 1.3 oster lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */
493 1.3 oster
494 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
495 1.3 oster asmap->raidAddress, &which_ru);
496 1.3 oster pda = asmap->physInfo;
497 1.3 oster numDataNodes = asmap->numStripeUnitsAccessed;
498 1.3 oster numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
499 1.3 oster
500 1.3 oster if (rf_dagDebug) {
501 1.3 oster printf("[Creating small-write DAG]\n");
502 1.3 oster }
503 1.3 oster RF_ASSERT(numDataNodes > 0);
504 1.3 oster dag_h->creator = "SmallWriteDAG";
505 1.3 oster
506 1.3 oster dag_h->numCommitNodes = 1;
507 1.3 oster dag_h->numCommits = 0;
508 1.3 oster dag_h->numSuccedents = 1;
509 1.3 oster
510 1.3 oster /*
511 1.3 oster * DAG creation occurs in four steps:
512 1.3 oster * 1. count the number of nodes in the DAG
513 1.3 oster * 2. create the nodes
514 1.3 oster * 3. initialize the nodes
515 1.3 oster * 4. connect the nodes
516 1.3 oster */
517 1.3 oster
518 1.3 oster /*
519 1.3 oster * Step 1. compute number of nodes in the graph
520 1.3 oster */
521 1.3 oster
522 1.3 oster /* number of nodes: a read and write for each data unit a redundancy
523 1.3 oster * computation node for each parity node (nfaults * nparity) a read
524 1.3 oster * and write for each parity unit a block and commit node (2) a
525 1.3 oster * terminate node if atomic RMW an unlock node for each data unit,
526 1.3 oster * redundancy unit */
527 1.3 oster totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
528 1.3 oster + (nfaults * 2 * numParityNodes) + 3;
529 1.3 oster if (lu_flag) {
530 1.3 oster totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
531 1.3 oster }
532 1.3 oster /*
533 1.3 oster * Step 2. create the nodes
534 1.3 oster */
535 1.3 oster RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
536 1.3 oster (RF_DagNode_t *), allocList);
537 1.3 oster i = 0;
538 1.3 oster blockNode = &nodes[i];
539 1.3 oster i += 1;
540 1.3 oster commitNode = &nodes[i];
541 1.3 oster i += 1;
542 1.3 oster readDataNodes = &nodes[i];
543 1.3 oster i += numDataNodes;
544 1.3 oster readParityNodes = &nodes[i];
545 1.3 oster i += numParityNodes;
546 1.3 oster writeDataNodes = &nodes[i];
547 1.3 oster i += numDataNodes;
548 1.3 oster writeParityNodes = &nodes[i];
549 1.3 oster i += numParityNodes;
550 1.3 oster xorNodes = &nodes[i];
551 1.3 oster i += numParityNodes;
552 1.3 oster termNode = &nodes[i];
553 1.3 oster i += 1;
554 1.3 oster if (lu_flag) {
555 1.3 oster unlockDataNodes = &nodes[i];
556 1.3 oster i += numDataNodes;
557 1.3 oster unlockParityNodes = &nodes[i];
558 1.3 oster i += numParityNodes;
559 1.3 oster } else {
560 1.3 oster unlockDataNodes = unlockParityNodes = NULL;
561 1.3 oster }
562 1.3 oster if (nfaults == 2) {
563 1.3 oster readQNodes = &nodes[i];
564 1.3 oster i += numParityNodes;
565 1.3 oster writeQNodes = &nodes[i];
566 1.3 oster i += numParityNodes;
567 1.3 oster qNodes = &nodes[i];
568 1.3 oster i += numParityNodes;
569 1.3 oster if (lu_flag) {
570 1.3 oster unlockQNodes = &nodes[i];
571 1.3 oster i += numParityNodes;
572 1.3 oster } else {
573 1.3 oster unlockQNodes = NULL;
574 1.3 oster }
575 1.3 oster } else {
576 1.3 oster readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
577 1.3 oster }
578 1.3 oster RF_ASSERT(i == totalNumNodes);
579 1.3 oster
580 1.3 oster /*
581 1.3 oster * Step 3. initialize the nodes
582 1.3 oster */
583 1.3 oster /* initialize block node (Nil) */
584 1.3 oster nNodes = numDataNodes + (nfaults * numParityNodes);
585 1.3 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
586 1.3 oster NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
587 1.3 oster
588 1.3 oster /* initialize commit node (Cmt) */
589 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
590 1.3 oster NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
591 1.3 oster
592 1.3 oster /* initialize terminate node (Trm) */
593 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
594 1.3 oster NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
595 1.3 oster
596 1.3 oster /* initialize nodes which read old data (Rod) */
