rf_dagffwr.c revision 1.14 1 1.14 oster /* $NetBSD: rf_dagffwr.c,v 1.14 2004/01/06 03:27:13 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * rf_dagff.c
31 1.1 oster *
32 1.1 oster * code for creating fault-free DAGs
33 1.1 oster *
34 1.1 oster */
35 1.7 lukem
36 1.7 lukem #include <sys/cdefs.h>
37 1.14 oster __KERNEL_RCSID(0, "$NetBSD: rf_dagffwr.c,v 1.14 2004/01/06 03:27:13 oster Exp $");
38 1.1 oster
39 1.6 oster #include <dev/raidframe/raidframevar.h>
40 1.6 oster
41 1.1 oster #include "rf_raid.h"
42 1.1 oster #include "rf_dag.h"
43 1.1 oster #include "rf_dagutils.h"
44 1.1 oster #include "rf_dagfuncs.h"
45 1.1 oster #include "rf_debugMem.h"
46 1.1 oster #include "rf_dagffrd.h"
47 1.1 oster #include "rf_general.h"
48 1.1 oster #include "rf_dagffwr.h"
49 1.1 oster
50 1.1 oster /******************************************************************************
51 1.1 oster *
52 1.1 oster * General comments on DAG creation:
53 1.3 oster *
54 1.1 oster * All DAGs in this file use roll-away error recovery. Each DAG has a single
55 1.1 oster * commit node, usually called "Cmt." If an error occurs before the Cmt node
56 1.1 oster * is reached, the execution engine will halt forward execution and work
57 1.1 oster * backward through the graph, executing the undo functions. Assuming that
58 1.1 oster * each node in the graph prior to the Cmt node are undoable and atomic - or -
59 1.1 oster * does not make changes to permanent state, the graph will fail atomically.
60 1.1 oster * If an error occurs after the Cmt node executes, the engine will roll-forward
61 1.1 oster * through the graph, blindly executing nodes until it reaches the end.
62 1.1 oster * If a graph reaches the end, it is assumed to have completed successfully.
63 1.1 oster *
64 1.1 oster * A graph has only 1 Cmt node.
65 1.1 oster *
66 1.1 oster */
67 1.1 oster
68 1.1 oster
69 1.1 oster /******************************************************************************
70 1.1 oster *
71 1.1 oster * The following wrappers map the standard DAG creation interface to the
72 1.1 oster * DAG creation routines. Additionally, these wrappers enable experimentation
73 1.1 oster * with new DAG structures by providing an extra level of indirection, allowing
74 1.1 oster * the DAG creation routines to be replaced at this single point.
75 1.1 oster */
76 1.1 oster
77 1.1 oster
78 1.3 oster void
79 1.13 oster rf_CreateNonRedundantWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
80 1.13 oster RF_DagHeader_t *dag_h, void *bp,
81 1.13 oster RF_RaidAccessFlags_t flags,
82 1.13 oster RF_AllocListElem_t *allocList,
83 1.13 oster RF_IoType_t type)
84 1.1 oster {
85 1.3 oster rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
86 1.14 oster RF_IO_TYPE_WRITE);
87 1.1 oster }
88 1.1 oster
89 1.3 oster void
90 1.13 oster rf_CreateRAID0WriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
91 1.13 oster RF_DagHeader_t *dag_h, void *bp,
92 1.13 oster RF_RaidAccessFlags_t flags,
93 1.13 oster RF_AllocListElem_t *allocList,
94 1.13 oster RF_IoType_t type)
95 1.1 oster {
96 1.3 oster rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
97 1.14 oster RF_IO_TYPE_WRITE);
98 1.1 oster }
99 1.1 oster
100 1.3 oster void
101 1.13 oster rf_CreateSmallWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
102 1.13 oster RF_DagHeader_t *dag_h, void *bp,
103 1.13 oster RF_RaidAccessFlags_t flags,
104 1.13 oster RF_AllocListElem_t *allocList)
105 1.1 oster {
106 1.3 oster /* "normal" rollaway */
107 1.14 oster rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags,
108 1.14 oster allocList, &rf_xorFuncs, NULL);
109 1.1 oster }
110 1.1 oster
111 1.3 oster void
112 1.13 oster rf_CreateLargeWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
113 1.13 oster RF_DagHeader_t *dag_h, void *bp,
114 1.13 oster RF_RaidAccessFlags_t flags,
115 1.13 oster RF_AllocListElem_t *allocList)
116 1.1 oster {
117 1.3 oster /* "normal" rollaway */
118 1.14 oster rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags,
119 1.14 oster allocList, 1, rf_RegularXorFunc, RF_TRUE);
120 1.1 oster }
121 1.1 oster
122 1.1 oster
123 1.1 oster /******************************************************************************
124 1.1 oster *
125 1.1 oster * DAG creation code begins here
126 1.1 oster */
127 1.1 oster
128 1.1 oster
129 1.1 oster /******************************************************************************
130 1.1 oster *
131 1.1 oster * creates a DAG to perform a large-write operation:
132 1.1 oster *
133 1.1 oster * / Rod \ / Wnd \
134 1.1 oster * H -- block- Rod - Xor - Cmt - Wnd --- T
135 1.1 oster * \ Rod / \ Wnp /
136 1.1 oster * \[Wnq]/
137 1.1 oster *
138 1.1 oster * The XOR node also does the Q calculation in the P+Q architecture.
139 1.1 oster * All nodes are before the commit node (Cmt) are assumed to be atomic and
140 1.1 oster * undoable - or - they make no changes to permanent state.
141 1.1 oster *
142 1.1 oster * Rod = read old data
143 1.1 oster * Cmt = commit node
144 1.1 oster * Wnp = write new parity
145 1.1 oster * Wnd = write new data
146 1.1 oster * Wnq = write new "q"
147 1.1 oster * [] denotes optional segments in the graph
148 1.1 oster *
149 1.1 oster * Parameters: raidPtr - description of the physical array
150 1.1 oster * asmap - logical & physical addresses for this access
151 1.1 oster * bp - buffer ptr (holds write data)
152 1.3 oster * flags - general flags (e.g. disk locking)
153 1.1 oster * allocList - list of memory allocated in DAG creation
154 1.1 oster * nfaults - number of faults array can tolerate
155 1.1 oster * (equal to # redundancy units in stripe)
156 1.1 oster * redfuncs - list of redundancy generating functions
157 1.1 oster *
158 1.1 oster *****************************************************************************/
159 1.1 oster
160 1.3 oster void
161 1.13 oster rf_CommonCreateLargeWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
162 1.13 oster RF_DagHeader_t *dag_h, void *bp,
163 1.13 oster RF_RaidAccessFlags_t flags,
164 1.13 oster RF_AllocListElem_t *allocList,
165 1.13 oster int nfaults, int (*redFunc) (RF_DagNode_t *),
166 1.13 oster int allowBufferRecycle)
167 1.1 oster {
168 1.3 oster RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
169 1.3 oster RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
170 1.3 oster int nWndNodes, nRodNodes, i, nodeNum, asmNum;
171 1.3 oster RF_AccessStripeMapHeader_t *new_asm_h[2];
172 1.3 oster RF_StripeNum_t parityStripeID;
173 1.3 oster char *sosBuffer, *eosBuffer;
174 1.3 oster RF_ReconUnitNum_t which_ru;
175 1.3 oster RF_RaidLayout_t *layoutPtr;
176 1.3 oster RF_PhysDiskAddr_t *pda;
177 1.3 oster
178 1.3 oster layoutPtr = &(raidPtr->Layout);
179 1.14 oster parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
180 1.14 oster asmap->raidAddress,
181 1.14 oster &which_ru);
182 1.3 oster
183 1.3 oster if (rf_dagDebug) {
184 1.3 oster printf("[Creating large-write DAG]\n");
