Home | History | Annotate | Line # | Download | only in raidframe
rf_dagffwr.c revision 1.5.8.1
      1  1.5.8.1  thorpej /*	$NetBSD: rf_dagffwr.c,v 1.5.8.1 2002/01/10 19:57:40 thorpej Exp $	*/
      2      1.1    oster /*
      3      1.1    oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4      1.1    oster  * All rights reserved.
      5      1.1    oster  *
      6      1.1    oster  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7      1.1    oster  *
      8      1.1    oster  * Permission to use, copy, modify and distribute this software and
      9      1.1    oster  * its documentation is hereby granted, provided that both the copyright
     10      1.1    oster  * notice and this permission notice appear in all copies of the
     11      1.1    oster  * software, derivative works or modified versions, and any portions
     12      1.1    oster  * thereof, and that both notices appear in supporting documentation.
     13      1.1    oster  *
     14      1.1    oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15      1.1    oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16      1.1    oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17      1.1    oster  *
     18      1.1    oster  * Carnegie Mellon requests users of this software to return to
     19      1.1    oster  *
     20      1.1    oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21      1.1    oster  *  School of Computer Science
     22      1.1    oster  *  Carnegie Mellon University
     23      1.1    oster  *  Pittsburgh PA 15213-3890
     24      1.1    oster  *
     25      1.1    oster  * any improvements or extensions that they make and grant Carnegie the
     26      1.1    oster  * rights to redistribute these changes.
     27      1.1    oster  */
     28      1.1    oster 
     29      1.1    oster /*
     30      1.1    oster  * rf_dagff.c
     31      1.1    oster  *
     32      1.1    oster  * code for creating fault-free DAGs
     33      1.1    oster  *
     34      1.1    oster  */
     35      1.1    oster 
     36  1.5.8.1  thorpej #include <sys/cdefs.h>
     37  1.5.8.1  thorpej __KERNEL_RCSID(0, "$NetBSD: rf_dagffwr.c,v 1.5.8.1 2002/01/10 19:57:40 thorpej Exp $");
     38  1.5.8.1  thorpej 
     39  1.5.8.1  thorpej #include <dev/raidframe/raidframevar.h>
     40  1.5.8.1  thorpej 
     41      1.1    oster #include "rf_raid.h"
     42      1.1    oster #include "rf_dag.h"
     43      1.1    oster #include "rf_dagutils.h"
     44      1.1    oster #include "rf_dagfuncs.h"
     45      1.1    oster #include "rf_debugMem.h"
     46      1.1    oster #include "rf_dagffrd.h"
     47      1.1    oster #include "rf_memchunk.h"
     48      1.1    oster #include "rf_general.h"
     49      1.1    oster #include "rf_dagffwr.h"
     50      1.1    oster 
     51      1.1    oster /******************************************************************************
     52      1.1    oster  *
     53      1.1    oster  * General comments on DAG creation:
     54      1.3    oster  *
     55      1.1    oster  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     56      1.1    oster  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     57      1.1    oster  * is reached, the execution engine will halt forward execution and work
     58      1.1    oster  * backward through the graph, executing the undo functions.  Assuming that
     59      1.1    oster  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     60      1.1    oster  * does not make changes to permanent state, the graph will fail atomically.
     61      1.1    oster  * If an error occurs after the Cmt node executes, the engine will roll-forward
     62      1.1    oster  * through the graph, blindly executing nodes until it reaches the end.
     63      1.1    oster  * If a graph reaches the end, it is assumed to have completed successfully.
     64      1.1    oster  *
     65      1.1    oster  * A graph has only 1 Cmt node.
     66      1.1    oster  *
     67      1.1    oster  */
     68      1.1    oster 
     69      1.1    oster 
     70      1.1    oster /******************************************************************************
     71      1.1    oster  *
     72      1.1    oster  * The following wrappers map the standard DAG creation interface to the
     73      1.1    oster  * DAG creation routines.  Additionally, these wrappers enable experimentation
     74      1.1    oster  * with new DAG structures by providing an extra level of indirection, allowing
     75      1.1    oster  * the DAG creation routines to be replaced at this single point.
     76      1.1    oster  */
     77      1.1    oster 
     78      1.1    oster 
     79      1.3    oster void
     80      1.3    oster rf_CreateNonRedundantWriteDAG(
     81      1.3    oster     RF_Raid_t * raidPtr,
     82      1.3    oster     RF_AccessStripeMap_t * asmap,
     83      1.3    oster     RF_DagHeader_t * dag_h,
     84      1.3    oster     void *bp,
     85      1.3    oster     RF_RaidAccessFlags_t flags,
     86      1.3    oster     RF_AllocListElem_t * allocList,
     87      1.3    oster     RF_IoType_t type)
     88      1.1    oster {
     89      1.3    oster 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     90      1.3    oster 	    RF_IO_TYPE_WRITE);
     91      1.1    oster }
     92      1.1    oster 
     93      1.3    oster void
     94      1.3    oster rf_CreateRAID0WriteDAG(
     95      1.3    oster     RF_Raid_t * raidPtr,
     96      1.3    oster     RF_AccessStripeMap_t * asmap,
     97      1.3    oster     RF_DagHeader_t * dag_h,
     98      1.3    oster     void *bp,
     99      1.3    oster     RF_RaidAccessFlags_t flags,
    100      1.3    oster     RF_AllocListElem_t * allocList,
    101      1.3    oster     RF_IoType_t type)
    102      1.1    oster {
    103      1.3    oster 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    104      1.3    oster 	    RF_IO_TYPE_WRITE);
    105      1.1    oster }
    106      1.1    oster 
    107      1.3    oster void
    108      1.3    oster rf_CreateSmallWriteDAG(
    109      1.3    oster     RF_Raid_t * raidPtr,
    110      1.3    oster     RF_AccessStripeMap_t * asmap,
    111      1.3    oster     RF_DagHeader_t * dag_h,
    112      1.3    oster     void *bp,
    113      1.3    oster     RF_RaidAccessFlags_t flags,
    114      1.3    oster     RF_AllocListElem_t * allocList)
    115      1.1    oster {
    116      1.3    oster 	/* "normal" rollaway */
    117      1.3    oster 	rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    118      1.3    oster 	    &rf_xorFuncs, NULL);
    119      1.1    oster }
    120      1.1    oster 
    121      1.3    oster void
    122      1.3    oster rf_CreateLargeWriteDAG(
    123      1.3    oster     RF_Raid_t * raidPtr,
    124      1.3    oster     RF_AccessStripeMap_t * asmap,
    125      1.3    oster     RF_DagHeader_t * dag_h,
    126      1.3    oster     void *bp,
    127      1.3    oster     RF_RaidAccessFlags_t flags,
    128      1.3    oster     RF_AllocListElem_t * allocList)
    129      1.1    oster {
    130      1.3    oster 	/* "normal" rollaway */
    131      1.3    oster 	rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    132      1.3    oster 	    1, rf_RegularXorFunc, RF_TRUE);
    133      1.1    oster }
    134      1.1    oster 
    135      1.1    oster 
    136      1.1    oster /******************************************************************************
    137      1.1    oster  *
    138      1.1    oster  * DAG creation code begins here
    139      1.1    oster  */
    140      1.1    oster 
    141      1.1    oster 
    142      1.1    oster /******************************************************************************
    143      1.1    oster  *
    144      1.1    oster  * creates a DAG to perform a large-write operation:
    145      1.1    oster  *
    146      1.1    oster  *           / Rod \           / Wnd \
    147      1.1    oster  * H -- block- Rod - Xor - Cmt - Wnd --- T
    148      1.1    oster  *           \ Rod /          \  Wnp /
    149      1.1    oster  *                             \[Wnq]/
    150      1.1    oster  *
    151      1.1    oster  * The XOR node also does the Q calculation in the P+Q architecture.
    152      1.1    oster  * All nodes are before the commit node (Cmt) are assumed to be atomic and
    153      1.1    oster  * undoable - or - they make no changes to permanent state.
    154      1.1    oster  *
    155      1.1    oster  * Rod = read old data
    156      1.1    oster  * Cmt = commit node
    157      1.1    oster  * Wnp = write new parity
    158      1.1    oster  * Wnd = write new data
    159      1.1    oster  * Wnq = write new "q"
    160      1.1    oster  * [] denotes optional segments in the graph
    161      1.1    oster  *
    162      1.1    oster  * Parameters:  raidPtr   - description of the physical array
    163      1.1    oster  *              asmap     - logical & physical addresses for this access
    164      1.1    oster  *              bp        - buffer ptr (holds write data)
    165      1.3    oster  *              flags     - general flags (e.g. disk locking)
    166      1.1    oster  *              allocList - list of memory allocated in DAG creation
    167      1.1    oster  *              nfaults   - number of faults array can tolerate
    168      1.1    oster  *                          (equal to # redundancy units in stripe)
    169      1.1    oster  *              redfuncs  - list of redundancy generating functions
    170      1.1    oster  *
    171      1.1    oster  *****************************************************************************/
    172      1.1    oster 
    173      1.3    oster void
    174      1.3    oster rf_CommonCreateLargeWriteDAG(
    175      1.3    oster     RF_Raid_t * raidPtr,
    176      1.3    oster     RF_AccessStripeMap_t * asmap,
    177      1.3    oster     RF_DagHeader_t * dag_h,
    178      1.3    oster     void *bp,
    179      1.3    oster     RF_RaidAccessFlags_t flags,
    180      1.3    oster     RF_AllocListElem_t * allocList,
    181      1.3    oster     int nfaults,
    182      1.3    oster     int (*redFunc) (RF_DagNode_t *),
    183      1.3    oster     int allowBufferRecycle)
    184      1.1    oster {
    185      1.3    oster 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
    186      1.3    oster 	RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
    187      1.3    oster 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
    188      1.3    oster 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    189      1.3    oster 	RF_StripeNum_t parityStripeID;
    190      1.3    oster 	char   *sosBuffer, *eosBuffer;
    191      1.3    oster 	RF_ReconUnitNum_t which_ru;
    192      1.3    oster 	RF_RaidLayout_t *layoutPtr;
    193      1.3    oster 	RF_PhysDiskAddr_t *pda;
    194      1.3    oster 
    195      1.3    oster 	layoutPtr = &(raidPtr->Layout);
    196      1.3    oster 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    197      1.3    oster 	    &which_ru);
    198      1.3    oster 
    199      1.3    oster 	if (rf_dagDebug) {
    200      1.3    oster 		printf("[Creating large-write DAG]\n");
    201      1.3    oster 	}
    202      1.3    oster 	dag_h->creator = "LargeWriteDAG";
    203      1.3    oster 
    204      1.3    oster 	dag_h->numCommitNodes = 1;
    205      1.3    oster 	dag_h->numCommits = 0;
    206      1.3    oster 	dag_h->numSuccedents = 1;
    207      1.3    oster 
    208      1.3    oster 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
    209      1.3    oster 	nWndNodes = asmap->numStripeUnitsAccessed;
    210      1.3    oster 	RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t),
    211      1.3    oster 	    (RF_DagNode_t *), allocList);
    212      1.3    oster 	i = 0;
    213      1.3    oster 	wndNodes = &nodes[i];
    214      1.3    oster 	i += nWndNodes;
    215      1.3    oster 	xorNode = &nodes[i];
    216      1.3    oster 	i += 1;
    217      1.3    oster 	wnpNode = &nodes[i];
    218      1.3    oster 	i += 1;
    219      1.3    oster 	blockNode = &nodes[i];
    220      1.3    oster 	i += 1;
    221      1.3    oster 	commitNode = &nodes[i];
    222      1.3    oster 	i += 1;
    223      1.3    oster 	termNode = &nodes[i];
    224      1.3    oster 	i += 1;
    225      1.3    oster 	if (nfaults == 2) {
    226      1.3    oster 		wnqNode = &nodes[i];
    227      1.3    oster 		i += 1;
    228      1.3    oster 	} else {
    229      1.3    oster 		wnqNode = NULL;
    230      1.3    oster 	}
    231      1.3    oster 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h,
    232      1.3    oster 	    &nRodNodes, &sosBuffer, &eosBuffer, allocList);
    233      1.3    oster 	if (nRodNodes > 0) {
    234      1.3    oster 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t),
    235      1.3    oster 		    (RF_DagNode_t *), allocList);
    236      1.3    oster 	} else {
    237      1.3    oster 		rodNodes = NULL;
    238      1.3    oster 	}
    239      1.3    oster 
    240      1.3    oster 	/* begin node initialization */
    241      1.3    oster 	if (nRodNodes > 0) {
    242      1.3    oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    243      1.3    oster 		    NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
    244      1.3    oster 	} else {
    245      1.3    oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    246      1.3    oster 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    247      1.3    oster 	}
    248      1.3    oster 
    249      1.3    oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL,
    250      1.3    oster 	    nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    251      1.3    oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL,
    252      1.3    oster 	    0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
    253      1.3    oster 
    254      1.3    oster 	/* initialize the Rod nodes */
    255      1.3    oster 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
    256      1.3    oster 		if (new_asm_h[asmNum]) {
    257      1.3    oster 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
    258      1.3    oster 			while (pda) {
    259      1.3    oster 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc,
    260      1.3    oster 				    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    261      1.3    oster 				    "Rod", allocList);
    262      1.3    oster 				rodNodes[nodeNum].params[0].p = pda;
    263      1.3    oster 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
    264      1.3    oster 				rodNodes[nodeNum].params[2].v = parityStripeID;
    265      1.3    oster 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    266      1.3    oster 				    0, 0, which_ru);
    267      1.3    oster 				nodeNum++;
    268      1.3    oster 				pda = pda->next;
    269      1.3    oster 			}
    270      1.3    oster 		}
    271      1.3    oster 	}
    272      1.3    oster 	RF_ASSERT(nodeNum == nRodNodes);
    273      1.3    oster 
    274      1.3    oster 	/* initialize the wnd nodes */
    275      1.3    oster 	pda = asmap->physInfo;
    276      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    277      1.3    oster 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    278      1.3    oster 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    279      1.3    oster 		RF_ASSERT(pda != NULL);
    280      1.3    oster 		wndNodes[i].params[0].p = pda;
    281      1.3    oster 		wndNodes[i].params[1].p = pda->bufPtr;
    282      1.3    oster 		wndNodes[i].params[2].v = parityStripeID;
    283      1.3    oster 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    284      1.3    oster 		pda = pda->next;
    285      1.3    oster 	}
    286      1.3    oster 
    287      1.3    oster 	/* initialize the redundancy node */
    288      1.3    oster 	if (nRodNodes > 0) {
    289      1.3    oster 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    290      1.3    oster 		    nRodNodes, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h,
    291      1.3    oster 		    "Xr ", allocList);
    292      1.3    oster 	} else {
    293      1.3    oster 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    294      1.3    oster 		    1, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
    295      1.3    oster 	}
    296      1.3    oster 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
    297      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    298      1.3    oster 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
    299      1.3    oster 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
    300      1.3    oster 	}
    301      1.3    oster 	for (i = 0; i < nRodNodes; i++) {
    302      1.3    oster 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
    303      1.3    oster 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
    304      1.3    oster 	}
    305      1.3    oster 	/* xor node needs to get at RAID information */
    306      1.3    oster 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
    307      1.3    oster 
    308      1.3    oster 	/*
    309      1.3    oster          * Look for an Rod node that reads a complete SU. If none, alloc a buffer
    310      1.3    oster          * to receive the parity info. Note that we can't use a new data buffer
    311      1.3    oster          * because it will not have gotten written when the xor occurs.
