Home | History | Annotate | Line # | Download | only in raidframe
rf_dagffwr.c revision 1.19
      1  1.19  oster /*	$NetBSD: rf_dagffwr.c,v 1.19 2004/03/05 03:22:05 oster Exp $	*/
      2   1.1  oster /*
      3   1.1  oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1  oster  * All rights reserved.
      5   1.1  oster  *
      6   1.1  oster  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7   1.1  oster  *
      8   1.1  oster  * Permission to use, copy, modify and distribute this software and
      9   1.1  oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1  oster  * notice and this permission notice appear in all copies of the
     11   1.1  oster  * software, derivative works or modified versions, and any portions
     12   1.1  oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1  oster  *
     14   1.1  oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1  oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1  oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1  oster  *
     18   1.1  oster  * Carnegie Mellon requests users of this software to return to
     19   1.1  oster  *
     20   1.1  oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1  oster  *  School of Computer Science
     22   1.1  oster  *  Carnegie Mellon University
     23   1.1  oster  *  Pittsburgh PA 15213-3890
     24   1.1  oster  *
     25   1.1  oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1  oster  * rights to redistribute these changes.
     27   1.1  oster  */
     28   1.1  oster 
     29   1.1  oster /*
     30   1.1  oster  * rf_dagff.c
     31   1.1  oster  *
     32   1.1  oster  * code for creating fault-free DAGs
     33   1.1  oster  *
     34   1.1  oster  */
     35   1.7  lukem 
     36   1.7  lukem #include <sys/cdefs.h>
     37  1.19  oster __KERNEL_RCSID(0, "$NetBSD: rf_dagffwr.c,v 1.19 2004/03/05 03:22:05 oster Exp $");
     38   1.1  oster 
     39   1.6  oster #include <dev/raidframe/raidframevar.h>
     40   1.6  oster 
     41   1.1  oster #include "rf_raid.h"
     42   1.1  oster #include "rf_dag.h"
     43   1.1  oster #include "rf_dagutils.h"
     44   1.1  oster #include "rf_dagfuncs.h"
     45   1.1  oster #include "rf_debugMem.h"
     46   1.1  oster #include "rf_dagffrd.h"
     47   1.1  oster #include "rf_general.h"
     48   1.1  oster #include "rf_dagffwr.h"
     49   1.1  oster 
     50   1.1  oster /******************************************************************************
     51   1.1  oster  *
     52   1.1  oster  * General comments on DAG creation:
     53   1.3  oster  *
     54   1.1  oster  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     55   1.1  oster  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     56   1.1  oster  * is reached, the execution engine will halt forward execution and work
     57   1.1  oster  * backward through the graph, executing the undo functions.  Assuming that
     58   1.1  oster  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     59   1.1  oster  * does not make changes to permanent state, the graph will fail atomically.
     60   1.1  oster  * If an error occurs after the Cmt node executes, the engine will roll-forward
     61   1.1  oster  * through the graph, blindly executing nodes until it reaches the end.
     62   1.1  oster  * If a graph reaches the end, it is assumed to have completed successfully.
     63   1.1  oster  *
     64   1.1  oster  * A graph has only 1 Cmt node.
     65   1.1  oster  *
     66   1.1  oster  */
     67   1.1  oster 
     68   1.1  oster 
     69   1.1  oster /******************************************************************************
     70   1.1  oster  *
     71   1.1  oster  * The following wrappers map the standard DAG creation interface to the
     72   1.1  oster  * DAG creation routines.  Additionally, these wrappers enable experimentation
     73   1.1  oster  * with new DAG structures by providing an extra level of indirection, allowing
     74   1.1  oster  * the DAG creation routines to be replaced at this single point.
     75   1.1  oster  */
     76   1.1  oster 
     77   1.1  oster 
     78   1.3  oster void
     79  1.13  oster rf_CreateNonRedundantWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
     80  1.13  oster 			      RF_DagHeader_t *dag_h, void *bp,
     81  1.13  oster 			      RF_RaidAccessFlags_t flags,
     82  1.13  oster 			      RF_AllocListElem_t *allocList,
     83  1.13  oster 			      RF_IoType_t type)
     84   1.1  oster {
     85   1.3  oster 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     86  1.14  oster 				 RF_IO_TYPE_WRITE);
     87   1.1  oster }
     88   1.1  oster 
     89   1.3  oster void
     90  1.13  oster rf_CreateRAID0WriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
     91  1.13  oster 		       RF_DagHeader_t *dag_h, void *bp,
     92  1.13  oster 		       RF_RaidAccessFlags_t flags,
     93  1.13  oster 		       RF_AllocListElem_t *allocList,
     94  1.13  oster 		       RF_IoType_t type)
     95   1.1  oster {
     96   1.3  oster 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     97  1.14  oster 				 RF_IO_TYPE_WRITE);
     98   1.1  oster }
     99   1.1  oster 
    100   1.3  oster void
    101  1.13  oster rf_CreateSmallWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    102  1.13  oster 		       RF_DagHeader_t *dag_h, void *bp,
    103  1.13  oster 		       RF_RaidAccessFlags_t flags,
    104  1.13  oster 		       RF_AllocListElem_t *allocList)
    105   1.1  oster {
    106   1.3  oster 	/* "normal" rollaway */
    107  1.14  oster 	rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    108  1.14  oster 				     allocList, &rf_xorFuncs, NULL);
    109   1.1  oster }
    110   1.1  oster 
    111   1.3  oster void
    112  1.13  oster rf_CreateLargeWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    113  1.13  oster 		       RF_DagHeader_t *dag_h, void *bp,
    114  1.13  oster 		       RF_RaidAccessFlags_t flags,
    115  1.13  oster 		       RF_AllocListElem_t *allocList)
    116   1.1  oster {
    117   1.3  oster 	/* "normal" rollaway */
    118  1.14  oster 	rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    119  1.14  oster 				     allocList, 1, rf_RegularXorFunc, RF_TRUE);
    120   1.1  oster }
    121   1.1  oster 
    122   1.1  oster 
    123   1.1  oster /******************************************************************************
    124   1.1  oster  *
    125   1.1  oster  * DAG creation code begins here
    126   1.1  oster  */
    127   1.1  oster 
    128   1.1  oster 
    129   1.1  oster /******************************************************************************
    130   1.1  oster  *
    131   1.1  oster  * creates a DAG to perform a large-write operation:
    132   1.1  oster  *
    133   1.1  oster  *           / Rod \           / Wnd \
    134   1.1  oster  * H -- block- Rod - Xor - Cmt - Wnd --- T
    135   1.1  oster  *           \ Rod /          \  Wnp /
    136   1.1  oster  *                             \[Wnq]/
    137   1.1  oster  *
    138   1.1  oster  * The XOR node also does the Q calculation in the P+Q architecture.
    139   1.1  oster  * All nodes are before the commit node (Cmt) are assumed to be atomic and
    140   1.1  oster  * undoable - or - they make no changes to permanent state.