185 1.3 oster }
186 1.3 oster dag_h->creator = "LargeWriteDAG";
187 1.3 oster
188 1.3 oster dag_h->numCommitNodes = 1;
189 1.3 oster dag_h->numCommits = 0;
190 1.3 oster dag_h->numSuccedents = 1;
191 1.3 oster
192 1.3 oster /* alloc the nodes: Wnd, xor, commit, block, term, and Wnp */
193 1.3 oster nWndNodes = asmap->numStripeUnitsAccessed;
194 1.12 oster RF_MallocAndAdd(nodes,
195 1.12 oster (nWndNodes + 4 + nfaults) * sizeof(RF_DagNode_t),
196 1.12 oster (RF_DagNode_t *), allocList);
197 1.3 oster i = 0;
198 1.3 oster wndNodes = &nodes[i];
199 1.3 oster i += nWndNodes;
200 1.3 oster xorNode = &nodes[i];
201 1.3 oster i += 1;
202 1.3 oster wnpNode = &nodes[i];
203 1.3 oster i += 1;
204 1.3 oster blockNode = &nodes[i];
205 1.3 oster i += 1;
206 1.3 oster commitNode = &nodes[i];
207 1.3 oster i += 1;
208 1.3 oster termNode = &nodes[i];
209 1.3 oster i += 1;
210 1.3 oster if (nfaults == 2) {
211 1.3 oster wnqNode = &nodes[i];
212 1.3 oster i += 1;
213 1.3 oster } else {
214 1.3 oster wnqNode = NULL;
215 1.3 oster }
216 1.14 oster rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h,
217 1.14 oster new_asm_h, &nRodNodes, &sosBuffer,
218 1.14 oster &eosBuffer, allocList);
219 1.3 oster if (nRodNodes > 0) {
220 1.12 oster RF_MallocAndAdd(rodNodes, nRodNodes * sizeof(RF_DagNode_t),
221 1.12 oster (RF_DagNode_t *), allocList);
222 1.3 oster } else {
223 1.3 oster rodNodes = NULL;
224 1.3 oster }
225 1.3 oster
226 1.3 oster /* begin node initialization */
227 1.3 oster if (nRodNodes > 0) {
228 1.14 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
229 1.14 oster rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0,
230 1.14 oster dag_h, "Nil", allocList);
231 1.3 oster } else {
232 1.14 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
233 1.14 oster rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0,
234 1.14 oster dag_h, "Nil", allocList);
235 1.3 oster }
236 1.3 oster
237 1.14 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
238 1.14 oster rf_NullNodeUndoFunc, NULL, nWndNodes + nfaults, 1, 0, 0,
239 1.14 oster dag_h, "Cmt", allocList);
240 1.14 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
241 1.14 oster rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0,
242 1.14 oster dag_h, "Trm", allocList);
243 1.3 oster
244 1.3 oster /* initialize the Rod nodes */
245 1.3 oster for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
246 1.3 oster if (new_asm_h[asmNum]) {
247 1.3 oster pda = new_asm_h[asmNum]->stripeMap->physInfo;
248 1.3 oster while (pda) {
249 1.14 oster rf_InitNode(&rodNodes[nodeNum], rf_wait,
250 1.14 oster RF_FALSE, rf_DiskReadFunc,
251 1.14 oster rf_DiskReadUndoFunc,
252 1.14 oster rf_GenericWakeupFunc,
253 1.14 oster 1, 1, 4, 0, dag_h,
254 1.14 oster "Rod", allocList);
255 1.3 oster rodNodes[nodeNum].params[0].p = pda;
256 1.3 oster rodNodes[nodeNum].params[1].p = pda->bufPtr;
257 1.3 oster rodNodes[nodeNum].params[2].v = parityStripeID;
258 1.3 oster rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
259 1.3 oster 0, 0, which_ru);
260 1.3 oster nodeNum++;
261 1.3 oster pda = pda->next;
262 1.3 oster }
263 1.3 oster }
264 1.3 oster }
265 1.3 oster RF_ASSERT(nodeNum == nRodNodes);
266 1.3 oster
267 1.3 oster /* initialize the wnd nodes */
268 1.3 oster pda = asmap->physInfo;
269 1.3 oster for (i = 0; i < nWndNodes; i++) {
270 1.14 oster rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE,
271 1.14 oster rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
272 1.14 oster rf_GenericWakeupFunc, 1, 1, 4, 0,
273 1.14 oster dag_h, "Wnd", allocList);
274 1.3 oster RF_ASSERT(pda != NULL);
275 1.3 oster wndNodes[i].params[0].p = pda;
276 1.3 oster wndNodes[i].params[1].p = pda->bufPtr;
277 1.3 oster wndNodes[i].params[2].v = parityStripeID;
278 1.3 oster wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
279 1.3 oster pda = pda->next;
280 1.3 oster }
281 1.3 oster
282 1.3 oster /* initialize the redundancy node */
283 1.3 oster if (nRodNodes > 0) {
284 1.14 oster rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc,
285 1.14 oster rf_NullNodeUndoFunc, NULL, 1,
286 1.14 oster nRodNodes, 2 * (nWndNodes + nRodNodes) + 1,
287 1.14 oster nfaults, dag_h, "Xr ", allocList);
288 1.3 oster } else {
289 1.14 oster rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc,
290 1.14 oster rf_NullNodeUndoFunc, NULL, 1,
291 1.14 oster 1, 2 * (nWndNodes + nRodNodes) + 1,
292 1.14 oster nfaults, dag_h, "Xr ", allocList);
293 1.3 oster }
294 1.3 oster xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
295 1.3 oster for (i = 0; i < nWndNodes; i++) {
296 1.14 oster /* pda */
297 1.14 oster xorNode->params[2 * i + 0] = wndNodes[i].params[0];
298 1.14 oster /* buf ptr */
299 1.14 oster xorNode->params[2 * i + 1] = wndNodes[i].params[1];
300 1.3 oster }
301 1.3 oster for (i = 0; i < nRodNodes; i++) {
302 1.14 oster /* pda */
303 1.14 oster xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];
304 1.14 oster /* buf ptr */
305 1.14 oster xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];
306 1.3 oster }
307 1.3 oster /* xor node needs to get at RAID information */
308 1.3 oster xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
309 1.3 oster
310 1.3 oster /*
311 1.14 oster * Look for an Rod node that reads a complete SU. If none,
312 1.14 oster * alloc a buffer to receive the parity info. Note that we
313 1.14 oster * can't use a new data buffer because it will not have gotten
314 1.14 oster * written when the xor occurs. */
315 1.3 oster if (allowBufferRecycle) {
316 1.3 oster for (i = 0; i < nRodNodes; i++) {
317 1.3 oster if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
318 1.3 oster break;
319 1.3 oster }
320 1.3 oster }
321 1.3 oster if ((!allowBufferRecycle) || (i == nRodNodes)) {
322 1.12 oster RF_MallocAndAdd(xorNode->results[0],
323 1.12 oster rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
324 1.12 oster (void *), allocList);
325 1.3 oster } else {
326 1.3 oster xorNode->results[0] = rodNodes[i].params[1].p;
327 1.3 oster }
328 1.3 oster
329 1.3 oster /* initialize the Wnp node */
330 1.14 oster rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc,
331 1.14 oster rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
332 1.14 oster dag_h, "Wnp", allocList);
333 1.3 oster wnpNode->params[0].p = asmap->parityInfo;
334 1.3 oster wnpNode->params[1].p = xorNode->results[0];
335 1.3 oster wnpNode->params[2].v = parityStripeID;
336 1.3 oster wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
337 1.3 oster /* parityInfo must describe entire parity unit */
338 1.3 oster RF_ASSERT(asmap->parityInfo->next == NULL);
339 1.3 oster
340 1.3 oster if (nfaults == 2) {
341 1.3 oster /*
342 1.3 oster * We never try to recycle a buffer for the Q calcuation
343 1.3 oster * in addition to the parity. This would cause two buffers
344 1.3 oster * to get smashed during the P and Q calculation, guaranteeing
345 1.3 oster * one would be wrong.