    312      1.3    oster          */
    313      1.3    oster 	if (allowBufferRecycle) {
    314      1.3    oster 		for (i = 0; i < nRodNodes; i++) {
    315      1.3    oster 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
    316      1.3    oster 				break;
    317      1.3    oster 		}
    318      1.3    oster 	}
    319      1.3    oster 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
    320      1.3    oster 		RF_CallocAndAdd(xorNode->results[0], 1,
    321      1.3    oster 		    rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    322      1.3    oster 		    (void *), allocList);
    323      1.3    oster 	} else {
    324      1.3    oster 		xorNode->results[0] = rodNodes[i].params[1].p;
    325      1.3    oster 	}
    326      1.3    oster 
    327      1.3    oster 	/* initialize the Wnp node */
    328      1.3    oster 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    329      1.3    oster 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    330      1.3    oster 	wnpNode->params[0].p = asmap->parityInfo;
    331      1.3    oster 	wnpNode->params[1].p = xorNode->results[0];
    332      1.3    oster 	wnpNode->params[2].v = parityStripeID;
    333      1.3    oster 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    334      1.3    oster 	/* parityInfo must describe entire parity unit */
    335      1.3    oster 	RF_ASSERT(asmap->parityInfo->next == NULL);
    336      1.3    oster 
    337      1.3    oster 	if (nfaults == 2) {
    338      1.3    oster 		/*
    339      1.3    oster 	         * We never try to recycle a buffer for the Q calcuation
    340      1.3    oster 	         * in addition to the parity. This would cause two buffers
    341      1.3    oster 	         * to get smashed during the P and Q calculation, guaranteeing
    342      1.3    oster 	         * one would be wrong.
    343      1.3    oster 	         */
    344      1.3    oster 		RF_CallocAndAdd(xorNode->results[1], 1,
    345      1.3    oster 		    rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    346      1.3    oster 		    (void *), allocList);
    347      1.3    oster 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    348      1.3    oster 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    349      1.3    oster 		wnqNode->params[0].p = asmap->qInfo;
    350      1.3    oster 		wnqNode->params[1].p = xorNode->results[1];
    351      1.3    oster 		wnqNode->params[2].v = parityStripeID;
    352      1.3    oster 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    353      1.3    oster 		/* parityInfo must describe entire parity unit */
    354      1.3    oster 		RF_ASSERT(asmap->parityInfo->next == NULL);
    355      1.3    oster 	}
    356      1.3    oster 	/*
    357      1.3    oster          * Connect nodes to form graph.
    358      1.3    oster          */
    359      1.3    oster 
    360      1.3    oster 	/* connect dag header to block node */
    361      1.3    oster 	RF_ASSERT(blockNode->numAntecedents == 0);
    362      1.3    oster 	dag_h->succedents[0] = blockNode;
    363      1.3    oster 
    364      1.3    oster 	if (nRodNodes > 0) {
    365      1.3    oster 		/* connect the block node to the Rod nodes */
    366      1.3    oster 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
    367      1.3    oster 		RF_ASSERT(xorNode->numAntecedents == nRodNodes);
    368      1.3    oster 		for (i = 0; i < nRodNodes; i++) {
    369      1.3    oster 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
    370      1.3    oster 			blockNode->succedents[i] = &rodNodes[i];
    371      1.3    oster 			rodNodes[i].antecedents[0] = blockNode;
    372      1.3    oster 			rodNodes[i].antType[0] = rf_control;
    373      1.3    oster 
    374      1.3    oster 			/* connect the Rod nodes to the Xor node */
    375      1.3    oster 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
    376      1.3    oster 			rodNodes[i].succedents[0] = xorNode;
    377      1.3    oster 			xorNode->antecedents[i] = &rodNodes[i];
    378      1.3    oster 			xorNode->antType[i] = rf_trueData;
    379      1.3    oster 		}
    380      1.3    oster 	} else {
    381      1.3    oster 		/* connect the block node to the Xor node */
    382      1.3    oster 		RF_ASSERT(blockNode->numSuccedents == 1);
    383      1.3    oster 		RF_ASSERT(xorNode->numAntecedents == 1);
    384      1.3    oster 		blockNode->succedents[0] = xorNode;
    385      1.3    oster 		xorNode->antecedents[0] = blockNode;
    386      1.3    oster 		xorNode->antType[0] = rf_control;
    387      1.3    oster 	}
    388      1.3    oster 
    389      1.3    oster 	/* connect the xor node to the commit node */
    390      1.3    oster 	RF_ASSERT(xorNode->numSuccedents == 1);
    391      1.3    oster 	RF_ASSERT(commitNode->numAntecedents == 1);
    392      1.3    oster 	xorNode->succedents[0] = commitNode;
    393      1.3    oster 	commitNode->antecedents[0] = xorNode;
    394      1.3    oster 	commitNode->antType[0] = rf_control;
    395      1.3    oster 
    396      1.3    oster 	/* connect the commit node to the write nodes */
    397      1.3    oster 	RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
    398      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    399      1.3    oster 		RF_ASSERT(wndNodes->numAntecedents == 1);
    400      1.3    oster 		commitNode->succedents[i] = &wndNodes[i];
    401      1.3    oster 		wndNodes[i].antecedents[0] = commitNode;
    402      1.3    oster 		wndNodes[i].antType[0] = rf_control;
    403      1.3    oster 	}
    404      1.3    oster 	RF_ASSERT(wnpNode->numAntecedents == 1);
    405      1.3    oster 	commitNode->succedents[nWndNodes] = wnpNode;
    406      1.3    oster 	wnpNode->antecedents[0] = commitNode;
    407      1.3    oster 	wnpNode->antType[0] = rf_trueData;
    408      1.3    oster 	if (nfaults == 2) {
    409      1.3    oster 		RF_ASSERT(wnqNode->numAntecedents == 1);
    410      1.3    oster 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    411      1.3    oster 		wnqNode->antecedents[0] = commitNode;
    412      1.3    oster 		wnqNode->antType[0] = rf_trueData;
    413      1.3    oster 	}
    414      1.3    oster 	/* connect the write nodes to the term node */
    415      1.3    oster 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
    416      1.3    oster 	RF_ASSERT(termNode->numSuccedents == 0);
    417      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
    418      1.3    oster 		RF_ASSERT(wndNodes->numSuccedents == 1);
    419      1.3    oster 		wndNodes[i].succedents[0] = termNode;
    420      1.3    oster 		termNode->antecedents[i] = &wndNodes[i];
    421      1.3    oster 		termNode->antType[i] = rf_control;
    422      1.3    oster 	}
    423      1.3    oster 	RF_ASSERT(wnpNode->numSuccedents == 1);
    424      1.3    oster 	wnpNode->succedents[0] = termNode;
    425      1.3    oster 	termNode->antecedents[nWndNodes] = wnpNode;
    426      1.3    oster 	termNode->antType[nWndNodes] = rf_control;
    427      1.3    oster 	if (nfaults == 2) {
    428      1.3    oster 		RF_ASSERT(wnqNode->numSuccedents == 1);
    429      1.3    oster 		wnqNode->succedents[0] = termNode;
    430      1.3    oster 		termNode->antecedents[nWndNodes + 1] = wnqNode;
    431      1.3    oster 		termNode->antType[nWndNodes + 1] = rf_control;
    432      1.3    oster 	}
    433      1.1    oster }
    434      1.1    oster /******************************************************************************
    435      1.1    oster  *
    436      1.1    oster  * creates a DAG to perform a small-write operation (either raid 5 or pq),
    437      1.1    oster  * which is as follows:
    438      1.1    oster  *
    439      1.1    oster  * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
    440      1.1    oster  *            \- Rod X      /     \----> Wnd [Und]-/
    441      1.1    oster  *           [\- Rod X     /       \---> Wnd [Und]-/]
    442      1.1    oster  *           [\- Roq -> Q /         \--> Wnq [Unq]-/]
    443      1.1    oster  *
    444      1.1    oster  * Rop = read old parity
    445      1.1    oster  * Rod = read old data
    446      1.1    oster  * Roq = read old "q"
    447      1.1    oster  * Cmt = commit node
    448      1.1    oster  * Und = unlock data disk
    449      1.1    oster  * Unp = unlock parity disk
    450      1.1    oster  * Unq = unlock q disk
    451      1.1    oster  * Wnp = write new parity
    452      1.1    oster  * Wnd = write new data
    453      1.1    oster  * Wnq = write new "q"
    454      1.1    oster  * [ ] denotes optional segments in the graph
    455      1.1    oster  *
    456      1.1    oster  * Parameters:  raidPtr   - description of the physical array
    457      1.1    oster  *              asmap     - logical & physical addresses for this access
    458      1.1    oster  *              bp        - buffer ptr (holds write data)
    459      1.3    oster  *              flags     - general flags (e.g. disk locking)
    460      1.1    oster  *              allocList - list of memory allocated in DAG creation
    461      1.1    oster  *              pfuncs    - list of parity generating functions
    462      1.1    oster  *              qfuncs    - list of q generating functions
    463      1.1    oster  *
    464      1.1    oster  * A null qfuncs indicates single fault tolerant
    465      1.1    oster  *****************************************************************************/
    466      1.1    oster 
    467      1.3    oster void
    468      1.3    oster rf_CommonCreateSmallWriteDAG(
    469      1.3    oster     RF_Raid_t * raidPtr,
    470      1.3    oster     RF_AccessStripeMap_t * asmap,
    471      1.3    oster     RF_DagHeader_t * dag_h,
    472      1.3    oster     void *bp,
    473      1.3    oster     RF_RaidAccessFlags_t flags,
    474      1.3    oster     RF_AllocListElem_t * allocList,
    475      1.3    oster     RF_RedFuncs_t * pfuncs,
    476      1.3    oster     RF_RedFuncs_t * qfuncs)
    477      1.1    oster {
    478      1.3    oster 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
    479      1.3    oster 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
    480      1.3    oster 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes;
    481      1.3    oster 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
    482      1.3    oster 	int     i, j, nNodes, totalNumNodes, lu_flag;
    483      1.3    oster 	RF_ReconUnitNum_t which_ru;
    484      1.3    oster 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    485      1.3    oster 	int     (*qfunc) (RF_DagNode_t *);
    486      1.3    oster 	int     numDataNodes, numParityNodes;
    487      1.3    oster 	RF_StripeNum_t parityStripeID;
    488      1.3    oster 	RF_PhysDiskAddr_t *pda;
    489      1.3    oster 	char   *name, *qname;
    490      1.3    oster 	long    nfaults;
    491      1.3    oster 
    492      1.3    oster 	nfaults = qfuncs ? 2 : 1;
    493      1.3    oster 	lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
    494      1.3    oster 
    495      1.3    oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    496      1.3    oster 	    asmap->raidAddress, &which_ru);
    497      1.3    oster 	pda = asmap->physInfo;
    498      1.3    oster 	numDataNodes = asmap->numStripeUnitsAccessed;
    499      1.3    oster 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
    500      1.3    oster 
    501      1.3    oster 	if (rf_dagDebug) {
    502      1.3    oster 		printf("[Creating small-write DAG]\n");
    503      1.3    oster 	}
    504      1.3    oster 	RF_ASSERT(numDataNodes > 0);
    505      1.3    oster 	dag_h->creator = "SmallWriteDAG";
    506      1.3    oster 
    507      1.3    oster 	dag_h->numCommitNodes = 1;
    508      1.3    oster 	dag_h->numCommits = 0;
    509      1.3    oster 	dag_h->numSuccedents = 1;
    510      1.3    oster 
    511      1.3    oster 	/*
    512      1.3    oster          * DAG creation occurs in four steps:
    513      1.3    oster          * 1. count the number of nodes in the DAG
    514      1.3    oster          * 2. create the nodes
    515      1.3    oster          * 3. initialize the nodes
    516      1.3    oster          * 4. connect the nodes
    517      1.3    oster          */
    518      1.3    oster 
    519      1.3    oster 	/*
    520      1.3    oster          * Step 1. compute number of nodes in the graph
    521      1.3    oster          */
    522      1.3    oster 
    523      1.3    oster 	/* number of nodes: a read and write for each data unit a redundancy
    524      1.3    oster 	 * computation node for each parity node (nfaults * nparity) a read
    525      1.3    oster 	 * and write for each parity unit a block and commit node (2) a
    526      1.3    oster 	 * terminate node if atomic RMW an unlock node for each data unit,
    527      1.3    oster 	 * redundancy unit */
    528      1.3    oster 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
    529      1.3    oster 	    + (nfaults * 2 * numParityNodes) + 3;
    530      1.3    oster 	if (lu_flag) {
    531      1.3    oster 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
    532      1.3    oster 	}
    533      1.3    oster 	/*
    534      1.3    oster          * Step 2. create the nodes
    535      1.3    oster          */
    536      1.3    oster 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
    537      1.3    oster 	    (RF_DagNode_t *), allocList);
    538      1.3    oster 	i = 0;
    539      1.3    oster 	blockNode = &nodes[i];
    540      1.3    oster 	i += 1;
    541      1.3    oster 	commitNode = &nodes[i];
    542      1.3    oster 	i += 1;
    543      1.3    oster 	readDataNodes = &nodes[i];
    544      1.3    oster 	i += numDataNodes;
    545      1.3    oster 	readParityNodes = &nodes[i];
    546      1.3    oster 	i += numParityNodes;
    547      1.3    oster 	writeDataNodes = &nodes[i];
    548      1.3    oster 	i += numDataNodes;
    549      1.3    oster 	writeParityNodes = &nodes[i];
    550      1.3    oster 	i += numParityNodes;
    551      1.3    oster 	xorNodes = &nodes[i];
    552      1.3    oster 	i += numParityNodes;
    553      1.3    oster 	termNode = &nodes[i];
    554      1.3    oster 	i += 1;
    555      1.3    oster 	if (lu_flag) {
    556      1.3    oster 		unlockDataNodes = &nodes[i];
    557      1.3    oster 		i += numDataNodes;
    558      1.3    oster 		unlockParityNodes = &nodes[i];
    559      1.3    oster 		i += numParityNodes;
    560      1.3    oster 	} else {
    561      1.3    oster 		unlockDataNodes = unlockParityNodes = NULL;
    562      1.3    oster 	}
    563      1.3    oster 	if (nfaults == 2) {
    564      1.3    oster 		readQNodes = &nodes[i];
    565      1.3    oster 		i += numParityNodes;
    566      1.3    oster 		writeQNodes = &nodes[i];
    567      1.3    oster 		i += numParityNodes;
    568      1.3    oster 		qNodes = &nodes[i];
    569      1.3    oster 		i += numParityNodes;
    570      1.3    oster 		if (lu_flag) {
    571      1.3    oster 			unlockQNodes = &nodes[i];
    572      1.3    oster 			i += numParityNodes;
    573      1.3    oster 		} else {
    574      1.3    oster 			unlockQNodes = NULL;
    575      1.3    oster 		}
    576      1.3    oster 	} else {
    577      1.3    oster 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
    578      1.3    oster 	}
    579      1.3    oster 	RF_ASSERT(i == totalNumNodes);
    580      1.3    oster 
    581      1.3    oster 	/*
    582      1.3    oster          * Step 3. initialize the nodes
    583      1.3    oster          */
    584      1.3    oster 	/* initialize block node (Nil) */
    585      1.3    oster 	nNodes = numDataNodes + (nfaults * numParityNodes);
    586      1.3    oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    587      1.3    oster 	    NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
    588      1.3    oster 
    589      1.3    oster 	/* initialize commit node (Cmt) */
    590      1.3    oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    591      1.3    oster 	    NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
    592      1.3    oster 
    593      1.3    oster 	/* initialize terminate node (Trm) */
    594      1.3    oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    595      1.3    oster 	    NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