597 1.3 oster for (i = 0; i < numDataNodes; i++) {
598 1.3 oster rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
599 1.3 oster rf_GenericWakeupFunc, (nfaults * numParityNodes), 1, 4, 0, dag_h,
600 1.3 oster "Rod", allocList);
601 1.3 oster RF_ASSERT(pda != NULL);
602 1.3 oster /* physical disk addr desc */
603 1.3 oster readDataNodes[i].params[0].p = pda;
604 1.3 oster /* buffer to hold old data */
605 1.3 oster readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
606 1.3 oster dag_h, pda, allocList);
607 1.3 oster readDataNodes[i].params[2].v = parityStripeID;
608 1.3 oster readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
609 1.3 oster lu_flag, 0, which_ru);
610 1.3 oster pda = pda->next;
611 1.3 oster for (j = 0; j < readDataNodes[i].numSuccedents; j++) {
612 1.3 oster readDataNodes[i].propList[j] = NULL;
613 1.3 oster }
614 1.3 oster }
615 1.3 oster
616 1.3 oster /* initialize nodes which read old parity (Rop) */
617 1.3 oster pda = asmap->parityInfo;
618 1.3 oster i = 0;
619 1.3 oster for (i = 0; i < numParityNodes; i++) {
620 1.3 oster RF_ASSERT(pda != NULL);
621 1.3 oster rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
622 1.3 oster rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4,
623 1.3 oster 0, dag_h, "Rop", allocList);
624 1.3 oster readParityNodes[i].params[0].p = pda;
625 1.3 oster /* buffer to hold old parity */
626 1.3 oster readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
627 1.3 oster dag_h, pda, allocList);
628 1.3 oster readParityNodes[i].params[2].v = parityStripeID;
629 1.3 oster readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
630 1.3 oster lu_flag, 0, which_ru);
631 1.3 oster pda = pda->next;
632 1.3 oster for (j = 0; j < readParityNodes[i].numSuccedents; j++) {
633 1.3 oster readParityNodes[i].propList[0] = NULL;
634 1.3 oster }
635 1.3 oster }
636 1.3 oster
637 1.3 oster /* initialize nodes which read old Q (Roq) */
638 1.3 oster if (nfaults == 2) {
639 1.3 oster pda = asmap->qInfo;
640 1.3 oster for (i = 0; i < numParityNodes; i++) {
641 1.3 oster RF_ASSERT(pda != NULL);
642 1.3 oster rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
643 1.3 oster rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
644 1.3 oster readQNodes[i].params[0].p = pda;
645 1.3 oster /* buffer to hold old Q */
646 1.3 oster readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda,
647 1.3 oster allocList);
648 1.3 oster readQNodes[i].params[2].v = parityStripeID;
649 1.3 oster readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
650 1.3 oster lu_flag, 0, which_ru);
651 1.3 oster pda = pda->next;
652 1.3 oster for (j = 0; j < readQNodes[i].numSuccedents; j++) {
653 1.3 oster readQNodes[i].propList[0] = NULL;
654 1.3 oster }
655 1.3 oster }
656 1.3 oster }
657 1.3 oster /* initialize nodes which write new data (Wnd) */
658 1.3 oster pda = asmap->physInfo;
659 1.3 oster for (i = 0; i < numDataNodes; i++) {
660 1.3 oster RF_ASSERT(pda != NULL);
661 1.3 oster rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
662 1.3 oster rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
663 1.3 oster "Wnd", allocList);
664 1.3 oster /* physical disk addr desc */
665 1.3 oster writeDataNodes[i].params[0].p = pda;
666 1.3 oster /* buffer holding new data to be written */
667 1.3 oster writeDataNodes[i].params[1].p = pda->bufPtr;
668 1.3 oster writeDataNodes[i].params[2].v = parityStripeID;
669 1.3 oster writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
670 1.3 oster 0, 0, which_ru);
671 1.3 oster if (lu_flag) {
672 1.3 oster /* initialize node to unlock the disk queue */
673 1.3 oster rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
674 1.3 oster rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
675 1.3 oster "Und", allocList);
676 1.3 oster /* physical disk addr desc */
677 1.3 oster unlockDataNodes[i].params[0].p = pda;
678 1.3 oster unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
679 1.3 oster 0, lu_flag, which_ru);
680 1.3 oster }
681 1.3 oster pda = pda->next;
682 1.3 oster }
683 1.3 oster
684 1.3 oster /*
685 1.3 oster * Initialize nodes which compute new parity and Q.