    141   1.1  oster  *
    142   1.1  oster  * Rod = read old data
    143   1.1  oster  * Cmt = commit node
    144   1.1  oster  * Wnp = write new parity
    145   1.1  oster  * Wnd = write new data
    146   1.1  oster  * Wnq = write new "q"
    147   1.1  oster  * [] denotes optional segments in the graph
    148   1.1  oster  *
    149   1.1  oster  * Parameters:  raidPtr   - description of the physical array
    150   1.1  oster  *              asmap     - logical & physical addresses for this access
    151   1.1  oster  *              bp        - buffer ptr (holds write data)
    152   1.3  oster  *              flags     - general flags (e.g. disk locking)
    153   1.1  oster  *              allocList - list of memory allocated in DAG creation
    154   1.1  oster  *              nfaults   - number of faults array can tolerate
    155   1.1  oster  *                          (equal to # redundancy units in stripe)
    156   1.1  oster  *              redfuncs  - list of redundancy generating functions
    157   1.1  oster  *
    158   1.1  oster  *****************************************************************************/
    159   1.1  oster 
    160   1.3  oster void
    161  1.13  oster rf_CommonCreateLargeWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    162  1.13  oster 			     RF_DagHeader_t *dag_h, void *bp,
    163  1.13  oster 			     RF_RaidAccessFlags_t flags,
    164  1.13  oster 			     RF_AllocListElem_t *allocList,
    165  1.13  oster 			     int nfaults, int (*redFunc) (RF_DagNode_t *),
    166  1.13  oster 			     int allowBufferRecycle)
    167   1.1  oster {
    168   1.3  oster 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
    169   1.3  oster 	RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
    170   1.3  oster 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
    171   1.3  oster 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    172   1.3  oster 	RF_StripeNum_t parityStripeID;
    173   1.3  oster 	char   *sosBuffer, *eosBuffer;
    174   1.3  oster 	RF_ReconUnitNum_t which_ru;
    175   1.3  oster 	RF_RaidLayout_t *layoutPtr;
    176   1.3  oster 	RF_PhysDiskAddr_t *pda;
    177   1.3  oster 
    178   1.3  oster 	layoutPtr = &(raidPtr->Layout);
    179  1.14  oster 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
    180  1.14  oster 							asmap->raidAddress,
    181  1.14  oster 							&which_ru);
    182   1.3  oster 
    183  1.19  oster #if RF_DEBUG_DAG
    184   1.3  oster 	if (rf_dagDebug) {
    185   1.3  oster 		printf("[Creating large-write DAG]\n");
    186   1.3  oster 	}
    187  1.19  oster #endif
    188   1.3  oster 	dag_h->creator = "LargeWriteDAG";
    189   1.3  oster 
    190   1.3  oster 	dag_h->numCommitNodes = 1;
    191   1.3  oster 	dag_h->numCommits = 0;
    192   1.3  oster 	dag_h->numSuccedents = 1;
    193   1.3  oster 
    194   1.3  oster 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
    195   1.3  oster 	nWndNodes = asmap->numStripeUnitsAccessed;
    196  1.12  oster 	RF_MallocAndAdd(nodes,
    197  1.12  oster 			(nWndNodes + 4 + nfaults) * sizeof(RF_DagNode_t),
    198  1.12  oster 			(RF_DagNode_t *), allocList);
    199   1.3  oster 	i = 0;
    200   1.3  oster 	wndNodes = &nodes[i];
    201   1.3  oster 	i += nWndNodes;
    202   1.3  oster 	xorNode = &nodes[i];
    203   1.3  oster 	i += 1;
    204   1.3  oster 	wnpNode = &nodes[i];
    205   1.3  oster 	i += 1;
    206   1.3  oster 	blockNode = &nodes[i];
    207   1.3  oster 	i += 1;
    208   1.3  oster 	commitNode = &nodes[i];
    209   1.3  oster 	i += 1;
    210   1.3  oster 	termNode = &nodes[i];
    211   1.3  oster 	i += 1;
    212   1.3  oster 	if (nfaults == 2) {
    213   1.3  oster 		wnqNode = &nodes[i];
    214   1.3  oster 		i += 1;
    215   1.3  oster 	} else {
    216   1.3  oster 		wnqNode = NULL;
    217   1.3  oster 	}
    218  1.14  oster 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h,
    219  1.14  oster 					new_asm_h, &nRodNodes, &sosBuffer,
    220  1.14  oster 					&eosBuffer, allocList);
    221   1.3  oster 	if (nRodNodes > 0) {
    222  1.12  oster 		RF_MallocAndAdd(rodNodes, nRodNodes * sizeof(RF_DagNode_t),
    223  1.12  oster 				(RF_DagNode_t *), allocList);
    224   1.3  oster 	} else {
    225   1.3  oster 		rodNodes = NULL;
    226   1.3  oster 	}
    227   1.3  oster 
    228   1.3  oster 	/* begin node initialization */
    229   1.3  oster 	if (nRodNodes > 0) {
    230  1.14  oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
    231  1.14  oster 			    rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0,
    232  1.14  oster 			    dag_h, "Nil", allocList);
    233   1.3  oster 	} else {
    234  1.14  oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
    235  1.14  oster 			    rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0,
    236  1.14  oster 			    dag_h, "Nil", allocList);
    237   1.3  oster 	}
    238   1.3  oster 
    239  1.14  oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
    240  1.14  oster 		    rf_NullNodeUndoFunc, NULL, nWndNodes + nfaults, 1, 0, 0,
    241  1.14  oster 		    dag_h, "Cmt", allocList);
    242  1.14  oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
    243  1.14  oster 		    rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0,
    244  1.14  oster 		    dag_h, "Trm", allocList);
    245   1.3  oster 
    246   1.3  oster 	/* initialize the Rod nodes */
    247   1.3  oster 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
    248   1.3  oster 		if (new_asm_h[asmNum]) {
    249   1.3  oster 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
    250   1.3  oster 			while (pda) {
    251  1.14  oster 				rf_InitNode(&rodNodes[nodeNum], rf_wait,
    252  1.14  oster 					    RF_FALSE, rf_DiskReadFunc,
    253  1.14  oster 					    rf_DiskReadUndoFunc,
    254  1.14  oster 					    rf_GenericWakeupFunc,
    255  1.14  oster 					    1, 1, 4, 0, dag_h,
    256  1.14  oster 					    "Rod", allocList);
    257   1.3  oster 				rodNodes[nodeNum].params[0].p = pda;
    258   1.3  oster 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
    259   1.3  oster 				rodNodes[nodeNum].params[2].v = parityStripeID;
    260   1.3  oster 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    261  1.17  oster 				    which_ru);
    262   1.3  oster 				nodeNum++;
    263   1.3  oster 				pda = pda->next;
    264   1.3  oster 			}
    265   1.3  oster 		}
    266   1.3  oster 	}
    267   1.3  oster 	RF_ASSERT(nodeNum == nRodNodes);
    268   1.3  oster 
    269   1.3  oster 	/* initialize the wnd nodes */
    270   1.3  oster 	pda = asmap->physInfo;
    271   1.3  oster 	for (i = 0; i < nWndNodes; i++) {
    272  1.14  oster 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE,
    273  1.14  oster 			    rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    274  1.14  oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0,
    275  1.14  oster 			    dag_h, "Wnd", allocList);
    276   1.3  oster 		RF_ASSERT(pda != NULL);
    277   1.3  oster 		wndNodes[i].params[0].p = pda;
    278   1.3  oster 		wndNodes[i].params[1].p = pda->bufPtr;
    279   1.3  oster 		wndNodes[i].params[2].v = parityStripeID;
    280  1.17  oster 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    281   1.3  oster 		pda = pda->next;
    282   1.3  oster 	}
    283   1.3  oster 
    284   1.3  oster 	/* initialize the redundancy node */
    285   1.3  oster 	if (nRodNodes > 0) {
    286  1.14  oster 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc,
    287  1.14  oster 			    rf_NullNodeUndoFunc, NULL, 1,
    288  1.14  oster 			    nRodNodes, 2 * (nWndNodes + nRodNodes) + 1,
    289  1.14  oster 			    nfaults, dag_h, "Xr ", allocList);
    290   1.3  oster 	} else {
    291  1.14  oster 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc,
    292  1.14  oster 			    rf_NullNodeUndoFunc, NULL, 1,
    293  1.14  oster 			    1, 2 * (nWndNodes + nRodNodes) + 1,
    294  1.14  oster 			    nfaults, dag_h, "Xr ", allocList);
    295   1.3  oster 	}
    296   1.3  oster 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
    297   1.3  oster 	for (i = 0; i < nWndNodes; i++) {
    298  1.14  oster 		/* pda */
    299  1.14  oster 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];
    300  1.14  oster 		/* buf ptr */
    301  1.14  oster 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];
    302   1.3  oster 	}
    303   1.3  oster 	for (i = 0; i < nRodNodes; i++) {
    304  1.14  oster 		/* pda */
    305  1.14  oster 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];
    306  1.14  oster 		/* buf ptr */
    307  1.14  oster 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];
    308   1.3  oster 	}
    309   1.3  oster 	/* xor node needs to get at RAID information */
    310   1.3  oster 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
    311   1.3  oster 
    312   1.3  oster 	/*
    313  1.14  oster          * Look for an Rod node that reads a complete SU. If none,
    314  1.14  oster          * alloc a buffer to receive the parity info. Note that we
    315  1.14  oster          * can't use a new data buffer because it will not have gotten
    316  1.14  oster          * written when the xor occurs.  */
    317   1.3  oster 	if (allowBufferRecycle) {
    318   1.3  oster 		for (i = 0; i < nRodNodes; i++) {
    319   1.3  oster 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
    320   1.3  oster 				break;
    321   1.3  oster 		}
    322   1.3  oster 	}
    323   1.3  oster 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
    324  1.12  oster 		RF_MallocAndAdd(xorNode->results[0],
    325  1.12  oster 				rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    326  1.12  oster 				(void *), allocList);
    327   1.3  oster 	} else {
    328   1.3  oster 		xorNode->results[0] = rodNodes[i].params[1].p;
    329   1.3  oster 	}
    330   1.3  oster 
    331   1.3  oster 	/* initialize the Wnp node */
    332  1.14  oster 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc,
    333  1.14  oster 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
    334  1.14  oster 		    dag_h, "Wnp", allocList);
    335   1.3  oster 	wnpNode->params[0].p = asmap->parityInfo;
    336   1.3  oster 	wnpNode->params[1].p = xorNode->results[0];
    337   1.3  oster 	wnpNode->params[2].v = parityStripeID;
    338  1.17  oster 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    339   1.3  oster 	/* parityInfo must describe entire parity unit */
    340   1.3  oster 	RF_ASSERT(asmap->parityInfo->next == NULL);
    341   1.3  oster 
    342   1.3  oster 	if (nfaults == 2) {
    343   1.3  oster 		/*
    344   1.3  oster 	         * We never try to recycle a buffer for the Q calcuation
    345   1.3  oster 	         * in addition to the parity. This would cause two buffers
    346   1.3  oster 	         * to get smashed during the P and Q calculation, guaranteeing
    347   1.3  oster 	         * one would be wrong.