346 1.3 oster */
347 1.12 oster RF_MallocAndAdd(xorNode->results[1],
348 1.12 oster rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
349 1.12 oster (void *), allocList);
350 1.14 oster rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc,
351 1.14 oster rf_DiskWriteUndoFunc, rf_GenericWakeupFunc,
352 1.14 oster 1, 1, 4, 0, dag_h, "Wnq", allocList);
353 1.3 oster wnqNode->params[0].p = asmap->qInfo;
354 1.3 oster wnqNode->params[1].p = xorNode->results[1];
355 1.3 oster wnqNode->params[2].v = parityStripeID;
356 1.3 oster wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
357 1.3 oster /* parityInfo must describe entire parity unit */
358 1.3 oster RF_ASSERT(asmap->parityInfo->next == NULL);
359 1.3 oster }
360 1.3 oster /*
361 1.3 oster * Connect nodes to form graph.
362 1.3 oster */
363 1.3 oster
364 1.3 oster /* connect dag header to block node */
365 1.3 oster RF_ASSERT(blockNode->numAntecedents == 0);
366 1.3 oster dag_h->succedents[0] = blockNode;
367 1.3 oster
368 1.3 oster if (nRodNodes > 0) {
369 1.3 oster /* connect the block node to the Rod nodes */
370 1.3 oster RF_ASSERT(blockNode->numSuccedents == nRodNodes);
371 1.3 oster RF_ASSERT(xorNode->numAntecedents == nRodNodes);
372 1.3 oster for (i = 0; i < nRodNodes; i++) {
373 1.3 oster RF_ASSERT(rodNodes[i].numAntecedents == 1);
374 1.3 oster blockNode->succedents[i] = &rodNodes[i];
375 1.3 oster rodNodes[i].antecedents[0] = blockNode;
376 1.3 oster rodNodes[i].antType[0] = rf_control;
377 1.3 oster
378 1.3 oster /* connect the Rod nodes to the Xor node */
379 1.3 oster RF_ASSERT(rodNodes[i].numSuccedents == 1);
380 1.3 oster rodNodes[i].succedents[0] = xorNode;
381 1.3 oster xorNode->antecedents[i] = &rodNodes[i];
382 1.3 oster xorNode->antType[i] = rf_trueData;
383 1.3 oster }
384 1.3 oster } else {
385 1.3 oster /* connect the block node to the Xor node */
386 1.3 oster RF_ASSERT(blockNode->numSuccedents == 1);
387 1.3 oster RF_ASSERT(xorNode->numAntecedents == 1);
388 1.3 oster blockNode->succedents[0] = xorNode;
389 1.3 oster xorNode->antecedents[0] = blockNode;
390 1.3 oster xorNode->antType[0] = rf_control;
391 1.3 oster }
392 1.3 oster
393 1.3 oster /* connect the xor node to the commit node */
394 1.3 oster RF_ASSERT(xorNode->numSuccedents == 1);
395 1.3 oster RF_ASSERT(commitNode->numAntecedents == 1);
396 1.3 oster xorNode->succedents[0] = commitNode;
397 1.3 oster commitNode->antecedents[0] = xorNode;
398 1.3 oster commitNode->antType[0] = rf_control;
399 1.3 oster
400 1.3 oster /* connect the commit node to the write nodes */
401 1.3 oster RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
402 1.3 oster for (i = 0; i < nWndNodes; i++) {
403 1.3 oster RF_ASSERT(wndNodes->numAntecedents == 1);
404 1.3 oster commitNode->succedents[i] = &wndNodes[i];
405 1.3 oster wndNodes[i].antecedents[0] = commitNode;
406 1.3 oster wndNodes[i].antType[0] = rf_control;
407 1.3 oster }
408 1.3 oster RF_ASSERT(wnpNode->numAntecedents == 1);
409 1.3 oster commitNode->succedents[nWndNodes] = wnpNode;
410 1.3 oster wnpNode->antecedents[0] = commitNode;
411 1.3 oster wnpNode->antType[0] = rf_trueData;
412 1.3 oster if (nfaults == 2) {
413 1.3 oster RF_ASSERT(wnqNode->numAntecedents == 1);
414 1.3 oster commitNode->succedents[nWndNodes + 1] = wnqNode;
415 1.3 oster wnqNode->antecedents[0] = commitNode;
416 1.3 oster wnqNode->antType[0] = rf_trueData;
417 1.3 oster }
418 1.3 oster /* connect the write nodes to the term node */
419 1.3 oster RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
420 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
421 1.3 oster for (i = 0; i < nWndNodes; i++) {
422 1.3 oster RF_ASSERT(wndNodes->numSuccedents == 1);
423 1.3 oster wndNodes[i].succedents[0] = termNode;
424 1.3 oster termNode->antecedents[i] = &wndNodes[i];
425 1.3 oster termNode->antType[i] = rf_control;
426 1.3 oster }
427 1.3 oster RF_ASSERT(wnpNode->numSuccedents == 1);
428 1.3 oster wnpNode->succedents[0] = termNode;
429 1.3 oster termNode->antecedents[nWndNodes] = wnpNode;
430 1.3 oster termNode->antType[nWndNodes] = rf_control;
431 1.3 oster if (nfaults == 2) {
432 1.3 oster RF_ASSERT(wnqNode->numSuccedents == 1);
433 1.3 oster wnqNode->succedents[0] = termNode;
434 1.3 oster termNode->antecedents[nWndNodes + 1] = wnqNode;
435 1.3 oster termNode->antType[nWndNodes + 1] = rf_control;
436 1.3 oster }
437 1.1 oster }
438 1.1 oster /******************************************************************************
439 1.1 oster *
440 1.1 oster * creates a DAG to perform a small-write operation (either raid 5 or pq),
441 1.1 oster * which is as follows:
442 1.1 oster *
443 1.1 oster * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
444 1.1 oster * \- Rod X / \----> Wnd [Und]-/
445 1.1 oster * [\- Rod X / \---> Wnd [Und]-/]
446 1.1 oster * [\- Roq -> Q / \--> Wnq [Unq]-/]
447 1.1 oster *
448 1.1 oster * Rop = read old parity
449 1.1 oster * Rod = read old data
450 1.1 oster * Roq = read old "q"
451 1.1 oster * Cmt = commit node
452 1.1 oster * Und = unlock data disk
453 1.1 oster * Unp = unlock parity disk
454 1.1 oster * Unq = unlock q disk
455 1.1 oster * Wnp = write new parity
456 1.1 oster * Wnd = write new data
457 1.1 oster * Wnq = write new "q"
458 1.1 oster * [ ] denotes optional segments in the graph
459 1.1 oster *
460 1.1 oster * Parameters: raidPtr - description of the physical array
461 1.1 oster * asmap - logical & physical addresses for this access
462 1.1 oster * bp - buffer ptr (holds write data)
463 1.3 oster * flags - general flags (e.g. disk locking)
464 1.1 oster * allocList - list of memory allocated in DAG creation
465 1.1 oster * pfuncs - list of parity generating functions
466 1.1 oster * qfuncs - list of q generating functions
467 1.1 oster *
468 1.1 oster * A null qfuncs indicates single fault tolerant
469 1.1 oster *****************************************************************************/
470 1.1 oster
471 1.3 oster void
472 1.13 oster rf_CommonCreateSmallWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
473 1.13 oster RF_DagHeader_t *dag_h, void *bp,
474 1.13 oster RF_RaidAccessFlags_t flags,
475 1.13 oster RF_AllocListElem_t *allocList,
476 1.13 oster const RF_RedFuncs_t *pfuncs,
477 1.13 oster const RF_RedFuncs_t *qfuncs)
478 1.1 oster {
479 1.3 oster RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
480 1.3 oster RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
481 1.3 oster RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes;
482 1.3 oster RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
483 1.3 oster int i, j, nNodes, totalNumNodes, lu_flag;
484 1.3 oster RF_ReconUnitNum_t which_ru;
485 1.3 oster int (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
486 1.3 oster int (*qfunc) (RF_DagNode_t *);
487 1.3 oster int numDataNodes, numParityNodes;
488 1.3 oster RF_StripeNum_t parityStripeID;
489 1.3 oster RF_PhysDiskAddr_t *pda;
490 1.3 oster char *name, *qname;
491 1.3 oster long nfaults;