686 1.3 oster */
687 1.3 oster /*
688 1.3 oster * We use the simple XOR func in the double-XOR case, and when
689 1.3 oster * we're accessing only a portion of one stripe unit. The distinction
690 1.3 oster * between the two is that the regular XOR func assumes that the targbuf
691 1.3 oster * is a full SU in size, and examines the pda associated with the buffer
692 1.3 oster * to decide where within the buffer to XOR the data, whereas
693 1.3 oster * the simple XOR func just XORs the data into the start of the buffer.
694 1.3 oster */
695 1.3 oster if ((numParityNodes == 2) || ((numDataNodes == 1)
696 1.3 oster && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
697 1.3 oster func = pfuncs->simple;
698 1.3 oster undoFunc = rf_NullNodeUndoFunc;
699 1.3 oster name = pfuncs->SimpleName;
700 1.3 oster if (qfuncs) {
701 1.3 oster qfunc = qfuncs->simple;
702 1.3 oster qname = qfuncs->SimpleName;
703 1.3 oster } else {
704 1.3 oster qfunc = NULL;
705 1.3 oster qname = NULL;
706 1.3 oster }
707 1.3 oster } else {
708 1.3 oster func = pfuncs->regular;
709 1.3 oster undoFunc = rf_NullNodeUndoFunc;
710 1.3 oster name = pfuncs->RegularName;
711 1.3 oster if (qfuncs) {
712 1.3 oster qfunc = qfuncs->regular;
713 1.3 oster qname = qfuncs->RegularName;
714 1.3 oster } else {
715 1.3 oster qfunc = NULL;
716 1.3 oster qname = NULL;
717 1.3 oster }
718 1.3 oster }
719 1.3 oster /*
720 1.3 oster * Initialize the xor nodes: params are {pda,buf}
721 1.3 oster * from {Rod,Wnd,Rop} nodes, and raidPtr
722 1.3 oster */
723 1.3 oster if (numParityNodes == 2) {
724 1.3 oster /* double-xor case */
725 1.3 oster for (i = 0; i < numParityNodes; i++) {
726 1.3 oster /* note: no wakeup func for xor */
727 1.3 oster rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL,
728 1.3 oster 1, (numDataNodes + numParityNodes), 7, 1, dag_h, name, allocList);
729 1.3 oster xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
730 1.3 oster xorNodes[i].params[0] = readDataNodes[i].params[0];
731 1.3 oster xorNodes[i].params[1] = readDataNodes[i].params[1];
732 1.3 oster xorNodes[i].params[2] = readParityNodes[i].params[0];
733 1.3 oster xorNodes[i].params[3] = readParityNodes[i].params[1];
734 1.3 oster xorNodes[i].params[4] = writeDataNodes[i].params[0];
735 1.3 oster xorNodes[i].params[5] = writeDataNodes[i].params[1];
736 1.3 oster xorNodes[i].params[6].p = raidPtr;
737 1.3 oster /* use old parity buf as target buf */
738 1.3 oster xorNodes[i].results[0] = readParityNodes[i].params[1].p;
739 1.3 oster if (nfaults == 2) {
740 1.3 oster /* note: no wakeup func for qor */
741 1.3 oster rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
742 1.3 oster (numDataNodes + numParityNodes), 7, 1, dag_h, qname, allocList);
743 1.3 oster qNodes[i].params[0] = readDataNodes[i].params[0];
744 1.3 oster qNodes[i].params[1] = readDataNodes[i].params[1];
745 1.3 oster qNodes[i].params[2] = readQNodes[i].params[0];
746 1.3 oster qNodes[i].params[3] = readQNodes[i].params[1];
747 1.3 oster qNodes[i].params[4] = writeDataNodes[i].params[0];
748 1.3 oster qNodes[i].params[5] = writeDataNodes[i].params[1];
749 1.3 oster qNodes[i].params[6].p = raidPtr;
750 1.3 oster /* use old Q buf as target buf */
751 1.3 oster qNodes[i].results[0] = readQNodes[i].params[1].p;
752 1.3 oster }
753 1.3 oster }
754 1.3 oster } else {
755 1.3 oster /* there is only one xor node in this case */
756 1.3 oster rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, 1,
757 1.3 oster (numDataNodes + numParityNodes),
758 1.3 oster (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
759 1.3 oster xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
760 1.3 oster for (i = 0; i < numDataNodes + 1; i++) {
761 1.3 oster /* set up params related to Rod and Rop nodes */
762 1.3 oster xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
763 1.3 oster xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */
764 1.3 oster }
765 1.3 oster for (i = 0; i < numDataNodes; i++) {
766 1.3 oster /* set up params related to Wnd and Wnp nodes */
767 1.3 oster xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = /* pda */
768 1.3 oster writeDataNodes[i].params[0];
769 1.3 oster xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */
770 1.3 oster writeDataNodes[i].params[1];
771 1.3 oster }