    348   1.3  oster 	         */
    349  1.12  oster 		RF_MallocAndAdd(xorNode->results[1],
    350  1.12  oster 				rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    351  1.12  oster 				(void *), allocList);
    352  1.14  oster 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc,
    353  1.14  oster 			    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc,
    354  1.14  oster 			    1, 1, 4, 0, dag_h, "Wnq", allocList);
    355   1.3  oster 		wnqNode->params[0].p = asmap->qInfo;
    356   1.3  oster 		wnqNode->params[1].p = xorNode->results[1];
    357   1.3  oster 		wnqNode->params[2].v = parityStripeID;
    358  1.17  oster 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
    359   1.3  oster 		/* parityInfo must describe entire parity unit */
    360   1.3  oster 		RF_ASSERT(asmap->parityInfo->next == NULL);
    361   1.3  oster 	}
    362   1.3  oster 	/*
    363   1.3  oster          * Connect nodes to form graph.
    364   1.3  oster          */
    365   1.3  oster 
    366   1.3  oster 	/* connect dag header to block node */
    367   1.3  oster 	RF_ASSERT(blockNode->numAntecedents == 0);
    368   1.3  oster 	dag_h->succedents[0] = blockNode;
    369   1.3  oster 
    370   1.3  oster 	if (nRodNodes > 0) {
    371   1.3  oster 		/* connect the block node to the Rod nodes */
    372   1.3  oster 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
    373   1.3  oster 		RF_ASSERT(xorNode->numAntecedents == nRodNodes);
    374   1.3  oster 		for (i = 0; i < nRodNodes; i++) {
    375   1.3  oster 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
    376   1.3  oster 			blockNode->succedents[i] = &rodNodes[i];
    377   1.3  oster 			rodNodes[i].antecedents[0] = blockNode;
    378   1.3  oster 			rodNodes[i].antType[0] = rf_control;
    379   1.3  oster 
    380   1.3  oster 			/* connect the Rod nodes to the Xor node */
    381   1.3  oster 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
    382   1.3  oster 			rodNodes[i].succedents[0] = xorNode;
    383   1.3  oster 			xorNode->antecedents[i] = &rodNodes[i];
    384   1.3  oster 			xorNode->antType[i] = rf_trueData;
    385   1.3  oster 		}
    386   1.3  oster 	} else {
    387   1.3  oster 		/* connect the block node to the Xor node */
    388   1.3  oster 		RF_ASSERT(blockNode->numSuccedents == 1);
    389   1.3  oster 		RF_ASSERT(xorNode->numAntecedents == 1);
    390   1.3  oster 		blockNode->succedents[0] = xorNode;
    391   1.3  oster 		xorNode->antecedents[0] = blockNode;
    392   1.3  oster 		xorNode->antType[0] = rf_control;
    393   1.3  oster 	}
    394   1.3  oster 
    395   1.3  oster 	/* connect the xor node to the commit node */
    396   1.3  oster 	RF_ASSERT(xorNode->numSuccedents == 1);
    397   1.3  oster 	RF_ASSERT(commitNode->numAntecedents == 1);
    398   1.3  oster 	xorNode->succedents[0] = commitNode;
    399   1.3  oster 	commitNode->antecedents[0] = xorNode;
    400   1.3  oster 	commitNode->antType[0] = rf_control;
    401   1.3  oster 
    402   1.3  oster 	/* connect the commit node to the write nodes */
    403   1.3  oster 	RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
    404   1.3  oster 	for (i = 0; i < nWndNodes; i++) {
    405   1.3  oster 		RF_ASSERT(wndNodes->numAntecedents == 1);
    406   1.3  oster 		commitNode->succedents[i] = &wndNodes[i];
    407   1.3  oster 		wndNodes[i].antecedents[0] = commitNode;
    408   1.3  oster 		wndNodes[i].antType[0] = rf_control;
    409   1.3  oster 	}
    410   1.3  oster 	RF_ASSERT(wnpNode->numAntecedents == 1);
    411   1.3  oster 	commitNode->succedents[nWndNodes] = wnpNode;
    412   1.3  oster 	wnpNode->antecedents[0] = commitNode;
    413   1.3  oster 	wnpNode->antType[0] = rf_trueData;
    414   1.3  oster 	if (nfaults == 2) {
    415   1.3  oster 		RF_ASSERT(wnqNode->numAntecedents == 1);
    416   1.3  oster 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    417   1.3  oster 		wnqNode->antecedents[0] = commitNode;
    418   1.3  oster 		wnqNode->antType[0] = rf_trueData;
    419   1.3  oster 	}
    420   1.3  oster 	/* connect the write nodes to the term node */
    421   1.3  oster 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
    422   1.3  oster 	RF_ASSERT(termNode->numSuccedents == 0);
    423   1.3  oster 	for (i = 0; i < nWndNodes; i++) {
    424   1.3  oster 		RF_ASSERT(wndNodes->numSuccedents == 1);
    425   1.3  oster 		wndNodes[i].succedents[0] = termNode;
    426   1.3  oster 		termNode->antecedents[i] = &wndNodes[i];
    427   1.3  oster 		termNode->antType[i] = rf_control;
    428   1.3  oster 	}
    429   1.3  oster 	RF_ASSERT(wnpNode->numSuccedents == 1);
    430   1.3  oster 	wnpNode->succedents[0] = termNode;
    431   1.3  oster 	termNode->antecedents[nWndNodes] = wnpNode;
    432   1.3  oster 	termNode->antType[nWndNodes] = rf_control;
    433   1.3  oster 	if (nfaults == 2) {
    434   1.3  oster 		RF_ASSERT(wnqNode->numSuccedents == 1);
    435   1.3  oster 		wnqNode->succedents[0] = termNode;
    436   1.3  oster 		termNode->antecedents[nWndNodes + 1] = wnqNode;
    437   1.3  oster 		termNode->antType[nWndNodes + 1] = rf_control;
    438   1.3  oster 	}
    439   1.1  oster }
    440   1.1  oster /******************************************************************************
    441   1.1  oster  *
    442   1.1  oster  * creates a DAG to perform a small-write operation (either raid 5 or pq),
    443   1.1  oster  * which is as follows:
    444   1.1  oster  *
    445   1.1  oster  * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
    446   1.1  oster  *            \- Rod X      /     \----> Wnd [Und]-/
    447   1.1  oster  *           [\- Rod X     /       \---> Wnd [Und]-/]
    448   1.1  oster  *           [\- Roq -> Q /         \--> Wnq [Unq]-/]
    449   1.1  oster  *
    450   1.1  oster  * Rop = read old parity
    451   1.1  oster  * Rod = read old data
    452   1.1  oster  * Roq = read old "q"
    453   1.1  oster  * Cmt = commit node
    454   1.1  oster  * Und = unlock data disk
    455   1.1  oster  * Unp = unlock parity disk
    456   1.1  oster  * Unq = unlock q disk
    457   1.1  oster  * Wnp = write new parity
    458   1.1  oster  * Wnd = write new data
    459   1.1  oster  * Wnq = write new "q"
    460   1.1  oster  * [ ] denotes optional segments in the graph
    461   1.1  oster  *
    462   1.1  oster  * Parameters:  raidPtr   - description of the physical array
    463   1.1  oster  *              asmap     - logical & physical addresses for this access
    464   1.1  oster  *              bp        - buffer ptr (holds write data)
    465   1.3  oster  *              flags     - general flags (e.g. disk locking)
    466   1.1  oster  *              allocList - list of memory allocated in DAG creation