492 1.3 oster
493 1.3 oster nfaults = qfuncs ? 2 : 1;
494 1.3 oster lu_flag = (rf_enableAtomicRMW) ? 1 : 0; /* lock/unlock flag */
495 1.3 oster
496 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
497 1.3 oster asmap->raidAddress, &which_ru);
498 1.3 oster pda = asmap->physInfo;
499 1.3 oster numDataNodes = asmap->numStripeUnitsAccessed;
500 1.3 oster numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
501 1.3 oster
502 1.3 oster if (rf_dagDebug) {
503 1.3 oster printf("[Creating small-write DAG]\n");
504 1.3 oster }
505 1.3 oster RF_ASSERT(numDataNodes > 0);
506 1.3 oster dag_h->creator = "SmallWriteDAG";
507 1.3 oster
508 1.3 oster dag_h->numCommitNodes = 1;
509 1.3 oster dag_h->numCommits = 0;
510 1.3 oster dag_h->numSuccedents = 1;
511 1.3 oster
512 1.3 oster /*
513 1.3 oster * DAG creation occurs in four steps:
514 1.3 oster * 1. count the number of nodes in the DAG
515 1.3 oster * 2. create the nodes
516 1.3 oster * 3. initialize the nodes
517 1.3 oster * 4. connect the nodes
518 1.3 oster */
519 1.3 oster
520 1.3 oster /*
521 1.3 oster * Step 1. compute number of nodes in the graph
522 1.3 oster */
523 1.3 oster
524 1.14 oster /* number of nodes: a read and write for each data unit a
525 1.14 oster * redundancy computation node for each parity node (nfaults *
526 1.14 oster * nparity) a read and write for each parity unit a block and
527 1.14 oster * commit node (2) a terminate node if atomic RMW an unlock
528 1.14 oster * node for each data unit, redundancy unit */
529 1.3 oster totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
530 1.3 oster + (nfaults * 2 * numParityNodes) + 3;
531 1.3 oster if (lu_flag) {
532 1.3 oster totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
533 1.3 oster }
534 1.3 oster /*
535 1.3 oster * Step 2. create the nodes
536 1.3 oster */
537 1.12 oster RF_MallocAndAdd(nodes, totalNumNodes * sizeof(RF_DagNode_t),
538 1.12 oster (RF_DagNode_t *), allocList);
539 1.3 oster i = 0;
540 1.3 oster blockNode = &nodes[i];
541 1.3 oster i += 1;
542 1.3 oster commitNode = &nodes[i];
543 1.3 oster i += 1;
544 1.3 oster readDataNodes = &nodes[i];
545 1.3 oster i += numDataNodes;
546 1.3 oster readParityNodes = &nodes[i];
547 1.3 oster i += numParityNodes;
548 1.3 oster writeDataNodes = &nodes[i];
549 1.3 oster i += numDataNodes;
550 1.3 oster writeParityNodes = &nodes[i];
551 1.3 oster i += numParityNodes;
552 1.3 oster xorNodes = &nodes[i];
553 1.3 oster i += numParityNodes;
554 1.3 oster termNode = &nodes[i];
555 1.3 oster i += 1;
556 1.3 oster if (lu_flag) {
557 1.3 oster unlockDataNodes = &nodes[i];
558 1.3 oster i += numDataNodes;
559 1.3 oster unlockParityNodes = &nodes[i];
560 1.3 oster i += numParityNodes;
561 1.3 oster } else {
562 1.3 oster unlockDataNodes = unlockParityNodes = NULL;
563 1.3 oster }
564 1.3 oster if (nfaults == 2) {
565 1.3 oster readQNodes = &nodes[i];
566 1.3 oster i += numParityNodes;
567 1.3 oster writeQNodes = &nodes[i];
568 1.3 oster i += numParityNodes;
569 1.3 oster qNodes = &nodes[i];
570 1.3 oster i += numParityNodes;
571 1.3 oster if (lu_flag) {
572 1.3 oster unlockQNodes = &nodes[i];
573 1.3 oster i += numParityNodes;
574 1.3 oster } else {
575 1.3 oster unlockQNodes = NULL;
576 1.3 oster }
577 1.3 oster } else {
578 1.3 oster readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
579 1.3 oster }
580 1.3 oster RF_ASSERT(i == totalNumNodes);
581 1.3 oster
582 1.3 oster /*
583 1.3 oster * Step 3. initialize the nodes
584 1.3 oster */
585 1.3 oster /* initialize block node (Nil) */
586 1.3 oster nNodes = numDataNodes + (nfaults * numParityNodes);
587 1.14 oster rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
588 1.14 oster rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0,
589 1.14 oster dag_h, "Nil", allocList);
590 1.3 oster
591 1.3 oster /* initialize commit node (Cmt) */
592 1.14 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
593 1.14 oster rf_NullNodeUndoFunc, NULL, nNodes,
594 1.14 oster (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
595 1.3 oster
596 1.3 oster /* initialize terminate node (Trm) */
597 1.14 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
598 1.14 oster rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0,
599 1.14 oster dag_h, "Trm", allocList);
600 1.3 oster
601 1.3 oster /* initialize nodes which read old data (Rod) */
602 1.3 oster for (i = 0; i < numDataNodes; i++) {
603 1.14 oster rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE,
604 1.14 oster rf_DiskReadFunc, rf_DiskReadUndoFunc,
605 1.14 oster rf_GenericWakeupFunc, (nfaults * numParityNodes),
606 1.14 oster 1, 4, 0, dag_h, "Rod", allocList);
607 1.3 oster RF_ASSERT(pda != NULL);
608 1.3 oster /* physical disk addr desc */
609 1.3 oster readDataNodes[i].params[0].p = pda;
610 1.3 oster /* buffer to hold old data */
611 1.3 oster readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
612 1.3 oster dag_h, pda, allocList);
613 1.3 oster readDataNodes[i].params[2].v = parityStripeID;
614 1.3 oster readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
615 1.3 oster lu_flag, 0, which_ru);
616 1.3 oster pda = pda->next;
617 1.3 oster for (j = 0; j < readDataNodes[i].numSuccedents; j++) {
618 1.3 oster readDataNodes[i].propList[j] = NULL;
619 1.3 oster }
620 1.3 oster }
621 1.3 oster
622 1.3 oster /* initialize nodes which read old parity (Rop) */
623 1.3 oster pda = asmap->parityInfo;
624 1.3 oster i = 0;
625 1.3 oster for (i = 0; i < numParityNodes; i++) {
626 1.3 oster RF_ASSERT(pda != NULL);
627 1.14 oster rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE,
628 1.14 oster rf_DiskReadFunc, rf_DiskReadUndoFunc,
629 1.14 oster rf_GenericWakeupFunc, numParityNodes, 1, 4, 0,
630 1.14 oster dag_h, "Rop", allocList);
631 1.3 oster readParityNodes[i].params[0].p = pda;
632 1.3 oster /* buffer to hold old parity */
633 1.3 oster readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
634 1.3 oster dag_h, pda, allocList);
635 1.3 oster readParityNodes[i].params[2].v = parityStripeID;
636 1.3 oster readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
637 1.3 oster lu_flag, 0, which_ru);
638 1.3 oster pda = pda->next;
639 1.3 oster for (j = 0; j < readParityNodes[i].numSuccedents; j++) {
640 1.3 oster readParityNodes[i].propList[0] = NULL;
641 1.3 oster }
642 1.3 oster }
643 1.3 oster
644 1.3 oster /* initialize nodes which read old Q (Roq) */
645 1.3 oster if (nfaults == 2) {
646 1.3 oster pda = asmap->qInfo;
647 1.3 oster for (i = 0; i < numParityNodes; i++) {
648 1.3 oster RF_ASSERT(pda != NULL);
649 1.14 oster rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE,
650 1.14 oster rf_DiskReadFunc, rf_DiskReadUndoFunc,
651 1.14 oster rf_GenericWakeupFunc, numParityNodes,
652 1.14 oster 1, 4, 0, dag_h, "Roq", allocList);
653 1.3 oster readQNodes[i].params[0].p = pda;
654 1.3 oster /* buffer to hold old Q */
655 1.14 oster readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
656 1.14 oster dag_h, pda,
