Home | History | Annotate | Line # | Download | only in raidframe
rf_dagffwr.c revision 1.9
      1  1.9  oster /*	$NetBSD: rf_dagffwr.c,v 1.9 2002/09/21 00:50:10 oster Exp $	*/
      2  1.1  oster /*
      3  1.1  oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4  1.1  oster  * All rights reserved.
      5  1.1  oster  *
      6  1.1  oster  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  1.1  oster  *
      8  1.1  oster  * Permission to use, copy, modify and distribute this software and
      9  1.1  oster  * its documentation is hereby granted, provided that both the copyright
     10  1.1  oster  * notice and this permission notice appear in all copies of the
     11  1.1  oster  * software, derivative works or modified versions, and any portions
     12  1.1  oster  * thereof, and that both notices appear in supporting documentation.
     13  1.1  oster  *
     14  1.1  oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  1.1  oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  1.1  oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  1.1  oster  *
     18  1.1  oster  * Carnegie Mellon requests users of this software to return to
     19  1.1  oster  *
     20  1.1  oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  1.1  oster  *  School of Computer Science
     22  1.1  oster  *  Carnegie Mellon University
     23  1.1  oster  *  Pittsburgh PA 15213-3890
     24  1.1  oster  *
     25  1.1  oster  * any improvements or extensions that they make and grant Carnegie the
     26  1.1  oster  * rights to redistribute these changes.
     27  1.1  oster  */
     28  1.1  oster 
     29  1.1  oster /*
     30  1.1  oster  * rf_dagff.c
     31  1.1  oster  *
     32  1.1  oster  * code for creating fault-free DAGs
     33  1.1  oster  *
     34  1.1  oster  */
     35  1.7  lukem 
     36  1.7  lukem #include <sys/cdefs.h>
     37  1.9  oster __KERNEL_RCSID(0, "$NetBSD: rf_dagffwr.c,v 1.9 2002/09/21 00:50:10 oster Exp $");
     38  1.1  oster 
     39  1.6  oster #include <dev/raidframe/raidframevar.h>
     40  1.6  oster 
     41  1.1  oster #include "rf_raid.h"
     42  1.1  oster #include "rf_dag.h"
     43  1.1  oster #include "rf_dagutils.h"
     44  1.1  oster #include "rf_dagfuncs.h"
     45  1.1  oster #include "rf_debugMem.h"
     46  1.1  oster #include "rf_dagffrd.h"
     47  1.1  oster #include "rf_general.h"
     48  1.1  oster #include "rf_dagffwr.h"
     49  1.1  oster 
     50  1.1  oster /******************************************************************************
     51  1.1  oster  *
     52  1.1  oster  * General comments on DAG creation:
     53  1.3  oster  *
     54  1.1  oster  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     55  1.1  oster  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     56  1.1  oster  * is reached, the execution engine will halt forward execution and work
     57  1.1  oster  * backward through the graph, executing the undo functions.  Assuming that
     58  1.1  oster  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     59  1.1  oster  * does not make changes to permanent state, the graph will fail atomically.
     60  1.1  oster  * If an error occurs after the Cmt node executes, the engine will roll-forward
     61  1.1  oster  * through the graph, blindly executing nodes until it reaches the end.
     62  1.1  oster  * If a graph reaches the end, it is assumed to have completed successfully.
     63  1.1  oster  *
     64  1.1  oster  * A graph has only 1 Cmt node.
     65  1.1  oster  *
     66  1.1  oster  */
     67  1.1  oster 
     68  1.1  oster 
     69  1.1  oster /******************************************************************************
     70  1.1  oster  *
     71  1.1  oster  * The following wrappers map the standard DAG creation interface to the
     72  1.1  oster  * DAG creation routines.  Additionally, these wrappers enable experimentation
     73  1.1  oster  * with new DAG structures by providing an extra level of indirection, allowing
     74  1.1  oster  * the DAG creation routines to be replaced at this single point.