    467   1.1  oster  *              pfuncs    - list of parity generating functions
    468   1.1  oster  *              qfuncs    - list of q generating functions
    469   1.1  oster  *
    470   1.1  oster  * A null qfuncs indicates single fault tolerant
    471   1.1  oster  *****************************************************************************/
    472   1.1  oster 
    473   1.3  oster void
    474  1.13  oster rf_CommonCreateSmallWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    475  1.13  oster 			     RF_DagHeader_t *dag_h, void *bp,
    476  1.13  oster 			     RF_RaidAccessFlags_t flags,
    477  1.13  oster 			     RF_AllocListElem_t *allocList,
    478  1.13  oster 			     const RF_RedFuncs_t *pfuncs,
    479  1.13  oster 			     const RF_RedFuncs_t *qfuncs)
    480   1.1  oster {
    481   1.3  oster 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
    482   1.3  oster 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes;
    483   1.3  oster 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
    484  1.16  oster 	int     i, j, nNodes, totalNumNodes;
    485   1.3  oster 	RF_ReconUnitNum_t which_ru;
    486   1.3  oster 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    487   1.3  oster 	int     (*qfunc) (RF_DagNode_t *);
    488   1.3  oster 	int     numDataNodes, numParityNodes;
    489   1.3  oster 	RF_StripeNum_t parityStripeID;
    490   1.3  oster 	RF_PhysDiskAddr_t *pda;
    491   1.3  oster 	char   *name, *qname;
    492   1.3  oster 	long    nfaults;
    493   1.3  oster 
    494   1.3  oster 	nfaults = qfuncs ? 2 : 1;
    495   1.3  oster 
    496   1.3  oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    497   1.3  oster 	    asmap->raidAddress, &which_ru);
    498   1.3  oster 	pda = asmap->physInfo;
    499   1.3  oster 	numDataNodes = asmap->numStripeUnitsAccessed;
    500   1.3  oster 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
    501   1.3  oster 
    502  1.19  oster #if RF_DEBUG_DAG
    503   1.3  oster 	if (rf_dagDebug) {
    504   1.3  oster 		printf("[Creating small-write DAG]\n");
    505   1.3  oster 	}
    506  1.19  oster #endif
    507   1.3  oster 	RF_ASSERT(numDataNodes > 0);
    508   1.3  oster 	dag_h->creator = "SmallWriteDAG";
    509   1.3  oster 
    510   1.3  oster 	dag_h->numCommitNodes = 1;
    511   1.3  oster 	dag_h->numCommits = 0;
    512   1.3  oster 	dag_h->numSuccedents = 1;
    513   1.3  oster 
    514   1.3  oster 	/*
    515   1.3  oster          * DAG creation occurs in four steps:
    516   1.3  oster          * 1. count the number of nodes in the DAG
    517   1.3  oster          * 2. create the nodes
    518   1.3  oster          * 3. initialize the nodes
    519   1.3  oster          * 4. connect the nodes
    520   1.3  oster          */
    521   1.3  oster 
    522   1.3  oster 	/*
    523   1.3  oster          * Step 1. compute number of nodes in the graph
    524   1.3  oster          */
    525   1.3  oster 
    526  1.14  oster 	/* number of nodes: a read and write for each data unit a
    527  1.14  oster 	 * redundancy computation node for each parity node (nfaults *
    528  1.14  oster 	 * nparity) a read and write for each parity unit a block and
    529  1.14  oster 	 * commit node (2) a terminate node if atomic RMW an unlock
    530  1.14  oster 	 * node for each data unit, redundancy unit */
    531   1.3  oster 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
    532   1.3  oster 	    + (nfaults * 2 * numParityNodes) + 3;
    533   1.3  oster 	/*
    534   1.3  oster          * Step 2. create the nodes
    535   1.3  oster          */
    536  1.12  oster 	RF_MallocAndAdd(nodes, totalNumNodes * sizeof(RF_DagNode_t),
    537  1.12  oster 			(RF_DagNode_t *), allocList);
    538   1.3  oster 	i = 0;
    539   1.3  oster 	blockNode = &nodes[i];
    540   1.3  oster 	i += 1;
    541   1.3  oster 	commitNode = &nodes[i];
    542   1.3  oster 	i += 1;
    543   1.3  oster 	readDataNodes = &nodes[i];
    544   1.3  oster 	i += numDataNodes;
    545   1.3  oster 	readParityNodes = &nodes[i];
    546   1.3  oster 	i += numParityNodes;
    547   1.3  oster 	writeDataNodes = &nodes[i];
    548   1.3  oster 	i += numDataNodes;
    549   1.3  oster 	writeParityNodes = &nodes[i];
    550   1.3  oster 	i += numParityNodes;
    551   1.3  oster 	xorNodes = &nodes[i];
    552   1.3  oster 	i += numParityNodes;
    553   1.3  oster 	termNode = &nodes[i];
    554   1.3  oster 	i += 1;
    555  1.16  oster 
    556   1.3  oster 	if (nfaults == 2) {
    557   1.3  oster 		readQNodes = &nodes[i];
    558   1.3  oster 		i += numParityNodes;
    559   1.3  oster 		writeQNodes = &nodes[i];
    560   1.3  oster 		i += numParityNodes;
    561   1.3  oster 		qNodes = &nodes[i];
    562   1.3  oster 		i += numParityNodes;
    563   1.3  oster 	} else {
    564  1.18  oster 		readQNodes = writeQNodes = qNodes = NULL;
    565   1.3  oster 	}
    566   1.3  oster 	RF_ASSERT(i == totalNumNodes);
    567   1.3  oster 
    568   1.3  oster 	/*
    569   1.3  oster          * Step 3. initialize the nodes
    570   1.3  oster          */
    571   1.3  oster 	/* initialize block node (Nil) */
    572   1.3  oster 	nNodes = numDataNodes + (nfaults * numParityNodes);
    573  1.14  oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
    574  1.14  oster 		    rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0,
    575  1.14  oster 		    dag_h, "Nil", allocList);
    576   1.3  oster 
    577   1.3  oster 	/* initialize commit node (Cmt) */
    578  1.14  oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
    579  1.14  oster 		    rf_NullNodeUndoFunc, NULL, nNodes,
    580  1.14  oster 		    (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
    581   1.3  oster 
    582   1.3  oster 	/* initialize terminate node (Trm) */
    583  1.14  oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
    584  1.14  oster 		    rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0,
    585  1.14  oster 		    dag_h, "Trm", allocList);
    586   1.3  oster 
    587   1.3  oster 	/* initialize nodes which read old data (Rod) */
    588   1.3  oster 	for (i = 0; i < numDataNodes; i++) {
    589  1.14  oster 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE,
    590  1.14  oster 			    rf_DiskReadFunc, rf_DiskReadUndoFunc,
    591  1.14  oster 			    rf_GenericWakeupFunc, (nfaults * numParityNodes),
    592  1.14  oster 			    1, 4, 0, dag_h, "Rod", allocList);
    593   1.3  oster 		RF_ASSERT(pda != NULL);
    594   1.3  oster 		/* physical disk addr desc */
    595   1.3  oster 		readDataNodes[i].params[0].p = pda;
    596   1.3  oster 		/* buffer to hold old data */
    597   1.3  oster 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    598   1.3  oster 		    dag_h, pda, allocList);