657 1.14 oster allocList);
658 1.3 oster readQNodes[i].params[2].v = parityStripeID;
659 1.3 oster readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
660 1.3 oster lu_flag, 0, which_ru);
661 1.3 oster pda = pda->next;
662 1.3 oster for (j = 0; j < readQNodes[i].numSuccedents; j++) {
663 1.3 oster readQNodes[i].propList[0] = NULL;
664 1.3 oster }
665 1.3 oster }
666 1.3 oster }
667 1.3 oster /* initialize nodes which write new data (Wnd) */
668 1.3 oster pda = asmap->physInfo;
669 1.3 oster for (i = 0; i < numDataNodes; i++) {
670 1.3 oster RF_ASSERT(pda != NULL);
671 1.14 oster rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE,
672 1.14 oster rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
673 1.14 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
674 1.14 oster "Wnd", allocList);
675 1.3 oster /* physical disk addr desc */
676 1.3 oster writeDataNodes[i].params[0].p = pda;
677 1.3 oster /* buffer holding new data to be written */
678 1.3 oster writeDataNodes[i].params[1].p = pda->bufPtr;
679 1.3 oster writeDataNodes[i].params[2].v = parityStripeID;
680 1.3 oster writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
681 1.3 oster 0, 0, which_ru);
682 1.3 oster if (lu_flag) {
683 1.3 oster /* initialize node to unlock the disk queue */
684 1.14 oster rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE,
685 1.14 oster rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc,
686 1.14 oster rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
687 1.14 oster "Und", allocList);
688 1.3 oster /* physical disk addr desc */
689 1.3 oster unlockDataNodes[i].params[0].p = pda;
690 1.3 oster unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
691 1.3 oster 0, lu_flag, which_ru);
692 1.3 oster }
693 1.3 oster pda = pda->next;
694 1.3 oster }
695 1.3 oster
696 1.3 oster /*
697 1.3 oster * Initialize nodes which compute new parity and Q.
698 1.3 oster */
699 1.3 oster /*
700 1.3 oster * We use the simple XOR func in the double-XOR case, and when
701 1.14 oster * we're accessing only a portion of one stripe unit. The
702 1.14 oster * distinction between the two is that the regular XOR func
703 1.14 oster * assumes that the targbuf is a full SU in size, and examines
704 1.14 oster * the pda associated with the buffer to decide where within
705 1.14 oster * the buffer to XOR the data, whereas the simple XOR func
706 1.14 oster * just XORs the data into the start of the buffer. */
707 1.3 oster if ((numParityNodes == 2) || ((numDataNodes == 1)
708 1.14 oster && (asmap->totalSectorsAccessed <
709 1.14 oster raidPtr->Layout.sectorsPerStripeUnit))) {
710 1.3 oster func = pfuncs->simple;
711 1.3 oster undoFunc = rf_NullNodeUndoFunc;
712 1.3 oster name = pfuncs->SimpleName;
713 1.3 oster if (qfuncs) {
714 1.3 oster qfunc = qfuncs->simple;
715 1.3 oster qname = qfuncs->SimpleName;
716 1.3 oster } else {
717 1.3 oster qfunc = NULL;
718 1.3 oster qname = NULL;
719 1.3 oster }
720 1.3 oster } else {
721 1.3 oster func = pfuncs->regular;
722 1.3 oster undoFunc = rf_NullNodeUndoFunc;
723 1.3 oster name = pfuncs->RegularName;
724 1.3 oster if (qfuncs) {
725 1.3 oster qfunc = qfuncs->regular;
726 1.3 oster qname = qfuncs->RegularName;
727 1.3 oster } else {
728 1.3 oster qfunc = NULL;
729 1.3 oster qname = NULL;
730 1.3 oster }
731 1.3 oster }
732 1.3 oster /*
733 1.3 oster * Initialize the xor nodes: params are {pda,buf}
734 1.3 oster * from {Rod,Wnd,Rop} nodes, and raidPtr
735 1.3 oster */
736 1.3 oster if (numParityNodes == 2) {
737 1.3 oster /* double-xor case */
738 1.3 oster for (i = 0; i < numParityNodes; i++) {
739 1.3 oster /* note: no wakeup func for xor */
740 1.14 oster rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func,
741 1.14 oster undoFunc, NULL, 1,
742 1.14 oster (numDataNodes + numParityNodes),
743 1.14 oster 7, 1, dag_h, name, allocList);
744 1.3 oster xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
745 1.3 oster xorNodes[i].params[0] = readDataNodes[i].params[0];
746 1.3 oster xorNodes[i].params[1] = readDataNodes[i].params[1];
747 1.3 oster xorNodes[i].params[2] = readParityNodes[i].params[0];
748 1.3 oster xorNodes[i].params[3] = readParityNodes[i].params[1];
749 1.3 oster xorNodes[i].params[4] = writeDataNodes[i].params[0];
750 1.3 oster xorNodes[i].params[5] = writeDataNodes[i].params[1];
751 1.3 oster xorNodes[i].params[6].p = raidPtr;
752 1.3 oster /* use old parity buf as target buf */
753 1.3 oster xorNodes[i].results[0] = readParityNodes[i].params[1].p;
754 1.3 oster if (nfaults == 2) {
755 1.3 oster /* note: no wakeup func for qor */
756 1.14 oster rf_InitNode(&qNodes[i], rf_wait, RF_FALSE,
757 1.14 oster qfunc, undoFunc, NULL, 1,
758 1.14 oster (numDataNodes + numParityNodes),
759 1.14 oster 7, 1, dag_h, qname, allocList);
760 1.3 oster qNodes[i].params[0] = readDataNodes[i].params[0];
761 1.3 oster qNodes[i].params[1] = readDataNodes[i].params[1];
762 1.3 oster qNodes[i].params[2] = readQNodes[i].params[0];
763 1.3 oster qNodes[i].params[3] = readQNodes[i].params[1];
764 1.3 oster qNodes[i].params[4] = writeDataNodes[i].params[0];
765 1.3 oster qNodes[i].params[5] = writeDataNodes[i].params[1];
766 1.3 oster qNodes[i].params[6].p = raidPtr;
767 1.3 oster /* use old Q buf as target buf */
768 1.3 oster qNodes[i].results[0] = readQNodes[i].params[1].p;
769 1.3 oster }
770 1.3 oster }
771 1.3 oster } else {
772 1.3 oster /* there is only one xor node in this case */
773 1.14 oster rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func,
774 1.14 oster undoFunc, NULL, 1, (numDataNodes + numParityNodes),
775 1.14 oster (2 * (numDataNodes + numDataNodes + 1) + 1), 1,
776 1.14 oster dag_h, name, allocList);
777 1.3 oster xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
778 1.3 oster for (i = 0; i < numDataNodes + 1; i++) {
779 1.3 oster /* set up params related to Rod and Rop nodes */
780 1.3 oster xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
781 1.3 oster xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */
782 1.3 oster }
783 1.3 oster for (i = 0; i < numDataNodes; i++) {
784 1.3 oster /* set up params related to Wnd and Wnp nodes */
785 1.3 oster xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = /* pda */
786 1.3 oster writeDataNodes[i].params[0];
787 1.3 oster xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */
788 1.3 oster writeDataNodes[i].params[1];
789 1.3 oster }
790 1.3 oster /* xor node needs to get at RAID information */
791 1.3 oster xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
792 1.3 oster xorNodes[0].results[0] = readParityNodes[0].params[1].p;
793 1.3 oster if (nfaults == 2) {
794 1.14 oster rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc,
795 1.14 oster undoFunc, NULL, 1,
796 1.14 oster (numDataNodes + numParityNodes),
797 1.14 oster (2 * (numDataNodes + numDataNodes + 1) + 1), 1,
798 1.14 oster dag_h, qname, allocList);
799 1.3 oster for (i = 0; i < numDataNodes; i++) {