    596      1.3    oster 
    597      1.3    oster 	/* initialize nodes which read old data (Rod) */
    598      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
    599      1.3    oster 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    600      1.3    oster 		    rf_GenericWakeupFunc, (nfaults * numParityNodes), 1, 4, 0, dag_h,
    601      1.3    oster 		    "Rod", allocList);
    602      1.3    oster 		RF_ASSERT(pda != NULL);
    603      1.3    oster 		/* physical disk addr desc */
    604      1.3    oster 		readDataNodes[i].params[0].p = pda;
    605      1.3    oster 		/* buffer to hold old data */
    606      1.3    oster 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    607      1.3    oster 		    dag_h, pda, allocList);
    608      1.3    oster 		readDataNodes[i].params[2].v = parityStripeID;
    609      1.3    oster 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    610      1.3    oster 		    lu_flag, 0, which_ru);
    611      1.3    oster 		pda = pda->next;
    612      1.3    oster 		for (j = 0; j < readDataNodes[i].numSuccedents; j++) {
    613      1.3    oster 			readDataNodes[i].propList[j] = NULL;
    614      1.3    oster 		}
    615      1.3    oster 	}
    616      1.3    oster 
    617      1.3    oster 	/* initialize nodes which read old parity (Rop) */
    618      1.3    oster 	pda = asmap->parityInfo;
    619      1.3    oster 	i = 0;
    620      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
    621      1.3    oster 		RF_ASSERT(pda != NULL);
    622      1.3    oster 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
    623      1.3    oster 		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4,
    624      1.3    oster 		    0, dag_h, "Rop", allocList);
    625      1.3    oster 		readParityNodes[i].params[0].p = pda;
    626      1.3    oster 		/* buffer to hold old parity */
    627      1.3    oster 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    628      1.3    oster 		    dag_h, pda, allocList);
    629      1.3    oster 		readParityNodes[i].params[2].v = parityStripeID;
    630      1.3    oster 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    631      1.3    oster 		    lu_flag, 0, which_ru);
    632      1.3    oster 		pda = pda->next;
    633      1.3    oster 		for (j = 0; j < readParityNodes[i].numSuccedents; j++) {
    634      1.3    oster 			readParityNodes[i].propList[0] = NULL;
    635      1.3    oster 		}
    636      1.3    oster 	}
    637      1.3    oster 
    638      1.3    oster 	/* initialize nodes which read old Q (Roq) */
    639      1.3    oster 	if (nfaults == 2) {
    640      1.3    oster 		pda = asmap->qInfo;
    641      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
    642      1.3    oster 			RF_ASSERT(pda != NULL);
    643      1.3    oster 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    644      1.3    oster 			    rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
    645      1.3    oster 			readQNodes[i].params[0].p = pda;
    646      1.3    oster 			/* buffer to hold old Q */
    647      1.3    oster 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda,
    648      1.3    oster 			    allocList);
    649      1.3    oster 			readQNodes[i].params[2].v = parityStripeID;
    650      1.3    oster 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    651      1.3    oster 			    lu_flag, 0, which_ru);
    652      1.3    oster 			pda = pda->next;
    653      1.3    oster 			for (j = 0; j < readQNodes[i].numSuccedents; j++) {
    654      1.3    oster 				readQNodes[i].propList[0] = NULL;
    655      1.3    oster 			}
    656      1.3    oster 		}
    657      1.3    oster 	}
    658      1.3    oster 	/* initialize nodes which write new data (Wnd) */
    659      1.3    oster 	pda = asmap->physInfo;
    660      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
    661      1.3    oster 		RF_ASSERT(pda != NULL);
    662      1.3    oster 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    663      1.3    oster 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    664      1.3    oster 		    "Wnd", allocList);
    665      1.3    oster 		/* physical disk addr desc */
    666      1.3    oster 		writeDataNodes[i].params[0].p = pda;
    667      1.3    oster 		/* buffer holding new data to be written */
    668      1.3    oster 		writeDataNodes[i].params[1].p = pda->bufPtr;
    669      1.3    oster 		writeDataNodes[i].params[2].v = parityStripeID;
    670      1.3    oster 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    671      1.3    oster 		    0, 0, which_ru);
    672      1.3    oster 		if (lu_flag) {
    673      1.3    oster 			/* initialize node to unlock the disk queue */
    674      1.3    oster 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    675      1.3    oster 			    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    676      1.3    oster 			    "Und", allocList);
    677      1.3    oster 			/* physical disk addr desc */
    678      1.3    oster 			unlockDataNodes[i].params[0].p = pda;
    679      1.3    oster 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    680      1.3    oster 			    0, lu_flag, which_ru);
    681      1.3    oster 		}
    682      1.3    oster 		pda = pda->next;
    683      1.3    oster 	}
    684      1.3    oster 
    685      1.3    oster 	/*
    686      1.3    oster          * Initialize nodes which compute new parity and Q.
    687      1.3    oster          */
    688      1.3    oster 	/*
    689      1.3    oster          * We use the simple XOR func in the double-XOR case, and when
    690      1.3    oster          * we're accessing only a portion of one stripe unit. The distinction
    691      1.3    oster          * between the two is that the regular XOR func assumes that the targbuf
    692      1.3    oster          * is a full SU in size, and examines the pda associated with the buffer
    693      1.3    oster          * to decide where within the buffer to XOR the data, whereas
    694      1.3    oster          * the simple XOR func just XORs the data into the start of the buffer.
    695      1.3    oster          */
    696      1.3    oster 	if ((numParityNodes == 2) || ((numDataNodes == 1)
    697      1.3    oster 		&& (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
    698      1.3    oster 		func = pfuncs->simple;
    699      1.3    oster 		undoFunc = rf_NullNodeUndoFunc;
    700      1.3    oster 		name = pfuncs->SimpleName;
    701      1.3    oster 		if (qfuncs) {
    702      1.3    oster 			qfunc = qfuncs->simple;
    703      1.3    oster 			qname = qfuncs->SimpleName;
    704      1.3    oster 		} else {
    705      1.3    oster 			qfunc = NULL;
    706      1.3    oster 			qname = NULL;
    707      1.3    oster 		}
    708      1.3    oster 	} else {
    709      1.3    oster 		func = pfuncs->regular;
    710      1.3    oster 		undoFunc = rf_NullNodeUndoFunc;
    711      1.3    oster 		name = pfuncs->RegularName;
    712      1.3    oster 		if (qfuncs) {
    713      1.3    oster 			qfunc = qfuncs->regular;
    714      1.3    oster 			qname = qfuncs->RegularName;
    715      1.3    oster 		} else {
    716      1.3    oster 			qfunc = NULL;
    717      1.3    oster 			qname = NULL;
    718      1.3    oster 		}
    719      1.3    oster 	}
    720      1.3    oster 	/*
    721      1.3    oster          * Initialize the xor nodes: params are {pda,buf}
    722      1.3    oster          * from {Rod,Wnd,Rop} nodes, and raidPtr
    723      1.3    oster          */
    724      1.3    oster 	if (numParityNodes == 2) {
    725      1.3    oster 		/* double-xor case */
    726      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
    727      1.3    oster 			/* note: no wakeup func for xor */
    728      1.3    oster 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL,
    729      1.3    oster 			    1, (numDataNodes + numParityNodes), 7, 1, dag_h, name, allocList);
    730      1.3    oster 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
    731      1.3    oster 			xorNodes[i].params[0] = readDataNodes[i].params[0];
    732      1.3    oster 			xorNodes[i].params[1] = readDataNodes[i].params[1];
    733      1.3    oster 			xorNodes[i].params[2] = readParityNodes[i].params[0];
    734      1.3    oster 			xorNodes[i].params[3] = readParityNodes[i].params[1];
    735      1.3    oster 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
    736      1.3    oster 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
    737      1.3    oster 			xorNodes[i].params[6].p = raidPtr;
    738      1.3    oster 			/* use old parity buf as target buf */
    739      1.3    oster 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;
    740      1.3    oster 			if (nfaults == 2) {
    741      1.3    oster 				/* note: no wakeup func for qor */
    742      1.3    oster 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
    743      1.3    oster 				    (numDataNodes + numParityNodes), 7, 1, dag_h, qname, allocList);
    744      1.3    oster 				qNodes[i].params[0] = readDataNodes[i].params[0];
    745      1.3    oster 				qNodes[i].params[1] = readDataNodes[i].params[1];
    746      1.3    oster 				qNodes[i].params[2] = readQNodes[i].params[0];
    747      1.3    oster 				qNodes[i].params[3] = readQNodes[i].params[1];
    748      1.3    oster 				qNodes[i].params[4] = writeDataNodes[i].params[0];
    749      1.3    oster 				qNodes[i].params[5] = writeDataNodes[i].params[1];
    750      1.3    oster 				qNodes[i].params[6].p = raidPtr;
    751      1.3    oster 				/* use old Q buf as target buf */
    752      1.3    oster 				qNodes[i].results[0] = readQNodes[i].params[1].p;
    753      1.3    oster 			}
    754      1.3    oster 		}
    755      1.3    oster 	} else {
    756      1.3    oster 		/* there is only one xor node in this case */
    757      1.3    oster 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, 1,
    758      1.3    oster 		    (numDataNodes + numParityNodes),
    759      1.3    oster 		    (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
    760      1.3    oster 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
    761      1.3    oster 		for (i = 0; i < numDataNodes + 1; i++) {
    762      1.3    oster 			/* set up params related to Rod and Rop nodes */
    763      1.3    oster 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    764      1.3    oster 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    765      1.3    oster 		}
    766      1.3    oster 		for (i = 0; i < numDataNodes; i++) {
    767      1.3    oster 			/* set up params related to Wnd and Wnp nodes */
    768      1.3    oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    769      1.3    oster 			    writeDataNodes[i].params[0];
    770      1.3    oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    771      1.3    oster 			    writeDataNodes[i].params[1];
    772      1.3    oster 		}
    773      1.3    oster 		/* xor node needs to get at RAID information */
    774      1.3    oster 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    775      1.3    oster 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
    776      1.3    oster 		if (nfaults == 2) {
    777      1.3    oster 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
    778      1.3    oster 			    (numDataNodes + numParityNodes),
    779      1.3    oster 			    (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h,
    780      1.3    oster 			    qname, allocList);
    781      1.3    oster 			for (i = 0; i < numDataNodes; i++) {
    782      1.3    oster 				/* set up params related to Rod */
    783      1.3    oster 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    784      1.3    oster 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    785      1.3    oster 			}
    786      1.3    oster 			/* and read old q */
    787      1.3    oster 			qNodes[0].params[2 * numDataNodes + 0] =	/* pda */
    788      1.3    oster 			    readQNodes[0].params[0];
    789      1.3    oster 			qNodes[0].params[2 * numDataNodes + 1] =	/* buffer ptr */
    790      1.3    oster 			    readQNodes[0].params[1];
    791      1.3    oster 			for (i = 0; i < numDataNodes; i++) {
    792      1.3    oster 				/* set up params related to Wnd nodes */
    793      1.3    oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    794      1.3    oster 				    writeDataNodes[i].params[0];
    795      1.3    oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    796      1.3    oster 				    writeDataNodes[i].params[1];
    797      1.3    oster 			}
    798      1.3    oster 			/* xor node needs to get at RAID information */
    799      1.3    oster 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    800      1.3    oster 			qNodes[0].results[0] = readQNodes[0].params[1].p;
    801      1.3    oster 		}
    802      1.3    oster 	}
    803      1.3    oster 
    804      1.3    oster 	/* initialize nodes which write new parity (Wnp) */
    805      1.3    oster 	pda = asmap->parityInfo;
    806      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
    807      1.3    oster 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    808      1.3    oster 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    809      1.3    oster 		    "Wnp", allocList);
    810      1.3    oster 		RF_ASSERT(pda != NULL);
    811      1.3    oster 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    812      1.3    oster 							 * filled in by xor node */
    813      1.3    oster 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
    814      1.3    oster 										 * parity write
    815      1.3    oster 										 * operation */
    816      1.3    oster 		writeParityNodes[i].params[2].v = parityStripeID;
    817      1.3    oster 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    818      1.3    oster 		    0, 0, which_ru);
    819      1.3    oster 		if (lu_flag) {
    820      1.3    oster 			/* initialize node to unlock the disk queue */
    821      1.3    oster 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    822      1.3    oster 			    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    823      1.3    oster 			    "Unp", allocList);
    824      1.3    oster 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
    825      1.3    oster 								 * desc */
    826      1.3    oster 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    827      1.3    oster 			    0, lu_flag, which_ru);
    828      1.3    oster 		}
    829      1.3    oster 		pda = pda->next;
    830      1.3    oster 	}
    831      1.3    oster 
    832      1.3    oster 	/* initialize nodes which write new Q (Wnq) */
    833      1.3    oster 	if (nfaults == 2) {
    834      1.3    oster 		pda = asmap->qInfo;
    835      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
    836      1.3    oster 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    837      1.3    oster 			    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    838      1.3    oster 			    "Wnq", allocList);
    839      1.3    oster 			RF_ASSERT(pda != NULL);
    840      1.3    oster 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    841      1.3    oster 								 * filled in by xor node */
    842      1.3    oster 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
    843      1.3    oster 										 * parity write
    844      1.3    oster 										 * operation */
    845      1.3    oster 			writeQNodes[i].params[2].v = parityStripeID;
    846      1.3    oster 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    847      1.3    oster 			    0, 0, which_ru);
    848      1.3    oster 			if (lu_flag) {
    849      1.3    oster 				/* initialize node to unlock the disk queue */
    850      1.3    oster 				rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    851      1.3    oster 				    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    852      1.3    oster 				    "Unq", allocList);
    853      1.3    oster 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
    854      1.3    oster 									 * desc */
    855      1.3    oster 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    856      1.3    oster 				    0, lu_flag, which_ru);
    857      1.3    oster 			}
    858      1.3    oster 			pda = pda->next;
    859      1.3    oster 		}
    860      1.3    oster 	}
    861      1.3    oster 	/*
    862      1.3    oster          * Step 4. connect the nodes.