    599   1.3  oster 		readDataNodes[i].params[2].v = parityStripeID;
    600   1.3  oster 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    601  1.17  oster 		    which_ru);
    602   1.3  oster 		pda = pda->next;
    603   1.3  oster 		for (j = 0; j < readDataNodes[i].numSuccedents; j++) {
    604   1.3  oster 			readDataNodes[i].propList[j] = NULL;
    605   1.3  oster 		}
    606   1.3  oster 	}
    607   1.3  oster 
    608   1.3  oster 	/* initialize nodes which read old parity (Rop) */
    609   1.3  oster 	pda = asmap->parityInfo;
    610   1.3  oster 	i = 0;
    611   1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    612   1.3  oster 		RF_ASSERT(pda != NULL);
    613  1.14  oster 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE,
    614  1.14  oster 			    rf_DiskReadFunc, rf_DiskReadUndoFunc,
    615  1.14  oster 			    rf_GenericWakeupFunc, numParityNodes, 1, 4, 0,
    616  1.14  oster 			    dag_h, "Rop", allocList);
    617   1.3  oster 		readParityNodes[i].params[0].p = pda;
    618   1.3  oster 		/* buffer to hold old parity */
    619   1.3  oster 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    620   1.3  oster 		    dag_h, pda, allocList);
    621   1.3  oster 		readParityNodes[i].params[2].v = parityStripeID;
    622   1.3  oster 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    623  1.17  oster 		    which_ru);
    624   1.3  oster 		pda = pda->next;
    625   1.3  oster 		for (j = 0; j < readParityNodes[i].numSuccedents; j++) {
    626   1.3  oster 			readParityNodes[i].propList[0] = NULL;
    627   1.3  oster 		}
    628   1.3  oster 	}
    629   1.3  oster 
    630   1.3  oster 	/* initialize nodes which read old Q (Roq) */
    631   1.3  oster 	if (nfaults == 2) {
    632   1.3  oster 		pda = asmap->qInfo;
    633   1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    634   1.3  oster 			RF_ASSERT(pda != NULL);
    635  1.14  oster 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE,
    636  1.14  oster 				    rf_DiskReadFunc, rf_DiskReadUndoFunc,
    637  1.14  oster 				    rf_GenericWakeupFunc, numParityNodes,
    638  1.14  oster 				    1, 4, 0, dag_h, "Roq", allocList);
    639   1.3  oster 			readQNodes[i].params[0].p = pda;
    640   1.3  oster 			/* buffer to hold old Q */
    641  1.14  oster 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    642  1.14  oster 								   dag_h, pda,
    643  1.14  oster 								   allocList);
    644   1.3  oster 			readQNodes[i].params[2].v = parityStripeID;
    645   1.3  oster 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    646  1.17  oster 			    which_ru);
    647   1.3  oster 			pda = pda->next;
    648   1.3  oster 			for (j = 0; j < readQNodes[i].numSuccedents; j++) {
    649   1.3  oster 				readQNodes[i].propList[0] = NULL;
    650   1.3  oster 			}
    651   1.3  oster 		}
    652   1.3  oster 	}
    653   1.3  oster 	/* initialize nodes which write new data (Wnd) */
    654   1.3  oster 	pda = asmap->physInfo;
    655   1.3  oster 	for (i = 0; i < numDataNodes; i++) {
    656   1.3  oster 		RF_ASSERT(pda != NULL);
    657  1.14  oster 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE,
    658  1.14  oster 			    rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    659  1.14  oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    660  1.14  oster 			    "Wnd", allocList);
    661   1.3  oster 		/* physical disk addr desc */
    662   1.3  oster 		writeDataNodes[i].params[0].p = pda;
    663   1.3  oster 		/* buffer holding new data to be written */
    664   1.3  oster 		writeDataNodes[i].params[1].p = pda->bufPtr;
    665   1.3  oster 		writeDataNodes[i].params[2].v = parityStripeID;
    666   1.3  oster 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    667  1.17  oster 		    which_ru);
    668   1.3  oster 		pda = pda->next;
    669   1.3  oster 	}
    670   1.3  oster 
    671   1.3  oster 	/*
    672   1.3  oster          * Initialize nodes which compute new parity and Q.
    673   1.3  oster          */
    674   1.3  oster 	/*
    675   1.3  oster          * We use the simple XOR func in the double-XOR case, and when
    676  1.14  oster          * we're accessing only a portion of one stripe unit. The
    677  1.14  oster          * distinction between the two is that the regular XOR func
    678  1.14  oster          * assumes that the targbuf is a full SU in size, and examines
    679  1.14  oster          * the pda associated with the buffer to decide where within
    680  1.14  oster          * the buffer to XOR the data, whereas the simple XOR func
    681  1.14  oster          * just XORs the data into the start of the buffer.  */
    682   1.3  oster 	if ((numParityNodes == 2) || ((numDataNodes == 1)
    683  1.14  oster 		&& (asmap->totalSectorsAccessed <
    684  1.14  oster 		    raidPtr->Layout.sectorsPerStripeUnit))) {
    685   1.3  oster 		func = pfuncs->simple;
    686   1.3  oster 		undoFunc = rf_NullNodeUndoFunc;
    687   1.3  oster 		name = pfuncs->SimpleName;
    688   1.3  oster 		if (qfuncs) {
    689   1.3  oster 			qfunc = qfuncs->simple;
    690   1.3  oster 			qname = qfuncs->SimpleName;
    691   1.3  oster 		} else {
    692   1.3  oster 			qfunc = NULL;
    693   1.3  oster 			qname = NULL;
    694   1.3  oster 		}
    695   1.3  oster 	} else {
    696   1.3  oster 		func = pfuncs->regular;
    697   1.3  oster 		undoFunc = rf_NullNodeUndoFunc;
    698   1.3  oster 		name = pfuncs->RegularName;
    699   1.3  oster 		if (qfuncs) {
    700   1.3  oster 			qfunc = qfuncs->regular;
    701   1.3  oster 			qname = qfuncs->RegularName;
    702   1.3  oster 		} else {
    703   1.3  oster 			qfunc = NULL;
    704   1.3  oster 			qname = NULL;
    705   1.3  oster 		}
    706   1.3  oster 	}
    707   1.3  oster 	/*
    708   1.3  oster          * Initialize the xor nodes: params are {pda,buf}
    709   1.3  oster          * from {Rod,Wnd,Rop} nodes, and raidPtr
    710   1.3  oster          */
    711   1.3  oster 	if (numParityNodes == 2) {
    712   1.3  oster 		/* double-xor case */
    713   1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    714   1.3  oster 			/* note: no wakeup func for xor */
    715  1.14  oster 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func,
    716  1.14  oster 				    undoFunc, NULL, 1,
    717  1.14  oster 				    (numDataNodes + numParityNodes),
    718  1.14  oster 				    7, 1, dag_h, name, allocList);
    719   1.3  oster 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
    720   1.3  oster 			xorNodes[i].params[0] = readDataNodes[i].params[0];
    721   1.3  oster 			xorNodes[i].params[1] = readDataNodes[i].params[1];
    722   1.3  oster 			xorNodes[i].params[2] = readParityNodes[i].params[0];