800 1.3 oster /* set up params related to Rod */
801 1.3 oster qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0]; /* pda */
802 1.3 oster qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1]; /* buffer ptr */
803 1.3 oster }
804 1.3 oster /* and read old q */
805 1.3 oster qNodes[0].params[2 * numDataNodes + 0] = /* pda */
806 1.3 oster readQNodes[0].params[0];
807 1.3 oster qNodes[0].params[2 * numDataNodes + 1] = /* buffer ptr */
808 1.3 oster readQNodes[0].params[1];
809 1.3 oster for (i = 0; i < numDataNodes; i++) {
810 1.3 oster /* set up params related to Wnd nodes */
811 1.3 oster qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = /* pda */
812 1.3 oster writeDataNodes[i].params[0];
813 1.3 oster qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = /* buffer ptr */
814 1.3 oster writeDataNodes[i].params[1];
815 1.3 oster }
816 1.3 oster /* xor node needs to get at RAID information */
817 1.3 oster qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
818 1.3 oster qNodes[0].results[0] = readQNodes[0].params[1].p;
819 1.3 oster }
820 1.3 oster }
821 1.3 oster
822 1.3 oster /* initialize nodes which write new parity (Wnp) */
823 1.3 oster pda = asmap->parityInfo;
824 1.3 oster for (i = 0; i < numParityNodes; i++) {
825 1.14 oster rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE,
826 1.14 oster rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
827 1.14 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
828 1.14 oster "Wnp", allocList);
829 1.3 oster RF_ASSERT(pda != NULL);
830 1.3 oster writeParityNodes[i].params[0].p = pda; /* param 1 (bufPtr)
831 1.3 oster * filled in by xor node */
832 1.3 oster writeParityNodes[i].params[1].p = xorNodes[i].results[0]; /* buffer pointer for
833 1.3 oster * parity write
834 1.3 oster * operation */
835 1.3 oster writeParityNodes[i].params[2].v = parityStripeID;
836 1.3 oster writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
837 1.3 oster 0, 0, which_ru);
838 1.3 oster if (lu_flag) {
839 1.3 oster /* initialize node to unlock the disk queue */
840 1.14 oster rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE,
841 1.14 oster rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc,
842 1.14 oster rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
843 1.14 oster "Unp", allocList);
844 1.3 oster unlockParityNodes[i].params[0].p = pda; /* physical disk addr
845 1.3 oster * desc */
846 1.3 oster unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
847 1.3 oster 0, lu_flag, which_ru);
848 1.3 oster }
849 1.3 oster pda = pda->next;
850 1.3 oster }
851 1.3 oster
852 1.3 oster /* initialize nodes which write new Q (Wnq) */
853 1.3 oster if (nfaults == 2) {
854 1.3 oster pda = asmap->qInfo;
855 1.3 oster for (i = 0; i < numParityNodes; i++) {
856 1.14 oster rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE,
857 1.14 oster rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
858 1.14 oster rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
859 1.14 oster "Wnq", allocList);
860 1.3 oster RF_ASSERT(pda != NULL);
861 1.3 oster writeQNodes[i].params[0].p = pda; /* param 1 (bufPtr)
862 1.3 oster * filled in by xor node */
863 1.3 oster writeQNodes[i].params[1].p = qNodes[i].results[0]; /* buffer pointer for
864 1.3 oster * parity write
865 1.3 oster * operation */
866 1.3 oster writeQNodes[i].params[2].v = parityStripeID;
867 1.3 oster writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
868 1.3 oster 0, 0, which_ru);
869 1.3 oster if (lu_flag) {
870 1.3 oster /* initialize node to unlock the disk queue */
871 1.14 oster rf_InitNode(&unlockQNodes[i], rf_wait,
872 1.14 oster RF_FALSE, rf_DiskUnlockFunc,
873 1.14 oster rf_DiskUnlockUndoFunc,
874 1.14 oster rf_GenericWakeupFunc, 1, 1, 2, 0,
875 1.14 oster dag_h, "Unq", allocList);
876 1.3 oster unlockQNodes[i].params[0].p = pda; /* physical disk addr
877 1.3 oster * desc */
878 1.3 oster unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
879 1.3 oster 0, lu_flag, which_ru);
880 1.3 oster }
881 1.3 oster pda = pda->next;
882 1.3 oster }
883 1.3 oster }
884 1.3 oster /*
885 1.3 oster * Step 4. connect the nodes.
886 1.3 oster */
887 1.3 oster
888 1.3 oster /* connect header to block node */
889 1.3 oster dag_h->succedents[0] = blockNode;
890 1.3 oster
891 1.3 oster /* connect block node to read old data nodes */
892 1.3 oster RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
893 1.3 oster for (i = 0; i < numDataNodes; i++) {
894 1.3 oster blockNode->succedents[i] = &readDataNodes[i];
895 1.3 oster RF_ASSERT(readDataNodes[i].numAntecedents == 1);
896 1.3 oster readDataNodes[i].antecedents[0] = blockNode;
897 1.3 oster readDataNodes[i].antType[0] = rf_control;
898 1.3 oster }
899 1.3 oster
900 1.3 oster /* connect block node to read old parity nodes */
901 1.3 oster for (i = 0; i < numParityNodes; i++) {
902 1.3 oster blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
903 1.3 oster RF_ASSERT(readParityNodes[i].numAntecedents == 1);
904 1.3 oster readParityNodes[i].antecedents[0] = blockNode;
905 1.3 oster readParityNodes[i].antType[0] = rf_control;
906 1.3 oster }
907 1.3 oster
908 1.3 oster /* connect block node to read old Q nodes */
909 1.3 oster if (nfaults == 2) {
910 1.3 oster for (i = 0; i < numParityNodes; i++) {
911 1.3 oster blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
912 1.3 oster RF_ASSERT(readQNodes[i].numAntecedents == 1);
913 1.3 oster readQNodes[i].antecedents[0] = blockNode;
914 1.3 oster readQNodes[i].antType[0] = rf_control;
915 1.3 oster }
916 1.3 oster }
917 1.3 oster /* connect read old data nodes to xor nodes */
918 1.3 oster for (i = 0; i < numDataNodes; i++) {
919 1.3 oster RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes));
920 1.3 oster for (j = 0; j < numParityNodes; j++) {
921 1.3 oster RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
922 1.3 oster readDataNodes[i].succedents[j] = &xorNodes[j];
923 1.3 oster xorNodes[j].antecedents[i] = &readDataNodes[i];
924 1.3 oster xorNodes[j].antType[i] = rf_trueData;
925 1.3 oster }
926 1.3 oster }
927 1.3 oster
928 1.3 oster /* connect read old data nodes to q nodes */
929 1.3 oster if (nfaults == 2) {
930 1.3 oster for (i = 0; i < numDataNodes; i++) {
931 1.3 oster for (j = 0; j < numParityNodes; j++) {
932 1.3 oster RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
933 1.3 oster readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j];
934 1.3 oster qNodes[j].antecedents[i] = &readDataNodes[i];
935 1.3 oster qNodes[j].antType[i] = rf_trueData;
936 1.3 oster }
937 1.3 oster }
938 1.3 oster }
939 1.3 oster /* connect read old parity nodes to xor nodes */
940 1.3 oster for (i = 0; i < numParityNodes; i++) {
941 1.3 oster RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
942 1.3 oster for (j = 0; j < numParityNodes; j++) {
943 1.3 oster readParityNodes[i].succedents[j] = &xorNodes[j];
944 1.3 oster xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