772 1.3 oster /* xor node needs to get at RAID information */
773 1.3 oster xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
774 1.3 oster xorNodes[0].results[0] = readParityNodes[0].params[1].p;
775 1.3 oster if (nfaults == 2) {
776 1.3 oster rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
777 1.3 oster (numDataNodes + numParityNodes),
778 1.3 oster (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h,
779 1.3 oster qname, allocList);
780 1.3 oster for (i = 0; i < numDataNodes; i++) {
781 1.3 oster /* set up params related to Rod */
782 1.3 oster qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
783 1.3 oster qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */
784 1.3 oster }
785 1.3 oster /* and read old q */
786 1.3 oster qNodes[0].params[2 * numDataNodes + 0] = /* pda */
787 1.3 oster readQNodes[0].params[0];
788 1.3 oster qNodes[0].params[2 * numDataNodes + 1] = /* buffer ptr */
789 1.3 oster readQNodes[0].params[1];
790 1.3 oster for (i = 0; i < numDataNodes; i++) {
791 1.3 oster /* set up params related to Wnd nodes */
792 1.3 oster qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = /* pda */
793 1.3 oster writeDataNodes[i].params[0];
794 1.3 oster qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */
795 1.3 oster writeDataNodes[i].params[1];
796 1.3 oster }
797 1.3 oster /* xor node needs to get at RAID information */
798 1.3 oster qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
799 1.3 oster qNodes[0].results[0] = readQNodes[0].params[1].p;
800 1.3 oster }
801 1.3 oster }
802 1.3 oster
803 1.3 oster /* initialize nodes which write new parity (Wnp) */
804 1.3 oster pda = asmap->parityInfo;
805 1.3 oster for (i = 0; i < numParityNodes; i++) {
806 1.3 oster rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
807 1.3 oster rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
808 1.3 oster "Wnp", allocList);
809 1.3 oster RF_ASSERT(pda != NULL);
810 1.3 oster writeParityNodes[i].params[0].p = pda; /* param 1 (bufPtr)
811 1.3 oster * filled in by xor node */
812 1.3 oster writeParityNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer for
813 1.3 oster * parity write
814 1.3 oster * operation */
815 1.3 oster writeParityNodes[i].params[2].v = parityStripeID;
816 1.3 oster writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
817 1.3 oster 0, 0, which_ru);
818 1.3 oster if (lu_flag) {
819 1.3 oster /* initialize node to unlock the disk queue */
820 1.3 oster rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
821 1.3 oster rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
822 1.3 oster "Unp", allocList);
823 1.3 oster unlockParityNodes[i].params[0].p = pda; /* physical disk addr
824 1.3 oster * desc */
825 1.3 oster unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
826 1.3 oster 0, lu_flag, which_ru);
827 1.3 oster }
828 1.3 oster pda = pda->next;
829 1.3 oster }
830 1.3 oster
831 1.3 oster /* initialize nodes which write new Q (Wnq) */
832 1.3 oster if (nfaults == 2) {
833 1.3 oster pda = asmap->qInfo;
834 1.3 oster for (i = 0; i < numParityNodes; i++) {
835 1.3 oster rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
836 1.3 oster rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
837 1.3 oster "Wnq", allocList);
838 1.3 oster RF_ASSERT(pda != NULL);
839 1.3 oster writeQNodes[i].params[0].p = pda; /* param 1 (bufPtr)
840 1.3 oster * filled in by xor node */
841 1.3 oster writeQNodes[i].params[1].p = qNodes[i].results[0]; /* buffer pointer for
842 1.3 oster * parity write
843 1.3 oster * operation */
844 1.3 oster writeQNodes[i].params[2].v = parityStripeID;
845 1.3 oster writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
846 1.3 oster 0, 0, which_ru);
847 1.3 oster if (lu_flag) {
848 1.3 oster /* initialize node to unlock the disk queue */
849 1.3 oster rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
850 1.3 oster rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
851 1.3 oster "Unq", allocList);
852 1.3 oster unlockQNodes[i].params[0].p = pda; /* physical disk addr
853 1.3 oster * desc */
854 1.3 oster unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
855 1.3 oster 0, lu_flag, which_ru);
856 1.3 oster }
857 1.3 oster pda = pda->next;
858 1.3 oster }
859 1.3 oster }
860 1.3 oster /*
861 1.3 oster * Step 4. connect the nodes.