    723   1.3  oster 			xorNodes[i].params[3] = readParityNodes[i].params[1];
    724   1.3  oster 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
    725   1.3  oster 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
    726   1.3  oster 			xorNodes[i].params[6].p = raidPtr;
    727   1.3  oster 			/* use old parity buf as target buf */
    728   1.3  oster 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;
    729   1.3  oster 			if (nfaults == 2) {
    730   1.3  oster 				/* note: no wakeup func for qor */
    731  1.14  oster 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE,
    732  1.14  oster 					    qfunc, undoFunc, NULL, 1,
    733  1.14  oster 					    (numDataNodes + numParityNodes),
    734  1.14  oster 					    7, 1, dag_h, qname, allocList);
    735   1.3  oster 				qNodes[i].params[0] = readDataNodes[i].params[0];
    736   1.3  oster 				qNodes[i].params[1] = readDataNodes[i].params[1];
    737   1.3  oster 				qNodes[i].params[2] = readQNodes[i].params[0];
    738   1.3  oster 				qNodes[i].params[3] = readQNodes[i].params[1];
    739   1.3  oster 				qNodes[i].params[4] = writeDataNodes[i].params[0];
    740   1.3  oster 				qNodes[i].params[5] = writeDataNodes[i].params[1];
    741   1.3  oster 				qNodes[i].params[6].p = raidPtr;
    742   1.3  oster 				/* use old Q buf as target buf */
    743   1.3  oster 				qNodes[i].results[0] = readQNodes[i].params[1].p;
    744   1.3  oster 			}
    745   1.3  oster 		}
    746   1.3  oster 	} else {
    747   1.3  oster 		/* there is only one xor node in this case */
    748  1.14  oster 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func,
    749  1.14  oster 			    undoFunc, NULL, 1, (numDataNodes + numParityNodes),
    750  1.14  oster 			    (2 * (numDataNodes + numDataNodes + 1) + 1), 1,
    751  1.14  oster 			    dag_h, name, allocList);
    752   1.3  oster 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
    753   1.3  oster 		for (i = 0; i < numDataNodes + 1; i++) {
    754   1.3  oster 			/* set up params related to Rod and Rop nodes */
    755   1.3  oster 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    756   1.3  oster 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    757   1.3  oster 		}
    758   1.3  oster 		for (i = 0; i < numDataNodes; i++) {
    759   1.3  oster 			/* set up params related to Wnd and Wnp nodes */
    760   1.3  oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    761   1.3  oster 			    writeDataNodes[i].params[0];
    762   1.3  oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    763   1.3  oster 			    writeDataNodes[i].params[1];
    764   1.3  oster 		}
    765   1.3  oster 		/* xor node needs to get at RAID information */
    766   1.3  oster 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    767   1.3  oster 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
    768   1.3  oster 		if (nfaults == 2) {
    769  1.14  oster 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc,
    770  1.14  oster 				    undoFunc, NULL, 1,
    771  1.14  oster 				    (numDataNodes + numParityNodes),
    772  1.14  oster 				    (2 * (numDataNodes + numDataNodes + 1) + 1), 1,
    773  1.14  oster 				    dag_h, qname, allocList);
    774   1.3  oster 			for (i = 0; i < numDataNodes; i++) {
    775   1.3  oster 				/* set up params related to Rod */
    776   1.3  oster 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    777   1.3  oster 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    778   1.3  oster 			}
    779   1.3  oster 			/* and read old q */
    780   1.3  oster 			qNodes[0].params[2 * numDataNodes + 0] =	/* pda */
    781   1.3  oster 			    readQNodes[0].params[0];
    782   1.3  oster 			qNodes[0].params[2 * numDataNodes + 1] =	/* buffer ptr */
    783   1.3  oster 			    readQNodes[0].params[1];
    784   1.3  oster 			for (i = 0; i < numDataNodes; i++) {
    785   1.3  oster 				/* set up params related to Wnd nodes */
    786   1.3  oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    787   1.3  oster 				    writeDataNodes[i].params[0];
    788   1.3  oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    789   1.3  oster 				    writeDataNodes[i].params[1];
    790   1.3  oster 			}
    791   1.3  oster 			/* xor node needs to get at RAID information */
    792   1.3  oster 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    793   1.3  oster 			qNodes[0].results[0] = readQNodes[0].params[1].p;
    794   1.3  oster 		}
    795   1.3  oster 	}
    796   1.3  oster 
    797   1.3  oster 	/* initialize nodes which write new parity (Wnp) */
    798   1.3  oster 	pda = asmap->parityInfo;
    799   1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    800  1.14  oster 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE,
    801  1.14  oster 			    rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    802  1.14  oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    803  1.14  oster 			    "Wnp", allocList);
    804   1.3  oster 		RF_ASSERT(pda != NULL);
    805   1.3  oster 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    806   1.3  oster 							 * filled in by xor node */
    807   1.3  oster 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
    808   1.3  oster 										 * parity write
    809   1.3  oster 										 * operation */
    810   1.3  oster 		writeParityNodes[i].params[2].v = parityStripeID;
    811   1.3  oster 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    812  1.17  oster 		    which_ru);
    813   1.3  oster 		pda = pda->next;
    814   1.3  oster 	}
    815   1.3  oster 
    816   1.3  oster 	/* initialize nodes which write new Q (Wnq) */
    817   1.3  oster 	if (nfaults == 2) {
    818   1.3  oster 		pda = asmap->qInfo;
    819   1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    820  1.14  oster 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE,
    821  1.14  oster 				    rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    822  1.14  oster 				    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    823  1.14  oster 				    "Wnq", allocList);
    824   1.3  oster 			RF_ASSERT(pda != NULL);
    825   1.3  oster 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    826   1.3  oster 								 * filled in by xor node */
    827   1.3  oster 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
    828   1.3  oster 										 * parity write
    829   1.3  oster 										 * operation */
    830   1.3  oster 			writeQNodes[i].params[2].v = parityStripeID;
    831   1.3  oster 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    832  1.17  oster 			    which_ru);
    833   1.3  oster 			pda = pda->next;
    834   1.3  oster 		}
    835   1.3  oster 	}
    836   1.3  oster 	/*
    837   1.3  oster          * Step 4. connect the nodes.