945 1.3 oster xorNodes[j].antType[numDataNodes + i] = rf_trueData;
946 1.3 oster }
947 1.3 oster }
948 1.3 oster
949 1.3 oster /* connect read old q nodes to q nodes */
950 1.3 oster if (nfaults == 2) {
951 1.3 oster for (i = 0; i < numParityNodes; i++) {
952 1.3 oster RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
953 1.3 oster for (j = 0; j < numParityNodes; j++) {
954 1.3 oster readQNodes[i].succedents[j] = &qNodes[j];
955 1.3 oster qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
956 1.3 oster qNodes[j].antType[numDataNodes + i] = rf_trueData;
957 1.3 oster }
958 1.3 oster }
959 1.3 oster }
960 1.3 oster /* connect xor nodes to commit node */
961 1.3 oster RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
962 1.3 oster for (i = 0; i < numParityNodes; i++) {
963 1.3 oster RF_ASSERT(xorNodes[i].numSuccedents == 1);
964 1.3 oster xorNodes[i].succedents[0] = commitNode;
965 1.3 oster commitNode->antecedents[i] = &xorNodes[i];
966 1.3 oster commitNode->antType[i] = rf_control;
967 1.3 oster }
968 1.3 oster
969 1.3 oster /* connect q nodes to commit node */
970 1.3 oster if (nfaults == 2) {
971 1.3 oster for (i = 0; i < numParityNodes; i++) {
972 1.3 oster RF_ASSERT(qNodes[i].numSuccedents == 1);
973 1.3 oster qNodes[i].succedents[0] = commitNode;
974 1.3 oster commitNode->antecedents[i + numParityNodes] = &qNodes[i];
975 1.3 oster commitNode->antType[i + numParityNodes] = rf_control;
976 1.3 oster }
977 1.3 oster }
978 1.3 oster /* connect commit node to write nodes */
979 1.3 oster RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
980 1.3 oster for (i = 0; i < numDataNodes; i++) {
981 1.3 oster RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
982 1.3 oster commitNode->succedents[i] = &writeDataNodes[i];
983 1.3 oster writeDataNodes[i].antecedents[0] = commitNode;
984 1.3 oster writeDataNodes[i].antType[0] = rf_trueData;
985 1.3 oster }
986 1.3 oster for (i = 0; i < numParityNodes; i++) {
987 1.3 oster RF_ASSERT(writeParityNodes[i].numAntecedents == 1);
988 1.3 oster commitNode->succedents[i + numDataNodes] = &writeParityNodes[i];
989 1.3 oster writeParityNodes[i].antecedents[0] = commitNode;
990 1.3 oster writeParityNodes[i].antType[0] = rf_trueData;
991 1.3 oster }
992 1.3 oster if (nfaults == 2) {
993 1.3 oster for (i = 0; i < numParityNodes; i++) {
994 1.3 oster RF_ASSERT(writeQNodes[i].numAntecedents == 1);
995 1.3 oster commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i];
996 1.3 oster writeQNodes[i].antecedents[0] = commitNode;
997 1.3 oster writeQNodes[i].antType[0] = rf_trueData;
998 1.3 oster }
999 1.3 oster }
1000 1.3 oster RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
1001 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
1002 1.3 oster for (i = 0; i < numDataNodes; i++) {
1003 1.3 oster if (lu_flag) {
1004 1.3 oster /* connect write new data nodes to unlock nodes */
1005 1.3 oster RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
1006 1.3 oster RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
1007 1.3 oster writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
1008 1.3 oster unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
1009 1.3 oster unlockDataNodes[i].antType[0] = rf_control;
1010 1.3 oster
1011 1.3 oster /* connect unlock nodes to term node */
1012 1.3 oster RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
1013 1.3 oster unlockDataNodes[i].succedents[0] = termNode;
1014 1.3 oster termNode->antecedents[i] = &unlockDataNodes[i];
1015 1.3 oster termNode->antType[i] = rf_control;
1016 1.3 oster } else {
1017 1.3 oster /* connect write new data nodes to term node */
1018 1.3 oster RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
1019 1.3 oster RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
1020 1.3 oster writeDataNodes[i].succedents[0] = termNode;
1021 1.3 oster termNode->antecedents[i] = &writeDataNodes[i];
1022 1.3 oster termNode->antType[i] = rf_control;
1023 1.3 oster }
1024 1.3 oster }
1025 1.3 oster
1026 1.3 oster for (i = 0; i < numParityNodes; i++) {
1027 1.3 oster if (lu_flag) {
1028 1.3 oster /* connect write new parity nodes to unlock nodes */
1029 1.3 oster RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
1030 1.3 oster RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
1031 1.3 oster writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
1032 1.3 oster unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
1033 1.3 oster unlockParityNodes[i].antType[0] = rf_control;
1034 1.3 oster
1035 1.3 oster /* connect unlock nodes to term node */
1036 1.3 oster RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
1037 1.3 oster unlockParityNodes[i].succedents[0] = termNode;
1038 1.3 oster termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
1039 1.3 oster termNode->antType[numDataNodes + i] = rf_control;
1040 1.3 oster } else {
1041 1.3 oster RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
1042 1.3 oster writeParityNodes[i].succedents[0] = termNode;
1043 1.3 oster termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
1044 1.3 oster termNode->antType[numDataNodes + i] = rf_control;
1045 1.3 oster }
1046 1.3 oster }
1047 1.3 oster
1048 1.3 oster if (nfaults == 2) {
1049 1.3 oster for (i = 0; i < numParityNodes; i++) {
1050 1.3 oster if (lu_flag) {
1051 1.3 oster /* connect write new Q nodes to unlock nodes */
1052 1.3 oster RF_ASSERT(writeQNodes[i].numSuccedents == 1);
1053 1.3 oster RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
1054 1.3 oster writeQNodes[i].succedents[0] = &unlockQNodes[i];
1055 1.3 oster unlockQNodes[i].antecedents[0] = &writeQNodes[i];
1056 1.3 oster unlockQNodes[i].antType[0] = rf_control;
1057 1.3 oster
1058 1.3 oster /* connect unlock nodes to unblock node */
1059 1.3 oster RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
1060 1.3 oster unlockQNodes[i].succedents[0] = termNode;
1061 1.3 oster termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
1062 1.3 oster termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
1063 1.3 oster } else {
1064 1.3 oster RF_ASSERT(writeQNodes[i].numSuccedents == 1);
1065 1.3 oster writeQNodes[i].succedents[0] = termNode;
1066 1.3 oster termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
1067 1.3 oster termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
1068 1.3 oster }
1069 1.3 oster }
1070 1.3 oster }
1071 1.1 oster }
1072 1.1 oster
1073 1.1 oster
1074 1.1 oster /******************************************************************************
1075 1.1 oster * create a write graph (fault-free or degraded) for RAID level 1
1076 1.1 oster *
1077 1.1 oster * Hdr -> Commit -> Wpd -> Nil -> Trm
1078 1.1 oster * -> Wsd ->
1079 1.1 oster *
1080 1.1 oster * The "Wpd" node writes data to the primary copy in the mirror pair
1081 1.1 oster * The "Wsd" node writes data to the secondary copy in the mirror pair
1082 1.1 oster *
1083 1.1 oster * Parameters: raidPtr - description of the physical array