    863      1.3    oster          */
    864      1.3    oster 
    865      1.3    oster 	/* connect header to block node */
    866      1.3    oster 	dag_h->succedents[0] = blockNode;
    867      1.3    oster 
    868      1.3    oster 	/* connect block node to read old data nodes */
    869      1.3    oster 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
    870      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
    871      1.3    oster 		blockNode->succedents[i] = &readDataNodes[i];
    872      1.3    oster 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
    873      1.3    oster 		readDataNodes[i].antecedents[0] = blockNode;
    874      1.3    oster 		readDataNodes[i].antType[0] = rf_control;
    875      1.3    oster 	}
    876      1.3    oster 
    877      1.3    oster 	/* connect block node to read old parity nodes */
    878      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
    879      1.3    oster 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
    880      1.3    oster 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
    881      1.3    oster 		readParityNodes[i].antecedents[0] = blockNode;
    882      1.3    oster 		readParityNodes[i].antType[0] = rf_control;
    883      1.3    oster 	}
    884      1.3    oster 
    885      1.3    oster 	/* connect block node to read old Q nodes */
    886      1.3    oster 	if (nfaults == 2) {
    887      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
    888      1.3    oster 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
    889      1.3    oster 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
    890      1.3    oster 			readQNodes[i].antecedents[0] = blockNode;
    891      1.3    oster 			readQNodes[i].antType[0] = rf_control;
    892      1.3    oster 		}
    893      1.3    oster 	}
    894      1.3    oster 	/* connect read old data nodes to xor nodes */
    895      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
    896      1.3    oster 		RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes));
    897      1.3    oster 		for (j = 0; j < numParityNodes; j++) {
    898      1.3    oster 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
    899      1.3    oster 			readDataNodes[i].succedents[j] = &xorNodes[j];
    900      1.3    oster 			xorNodes[j].antecedents[i] = &readDataNodes[i];
    901      1.3    oster 			xorNodes[j].antType[i] = rf_trueData;
    902      1.3    oster 		}
    903      1.3    oster 	}
    904      1.3    oster 
    905      1.3    oster 	/* connect read old data nodes to q nodes */
    906      1.3    oster 	if (nfaults == 2) {
    907      1.3    oster 		for (i = 0; i < numDataNodes; i++) {
    908      1.3    oster 			for (j = 0; j < numParityNodes; j++) {
    909      1.3    oster 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
    910      1.3    oster 				readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j];
    911      1.3    oster 				qNodes[j].antecedents[i] = &readDataNodes[i];
    912      1.3    oster 				qNodes[j].antType[i] = rf_trueData;
    913      1.3    oster 			}
    914      1.3    oster 		}
    915      1.3    oster 	}
    916      1.3    oster 	/* connect read old parity nodes to xor nodes */
    917      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
    918      1.3    oster 		RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    919      1.3    oster 		for (j = 0; j < numParityNodes; j++) {
    920      1.3    oster 			readParityNodes[i].succedents[j] = &xorNodes[j];
    921      1.3    oster 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    922      1.3    oster 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
    923      1.3    oster 		}
    924      1.3    oster 	}
    925      1.3    oster 
    926      1.3    oster 	/* connect read old q nodes to q nodes */
    927      1.3    oster 	if (nfaults == 2) {
    928      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
    929      1.3    oster 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    930      1.3    oster 			for (j = 0; j < numParityNodes; j++) {
    931      1.3    oster 				readQNodes[i].succedents[j] = &qNodes[j];
    932      1.3    oster 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
    933      1.3    oster 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
    934      1.3    oster 			}
    935      1.3    oster 		}
    936      1.3    oster 	}
    937      1.3    oster 	/* connect xor nodes to commit node */
    938      1.3    oster 	RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
    939      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
    940      1.3    oster 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
    941      1.3    oster 		xorNodes[i].succedents[0] = commitNode;
    942      1.3    oster 		commitNode->antecedents[i] = &xorNodes[i];
    943      1.3    oster 		commitNode->antType[i] = rf_control;
    944      1.3    oster 	}
    945      1.3    oster 
    946      1.3    oster 	/* connect q nodes to commit node */
    947      1.3    oster 	if (nfaults == 2) {
    948      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
    949      1.3    oster 			RF_ASSERT(qNodes[i].numSuccedents == 1);
    950      1.3    oster 			qNodes[i].succedents[0] = commitNode;
    951      1.3    oster 			commitNode->antecedents[i + numParityNodes] = &qNodes[i];
    952      1.3    oster 			commitNode->antType[i + numParityNodes] = rf_control;
    953      1.3    oster 		}
    954      1.3    oster 	}
    955      1.3    oster 	/* connect commit node to write nodes */
    956      1.3    oster 	RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
    957      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
    958      1.3    oster 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
    959      1.3    oster 		commitNode->succedents[i] = &writeDataNodes[i];
    960      1.3    oster 		writeDataNodes[i].antecedents[0] = commitNode;
    961      1.3    oster 		writeDataNodes[i].antType[0] = rf_trueData;
    962      1.3    oster 	}
    963      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
    964      1.3    oster 		RF_ASSERT(writeParityNodes[i].numAntecedents == 1);
    965      1.3    oster 		commitNode->succedents[i + numDataNodes] = &writeParityNodes[i];
    966      1.3    oster 		writeParityNodes[i].antecedents[0] = commitNode;
    967      1.3    oster 		writeParityNodes[i].antType[0] = rf_trueData;
    968      1.3    oster 	}
    969      1.3    oster 	if (nfaults == 2) {
    970      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
    971      1.3    oster 			RF_ASSERT(writeQNodes[i].numAntecedents == 1);
    972      1.3    oster 			commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i];
    973      1.3    oster 			writeQNodes[i].antecedents[0] = commitNode;
    974      1.3    oster 			writeQNodes[i].antType[0] = rf_trueData;
    975      1.3    oster 		}
    976      1.3    oster 	}
    977      1.3    oster 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    978      1.3    oster 	RF_ASSERT(termNode->numSuccedents == 0);
    979      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
    980      1.3    oster 		if (lu_flag) {
    981      1.3    oster 			/* connect write new data nodes to unlock nodes */
    982      1.3    oster 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    983      1.3    oster 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
    984      1.3    oster 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
    985      1.3    oster 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
    986      1.3    oster 			unlockDataNodes[i].antType[0] = rf_control;
    987      1.3    oster 
    988      1.3    oster 			/* connect unlock nodes to term node */
    989      1.3    oster 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
    990      1.3    oster 			unlockDataNodes[i].succedents[0] = termNode;
    991      1.3    oster 			termNode->antecedents[i] = &unlockDataNodes[i];
    992      1.3    oster 			termNode->antType[i] = rf_control;
    993      1.3    oster 		} else {
    994      1.3    oster 			/* connect write new data nodes to term node */
    995      1.3    oster 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    996      1.3    oster 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    997      1.3    oster 			writeDataNodes[i].succedents[0] = termNode;
    998      1.3    oster 			termNode->antecedents[i] = &writeDataNodes[i];
    999      1.3    oster 			termNode->antType[i] = rf_control;
   1000      1.3    oster 		}
   1001      1.3    oster 	}
   1002      1.3    oster 
   1003      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
   1004      1.3    oster 		if (lu_flag) {
   1005      1.3    oster 			/* connect write new parity nodes to unlock nodes */
   1006      1.3    oster 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1007      1.3    oster 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1008      1.3    oster 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1009      1.3    oster 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1010      1.3    oster 			unlockParityNodes[i].antType[0] = rf_control;
   1011      1.3    oster 
   1012      1.3    oster 			/* connect unlock nodes to term node */
   1013      1.3    oster 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1014      1.3    oster 			unlockParityNodes[i].succedents[0] = termNode;
   1015      1.3    oster 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1016      1.3    oster 			termNode->antType[numDataNodes + i] = rf_control;
   1017      1.3    oster 		} else {
   1018      1.3    oster 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1019      1.3    oster 			writeParityNodes[i].succedents[0] = termNode;
   1020      1.3    oster 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1021      1.3    oster 			termNode->antType[numDataNodes + i] = rf_control;
   1022      1.3    oster 		}
   1023      1.3    oster 	}
   1024      1.3    oster 
   1025      1.3    oster 	if (nfaults == 2) {
   1026      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
   1027      1.3    oster 			if (lu_flag) {
   1028      1.3    oster 				/* connect write new Q nodes to unlock nodes */
   1029      1.3    oster 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1030      1.3    oster 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1031      1.3    oster 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1032      1.3    oster 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1033      1.3    oster 				unlockQNodes[i].antType[0] = rf_control;
   1034      1.3    oster 
   1035      1.3    oster 				/* connect unlock nodes to unblock node */
   1036      1.3    oster 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1037      1.3    oster 				unlockQNodes[i].succedents[0] = termNode;
   1038      1.3    oster 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1039      1.3    oster 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1040      1.3    oster 			} else {
   1041      1.3    oster 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1042      1.3    oster 				writeQNodes[i].succedents[0] = termNode;
   1043      1.3    oster 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1044      1.3    oster 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1045      1.3    oster 			}
   1046      1.3    oster 		}
   1047      1.3    oster 	}
   1048      1.1    oster }
   1049      1.1    oster 
   1050      1.1    oster 
   1051      1.1    oster /******************************************************************************
   1052      1.1    oster  * create a write graph (fault-free or degraded) for RAID level 1
   1053      1.1    oster  *
   1054      1.1    oster  * Hdr -> Commit -> Wpd -> Nil -> Trm
   1055      1.1    oster  *               -> Wsd ->
   1056      1.1    oster  *
   1057      1.1    oster  * The "Wpd" node writes data to the primary copy in the mirror pair
   1058      1.1    oster  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1059      1.1    oster  *
   1060      1.1    oster  * Parameters:  raidPtr   - description of the physical array
   1061      1.1    oster  *              asmap     - logical & physical addresses for this access
   1062      1.1    oster  *              bp        - buffer ptr (holds write data)
   1063      1.3    oster  *              flags     - general flags (e.g. disk locking)
   1064      1.1    oster  *              allocList - list of memory allocated in DAG creation
   1065      1.1    oster  *****************************************************************************/
   1066      1.1    oster 
   1067      1.3    oster void
   1068      1.3    oster rf_CreateRaidOneWriteDAG(
   1069      1.3    oster     RF_Raid_t * raidPtr,
   1070      1.3    oster     RF_AccessStripeMap_t * asmap,
   1071      1.3    oster     RF_DagHeader_t * dag_h,
   1072      1.3    oster     void *bp,
   1073      1.3    oster     RF_RaidAccessFlags_t flags,
   1074      1.3    oster     RF_AllocListElem_t * allocList)
   1075      1.1    oster {
   1076      1.3    oster 	RF_DagNode_t *unblockNode, *termNode, *commitNode;
   1077      1.3    oster 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   1078      1.3    oster 	int     nWndNodes, nWmirNodes, i;
   1079      1.3    oster 	RF_ReconUnitNum_t which_ru;
   1080      1.3    oster 	RF_PhysDiskAddr_t *pda, *pdaP;
   1081      1.3    oster 	RF_StripeNum_t parityStripeID;
   1082      1.3    oster 
   1083      1.3    oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   1084      1.3    oster 	    asmap->raidAddress, &which_ru);
   1085      1.3    oster 	if (rf_dagDebug) {
   1086      1.3    oster 		printf("[Creating RAID level 1 write DAG]\n");
   1087      1.3    oster 	}
   1088      1.3    oster 	dag_h->creator = "RaidOneWriteDAG";
   1089      1.3    oster 
   1090      1.3    oster 	/* 2 implies access not SU aligned */
   1091      1.3    oster 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
   1092      1.3    oster 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   1093      1.3    oster 
   1094      1.3    oster 	/* alloc the Wnd nodes and the Wmir node */
   1095      1.3    oster 	if (asmap->numDataFailed == 1)
   1096      1.3    oster 		nWndNodes--;
   1097      1.3    oster 	if (asmap->numParityFailed == 1)
   1098      1.3    oster 		nWmirNodes--;
   1099      1.3    oster 
   1100      1.3    oster 	/* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
   1101      1.3    oster 	 * + terminator) */
   1102      1.3    oster 	RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t),
   1103      1.3    oster 	    (RF_DagNode_t *), allocList);
   1104      1.3    oster 	i = 0;
   1105      1.3    oster 	wndNode = &nodes[i];
   1106      1.3    oster 	i += nWndNodes;
   1107      1.3    oster 	wmirNode = &nodes[i];
   1108      1.3    oster 	i += nWmirNodes;
   1109      1.3    oster 	commitNode = &nodes[i];
   1110      1.3    oster 	i += 1;
   1111      1.3    oster 	unblockNode = &nodes[i];
   1112      1.3    oster 	i += 1;
   1113      1.3    oster 	termNode = &nodes[i];