    838   1.3  oster          */
    839   1.3  oster 
    840   1.3  oster 	/* connect header to block node */
    841   1.3  oster 	dag_h->succedents[0] = blockNode;
    842   1.3  oster 
    843   1.3  oster 	/* connect block node to read old data nodes */
    844   1.3  oster 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
    845   1.3  oster 	for (i = 0; i < numDataNodes; i++) {
    846   1.3  oster 		blockNode->succedents[i] = &readDataNodes[i];
    847   1.3  oster 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
    848   1.3  oster 		readDataNodes[i].antecedents[0] = blockNode;
    849   1.3  oster 		readDataNodes[i].antType[0] = rf_control;
    850   1.3  oster 	}
    851   1.3  oster 
    852   1.3  oster 	/* connect block node to read old parity nodes */
    853   1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    854   1.3  oster 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
    855   1.3  oster 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
    856   1.3  oster 		readParityNodes[i].antecedents[0] = blockNode;
    857   1.3  oster 		readParityNodes[i].antType[0] = rf_control;
    858   1.3  oster 	}
    859   1.3  oster 
    860   1.3  oster 	/* connect block node to read old Q nodes */
    861   1.3  oster 	if (nfaults == 2) {
    862   1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    863   1.3  oster 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
    864   1.3  oster 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
    865   1.3  oster 			readQNodes[i].antecedents[0] = blockNode;
    866   1.3  oster 			readQNodes[i].antType[0] = rf_control;
    867   1.3  oster 		}
    868   1.3  oster 	}
    869   1.3  oster 	/* connect read old data nodes to xor nodes */
    870   1.3  oster 	for (i = 0; i < numDataNodes; i++) {
    871   1.3  oster 		RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes));
    872   1.3  oster 		for (j = 0; j < numParityNodes; j++) {
    873   1.3  oster 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
    874   1.3  oster 			readDataNodes[i].succedents[j] = &xorNodes[j];
    875   1.3  oster 			xorNodes[j].antecedents[i] = &readDataNodes[i];
    876   1.3  oster 			xorNodes[j].antType[i] = rf_trueData;
    877   1.3  oster 		}
    878   1.3  oster 	}
    879   1.3  oster 
    880   1.3  oster 	/* connect read old data nodes to q nodes */
    881   1.3  oster 	if (nfaults == 2) {
    882   1.3  oster 		for (i = 0; i < numDataNodes; i++) {
    883   1.3  oster 			for (j = 0; j < numParityNodes; j++) {
    884   1.3  oster 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
    885   1.3  oster 				readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j];
    886   1.3  oster 				qNodes[j].antecedents[i] = &readDataNodes[i];
    887   1.3  oster 				qNodes[j].antType[i] = rf_trueData;
    888   1.3  oster 			}
    889   1.3  oster 		}
    890   1.3  oster 	}
    891   1.3  oster 	/* connect read old parity nodes to xor nodes */
    892   1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    893   1.3  oster 		RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    894   1.3  oster 		for (j = 0; j < numParityNodes; j++) {
    895   1.3  oster 			readParityNodes[i].succedents[j] = &xorNodes[j];
    896   1.3  oster 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    897   1.3  oster 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
    898   1.3  oster 		}
    899   1.3  oster 	}
    900   1.3  oster 
    901   1.3  oster 	/* connect read old q nodes to q nodes */
    902   1.3  oster 	if (nfaults == 2) {
    903   1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    904   1.3  oster 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    905   1.3  oster 			for (j = 0; j < numParityNodes; j++) {
    906   1.3  oster 				readQNodes[i].succedents[j] = &qNodes[j];
    907   1.3  oster 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
    908   1.3  oster 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
    909   1.3  oster 			}
    910   1.3  oster 		}
    911   1.3  oster 	}
    912   1.3  oster 	/* connect xor nodes to commit node */
    913   1.3  oster 	RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
    914   1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    915   1.3  oster 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
    916   1.3  oster 		xorNodes[i].succedents[0] = commitNode;
    917   1.3  oster 		commitNode->antecedents[i] = &xorNodes[i];
    918   1.3  oster 		commitNode->antType[i] = rf_control;
    919   1.3  oster 	}
    920   1.3  oster 
    921   1.3  oster 	/* connect q nodes to commit node */
    922   1.3  oster 	if (nfaults == 2) {
    923   1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    924   1.3  oster 			RF_ASSERT(qNodes[i].numSuccedents == 1);
    925   1.3  oster 			qNodes[i].succedents[0] = commitNode;
    926   1.3  oster 			commitNode->antecedents[i + numParityNodes] = &qNodes[i];
    927   1.3  oster 			commitNode->antType[i + numParityNodes] = rf_control;
    928   1.3  oster 		}
    929   1.3  oster 	}
    930   1.3  oster 	/* connect commit node to write nodes */
    931   1.3  oster 	RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
    932   1.3  oster 	for (i = 0; i < numDataNodes; i++) {
    933   1.3  oster 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
    934   1.3  oster 		commitNode->succedents[i] = &writeDataNodes[i];
    935   1.3  oster 		writeDataNodes[i].antecedents[0] = commitNode;
    936   1.3  oster 		writeDataNodes[i].antType[0] = rf_trueData;
    937   1.3  oster 	}
    938   1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    939   1.3  oster 		RF_ASSERT(writeParityNodes[i].numAntecedents == 1);
    940   1.3  oster 		commitNode->succedents[i + numDataNodes] = &writeParityNodes[i];
    941   1.3  oster 		writeParityNodes[i].antecedents[0] = commitNode;
    942   1.3  oster 		writeParityNodes[i].antType[0] = rf_trueData;
    943   1.3  oster 	}
    944   1.3  oster 	if (nfaults == 2) {
    945   1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    946   1.3  oster 			RF_ASSERT(writeQNodes[i].numAntecedents == 1);
    947   1.3  oster 			commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i];
    948   1.3  oster 			writeQNodes[i].antecedents[0] = commitNode;
    949   1.3  oster 			writeQNodes[i].antType[0] = rf_trueData;
    950   1.3  oster 		}
    951   1.3  oster 	}
    952   1.3  oster 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    953   1.3  oster 	RF_ASSERT(termNode->numSuccedents == 0);
    954   1.3  oster 	for (i = 0; i < numDataNodes; i++) {
    955  1.16  oster 		/* connect write new data nodes to term node */
    956  1.16  oster 		RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    957  1.16  oster 		RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    958  1.16  oster 		writeDataNodes[i].succedents[0] = termNode;
    959  1.16  oster 		termNode->antecedents[i] = &writeDataNodes[i];
    960  1.16  oster 		termNode->antType[i] = rf_control;
    961   1.3  oster 	}
    962   1.3  oster 
    963   1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    964  1.16  oster 		RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
    965  1.16  oster 		writeParityNodes[i].succedents[0] = termNode;
    966  1.16  oster 		termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
    967  1.16  oster 		termNode->antType[numDataNodes + i] = rf_control;
    968   1.3  oster 	}
    969   1.3  oster 
    970   1.3  oster 	if (nfaults == 2) {
    971   1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    972  1.16  oster 			RF_ASSERT(writeQNodes[i].numSuccedents == 1);
    973  1.16  oster 			writeQNodes[i].succedents[0] = termNode;
    974  1.16  oster 			termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
    975  1.16  oster 			termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
    976   1.3  oster 		}
    977   1.3  oster 	}
    978   1.1  oster }
    979   1.1  oster 
    980   1.1  oster 
    981   1.1  oster /******************************************************************************
    982   1.1  oster  * create a write graph (fault-free or degraded) for RAID level 1
    983   1.1  oster  *
    984   1.1  oster  * Hdr -> Commit -> Wpd -> Nil -> Trm
    985   1.1  oster  *               -> Wsd ->
    986   1.1  oster  *
    987   1.1  oster  * The "Wpd" node writes data to the primary copy in the mirror pair