1084 1.1 oster * asmap - logical & physical addresses for this access
1085 1.1 oster * bp - buffer ptr (holds write data)
1086 1.3 oster * flags - general flags (e.g. disk locking)
1087 1.1 oster * allocList - list of memory allocated in DAG creation
1088 1.1 oster *****************************************************************************/
1089 1.1 oster
1090 1.3 oster void
1091 1.13 oster rf_CreateRaidOneWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1092 1.13 oster RF_DagHeader_t *dag_h, void *bp,
1093 1.13 oster RF_RaidAccessFlags_t flags,
1094 1.13 oster RF_AllocListElem_t *allocList)
1095 1.1 oster {
1096 1.3 oster RF_DagNode_t *unblockNode, *termNode, *commitNode;
1097 1.3 oster RF_DagNode_t *nodes, *wndNode, *wmirNode;
1098 1.3 oster int nWndNodes, nWmirNodes, i;
1099 1.3 oster RF_ReconUnitNum_t which_ru;
1100 1.3 oster RF_PhysDiskAddr_t *pda, *pdaP;
1101 1.3 oster RF_StripeNum_t parityStripeID;
1102 1.3 oster
1103 1.3 oster parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
1104 1.3 oster asmap->raidAddress, &which_ru);
1105 1.3 oster if (rf_dagDebug) {
1106 1.3 oster printf("[Creating RAID level 1 write DAG]\n");
1107 1.3 oster }
1108 1.3 oster dag_h->creator = "RaidOneWriteDAG";
1109 1.3 oster
1110 1.3 oster /* 2 implies access not SU aligned */
1111 1.3 oster nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
1112 1.3 oster nWndNodes = (asmap->physInfo->next) ? 2 : 1;
1113 1.3 oster
1114 1.3 oster /* alloc the Wnd nodes and the Wmir node */
1115 1.3 oster if (asmap->numDataFailed == 1)
1116 1.3 oster nWndNodes--;
1117 1.3 oster if (asmap->numParityFailed == 1)
1118 1.3 oster nWmirNodes--;
1119 1.3 oster
1120 1.3 oster /* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
1121 1.3 oster * + terminator) */
1122 1.12 oster RF_MallocAndAdd(nodes,
1123 1.12 oster (nWndNodes + nWmirNodes + 3) * sizeof(RF_DagNode_t),
1124 1.12 oster (RF_DagNode_t *), allocList);
1125 1.3 oster i = 0;
1126 1.3 oster wndNode = &nodes[i];
1127 1.3 oster i += nWndNodes;
1128 1.3 oster wmirNode = &nodes[i];
1129 1.3 oster i += nWmirNodes;
1130 1.3 oster commitNode = &nodes[i];
1131 1.3 oster i += 1;
1132 1.3 oster unblockNode = &nodes[i];
1133 1.3 oster i += 1;
1134 1.3 oster termNode = &nodes[i];
1135 1.3 oster i += 1;
1136 1.3 oster RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
1137 1.3 oster
1138 1.3 oster /* this dag can commit immediately */
1139 1.3 oster dag_h->numCommitNodes = 1;
1140 1.3 oster dag_h->numCommits = 0;
1141 1.3 oster dag_h->numSuccedents = 1;
1142 1.3 oster
1143 1.3 oster /* initialize the commit, unblock, and term nodes */
1144 1.14 oster rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
1145 1.14 oster rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes),
1146 1.14 oster 0, 0, 0, dag_h, "Cmt", allocList);
1147 1.14 oster rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
1148 1.14 oster rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes),
1149 1.14 oster 0, 0, dag_h, "Nil", allocList);
1150 1.14 oster rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
1151 1.14 oster rf_TerminateUndoFunc, NULL, 0, 1, 0, 0,
1152 1.14 oster dag_h, "Trm", allocList);
1153 1.3 oster
1154 1.3 oster /* initialize the wnd nodes */
1155 1.3 oster if (nWndNodes > 0) {
1156 1.3 oster pda = asmap->physInfo;
1157 1.3 oster for (i = 0; i < nWndNodes; i++) {
1158 1.14 oster rf_InitNode(&wndNode[i], rf_wait, RF_FALSE,
1159 1.14 oster rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
1160 1.14 oster rf_GenericWakeupFunc, 1, 1, 4, 0,
1161 1.14 oster dag_h, "Wpd", allocList);
1162 1.3 oster RF_ASSERT(pda != NULL);
1163 1.3 oster wndNode[i].params[0].p = pda;
1164 1.3 oster wndNode[i].params[1].p = pda->bufPtr;
1165 1.3 oster wndNode[i].params[2].v = parityStripeID;
1166 1.3 oster wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
1167 1.3 oster pda = pda->next;
1168 1.3 oster }
1169 1.3 oster RF_ASSERT(pda == NULL);
1170 1.3 oster }
1171 1.3 oster /* initialize the mirror nodes */
1172 1.3 oster if (nWmirNodes > 0) {
1173 1.3 oster pda = asmap->physInfo;
1174 1.3 oster pdaP = asmap->parityInfo;
1175 1.3 oster for (i = 0; i < nWmirNodes; i++) {
1176 1.14 oster rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE,
1177 1.14 oster rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
1178 1.14 oster rf_GenericWakeupFunc, 1, 1, 4, 0,
1179 1.14 oster dag_h, "Wsd", allocList);
1180 1.3 oster RF_ASSERT(pda != NULL);
1181 1.3 oster wmirNode[i].params[0].p = pdaP;
1182 1.3 oster wmirNode[i].params[1].p = pda->bufPtr;
1183 1.3 oster wmirNode[i].params[2].v = parityStripeID;
1184 1.3 oster wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
1185 1.3 oster pda = pda->next;
1186 1.3 oster pdaP = pdaP->next;
1187 1.3 oster }
1188 1.3 oster RF_ASSERT(pda == NULL);
1189 1.3 oster RF_ASSERT(pdaP == NULL);
1190 1.3 oster }
1191 1.3 oster /* link the header node to the commit node */
1192 1.3 oster RF_ASSERT(dag_h->numSuccedents == 1);
1193 1.3 oster RF_ASSERT(commitNode->numAntecedents == 0);
1194 1.3 oster dag_h->succedents[0] = commitNode;
1195 1.3 oster
1196 1.3 oster /* link the commit node to the write nodes */
1197 1.3 oster RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
1198 1.3 oster for (i = 0; i < nWndNodes; i++) {
1199 1.3 oster RF_ASSERT(wndNode[i].numAntecedents == 1);
1200 1.3 oster commitNode->succedents[i] = &wndNode[i];
1201 1.3 oster wndNode[i].antecedents[0] = commitNode;
1202 1.3 oster wndNode[i].antType[0] = rf_control;
1203 1.3 oster }
1204 1.3 oster for (i = 0; i < nWmirNodes; i++) {
1205 1.3 oster RF_ASSERT(wmirNode[i].numAntecedents == 1);
1206 1.3 oster commitNode->succedents[i + nWndNodes] = &wmirNode[i];
1207 1.3 oster wmirNode[i].antecedents[0] = commitNode;
1208 1.3 oster wmirNode[i].antType[0] = rf_control;
1209 1.3 oster }
1210 1.3 oster
1211 1.3 oster /* link the write nodes to the unblock node */
1212 1.3 oster RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
1213 1.3 oster for (i = 0; i < nWndNodes; i++) {
1214 1.3 oster RF_ASSERT(wndNode[i].numSuccedents == 1);
1215 1.3 oster wndNode[i].succedents[0] = unblockNode;
1216 1.3 oster unblockNode->antecedents[i] = &wndNode[i];
1217 1.3 oster unblockNode->antType[i] = rf_control;
1218 1.3 oster }
1219 1.3 oster for (i = 0; i < nWmirNodes; i++) {
1220 1.3 oster RF_ASSERT(wmirNode[i].numSuccedents == 1);
1221 1.3 oster wmirNode[i].succedents[0] = unblockNode;
1222 1.3 oster unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
1223 1.3 oster unblockNode->antType[i + nWndNodes] = rf_control;
1224 1.3 oster }
1225 1.3 oster
1226 1.3 oster /* link the unblock node to the term node */
1227 1.3 oster RF_ASSERT(unblockNode->numSuccedents == 1);
1228 1.3 oster RF_ASSERT(termNode->numAntecedents == 1);
1229 1.3 oster RF_ASSERT(termNode->numSuccedents == 0);
1230 1.3 oster unblockNode->succedents[0] = termNode;
1231 1.3 oster termNode->antecedents[0] = unblockNode;
1232 1.3 oster termNode->antType[0] = rf_control;
1233 1.1 oster }
1234