862 1.3 oster */
863 1.3 oster
864 1.3 oster /* connect header to block node */
865 1.3 oster dag_h->succedents[0] = blockNode;
866 1.3 oster
867 1.3 oster /* connect block node to read old data nodes */
868 1.3 oster RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
869 1.3 oster for (i = 0; i < numDataNodes; i++) {
870 1.3 oster blockNode->succedents[i] = &readDataNodes[i];
871 1.3 oster RF_ASSERT(readDataNodes[i].numAntecedents == 1);
872 1.3 oster readDataNodes[i].antecedents[0] = blockNode;
873 1.3 oster readDataNodes[i].antType[0] = rf_control;
874 1.3 oster }
875 1.3 oster
876 1.3 oster /* connect block node to read old parity nodes */
877 1.3 oster for (i = 0; i < numParityNodes; i++) {
878 1.3 oster blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
879 1.3 oster RF_ASSERT(readParityNodes[i].numAntecedents == 1);
880 1.3 oster readParityNodes[i].antecedents[0] = blockNode;
881 1.3 oster readParityNodes[i].antType[0] = rf_control;
882 1.3 oster }
883 1.3 oster
884 1.3 oster /* connect block node to read old Q nodes */
885 1.3 oster if (nfaults == 2) {
886 1.3 oster for (i = 0; i < numParityNodes; i++) {
887 1.3 oster blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
888 1.3 oster RF_ASSERT(readQNodes[i].numAntecedents == 1);
889 1.3 oster readQNodes[i].antecedents[0] = blockNode;
890 1.3 oster readQNodes[i].antType[0] = rf_control;
891 1.3 oster }
892 1.3 oster }
893 1.3 oster /* connect read old data nodes to xor nodes */
894 1.3 oster for (i = 0; i < numDataNodes; i++) {
895 1.3 oster RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes));
896 1.3 oster for (j = 0; j < numParityNodes; j++) {
897 1.3 oster RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
898 1.3 oster readDataNodes[i].succedents[j] = &xorNodes[j];
899 1.3 oster xorNodes[j].antecedents[i] = &readDataNodes[i];
900 1.3 oster xorNodes[j].antType[i] = rf_trueData;
901 1.3 oster }
902 1.3 oster }
903 1.3 oster
904 1.3 oster /* connect read old data nodes to q nodes */
905 1.3 oster if (nfaults == 2) {
906 1.3 oster for (i = 0; i < numDataNodes; i++) {
907 1.3 oster for (j = 0; j < numParityNodes; j++) {
908 1.3 oster RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
909 1.3 oster readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j];
910 1.3 oster qNodes[j].antecedents[i] = &readDataNodes[i];
911 1.3 oster qNodes[j].antType[i] = rf_trueData;
912 1.3 oster }
913 1.3 oster }
914 1.3 oster }
915 1.3 oster /* connect read old parity nodes to xor nodes */
916 1.3 oster for (i = 0; i < numParityNodes; i++) {
917 1.3 oster RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
918 1.3 oster for (j = 0; j < numParityNodes; j++) {
919 1.3 oster readParityNodes[i].succedents[j] = &xorNodes[j];
920 1.3 oster xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
921 1.3 oster xorNodes[j].antType[numDataNodes + i] = rf_trueData;
922 1.3 oster }
923 1.3 oster }
924 1.3 oster
925 1.3 oster /* connect read old q nodes to q nodes */
926 1.3 oster if (nfaults == 2) {
927 1.3 oster for (i = 0; i < numParityNodes; i++) {
928 1.3 oster RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
929 1.3 oster for (j = 0; j < numParityNodes; j++) {
930 1.3 oster readQNodes[i].succedents[j] = &qNodes[j];
931 1.3 oster qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
932 1.3 oster qNodes[j].antType[numDataNodes + i] = rf_trueData;
933 1.3 oster }
934 1.3 oster }
935 1.3 oster }
936 1.3 oster /* connect xor nodes to commit node */
937 1.3 oster RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
938 1.3 oster for (i = 0; i < numParityNodes; i++) {
939 1.3 oster RF_ASSERT(xorNodes[i].numSuccedents == 1);
940 1.3 oster xorNodes[i].succedents[0] = commitNode;
941 1.3 oster commitNode->antecedents[i] = &xorNodes[i];
942 1.3 oster commitNode->antType[i] = rf_control;
943 1.3 oster }
944 1.3 oster
945 1.3 oster /* connect q nodes to commit node */
946 1.3 oster if (nfaults == 2) {
947 1.3 oster for (i = 0; i < numParityNodes; i++) {
948 1.3 oster RF_ASSERT(qNodes[i].numSuccedents == 1);
949 1.3 oster qNodes[i].succedents[0] = commitNode;