    988   1.1  oster  * The "Wsd" node writes data to the secondary copy in the mirror pair
    989   1.1  oster  *
    990   1.1  oster  * Parameters:  raidPtr   - description of the physical array
    991   1.1  oster  *              asmap     - logical & physical addresses for this access
    992   1.1  oster  *              bp        - buffer ptr (holds write data)
    993   1.3  oster  *              flags     - general flags (e.g. disk locking)
    994   1.1  oster  *              allocList - list of memory allocated in DAG creation
    995   1.1  oster  *****************************************************************************/
    996   1.1  oster 
    997   1.3  oster void
    998  1.13  oster rf_CreateRaidOneWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    999  1.13  oster 			 RF_DagHeader_t *dag_h, void *bp,
   1000  1.13  oster 			 RF_RaidAccessFlags_t flags,
   1001  1.13  oster 			 RF_AllocListElem_t *allocList)
   1002   1.1  oster {
   1003   1.3  oster 	RF_DagNode_t *unblockNode, *termNode, *commitNode;
   1004   1.3  oster 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   1005   1.3  oster 	int     nWndNodes, nWmirNodes, i;
   1006   1.3  oster 	RF_ReconUnitNum_t which_ru;
   1007   1.3  oster 	RF_PhysDiskAddr_t *pda, *pdaP;
   1008   1.3  oster 	RF_StripeNum_t parityStripeID;
   1009   1.3  oster 
   1010   1.3  oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   1011   1.3  oster 	    asmap->raidAddress, &which_ru);
   1012  1.19  oster #if RF_DEBUG_DAG
   1013   1.3  oster 	if (rf_dagDebug) {
   1014   1.3  oster 		printf("[Creating RAID level 1 write DAG]\n");
   1015   1.3  oster 	}
   1016  1.19  oster #endif
   1017   1.3  oster 	dag_h->creator = "RaidOneWriteDAG";
   1018   1.3  oster 
   1019   1.3  oster 	/* 2 implies access not SU aligned */
   1020   1.3  oster 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
   1021   1.3  oster 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   1022   1.3  oster 
   1023   1.3  oster 	/* alloc the Wnd nodes and the Wmir node */
   1024   1.3  oster 	if (asmap->numDataFailed == 1)
   1025   1.3  oster 		nWndNodes--;
   1026   1.3  oster 	if (asmap->numParityFailed == 1)
   1027   1.3  oster 		nWmirNodes--;
   1028   1.3  oster 
   1029   1.3  oster 	/* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
   1030   1.3  oster 	 * + terminator) */
   1031  1.12  oster 	RF_MallocAndAdd(nodes,
   1032  1.12  oster 			(nWndNodes + nWmirNodes + 3) * sizeof(RF_DagNode_t),
   1033  1.12  oster 			(RF_DagNode_t *), allocList);
   1034   1.3  oster 	i = 0;
   1035   1.3  oster 	wndNode = &nodes[i];
   1036   1.3  oster 	i += nWndNodes;
   1037   1.3  oster 	wmirNode = &nodes[i];
   1038   1.3  oster 	i += nWmirNodes;
   1039   1.3  oster 	commitNode = &nodes[i];
   1040   1.3  oster 	i += 1;
   1041   1.3  oster 	unblockNode = &nodes[i];
   1042   1.3  oster 	i += 1;
   1043   1.3  oster 	termNode = &nodes[i];
   1044   1.3  oster 	i += 1;
   1045   1.3  oster 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   1046   1.3  oster 
   1047   1.3  oster 	/* this dag can commit immediately */
   1048   1.3  oster 	dag_h->numCommitNodes = 1;
   1049   1.3  oster 	dag_h->numCommits = 0;
   1050   1.3  oster 	dag_h->numSuccedents = 1;
   1051   1.3  oster 
   1052   1.3  oster 	/* initialize the commit, unblock, and term nodes */
   1053  1.14  oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
   1054  1.14  oster 		    rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes),
   1055  1.14  oster 		    0, 0, 0, dag_h, "Cmt", allocList);
   1056  1.14  oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
   1057  1.14  oster 		    rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes),
   1058  1.14  oster 		    0, 0, dag_h, "Nil", allocList);
   1059  1.14  oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
   1060  1.14  oster 		    rf_TerminateUndoFunc, NULL, 0, 1, 0, 0,
   1061  1.14  oster 		    dag_h, "Trm", allocList);
   1062   1.3  oster 
   1063   1.3  oster 	/* initialize the wnd nodes */
   1064   1.3  oster 	if (nWndNodes > 0) {
   1065   1.3  oster 		pda = asmap->physInfo;
   1066   1.3  oster 		for (i = 0; i < nWndNodes; i++) {
   1067  1.14  oster 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE,
   1068  1.14  oster 				    rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1069  1.14  oster 				    rf_GenericWakeupFunc, 1, 1, 4, 0,
   1070  1.14  oster 				    dag_h, "Wpd", allocList);
   1071   1.3  oster 			RF_ASSERT(pda != NULL);
   1072   1.3  oster 			wndNode[i].params[0].p = pda;
   1073   1.3  oster 			wndNode[i].params[1].p = pda->bufPtr;
   1074   1.3  oster 			wndNode[i].params[2].v = parityStripeID;
   1075  1.17  oster 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
   1076   1.3  oster 			pda = pda->next;
   1077   1.3  oster 		}
   1078   1.3  oster 		RF_ASSERT(pda == NULL);
   1079   1.3  oster 	}
   1080   1.3  oster 	/* initialize the mirror nodes */
   1081   1.3  oster 	if (nWmirNodes > 0) {
   1082   1.3  oster 		pda = asmap->physInfo;
   1083   1.3  oster 		pdaP = asmap->parityInfo;
   1084   1.3  oster 		for (i = 0; i < nWmirNodes; i++) {
   1085  1.14  oster 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE,
   1086  1.14  oster 				    rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1087  1.14  oster 				    rf_GenericWakeupFunc, 1, 1, 4, 0,
   1088  1.14  oster 				    dag_h, "Wsd", allocList);
   1089   1.3  oster 			RF_ASSERT(pda != NULL);
   1090   1.3  oster 			wmirNode[i].params[0].p = pdaP;
   1091   1.3  oster 			wmirNode[i].params[1].p = pda->bufPtr;
   1092   1.3  oster 			wmirNode[i].params[2].v = parityStripeID;
   1093  1.17  oster 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, which_ru);
   1094   1.3  oster 			pda = pda->next;
   1095   1.3  oster 			pdaP = pdaP->next;
   1096   1.3  oster 		}
   1097   1.3  oster 		RF_ASSERT(pda == NULL);
   1098   1.3  oster 		RF_ASSERT(pdaP == NULL);
   1099   1.3  oster 	}
   1100   1.3  oster 	/* link the header node to the commit node */
   1101   1.3  oster 	RF_ASSERT(dag_h->numSuccedents == 1);
   1102   1.3  oster 	RF_ASSERT(commitNode->numAntecedents == 0);
   1103   1.3  oster 	dag_h->succedents[0] = commitNode;
   1104   1.3  oster 
   1105   1.3  oster 	/* link the commit node to the write nodes */
   1106   1.3  oster 	RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
   1107   1.3  oster 	for (i = 0; i < nWndNodes; i++) {
   1108   1.3  oster 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   1109   1.3  oster 		commitNode->succedents[i] = &wndNode[i];
   1110   1.3  oster 		wndNode[i].antecedents[0] = commitNode;
   1111   1.3  oster 		wndNode[i].antType[0] = rf_control;
   1112   1.3  oster 	}
   1113   1.3  oster 	for (i = 0; i < nWmirNodes; i++) {
   1114   1.3  oster 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   1115   1.3  oster 		commitNode->succedents[i + nWndNodes] = &wmirNode[i];
   1116   1.3  oster 		wmirNode[i].antecedents[0] = commitNode;
   1117   1.3  oster 		wmirNode[i].antType[0] = rf_control;
   1118   1.3  oster 	}
   1119   1.3  oster 
   1120   1.3  oster 	/* link the write nodes to the unblock node */
   1121   1.3  oster 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   1122   1.3  oster 	for (i = 0; i < nWndNodes; i++) {
   1123   1.3  oster 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   1124   1.3  oster 		wndNode[i].succedents[0] = unblockNode;
   1125   1.3  oster 		unblockNode->antecedents[i] = &wndNode[i];
   1126   1.3  oster 		unblockNode->antType[i] = rf_control;
   1127   1.3  oster 	}
   1128   1.3  oster 	for (i = 0; i < nWmirNodes; i++) {
   1129   1.3  oster 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   1130   1.3  oster 		wmirNode[i].succedents[0] = unblockNode;
   1131   1.3  oster 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   1132   1.3  oster 		unblockNode->antType[i + nWndNodes] = rf_control;
   1133   1.3  oster 	}
   1134   1.3  oster 
   1135   1.3  oster 	/* link the unblock node to the term node */
   1136   1.3  oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
   1137   1.3  oster 	RF_ASSERT(termNode->numAntecedents == 1);
   1138   1.3  oster 	RF_ASSERT(termNode->numSuccedents == 0);
   1139   1.3  oster 	unblockNode->succedents[0] = termNode;
   1140   1.3  oster 	termNode->antecedents[0] = unblockNode;
   1141   1.3  oster 	termNode->antType[0] = rf_control;
   1142   1.1  oster }
   1143