   1114      1.3    oster 	i += 1;
   1115      1.3    oster 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   1116      1.3    oster 
   1117      1.3    oster 	/* this dag can commit immediately */
   1118      1.3    oster 	dag_h->numCommitNodes = 1;
   1119      1.3    oster 	dag_h->numCommits = 0;
   1120      1.3    oster 	dag_h->numSuccedents = 1;
   1121      1.3    oster 
   1122      1.3    oster 	/* initialize the commit, unblock, and term nodes */
   1123      1.3    oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
   1124      1.3    oster 	    NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Cmt", allocList);
   1125      1.3    oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
   1126      1.3    oster 	    NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
   1127      1.3    oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
   1128      1.3    oster 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
   1129      1.3    oster 
   1130      1.3    oster 	/* initialize the wnd nodes */
   1131      1.3    oster 	if (nWndNodes > 0) {
   1132      1.3    oster 		pda = asmap->physInfo;
   1133      1.3    oster 		for (i = 0; i < nWndNodes; i++) {
   1134      1.3    oster 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1135      1.3    oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
   1136      1.3    oster 			RF_ASSERT(pda != NULL);
   1137      1.3    oster 			wndNode[i].params[0].p = pda;
   1138      1.3    oster 			wndNode[i].params[1].p = pda->bufPtr;
   1139      1.3    oster 			wndNode[i].params[2].v = parityStripeID;
   1140      1.3    oster 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1141      1.3    oster 			pda = pda->next;
   1142      1.3    oster 		}
   1143      1.3    oster 		RF_ASSERT(pda == NULL);
   1144      1.3    oster 	}
   1145      1.3    oster 	/* initialize the mirror nodes */
   1146      1.3    oster 	if (nWmirNodes > 0) {
   1147      1.3    oster 		pda = asmap->physInfo;
   1148      1.3    oster 		pdaP = asmap->parityInfo;
   1149      1.3    oster 		for (i = 0; i < nWmirNodes; i++) {
   1150      1.3    oster 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1151      1.3    oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
   1152      1.3    oster 			RF_ASSERT(pda != NULL);
   1153      1.3    oster 			wmirNode[i].params[0].p = pdaP;
   1154      1.3    oster 			wmirNode[i].params[1].p = pda->bufPtr;
   1155      1.3    oster 			wmirNode[i].params[2].v = parityStripeID;
   1156      1.3    oster 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1157      1.3    oster 			pda = pda->next;
   1158      1.3    oster 			pdaP = pdaP->next;
   1159      1.3    oster 		}
   1160      1.3    oster 		RF_ASSERT(pda == NULL);
   1161      1.3    oster 		RF_ASSERT(pdaP == NULL);
   1162      1.3    oster 	}
   1163      1.3    oster 	/* link the header node to the commit node */
   1164      1.3    oster 	RF_ASSERT(dag_h->numSuccedents == 1);
   1165      1.3    oster 	RF_ASSERT(commitNode->numAntecedents == 0);
   1166      1.3    oster 	dag_h->succedents[0] = commitNode;
   1167      1.3    oster 
   1168      1.3    oster 	/* link the commit node to the write nodes */
   1169      1.3    oster 	RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
   1170      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
   1171      1.3    oster 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   1172      1.3    oster 		commitNode->succedents[i] = &wndNode[i];
   1173      1.3    oster 		wndNode[i].antecedents[0] = commitNode;
   1174      1.3    oster 		wndNode[i].antType[0] = rf_control;
   1175      1.3    oster 	}
   1176      1.3    oster 	for (i = 0; i < nWmirNodes; i++) {
   1177      1.3    oster 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   1178      1.3    oster 		commitNode->succedents[i + nWndNodes] = &wmirNode[i];
   1179      1.3    oster 		wmirNode[i].antecedents[0] = commitNode;
   1180      1.3    oster 		wmirNode[i].antType[0] = rf_control;
   1181      1.3    oster 	}
   1182      1.3    oster 
   1183      1.3    oster 	/* link the write nodes to the unblock node */
   1184      1.3    oster 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   1185      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
   1186      1.3    oster 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   1187      1.3    oster 		wndNode[i].succedents[0] = unblockNode;
   1188      1.3    oster 		unblockNode->antecedents[i] = &wndNode[i];
   1189      1.3    oster 		unblockNode->antType[i] = rf_control;
   1190      1.3    oster 	}
   1191      1.3    oster 	for (i = 0; i < nWmirNodes; i++) {
   1192      1.3    oster 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   1193      1.3    oster 		wmirNode[i].succedents[0] = unblockNode;
   1194      1.3    oster 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   1195      1.3    oster 		unblockNode->antType[i + nWndNodes] = rf_control;
   1196      1.3    oster 	}
   1197      1.3    oster 
   1198      1.3    oster 	/* link the unblock node to the term node */
   1199      1.3    oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
   1200      1.3    oster 	RF_ASSERT(termNode->numAntecedents == 1);
   1201      1.3    oster 	RF_ASSERT(termNode->numSuccedents == 0);
   1202      1.3    oster 	unblockNode->succedents[0] = termNode;
   1203      1.3    oster 	termNode->antecedents[0] = unblockNode;
   1204      1.3    oster 	termNode->antType[0] = rf_control;
   1205      1.1    oster }
   1206      1.1    oster 
   1207      1.1    oster 
   1208      1.1    oster 
   1209      1.1    oster /* DAGs which have no commit points.
   1210      1.1    oster  *
   1211      1.1    oster  * The following DAGs are used in forward and backward error recovery experiments.
   1212      1.1    oster  * They are identical to the DAGs above this comment with the exception that the
   1213      1.1    oster  * the commit points have been removed.
   1214      1.1    oster  */
   1215      1.1    oster 
   1216      1.1    oster 
   1217      1.1    oster 
   1218      1.3    oster void
   1219      1.3    oster rf_CommonCreateLargeWriteDAGFwd(
   1220      1.3    oster     RF_Raid_t * raidPtr,
   1221      1.3    oster     RF_AccessStripeMap_t * asmap,
   1222      1.3    oster     RF_DagHeader_t * dag_h,
   1223      1.3    oster     void *bp,
   1224      1.3    oster     RF_RaidAccessFlags_t flags,
   1225      1.3    oster     RF_AllocListElem_t * allocList,
   1226      1.3    oster     int nfaults,
   1227      1.3    oster     int (*redFunc) (RF_DagNode_t *),
   1228      1.3    oster     int allowBufferRecycle)
   1229      1.1    oster {
   1230      1.3    oster 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
   1231      1.3    oster 	RF_DagNode_t *wnqNode, *blockNode, *syncNode, *termNode;
   1232      1.3    oster 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
   1233      1.3    oster 	RF_AccessStripeMapHeader_t *new_asm_h[2];
   1234      1.3    oster 	RF_StripeNum_t parityStripeID;
   1235      1.3    oster 	char   *sosBuffer, *eosBuffer;
   1236      1.3    oster 	RF_ReconUnitNum_t which_ru;
   1237      1.3    oster 	RF_RaidLayout_t *layoutPtr;
   1238      1.3    oster 	RF_PhysDiskAddr_t *pda;
   1239      1.3    oster 
   1240      1.3    oster 	layoutPtr = &(raidPtr->Layout);
   1241      1.3    oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
   1242      1.3    oster 
   1243      1.3    oster 	if (rf_dagDebug)
   1244      1.3    oster 		printf("[Creating large-write DAG]\n");
   1245      1.3    oster 	dag_h->creator = "LargeWriteDAGFwd";
   1246      1.3    oster 
   1247      1.3    oster 	dag_h->numCommitNodes = 0;
   1248      1.3    oster 	dag_h->numCommits = 0;
   1249      1.3    oster 	dag_h->numSuccedents = 1;
   1250      1.3    oster 
   1251      1.3    oster 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
   1252      1.3    oster 	nWndNodes = asmap->numStripeUnitsAccessed;
   1253      1.3    oster 	RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1254      1.3    oster 	i = 0;
   1255      1.3    oster 	wndNodes = &nodes[i];
   1256      1.3    oster 	i += nWndNodes;
   1257      1.3    oster 	xorNode = &nodes[i];
   1258      1.3    oster 	i += 1;
   1259      1.3    oster 	wnpNode = &nodes[i];
   1260      1.3    oster 	i += 1;
   1261      1.3    oster 	blockNode = &nodes[i];
   1262      1.3    oster 	i += 1;
   1263      1.3    oster 	syncNode = &nodes[i];
   1264      1.3    oster 	i += 1;
   1265      1.3    oster 	termNode = &nodes[i];
   1266      1.3    oster 	i += 1;
   1267      1.3    oster 	if (nfaults == 2) {
   1268      1.3    oster 		wnqNode = &nodes[i];
   1269      1.3    oster 		i += 1;
   1270      1.3    oster 	} else {
   1271      1.3    oster 		wnqNode = NULL;
   1272      1.3    oster 	}
   1273      1.3    oster 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
   1274      1.3    oster 	if (nRodNodes > 0) {
   1275      1.3    oster 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1276      1.3    oster 	} else {
   1277      1.3    oster 		rodNodes = NULL;
   1278      1.3    oster 	}
   1279      1.3    oster 
   1280      1.3    oster 	/* begin node initialization */
   1281      1.3    oster 	if (nRodNodes > 0) {
   1282      1.3    oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1283      1.3    oster 		rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes, 0, 0, dag_h, "Nil", allocList);
   1284      1.3    oster 	} else {
   1285      1.3    oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
   1286      1.3    oster 		rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, 1, 0, 0, dag_h, "Nil", allocList);
   1287      1.3    oster 	}
   1288      1.3    oster 
   1289      1.3    oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
   1290      1.3    oster 
   1291      1.3    oster 	/* initialize the Rod nodes */
   1292      1.3    oster 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
   1293      1.3    oster 		if (new_asm_h[asmNum]) {
   1294      1.3    oster 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
   1295      1.3    oster 			while (pda) {
   1296      1.3    oster 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
   1297      1.3    oster 				rodNodes[nodeNum].params[0].p = pda;
   1298      1.3    oster 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
   1299      1.3    oster 				rodNodes[nodeNum].params[2].v = parityStripeID;
   1300      1.3    oster 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1301      1.3    oster 				nodeNum++;
   1302      1.3    oster 				pda = pda->next;
   1303      1.3    oster 			}
   1304      1.3    oster 		}
   1305      1.3    oster 	}
   1306      1.3    oster 	RF_ASSERT(nodeNum == nRodNodes);
   1307      1.3    oster 
   1308      1.3    oster 	/* initialize the wnd nodes */
   1309      1.3    oster 	pda = asmap->physInfo;
   1310      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
   1311      1.3    oster 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
   1312      1.3    oster 		RF_ASSERT(pda != NULL);
   1313      1.3    oster 		wndNodes[i].params[0].p = pda;
   1314      1.3    oster 		wndNodes[i].params[1].p = pda->bufPtr;
   1315      1.3    oster 		wndNodes[i].params[2].v = parityStripeID;
   1316      1.3    oster 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1317      1.3    oster 		pda = pda->next;
   1318      1.3    oster 	}
   1319      1.3    oster 
   1320      1.3    oster 	/* initialize the redundancy node */
   1321      1.3    oster 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nfaults, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
   1322      1.3    oster 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
   1323      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
   1324      1.3    oster 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
   1325      1.3    oster 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
   1326      1.3    oster 	}
   1327      1.3    oster 	for (i = 0; i < nRodNodes; i++) {
   1328      1.3    oster 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
   1329      1.3    oster 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
   1330      1.3    oster 	}
   1331      1.3    oster 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
   1332      1.3    oster 									 * at RAID information */
   1333      1.3    oster 
   1334      1.3    oster 	/* look for an Rod node that reads a complete SU.  If none, alloc a
   1335      1.3    oster 	 * buffer to receive the parity info. Note that we can't use a new
   1336      1.3    oster 	 * data buffer because it will not have gotten written when the xor
   1337      1.3    oster 	 * occurs. */
   1338      1.3    oster 	if (allowBufferRecycle) {
   1339      1.3    oster 		for (i = 0; i < nRodNodes; i++)
   1340      1.3    oster 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
   1341      1.3    oster 				break;
   1342      1.3    oster 	}
   1343      1.3    oster 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
   1344      1.3    oster 		RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
   1345      1.3    oster 	} else
   1346      1.3    oster 		xorNode->results[0] = rodNodes[i].params[1].p;
   1347      1.3    oster 
   1348      1.3    oster 	/* initialize the Wnp node */
   1349      1.3    oster 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
   1350      1.3    oster 	wnpNode->params[0].p = asmap->parityInfo;
   1351      1.3    oster 	wnpNode->params[1].p = xorNode->results[0];
   1352      1.3    oster 	wnpNode->params[2].v = parityStripeID;
   1353      1.3    oster 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1354      1.3    oster 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
   1355      1.3    oster 							 * describe entire
   1356      1.3    oster 							 * parity unit */
   1357      1.3    oster 
   1358      1.3    oster 	if (nfaults == 2) {
   1359      1.3    oster 		/* we never try to recycle a buffer for the Q calcuation in
   1360      1.3    oster 		 * addition to the parity. This would cause two buffers to get
   1361      1.3    oster 		 * smashed during the P and Q calculation, guaranteeing one
   1362      1.3    oster 		 * would be wrong. */
   1363      1.3    oster 		RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
   1364      1.3    oster 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
   1365      1.3    oster 		wnqNode->params[0].p = asmap->qInfo;
   1366      1.3    oster 		wnqNode->params[1].p = xorNode->results[1];
   1367      1.3    oster 		wnqNode->params[2].v = parityStripeID;
   1368      1.3    oster 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1369      1.3    oster 		RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
   1370      1.3    oster 								 * describe entire
   1371      1.3    oster 								 * parity unit */
   1372      1.3    oster 	}
   1373      1.3    oster 	/* connect nodes to form graph */
   1374      1.3    oster 
   1375      1.3    oster 	/* connect dag header to block node */