950 1.3 oster commitNode->antecedents[i + numParityNodes] = &qNodes[i];
951 1.3 oster commitNode->antType[i + numParityNodes] = rf_control;
952 1.3 oster }
953 1.3 oster }
954 1.3 oster /* connect commit node to write nodes */
955 1.3 oster RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
956 1.3 oster for (i = 0; i < numDataNodes; i++) {
957 1.3 oster RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
958 1.3 oster commitNode->succedents[i] = &writeDataNodes[i];
959 1.3 oster writeDataNodes[i].antecedents[0] = commitNode;
960 1.3 oster writeDataNodes[i].antType[0] = rf_trueData;
961 1.3 oster }
962 1.3 oster for (i = 0; i < numParityNodes; i++) {
963 1.3 oster RF_ASSERT(writeParityNodes[i].numAntecedents == 1);
964 1.3 oster commitNode->succedents[i + numDataNodes] = &writeParityNodes[i];
965 1.3 oster writeParityNodes[i].antecedents[0] = commitNode;
966 1.3 oster writeParityNodes[i].antType[0] = rf_trueData;
967 1.3 oster }
968 1.3 oster if (nfaults == 2) {
969 1.3 oster for (i = 0; i < numParityNodes; i++) {
970 1.3 oster RF_ASSERT(writeQNodes[i].numAntecedents == 1);
971 1.3 oster commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i];
972 1.3 oster writeQNodes[i].antecedents[0] = commitNode;
973 1.3 oster writeQNodes[i].antType[0] = rf_trueData;
974 1.3 oster }
975 1.3 oster }
976 1.3 oster RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
977 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
978 1.3 oster for (i = 0; i < numDataNodes; i++) {
979 1.3 oster if (lu_flag) {
980 1.3 oster /* connect write new data nodes to unlock nodes */
981 1.3 oster RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
982 1.3 oster RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
983 1.3 oster writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
984 1.3 oster unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
985 1.3 oster unlockDataNodes[i].antType[0] = rf_control;
986 1.3 oster
987 1.3 oster /* connect unlock nodes to term node */
988 1.3 oster RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
989 1.3 oster unlockDataNodes[i].succedents[0] = termNode;
990 1.3 oster termNode->antecedents[i] = &unlockDataNodes[i];
991 1.3 oster termNode->antType[i] = rf_control;
992 1.3 oster } else {
993 1.3 oster /* connect write new data nodes to term node */
994 1.3 oster RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
995 1.3 oster RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
996 1.3 oster writeDataNodes[i].succedents[0] = termNode;
997 1.3 oster termNode->antecedents[i] = &writeDataNodes[i];
998 1.3 oster termNode->antType[i] = rf_control;
999 1.3 oster }
1000 1.3 oster }
1001 1.3 oster
1002 1.3 oster for (i = 0; i < numParityNodes; i++) {
1003 1.3 oster if (lu_flag) {
1004 1.3 oster /* connect write new parity nodes to unlock nodes */
1005 1.3 oster RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
1006 1.3 oster RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
1007 1.3 oster writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
1008 1.3 oster unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
1009 1.3 oster unlockParityNodes[i].antType[0] = rf_control;
1010 1.3 oster
1011 1.3 oster /* connect unlock nodes to term node */
1012 1.3 oster RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
1013 1.3 oster unlockParityNodes[i].succedents[0] = termNode;
1014 1.3 oster termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
1015 1.3 oster termNode->antType[numDataNodes + i] = rf_control;
1016 1.3 oster } else {
1017 1.3 oster RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
1018 1.3 oster writeParityNodes[i].succedents[0] = termNode;
1019 1.3 oster termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
1020 1.3 oster termNode->antType[numDataNodes + i] = rf_control;
1021 1.3 oster }
1022 1.3 oster }
1023 1.3 oster
1024 1.3 oster if (nfaults == 2) {
1025 1.3 oster for (i = 0; i < numParityNodes; i++) {
1026 1.3 oster if (lu_flag) {
1027 1.3 oster /* connect write new Q nodes to unlock nodes */
1028 1.3 oster RF_ASSERT(writeQNodes[i].numSuccedents == 1);