   1376      1.3    oster 	RF_ASSERT(blockNode->numAntecedents == 0);
   1377      1.3    oster 	dag_h->succedents[0] = blockNode;
   1378      1.3    oster 
   1379      1.3    oster 	if (nRodNodes > 0) {
   1380      1.3    oster 		/* connect the block node to the Rod nodes */
   1381      1.3    oster 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
   1382      1.3    oster 		RF_ASSERT(syncNode->numAntecedents == nRodNodes);
   1383      1.3    oster 		for (i = 0; i < nRodNodes; i++) {
   1384      1.3    oster 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
   1385      1.3    oster 			blockNode->succedents[i] = &rodNodes[i];
   1386      1.3    oster 			rodNodes[i].antecedents[0] = blockNode;
   1387      1.3    oster 			rodNodes[i].antType[0] = rf_control;
   1388      1.3    oster 
   1389      1.3    oster 			/* connect the Rod nodes to the Nil node */
   1390      1.3    oster 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
   1391      1.3    oster 			rodNodes[i].succedents[0] = syncNode;
   1392      1.3    oster 			syncNode->antecedents[i] = &rodNodes[i];
   1393      1.3    oster 			syncNode->antType[i] = rf_trueData;
   1394      1.3    oster 		}
   1395      1.3    oster 	} else {
   1396      1.3    oster 		/* connect the block node to the Nil node */
   1397      1.3    oster 		RF_ASSERT(blockNode->numSuccedents == 1);
   1398      1.3    oster 		RF_ASSERT(syncNode->numAntecedents == 1);
   1399      1.3    oster 		blockNode->succedents[0] = syncNode;
   1400      1.3    oster 		syncNode->antecedents[0] = blockNode;
   1401      1.3    oster 		syncNode->antType[0] = rf_control;
   1402      1.3    oster 	}
   1403      1.3    oster 
   1404      1.3    oster 	/* connect the sync node to the Wnd nodes */
   1405      1.3    oster 	RF_ASSERT(syncNode->numSuccedents == (1 + nWndNodes));
   1406      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
   1407      1.3    oster 		RF_ASSERT(wndNodes->numAntecedents == 1);
   1408      1.3    oster 		syncNode->succedents[i] = &wndNodes[i];
   1409      1.3    oster 		wndNodes[i].antecedents[0] = syncNode;
   1410      1.3    oster 		wndNodes[i].antType[0] = rf_control;
   1411      1.3    oster 	}
   1412      1.3    oster 
   1413      1.3    oster 	/* connect the sync node to the Xor node */
   1414      1.3    oster 	RF_ASSERT(xorNode->numAntecedents == 1);
   1415      1.3    oster 	syncNode->succedents[nWndNodes] = xorNode;
   1416      1.3    oster 	xorNode->antecedents[0] = syncNode;
   1417      1.3    oster 	xorNode->antType[0] = rf_control;
   1418      1.3    oster 
   1419      1.3    oster 	/* connect the xor node to the write parity node */
   1420      1.3    oster 	RF_ASSERT(xorNode->numSuccedents == nfaults);
   1421      1.3    oster 	RF_ASSERT(wnpNode->numAntecedents == 1);
   1422      1.3    oster 	xorNode->succedents[0] = wnpNode;
   1423      1.3    oster 	wnpNode->antecedents[0] = xorNode;
   1424      1.3    oster 	wnpNode->antType[0] = rf_trueData;
   1425      1.3    oster 	if (nfaults == 2) {
   1426      1.3    oster 		RF_ASSERT(wnqNode->numAntecedents == 1);
   1427      1.3    oster 		xorNode->succedents[1] = wnqNode;
   1428      1.3    oster 		wnqNode->antecedents[0] = xorNode;
   1429      1.3    oster 		wnqNode->antType[0] = rf_trueData;
   1430      1.3    oster 	}
   1431      1.3    oster 	/* connect the write nodes to the term node */
   1432      1.3    oster 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
   1433      1.3    oster 	RF_ASSERT(termNode->numSuccedents == 0);
   1434      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
   1435      1.3    oster 		RF_ASSERT(wndNodes->numSuccedents == 1);
   1436      1.3    oster 		wndNodes[i].succedents[0] = termNode;
   1437      1.3    oster 		termNode->antecedents[i] = &wndNodes[i];
   1438      1.3    oster 		termNode->antType[i] = rf_control;
   1439      1.3    oster 	}
   1440      1.3    oster 	RF_ASSERT(wnpNode->numSuccedents == 1);
   1441      1.3    oster 	wnpNode->succedents[0] = termNode;
   1442      1.3    oster 	termNode->antecedents[nWndNodes] = wnpNode;
   1443      1.3    oster 	termNode->antType[nWndNodes] = rf_control;
   1444      1.3    oster 	if (nfaults == 2) {
   1445      1.3    oster 		RF_ASSERT(wnqNode->numSuccedents == 1);
   1446      1.3    oster 		wnqNode->succedents[0] = termNode;
   1447      1.3    oster 		termNode->antecedents[nWndNodes + 1] = wnqNode;
   1448      1.3    oster 		termNode->antType[nWndNodes + 1] = rf_control;
   1449      1.3    oster 	}
   1450      1.1    oster }
   1451      1.1    oster 
   1452      1.1    oster 
   1453      1.1    oster /******************************************************************************
   1454      1.1    oster  *
   1455      1.1    oster  * creates a DAG to perform a small-write operation (either raid 5 or pq),
   1456      1.1    oster  * which is as follows:
   1457      1.1    oster  *
   1458      1.1    oster  * Hdr -> Nil -> Rop - Xor - Wnp [Unp] -- Trm
   1459      1.1    oster  *            \- Rod X- Wnd [Und] -------/
   1460      1.1    oster  *           [\- Rod X- Wnd [Und] ------/]
   1461      1.1    oster  *           [\- Roq - Q --> Wnq [Unq]-/]
   1462      1.1    oster  *
   1463      1.1    oster  * Rop = read old parity
   1464      1.1    oster  * Rod = read old data
   1465      1.1    oster  * Roq = read old "q"
   1466      1.1    oster  * Cmt = commit node
   1467      1.1    oster  * Und = unlock data disk
   1468      1.1    oster  * Unp = unlock parity disk
   1469      1.1    oster  * Unq = unlock q disk
   1470      1.1    oster  * Wnp = write new parity
   1471      1.1    oster  * Wnd = write new data
   1472      1.1    oster  * Wnq = write new "q"
   1473      1.1    oster  * [ ] denotes optional segments in the graph
   1474      1.1    oster  *
   1475      1.1    oster  * Parameters:  raidPtr   - description of the physical array
   1476      1.1    oster  *              asmap     - logical & physical addresses for this access
   1477      1.1    oster  *              bp        - buffer ptr (holds write data)
   1478      1.3    oster  *              flags     - general flags (e.g. disk locking)
   1479      1.1    oster  *              allocList - list of memory allocated in DAG creation
   1480      1.1    oster  *              pfuncs    - list of parity generating functions
   1481      1.1    oster  *              qfuncs    - list of q generating functions
   1482      1.1    oster  *
   1483      1.1    oster  * A null qfuncs indicates single fault tolerant
   1484      1.1    oster  *****************************************************************************/
   1485      1.1    oster 
   1486      1.3    oster void
   1487      1.3    oster rf_CommonCreateSmallWriteDAGFwd(
   1488      1.3    oster     RF_Raid_t * raidPtr,
   1489      1.3    oster     RF_AccessStripeMap_t * asmap,
   1490      1.3    oster     RF_DagHeader_t * dag_h,
   1491      1.3    oster     void *bp,
   1492      1.3    oster     RF_RaidAccessFlags_t flags,
   1493      1.3    oster     RF_AllocListElem_t * allocList,
   1494      1.3    oster     RF_RedFuncs_t * pfuncs,
   1495      1.3    oster     RF_RedFuncs_t * qfuncs)
   1496      1.1    oster {
   1497      1.3    oster 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
   1498      1.3    oster 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
   1499      1.3    oster 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *nodes;
   1500      1.3    oster 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
   1501      1.3    oster 	int     i, j, nNodes, totalNumNodes, lu_flag;
   1502      1.3    oster 	RF_ReconUnitNum_t which_ru;
   1503      1.3    oster 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
   1504      1.3    oster 	int     (*qfunc) (RF_DagNode_t *);
   1505      1.3    oster 	int     numDataNodes, numParityNodes;
   1506      1.3    oster 	RF_StripeNum_t parityStripeID;
   1507      1.3    oster 	RF_PhysDiskAddr_t *pda;
   1508      1.3    oster 	char   *name, *qname;
   1509      1.3    oster 	long    nfaults;
   1510      1.3    oster 
   1511      1.3    oster 	nfaults = qfuncs ? 2 : 1;
   1512      1.3    oster 	lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
   1513      1.3    oster 
   1514      1.3    oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
   1515      1.3    oster 	pda = asmap->physInfo;
   1516      1.3    oster 	numDataNodes = asmap->numStripeUnitsAccessed;
   1517      1.3    oster 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
   1518      1.3    oster 
   1519      1.3    oster 	if (rf_dagDebug)
   1520      1.3    oster 		printf("[Creating small-write DAG]\n");
   1521      1.3    oster 	RF_ASSERT(numDataNodes > 0);
   1522      1.3    oster 	dag_h->creator = "SmallWriteDAGFwd";
   1523      1.3    oster 
   1524      1.3    oster 	dag_h->numCommitNodes = 0;
   1525      1.3    oster 	dag_h->numCommits = 0;
   1526      1.3    oster 	dag_h->numSuccedents = 1;
   1527      1.3    oster 
   1528      1.3    oster 	qfunc = NULL;
   1529      1.3    oster 	qname = NULL;
   1530      1.3    oster 
   1531      1.3    oster 	/* DAG creation occurs in four steps: 1. count the number of nodes in
   1532      1.3    oster 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
   1533      1.3    oster 	 * nodes */
   1534      1.3    oster 
   1535      1.3    oster 	/* Step 1. compute number of nodes in the graph */
   1536      1.3    oster 
   1537      1.3    oster 	/* number of nodes: a read and write for each data unit a redundancy
   1538      1.3    oster 	 * computation node for each parity node (nfaults * nparity) a read
   1539      1.3    oster 	 * and write for each parity unit a block node a terminate node if
   1540      1.3    oster 	 * atomic RMW an unlock node for each data unit, redundancy unit */
   1541      1.3    oster 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 2;
   1542      1.3    oster 	if (lu_flag)
   1543      1.3    oster 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
   1544      1.3    oster 
   1545      1.3    oster 
   1546      1.3    oster 	/* Step 2. create the nodes */
   1547      1.3    oster 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1548      1.3    oster 	i = 0;
   1549      1.3    oster 	blockNode = &nodes[i];
   1550      1.3    oster 	i += 1;
   1551      1.3    oster 	readDataNodes = &nodes[i];
   1552      1.3    oster 	i += numDataNodes;
   1553      1.3    oster 	readParityNodes = &nodes[i];
   1554      1.3    oster 	i += numParityNodes;
   1555      1.3    oster 	writeDataNodes = &nodes[i];
   1556      1.3    oster 	i += numDataNodes;
   1557      1.3    oster 	writeParityNodes = &nodes[i];
   1558      1.3    oster 	i += numParityNodes;
   1559      1.3    oster 	xorNodes = &nodes[i];
   1560      1.3    oster 	i += numParityNodes;
   1561      1.3    oster 	termNode = &nodes[i];
   1562      1.3    oster 	i += 1;
   1563      1.3    oster 	if (lu_flag) {
   1564      1.3    oster 		unlockDataNodes = &nodes[i];
   1565      1.3    oster 		i += numDataNodes;
   1566      1.3    oster 		unlockParityNodes = &nodes[i];
   1567      1.3    oster 		i += numParityNodes;
   1568      1.3    oster 	} else {
   1569      1.3    oster 		unlockDataNodes = unlockParityNodes = NULL;
   1570      1.3    oster 	}
   1571      1.3    oster 	if (nfaults == 2) {
   1572      1.3    oster 		readQNodes = &nodes[i];
   1573      1.3    oster 		i += numParityNodes;
   1574      1.3    oster 		writeQNodes = &nodes[i];
   1575      1.3    oster 		i += numParityNodes;
   1576      1.3    oster 		qNodes = &nodes[i];
   1577      1.3    oster 		i += numParityNodes;
   1578      1.3    oster 		if (lu_flag) {
   1579      1.3    oster 			unlockQNodes = &nodes[i];
   1580      1.3    oster 			i += numParityNodes;
   1581      1.3    oster 		} else {
   1582      1.3    oster 			unlockQNodes = NULL;
   1583      1.3    oster 		}
   1584      1.3    oster 	} else {
   1585      1.3    oster 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
   1586      1.3    oster 	}
   1587      1.3    oster 	RF_ASSERT(i == totalNumNodes);
   1588      1.1    oster 
   1589      1.3    oster 	/* Step 3. initialize the nodes */
   1590      1.3    oster 	/* initialize block node (Nil) */
   1591      1.3    oster 	nNodes = numDataNodes + (nfaults * numParityNodes);
   1592      1.3    oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1593      1.3    oster 
   1594      1.3    oster 	/* initialize terminate node (Trm) */
   1595      1.3    oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
   1596      1.3    oster 
   1597      1.3    oster 	/* initialize nodes which read old data (Rod) */
   1598      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
   1599      1.3    oster 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, (numParityNodes * nfaults) + 1, 1, 4, 0, dag_h, "Rod", allocList);
   1600      1.3    oster 		RF_ASSERT(pda != NULL);
   1601      1.3    oster 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
   1602      1.3    oster 							 * desc */
   1603      1.3    oster 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
   1604      1.3    oster 												 * data */
   1605      1.3    oster 		readDataNodes[i].params[2].v = parityStripeID;
   1606      1.3    oster 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1607      1.3    oster 		pda = pda->next;
   1608      1.3    oster 		for (j = 0; j < readDataNodes[i].numSuccedents; j++)
   1609      1.3    oster 			readDataNodes[i].propList[j] = NULL;
   1610      1.3    oster 	}
   1611      1.3    oster 
   1612      1.3    oster 	/* initialize nodes which read old parity (Rop) */
   1613      1.3    oster 	pda = asmap->parityInfo;
   1614      1.3    oster 	i = 0;
   1615      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
   1616      1.3    oster 		RF_ASSERT(pda != NULL);
   1617      1.3    oster 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Rop", allocList);
   1618      1.3    oster 		readParityNodes[i].params[0].p = pda;
   1619      1.3    oster 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
   1620      1.3    oster 													 * parity */
   1621      1.3    oster 		readParityNodes[i].params[2].v = parityStripeID;
   1622      1.3    oster 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1623      1.3    oster 		for (j = 0; j < readParityNodes[i].numSuccedents; j++)
   1624      1.3    oster 			readParityNodes[i].propList[0] = NULL;
   1625      1.3    oster 		pda = pda->next;
   1626      1.3    oster 	}
   1627      1.3    oster 
   1628      1.3    oster 	/* initialize nodes which read old Q (Roq) */
   1629      1.3    oster 	if (nfaults == 2) {
   1630      1.3    oster 		pda = asmap->qInfo;
   1631      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
   1632      1.3    oster 			RF_ASSERT(pda != NULL);
   1633      1.3    oster 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
   1634      1.3    oster 			readQNodes[i].params[0].p = pda;
   1635      1.3    oster 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old Q */
   1636      1.3    oster 			readQNodes[i].params[2].v = parityStripeID;