1029 1.3 oster RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
1030 1.3 oster writeQNodes[i].succedents[0] = &unlockQNodes[i];
1031 1.3 oster unlockQNodes[i].antecedents[0] = &writeQNodes[i];
1032 1.3 oster unlockQNodes[i].antType[0] = rf_control;
1033 1.3 oster
1034 1.3 oster /* connect unlock nodes to unblock node */
1035 1.3 oster RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
1036 1.3 oster unlockQNodes[i].succedents[0] = termNode;
1037 1.3 oster termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
1038 1.3 oster termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
1039 1.3 oster } else {
1040 1.3 oster RF_ASSERT(writeQNodes[i].numSuccedents == 1);
1041 1.3 oster writeQNodes[i].succedents[0] = termNode;
1042 1.3 oster termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
1043 1.3 oster termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
1044 1.3 oster }
1045 1.3 oster }
1046 1.3 oster }
1047 1.1 oster }
1048 1.1 oster
1049 1.1 oster
1050 1.1 oster /******************************************************************************
1051 1.1 oster * create a write graph (fault-free or degraded) for RAID level 1
1052 1.1 oster *
1053 1.1 oster * Hdr -> Commit -> Wpd -> Nil -> Trm
1054 1.1 oster * -> Wsd ->
1055 1.1 oster *
1056 1.1 oster * The "Wpd" node writes data to the primary copy in the mirror pair
1057 1.1 oster * The "Wsd" node writes data to the secondary copy in the mirror pair
1058 1.1 oster *
1059 1.1 oster * Parameters: raidPtr - description of the physical array
1060 1.1 oster * asmap - logical & physical addresses for this access
1061 1.1 oster * bp - buffer ptr (holds write data)
1062 1.3 oster * flags - general flags (e.g. disk locking)
1063 1.1 oster * allocList - list of memory allocated in DAG creation
1064 1.1 oster *****************************************************************************/
1065 1.1 oster
1066 1.3 oster void
1067 1.3 oster rf_CreateRaidOneWriteDAG(
1068 1.3 oster RF_Raid_t * raidPtr,
1069 1.3 oster RF_AccessStripeMap_t * asmap,
1070 1.3 oster RF_DagHeader_t * dag_h,
1071 1.3 oster void *bp,
1072 1.3 oster RF_RaidAccessFlags_t flags,
1073 1.3 oster RF_AllocListElem_t * allocList)
1074 1.1 oster {
1075 1.3 oster RF_DagNode_t *unblockNode, *termNode, *commitNode;
1076 1.3 oster RF_DagNode_t *nodes, *wndNode, *wmirNode;
1077 1.3 oster int nWndNodes, nWmirNodes, i;
1078 1.3 oster RF_ReconUnitNum_t which_ru;
1079 1.3 oster RF_PhysDiskAddr_t *pda, *pdaP;
1080 1.3 oster RF_StripeNum_t parityStripeID;
1081 1.3 oster
1082 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
1083 1.3 oster asmap->raidAddress, &which_ru);
1084 1.3 oster if (rf_dagDebug) {
1085 1.3 oster printf("[Creating RAID level 1 write DAG]\n");
1086 1.3 oster }
1087 1.3 oster dag_h->creator = "RaidOneWriteDAG";
1088 1.3 oster
1089 1.3 oster /* 2 implies access not SU aligned */
1090 1.3 oster nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
1091 1.3 oster nWndNodes = (asmap->physInfo->next) ? 2 : 1;
1092 1.3 oster
1093 1.3 oster /* alloc the Wnd nodes and the Wmir node */
1094 1.3 oster if (asmap->numDataFailed == 1)
1095 1.3 oster nWndNodes--;
1096 1.3 oster if (asmap->numParityFailed == 1)
1097 1.3 oster nWmirNodes--;
1098 1.3 oster
1099 1.3 oster /* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
1100 1.3 oster * + terminator) */
1101 1.3 oster RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t),
1102 1.3 oster (RF_DagNode_t *), allocList);
1103 1.3 oster i = 0;
1104 1.3 oster wndNode = &nodes[i];
1105 1.3 oster i += nWndNodes;
1106 1.3 oster wmirNode = &nodes[i];
1107 1.3 oster i += nWmirNodes;
1108 1.3 oster commitNode = &nodes[i];
1109 1.3 oster i += 1;
1110 1.3 oster unblockNode = &nodes[i];
1111 1.3 oster i += 1;
1112 1.3 oster termNode = &nodes[i];
1113 1.3 oster i += 1;
1114 1.3 oster RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
1115 1.3 oster
1116 1.3 oster /* this dag can commit immediately */
1117 1.3 oster dag_h->numCommitNodes = 1;
1118 1.3 oster dag_h->numCommits = 0;
1119 1.3 oster dag_h->numSuccedents = 1;
1120 1.3 oster
1121 1.3 oster /* initialize the commit, unblock, and term nodes */
1122 1.3 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
1123 1.3 oster NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Cmt", allocList);
1124 1.3 oster rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
1125 1.3 oster NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
1126 1.3 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
1127 1.3 oster NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
1128 1.3 oster
1129 1.3 oster /* initialize the wnd nodes */
1130 1.3 oster if (nWndNodes > 0) {
1131 1.3 oster pda = asmap->physInfo;
1132 1.3 oster for (i = 0; i < nWndNodes; i++) {
1133 1.3 oster rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
1134 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
1135 1.3 oster RF_ASSERT(pda != NULL);
1136 1.3 oster wndNode[i].params[0].p = pda;
1137 1.3 oster wndNode[i].params[1].p = pda->bufPtr;
1138 1.3 oster wndNode[i].params[2].v = parityStripeID;
1139 1.3 oster wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
1140 1.3 oster pda = pda->next;
1141 1.3 oster }
1142 1.3 oster RF_ASSERT(pda == NULL);
1143 1.3 oster }
1144 1.3 oster /* initialize the mirror nodes */
1145 1.3 oster if (nWmirNodes > 0) {
1146 1.3 oster pda = asmap->physInfo;
1147 1.3 oster pdaP = asmap->parityInfo;
1148 1.3 oster for (i = 0; i < nWmirNodes; i++) {
1149 1.3 oster rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
1150 1.3 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
1151 1.3 oster RF_ASSERT(pda != NULL);
1152 1.3 oster wmirNode[i].params[0].p = pdaP;
1153 1.3 oster wmirNode[i].params[1].p = pda->bufPtr;
1154 1.3 oster wmirNode[i].params[2].v = parityStripeID;
1155 1.3 oster wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
1156 1.3 oster pda = pda->next;
1157 1.3 oster pdaP = pdaP->next;
1158 1.3 oster }
1159 1.3 oster RF_ASSERT(pda == NULL);
1160 1.3 oster RF_ASSERT(pdaP == NULL);
1161 1.3 oster }
1162 1.3 oster /* link the header node to the commit node */
1163 1.3 oster RF_ASSERT(dag_h->numSuccedents == 1);
1164 1.3 oster RF_ASSERT(commitNode->numAntecedents == 0);
1165 1.3 oster dag_h->succedents[0] = commitNode;
1166 1.3 oster
1167 1.3 oster /* link the commit node to the write nodes */
1168 1.3 oster RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
1169 1.3 oster for (i = 0; i < nWndNodes; i++) {
1170 1.3 oster RF_ASSERT(wndNode[i].numAntecedents == 1);
1171 1.3 oster commitNode->succedents[i] = &wndNode[i];
1172 1.3 oster wndNode[i].antecedents[0] = commitNode;
1173 1.3 oster wndNode[i].antType[0] = rf_control;
1174 1.3 oster }
1175 1.3 oster for (i = 0; i < nWmirNodes; i++) {
1176 1.3 oster RF_ASSERT(wmirNode[i].numAntecedents == 1);
1177 1.3 oster commitNode->succedents[i + nWndNodes] = &wmirNode[i];
1178 1.3 oster wmirNode[i].antecedents[0] = commitNode;
1179 1.3 oster wmirNode[i].antType[0] = rf_control;
1180 1.3 oster }
1181 1.3 oster
1182 1.3 oster /* link the write nodes to the unblock node */
1183 1.3 oster RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
1184 1.3 oster for (i = 0; i < nWndNodes; i++) {
1185 1.3 oster RF_ASSERT(wndNode[i].numSuccedents == 1);
1186 1.3 oster wndNode[i].succedents[0] = unblockNode;
1187 1.3 oster unblockNode->antecedents[i] = &wndNode[i];
1188 1.3 oster unblockNode->antType[i] = rf_control;
1189 1.3 oster }
1190 1.3 oster for (i = 0; i < nWmirNodes; i++) {
1191 1.3 oster RF_ASSERT(wmirNode[i].numSuccedents == 1);
1192 1.3 oster wmirNode[i].succedents[0] = unblockNode;
1193 1.3 oster unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
1194 1.3 oster unblockNode->antType[i + nWndNodes] = rf_control;
1195 1.3 oster }
1196 1.3 oster
1197 1.3 oster /* link the unblock node to the term node */
1198 1.3 oster RF_ASSERT(unblockNode->numSuccedents == 1);
1199 1.3 oster RF_ASSERT(termNode->numAntecedents == 1);
1200 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
1201 1.3 oster unblockNode->succedents[0] = termNode;
1202 1.3 oster termNode->antecedents[0] = unblockNode;
1203 1.3 oster termNode->antType[0] = rf_control;
1204 1.1 oster }
1205