   1637      1.3    oster 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1638      1.3    oster 			for (j = 0; j < readQNodes[i].numSuccedents; j++)
   1639      1.3    oster 				readQNodes[i].propList[0] = NULL;
   1640      1.3    oster 			pda = pda->next;
   1641      1.3    oster 		}
   1642      1.3    oster 	}
   1643      1.3    oster 	/* initialize nodes which write new data (Wnd) */
   1644      1.3    oster 	pda = asmap->physInfo;
   1645      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
   1646      1.3    oster 		RF_ASSERT(pda != NULL);
   1647      1.3    oster 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
   1648      1.3    oster 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
   1649      1.3    oster 							 * desc */
   1650      1.3    oster 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
   1651      1.3    oster 								 * data to be written */
   1652      1.3    oster 		writeDataNodes[i].params[2].v = parityStripeID;
   1653      1.3    oster 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1654      1.3    oster 
   1655      1.3    oster 		if (lu_flag) {
   1656      1.3    oster 			/* initialize node to unlock the disk queue */
   1657      1.3    oster 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
   1658      1.3    oster 			unlockDataNodes[i].params[0].p = pda;	/* physical disk addr
   1659      1.3    oster 								 * desc */
   1660      1.3    oster 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1661      1.3    oster 		}
   1662      1.3    oster 		pda = pda->next;
   1663      1.3    oster 	}
   1664      1.3    oster 
   1665      1.3    oster 
   1666      1.3    oster 	/* initialize nodes which compute new parity and Q */
   1667      1.3    oster 	/* we use the simple XOR func in the double-XOR case, and when we're
   1668      1.3    oster 	 * accessing only a portion of one stripe unit. the distinction
   1669      1.3    oster 	 * between the two is that the regular XOR func assumes that the
   1670      1.3    oster 	 * targbuf is a full SU in size, and examines the pda associated with
   1671      1.3    oster 	 * the buffer to decide where within the buffer to XOR the data,
   1672      1.3    oster 	 * whereas the simple XOR func just XORs the data into the start of
   1673      1.3    oster 	 * the buffer. */
   1674      1.3    oster 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
   1675      1.3    oster 		func = pfuncs->simple;
   1676      1.3    oster 		undoFunc = rf_NullNodeUndoFunc;
   1677      1.3    oster 		name = pfuncs->SimpleName;
   1678      1.3    oster 		if (qfuncs) {
   1679      1.3    oster 			qfunc = qfuncs->simple;
   1680      1.3    oster 			qname = qfuncs->SimpleName;
   1681      1.3    oster 		}
   1682      1.3    oster 	} else {
   1683      1.3    oster 		func = pfuncs->regular;
   1684      1.3    oster 		undoFunc = rf_NullNodeUndoFunc;
   1685      1.3    oster 		name = pfuncs->RegularName;
   1686      1.3    oster 		if (qfuncs) {
   1687      1.3    oster 			qfunc = qfuncs->regular;
   1688      1.3    oster 			qname = qfuncs->RegularName;
   1689      1.3    oster 		}
   1690      1.3    oster 	}
   1691      1.3    oster 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
   1692      1.3    oster 	 * nodes, and raidPtr  */
   1693      1.3    oster 	if (numParityNodes == 2) {	/* double-xor case */
   1694      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
   1695      1.3    oster 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
   1696      1.3    oster 																						 * xor */
   1697      1.3    oster 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
   1698      1.3    oster 			xorNodes[i].params[0] = readDataNodes[i].params[0];
   1699      1.3    oster 			xorNodes[i].params[1] = readDataNodes[i].params[1];
   1700      1.3    oster 			xorNodes[i].params[2] = readParityNodes[i].params[0];
   1701      1.3    oster 			xorNodes[i].params[3] = readParityNodes[i].params[1];
   1702      1.3    oster 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
   1703      1.3    oster 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
   1704      1.3    oster 			xorNodes[i].params[6].p = raidPtr;
   1705      1.3    oster 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
   1706      1.3    oster 											 * target buf */
   1707      1.3    oster 			if (nfaults == 2) {
   1708      1.3    oster 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, qname, allocList);	/* no wakeup func for
   1709      1.3    oster 																							 * xor */
   1710      1.3    oster 				qNodes[i].params[0] = readDataNodes[i].params[0];
   1711      1.3    oster 				qNodes[i].params[1] = readDataNodes[i].params[1];
   1712      1.3    oster 				qNodes[i].params[2] = readQNodes[i].params[0];
   1713      1.3    oster 				qNodes[i].params[3] = readQNodes[i].params[1];
   1714      1.3    oster 				qNodes[i].params[4] = writeDataNodes[i].params[0];
   1715      1.3    oster 				qNodes[i].params[5] = writeDataNodes[i].params[1];
   1716      1.3    oster 				qNodes[i].params[6].p = raidPtr;
   1717      1.3    oster 				qNodes[i].results[0] = readQNodes[i].params[1].p;	/* use old Q buf as
   1718      1.3    oster 											 * target buf */
   1719      1.3    oster 			}
   1720      1.3    oster 		}
   1721      1.3    oster 	} else {
   1722      1.3    oster 		/* there is only one xor node in this case */
   1723      1.3    oster 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
   1724      1.3    oster 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
   1725      1.3    oster 		for (i = 0; i < numDataNodes + 1; i++) {
   1726      1.3    oster 			/* set up params related to Rod and Rop nodes */
   1727      1.3    oster 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
   1728      1.3    oster 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
   1729      1.3    oster 		}
   1730      1.3    oster 		for (i = 0; i < numDataNodes; i++) {
   1731      1.3    oster 			/* set up params related to Wnd and Wnp nodes */
   1732      1.3    oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
   1733      1.3    oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
   1734      1.3    oster 		}
   1735      1.3    oster 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
   1736      1.3    oster 											 * at RAID information */
   1737      1.3    oster 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
   1738      1.3    oster 		if (nfaults == 2) {
   1739      1.3    oster 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, qname, allocList);
   1740      1.3    oster 			for (i = 0; i < numDataNodes; i++) {
   1741      1.3    oster 				/* set up params related to Rod */
   1742      1.3    oster 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
   1743      1.3    oster 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
   1744      1.3    oster 			}
   1745      1.3    oster 			/* and read old q */
   1746      1.3    oster 			qNodes[0].params[2 * numDataNodes + 0] = readQNodes[0].params[0];	/* pda */
   1747      1.3    oster 			qNodes[0].params[2 * numDataNodes + 1] = readQNodes[0].params[1];	/* buffer pointer */
   1748      1.3    oster 			for (i = 0; i < numDataNodes; i++) {
   1749      1.3    oster 				/* set up params related to Wnd nodes */
   1750      1.3    oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
   1751      1.3    oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
   1752      1.3    oster 			}
   1753      1.3    oster 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
   1754      1.3    oster 												 * at RAID information */
   1755      1.3    oster 			qNodes[0].results[0] = readQNodes[0].params[1].p;
   1756      1.3    oster 		}
   1757      1.3    oster 	}
   1758      1.3    oster 
   1759      1.3    oster 	/* initialize nodes which write new parity (Wnp) */
   1760      1.3    oster 	pda = asmap->parityInfo;
   1761      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
   1762      1.3    oster 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnp", allocList);
   1763      1.3    oster 		RF_ASSERT(pda != NULL);
   1764      1.3    oster 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
   1765      1.3    oster 							 * filled in by xor node */
   1766      1.3    oster 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
   1767      1.3    oster 										 * parity write
   1768      1.3    oster 										 * operation */
   1769      1.3    oster 		writeParityNodes[i].params[2].v = parityStripeID;
   1770      1.3    oster 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1771      1.3    oster 
   1772      1.3    oster 		if (lu_flag) {
   1773      1.3    oster 			/* initialize node to unlock the disk queue */
   1774      1.3    oster 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unp", allocList);
   1775      1.3    oster 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
   1776      1.3    oster 								 * desc */
   1777      1.3    oster 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1778      1.3    oster 		}
   1779      1.3    oster 		pda = pda->next;
   1780      1.3    oster 	}
   1781      1.3    oster 
   1782      1.3    oster 	/* initialize nodes which write new Q (Wnq) */
   1783      1.3    oster 	if (nfaults == 2) {
   1784      1.3    oster 		pda = asmap->qInfo;
   1785      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
   1786      1.3    oster 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnq", allocList);
   1787      1.3    oster 			RF_ASSERT(pda != NULL);
   1788      1.3    oster 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
   1789      1.3    oster 								 * filled in by xor node */
   1790      1.3    oster 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
   1791      1.3    oster 										 * parity write
   1792      1.3    oster 										 * operation */
   1793      1.3    oster 			writeQNodes[i].params[2].v = parityStripeID;
   1794      1.3    oster 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1795      1.3    oster 
   1796      1.3    oster 			if (lu_flag) {
   1797      1.3    oster 				/* initialize node to unlock the disk queue */
   1798      1.3    oster 				rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unq", allocList);
   1799      1.3    oster 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
   1800      1.3    oster 									 * desc */
   1801      1.3    oster 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1802      1.3    oster 			}
   1803      1.3    oster 			pda = pda->next;
   1804      1.3    oster 		}
   1805      1.3    oster 	}
   1806      1.3    oster 	/* Step 4. connect the nodes */
   1807      1.3    oster 
   1808      1.3    oster 	/* connect header to block node */
   1809      1.3    oster 	dag_h->succedents[0] = blockNode;
   1810      1.3    oster 
   1811      1.3    oster 	/* connect block node to read old data nodes */
   1812      1.3    oster 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
   1813      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
   1814      1.3    oster 		blockNode->succedents[i] = &readDataNodes[i];
   1815      1.3    oster 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
   1816      1.3    oster 		readDataNodes[i].antecedents[0] = blockNode;
   1817      1.3    oster 		readDataNodes[i].antType[0] = rf_control;
   1818      1.3    oster 	}
   1819      1.3    oster 
   1820      1.3    oster 	/* connect block node to read old parity nodes */
   1821      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
   1822      1.3    oster 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
   1823      1.3    oster 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
   1824      1.3    oster 		readParityNodes[i].antecedents[0] = blockNode;
   1825      1.3    oster 		readParityNodes[i].antType[0] = rf_control;
   1826      1.3    oster 	}
   1827      1.3    oster 
   1828      1.3    oster 	/* connect block node to read old Q nodes */
   1829      1.3    oster 	if (nfaults == 2)
   1830      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
   1831      1.3    oster 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
   1832      1.3    oster 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
   1833      1.3    oster 			readQNodes[i].antecedents[0] = blockNode;
   1834      1.3    oster 			readQNodes[i].antType[0] = rf_control;
   1835      1.3    oster 		}
   1836      1.3    oster 
   1837      1.3    oster 	/* connect read old data nodes to write new data nodes */
   1838      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
   1839      1.3    oster 		RF_ASSERT(readDataNodes[i].numSuccedents == ((nfaults * numParityNodes) + 1));
   1840      1.3    oster 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
   1841      1.3    oster 		readDataNodes[i].succedents[0] = &writeDataNodes[i];
   1842      1.3    oster 		writeDataNodes[i].antecedents[0] = &readDataNodes[i];
   1843      1.3    oster 		writeDataNodes[i].antType[0] = rf_antiData;
   1844      1.3    oster 	}
   1845      1.3    oster 
   1846      1.3    oster 	/* connect read old data nodes to xor nodes */
   1847      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
   1848      1.3    oster 		for (j = 0; j < numParityNodes; j++) {
   1849      1.3    oster 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
   1850      1.3    oster 			readDataNodes[i].succedents[1 + j] = &xorNodes[j];
   1851      1.3    oster 			xorNodes[j].antecedents[i] = &readDataNodes[i];
   1852      1.3    oster 			xorNodes[j].antType[i] = rf_trueData;
   1853      1.3    oster 		}
   1854      1.3    oster 	}
   1855      1.3    oster 
   1856      1.3    oster 	/* connect read old data nodes to q nodes */
   1857      1.3    oster 	if (nfaults == 2)
   1858      1.3    oster 		for (i = 0; i < numDataNodes; i++)
   1859      1.3    oster 			for (j = 0; j < numParityNodes; j++) {
   1860      1.3    oster 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
   1861      1.3    oster 				readDataNodes[i].succedents[1 + numParityNodes + j] = &qNodes[j];
   1862      1.3    oster 				qNodes[j].antecedents[i] = &readDataNodes[i];
   1863      1.3    oster 				qNodes[j].antType[i] = rf_trueData;
   1864      1.3    oster 			}
   1865      1.3    oster 
   1866      1.3    oster 	/* connect read old parity nodes to xor nodes */
   1867      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
   1868      1.3    oster 		for (j = 0; j < numParityNodes; j++) {
   1869      1.3    oster 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
   1870      1.3    oster 			readParityNodes[i].succedents[j] = &xorNodes[j];
   1871      1.3    oster 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
   1872      1.3    oster 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
   1873      1.3    oster 		}
   1874      1.3    oster 	}
   1875      1.3    oster 
   1876      1.3    oster 	/* connect read old q nodes to q nodes */
   1877      1.3    oster 	if (nfaults == 2)
   1878      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
   1879      1.3    oster 			for (j = 0; j < numParityNodes; j++) {
   1880      1.3    oster 				RF_ASSERT(readQNodes[i].numSuccedents == numParityNodes);
   1881      1.3    oster 				readQNodes[i].succedents[j] = &qNodes[j];
   1882      1.3    oster 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
   1883      1.3    oster 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
   1884      1.3    oster 			}
   1885      1.3    oster 		}
   1886      1.3    oster 
   1887      1.3    oster 	/* connect xor nodes to the write new parity nodes */
   1888      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
   1889      1.3    oster 		RF_ASSERT(writeParityNodes[i].numAntecedents == numParityNodes);
   1890      1.3    oster 		for (j = 0; j < numParityNodes; j++) {
   1891      1.3    oster 			RF_ASSERT(xorNodes[j].numSuccedents == numParityNodes);
   1892      1.3    oster 			xorNodes[i].succedents[j] = &writeParityNodes[j];
   1893      1.3    oster 			writeParityNodes[j].antecedents[i] = &xorNodes[i];
   1894      1.3    oster 			writeParityNodes[j].antType[i] = rf_trueData;
   1895      1.3    oster 		}
   1896      1.3    oster 	}
   1897      1.3    oster 
   1898      1.3    oster 	/* connect q nodes to the write new q nodes */
   1899      1.3    oster 	if (nfaults == 2)
   1900      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
   1901      1.3    oster 			RF_ASSERT(writeQNodes[i].numAntecedents == numParityNodes);
   1902      1.3    oster 			for (j = 0; j < numParityNodes; j++) {
   1903      1.3    oster 				RF_ASSERT(qNodes[j].numSuccedents == 1);
   1904      1.3    oster 				qNodes[i].succedents[j] = &writeQNodes[j];
   1905      1.3    oster 				writeQNodes[j].antecedents[i] = &qNodes[i];
   1906      1.3    oster 				writeQNodes[j].antType[i] = rf_trueData;
   1907      1.3    oster 			}
   1908      1.3    oster 		}
   1909      1.3    oster 
   1910      1.3    oster 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1911      1.3    oster 	RF_ASSERT(termNode->numSuccedents == 0);
   1912      1.3    oster 	for (i = 0; i < numDataNodes; i++) {
   1913      1.3    oster 		if (lu_flag) {
   1914      1.3    oster 			/* connect write new data nodes to unlock nodes */
   1915      1.3    oster 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1916      1.3    oster 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
   1917      1.3    oster 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
   1918      1.3    oster 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
   1919      1.3    oster 			unlockDataNodes[i].antType[0] = rf_control;
   1920      1.3    oster 
   1921      1.3    oster 			/* connect unlock nodes to term node */
   1922      1.3    oster 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
   1923      1.3    oster 			unlockDataNodes[i].succedents[0] = termNode;
   1924      1.3    oster 			termNode->antecedents[i] = &unlockDataNodes[i];
   1925      1.3    oster 			termNode->antType[i] = rf_control;
   1926      1.3    oster 		} else {
   1927      1.3    oster 			/* connect write new data nodes to term node */
   1928      1.3    oster 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1929      1.3    oster 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1930      1.3    oster 			writeDataNodes[i].succedents[0] = termNode;
   1931      1.3    oster 			termNode->antecedents[i] = &writeDataNodes[i];
   1932      1.3    oster 			termNode->antType[i] = rf_control;
   1933      1.3    oster 		}
   1934      1.3    oster 	}
   1935      1.3    oster 
   1936      1.3    oster 	for (i = 0; i < numParityNodes; i++) {
   1937      1.3    oster 		if (lu_flag) {
   1938      1.3    oster 			/* connect write new parity nodes to unlock nodes */
   1939      1.3    oster 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1940      1.3    oster 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1941      1.3    oster 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1942      1.3    oster 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1943      1.3    oster 			unlockParityNodes[i].antType[0] = rf_control;
   1944      1.3    oster 
   1945      1.3    oster 			/* connect unlock nodes to term node */
   1946      1.3    oster 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1947      1.3    oster 			unlockParityNodes[i].succedents[0] = termNode;
   1948      1.3    oster 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1949      1.3    oster 			termNode->antType[numDataNodes + i] = rf_control;
   1950      1.3    oster 		} else {
   1951      1.3    oster 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1952      1.3    oster 			writeParityNodes[i].succedents[0] = termNode;
   1953      1.3    oster 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1954      1.3    oster 			termNode->antType[numDataNodes + i] = rf_control;
   1955      1.3    oster 		}
   1956      1.3    oster 	}
   1957      1.3    oster 
   1958      1.3    oster 	if (nfaults == 2)
   1959      1.3    oster 		for (i = 0; i < numParityNodes; i++) {
   1960      1.3    oster 			if (lu_flag) {
   1961      1.3    oster 				/* connect write new Q nodes to unlock nodes */
   1962      1.3    oster 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1963      1.3    oster 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1964      1.3    oster 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1965      1.3    oster 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1966      1.3    oster 				unlockQNodes[i].antType[0] = rf_control;
   1967      1.3    oster 
   1968      1.3    oster 				/* connect unlock nodes to unblock node */
   1969      1.3    oster 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1970      1.3    oster 				unlockQNodes[i].succedents[0] = termNode;
   1971      1.3    oster 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1972      1.3    oster 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1973      1.3    oster 			} else {
   1974      1.3    oster 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1975      1.3    oster 				writeQNodes[i].succedents[0] = termNode;
   1976      1.3    oster 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1977      1.3    oster 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1978      1.3    oster 			}
   1979      1.3    oster 		}
   1980      1.1    oster }
   1981      1.1    oster 
   1982      1.1    oster 
   1983      1.1    oster 
   1984      1.1    oster /******************************************************************************
   1985      1.1    oster  * create a write graph (fault-free or degraded) for RAID level 1
   1986      1.1    oster  *
   1987      1.1    oster  * Hdr  Nil -> Wpd -> Nil -> Trm
   1988      1.1    oster  *      Nil -> Wsd ->
   1989      1.1    oster  *
   1990      1.1    oster  * The "Wpd" node writes data to the primary copy in the mirror pair
   1991      1.1    oster  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1992      1.1    oster  *
   1993      1.1    oster  * Parameters:  raidPtr   - description of the physical array
   1994      1.1    oster  *              asmap     - logical & physical addresses for this access
   1995      1.1    oster  *              bp        - buffer ptr (holds write data)
   1996      1.3    oster  *              flags     - general flags (e.g. disk locking)
   1997      1.1    oster  *              allocList - list of memory allocated in DAG creation
   1998      1.1    oster  *****************************************************************************/
   1999      1.1    oster 
   2000      1.3    oster void
   2001      1.3    oster rf_CreateRaidOneWriteDAGFwd(
   2002      1.3    oster     RF_Raid_t * raidPtr,
   2003      1.3    oster     RF_AccessStripeMap_t * asmap,
   2004      1.3    oster     RF_DagHeader_t * dag_h,
   2005      1.3    oster     void *bp,
   2006      1.3    oster     RF_RaidAccessFlags_t flags,
   2007      1.3    oster     RF_AllocListElem_t * allocList)
   2008      1.1    oster {
   2009      1.3    oster 	RF_DagNode_t *blockNode, *unblockNode, *termNode;
   2010      1.3    oster 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   2011      1.3    oster 	int     nWndNodes, nWmirNodes, i;
   2012      1.3    oster 	RF_ReconUnitNum_t which_ru;
   2013      1.3    oster 	RF_PhysDiskAddr_t *pda, *pdaP;
   2014      1.3    oster 	RF_StripeNum_t parityStripeID;
   2015      1.3    oster 
   2016      1.3    oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   2017      1.3    oster 	    asmap->raidAddress, &which_ru);
   2018      1.3    oster 	if (rf_dagDebug) {
   2019      1.3    oster 		printf("[Creating RAID level 1 write DAG]\n");
   2020      1.3    oster 	}
   2021      1.3    oster 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;	/* 2 implies access not
   2022      1.3    oster 							 * SU aligned */
   2023      1.3    oster 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   2024      1.3    oster 
   2025      1.3    oster 	/* alloc the Wnd nodes and the Wmir node */
   2026      1.3    oster 	if (asmap->numDataFailed == 1)
   2027      1.3    oster 		nWndNodes--;
   2028      1.3    oster 	if (asmap->numParityFailed == 1)
   2029      1.3    oster 		nWmirNodes--;
   2030      1.3    oster 
   2031      1.3    oster 	/* total number of nodes = nWndNodes + nWmirNodes + (block + unblock +
   2032      1.3    oster 	 * terminator) */
   2033      1.3    oster 	RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   2034      1.3    oster 	i = 0;
   2035      1.3    oster 	wndNode = &nodes[i];
   2036      1.3    oster 	i += nWndNodes;
   2037      1.3    oster 	wmirNode = &nodes[i];
   2038      1.3    oster 	i += nWmirNodes;
   2039      1.3    oster 	blockNode = &nodes[i];
   2040      1.3    oster 	i += 1;
   2041      1.3    oster 	unblockNode = &nodes[i];
   2042      1.3    oster 	i += 1;
   2043      1.3    oster 	termNode = &nodes[i];
   2044      1.3    oster 	i += 1;
   2045      1.3    oster 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   2046      1.3    oster 
   2047      1.3    oster 	/* this dag can commit immediately */
   2048      1.3    oster 	dag_h->numCommitNodes = 0;
   2049      1.3    oster 	dag_h->numCommits = 0;
   2050      1.3    oster 	dag_h->numSuccedents = 1;
   2051      1.3    oster 
   2052      1.3    oster 	/* initialize the unblock and term nodes */
   2053      1.3    oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Nil", allocList);
   2054      1.3    oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
   2055      1.3    oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
   2056      1.3    oster 
   2057      1.3    oster 	/* initialize the wnd nodes */
   2058      1.3    oster 	if (nWndNodes > 0) {
   2059      1.3    oster 		pda = asmap->physInfo;
   2060      1.3    oster 		for (i = 0; i < nWndNodes; i++) {
   2061      1.3    oster 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
   2062      1.3    oster 			RF_ASSERT(pda != NULL);
   2063      1.3    oster 			wndNode[i].params[0].p = pda;
   2064      1.3    oster 			wndNode[i].params[1].p = pda->bufPtr;
   2065      1.3    oster 			wndNode[i].params[2].v = parityStripeID;
   2066      1.3    oster 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   2067      1.3    oster 			pda = pda->next;
   2068      1.3    oster 		}
   2069      1.3    oster 		RF_ASSERT(pda == NULL);
   2070      1.3    oster 	}
   2071      1.3    oster 	/* initialize the mirror nodes */
   2072      1.3    oster 	if (nWmirNodes > 0) {
   2073      1.3    oster 		pda = asmap->physInfo;
   2074      1.3    oster 		pdaP = asmap->parityInfo;
   2075      1.3    oster 		for (i = 0; i < nWmirNodes; i++) {
   2076      1.3    oster 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
   2077      1.3    oster 			RF_ASSERT(pda != NULL);
   2078      1.3    oster 			wmirNode[i].params[0].p = pdaP;
   2079      1.3    oster 			wmirNode[i].params[1].p = pda->bufPtr;
   2080      1.3    oster 			wmirNode[i].params[2].v = parityStripeID;
   2081      1.3    oster 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   2082      1.3    oster 			pda = pda->next;
   2083      1.3    oster 			pdaP = pdaP->next;
   2084      1.3    oster 		}
   2085      1.3    oster 		RF_ASSERT(pda == NULL);
   2086      1.3    oster 		RF_ASSERT(pdaP == NULL);
   2087      1.3    oster 	}
   2088      1.3    oster 	/* link the header node to the block node */
   2089      1.3    oster 	RF_ASSERT(dag_h->numSuccedents == 1);
   2090      1.3    oster 	RF_ASSERT(blockNode->numAntecedents == 0);
   2091      1.3    oster 	dag_h->succedents[0] = blockNode;
   2092      1.3    oster 
   2093      1.3    oster 	/* link the block node to the write nodes */
   2094      1.3    oster 	RF_ASSERT(blockNode->numSuccedents == (nWndNodes + nWmirNodes));
   2095      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
   2096      1.3    oster 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   2097      1.3    oster 		blockNode->succedents[i] = &wndNode[i];
   2098      1.3    oster 		wndNode[i].antecedents[0] = blockNode;
   2099      1.3    oster 		wndNode[i].antType[0] = rf_control;
   2100      1.3    oster 	}
   2101      1.3    oster 	for (i = 0; i < nWmirNodes; i++) {
   2102      1.3    oster 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   2103      1.3    oster 		blockNode->succedents[i + nWndNodes] = &wmirNode[i];
   2104      1.3    oster 		wmirNode[i].antecedents[0] = blockNode;
   2105      1.3    oster 		wmirNode[i].antType[0] = rf_control;
   2106      1.3    oster 	}
   2107      1.3    oster 
   2108      1.3    oster 	/* link the write nodes to the unblock node */
   2109      1.3    oster 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   2110      1.3    oster 	for (i = 0; i < nWndNodes; i++) {
   2111      1.3    oster 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   2112      1.3    oster 		wndNode[i].succedents[0] = unblockNode;
   2113      1.3    oster 		unblockNode->antecedents[i] = &wndNode[i];
   2114      1.3    oster 		unblockNode->antType[i] = rf_control;
   2115      1.3    oster 	}
   2116      1.3    oster 	for (i = 0; i < nWmirNodes; i++) {
   2117      1.3    oster 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   2118      1.3    oster 		wmirNode[i].succedents[0] = unblockNode;
   2119      1.3    oster 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   2120      1.3    oster 		unblockNode->antType[i + nWndNodes] = rf_control;
   2121      1.3    oster 	}
   2122      1.3    oster 
   2123      1.3    oster 	/* link the unblock node to the term node */
   2124      1.3    oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
   2125      1.3    oster 	RF_ASSERT(termNode->numAntecedents == 1);
   2126      1.3    oster 	RF_ASSERT(termNode->numSuccedents == 0);
   2127      1.3    oster 	unblockNode->succedents[0] = termNode;
   2128      1.3    oster 	termNode->antecedents[0] = unblockNode;
   2129      1.3    oster 	termNode->antType[0] = rf_control;
   2130      1.1    oster 
   2131      1.3    oster 	return;
   2132      1.1    oster }
   2133