     75  1.1  oster  */
     76  1.1  oster 
     77  1.1  oster 
     78  1.3  oster void
     79  1.3  oster rf_CreateNonRedundantWriteDAG(
     80  1.3  oster     RF_Raid_t * raidPtr,
     81  1.3  oster     RF_AccessStripeMap_t * asmap,
     82  1.3  oster     RF_DagHeader_t * dag_h,
     83  1.3  oster     void *bp,
     84  1.3  oster     RF_RaidAccessFlags_t flags,
     85  1.3  oster     RF_AllocListElem_t * allocList,
     86  1.3  oster     RF_IoType_t type)
     87  1.1  oster {
     88  1.3  oster 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     89  1.3  oster 	    RF_IO_TYPE_WRITE);
     90  1.1  oster }
     91  1.1  oster 
     92  1.3  oster void
     93  1.3  oster rf_CreateRAID0WriteDAG(
     94  1.3  oster     RF_Raid_t * raidPtr,
     95  1.3  oster     RF_AccessStripeMap_t * asmap,
     96  1.3  oster     RF_DagHeader_t * dag_h,
     97  1.3  oster     void *bp,
     98  1.3  oster     RF_RaidAccessFlags_t flags,
     99  1.3  oster     RF_AllocListElem_t * allocList,
    100  1.3  oster     RF_IoType_t type)
    101  1.1  oster {
    102  1.3  oster 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    103  1.3  oster 	    RF_IO_TYPE_WRITE);
    104  1.1  oster }
    105  1.1  oster 
    106  1.3  oster void
    107  1.3  oster rf_CreateSmallWriteDAG(
    108  1.3  oster     RF_Raid_t * raidPtr,
    109  1.3  oster     RF_AccessStripeMap_t * asmap,
    110  1.3  oster     RF_DagHeader_t * dag_h,
    111  1.3  oster     void *bp,
    112  1.3  oster     RF_RaidAccessFlags_t flags,
    113  1.3  oster     RF_AllocListElem_t * allocList)
    114  1.1  oster {
    115  1.3  oster 	/* "normal" rollaway */
    116  1.3  oster 	rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    117  1.3  oster 	    &rf_xorFuncs, NULL);
    118  1.1  oster }
    119  1.1  oster 
    120  1.3  oster void
    121  1.3  oster rf_CreateLargeWriteDAG(
    122  1.3  oster     RF_Raid_t * raidPtr,
    123  1.3  oster     RF_AccessStripeMap_t * asmap,
    124  1.3  oster     RF_DagHeader_t * dag_h,
    125  1.3  oster     void *bp,
    126  1.3  oster     RF_RaidAccessFlags_t flags,
    127  1.3  oster     RF_AllocListElem_t * allocList)
    128  1.1  oster {
    129  1.3  oster 	/* "normal" rollaway */
    130  1.3  oster 	rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    131  1.3  oster 	    1, rf_RegularXorFunc, RF_TRUE);
    132  1.1  oster }
    133  1.1  oster 
    134  1.1  oster 
    135  1.1  oster /******************************************************************************
    136  1.1  oster  *
    137  1.1  oster  * DAG creation code begins here
    138  1.1  oster  */
    139  1.1  oster 
    140  1.1  oster 
    141  1.1  oster /******************************************************************************
    142  1.1  oster  *
    143  1.1  oster  * creates a DAG to perform a large-write operation:
    144  1.1  oster  *
    145  1.1  oster  *           / Rod \           / Wnd \
    146  1.1  oster  * H -- block- Rod - Xor - Cmt - Wnd --- T
    147  1.1  oster  *           \ Rod /          \  Wnp /
    148  1.1  oster  *                             \[Wnq]/
    149  1.1  oster  *
    150  1.1  oster  * The XOR node also does the Q calculation in the P+Q architecture.
    151  1.1  oster  * All nodes are before the commit node (Cmt) are assumed to be atomic and
    152  1.1  oster  * undoable - or - they make no changes to permanent state.
    153  1.1  oster  *
    154  1.1  oster  * Rod = read old data
    155  1.1  oster  * Cmt = commit node
    156  1.1  oster  * Wnp = write new parity
    157  1.1  oster  * Wnd = write new data
    158  1.1  oster  * Wnq = write new "q"
    159  1.1  oster  * [] denotes optional segments in the graph
    160  1.1  oster  *
    161  1.1  oster  * Parameters:  raidPtr   - description of the physical array
    162  1.1  oster  *              asmap     - logical & physical addresses for this access
    163  1.1  oster  *              bp        - buffer ptr (holds write data)
    164  1.3  oster  *              flags     - general flags (e.g. disk locking)
    165  1.1  oster  *              allocList - list of memory allocated in DAG creation
    166  1.1  oster  *              nfaults   - number of faults array can tolerate
    167  1.1  oster  *                          (equal to # redundancy units in stripe)
    168  1.1  oster  *              redfuncs  - list of redundancy generating functions
    169  1.1  oster  *
    170  1.1  oster  *****************************************************************************/
    171  1.1  oster 
    172  1.3  oster void
    173  1.3  oster rf_CommonCreateLargeWriteDAG(
    174  1.3  oster     RF_Raid_t * raidPtr,
    175  1.3  oster     RF_AccessStripeMap_t * asmap,
    176  1.3  oster     RF_DagHeader_t * dag_h,
    177  1.3  oster     void *bp,
    178  1.3  oster     RF_RaidAccessFlags_t flags,
    179  1.3  oster     RF_AllocListElem_t * allocList,
    180  1.3  oster     int nfaults,
    181  1.3  oster     int (*redFunc) (RF_DagNode_t *),
    182  1.3  oster     int allowBufferRecycle)
    183  1.1  oster {
    184  1.3  oster 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
    185  1.3  oster 	RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
    186  1.3  oster 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
    187  1.3  oster 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    188  1.3  oster 	RF_StripeNum_t parityStripeID;
    189  1.3  oster 	char   *sosBuffer, *eosBuffer;
    190  1.3  oster 	RF_ReconUnitNum_t which_ru;
    191  1.3  oster 	RF_RaidLayout_t *layoutPtr;
    192  1.3  oster 	RF_PhysDiskAddr_t *pda;
    193  1.3  oster 
    194  1.3  oster 	layoutPtr = &(raidPtr->Layout);
    195  1.3  oster 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    196  1.3  oster 	    &which_ru);
    197  1.3  oster 
    198  1.3  oster 	if (rf_dagDebug) {
    199  1.3  oster 		printf("[Creating large-write DAG]\n");
    200  1.3  oster 	}
    201  1.3  oster 	dag_h->creator = "LargeWriteDAG";
    202  1.3  oster 
    203  1.3  oster 	dag_h->numCommitNodes = 1;
    204  1.3  oster 	dag_h->numCommits = 0;
    205  1.3  oster 	dag_h->numSuccedents = 1;
    206  1.3  oster 
    207  1.3  oster 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
    208  1.3  oster 	nWndNodes = asmap->numStripeUnitsAccessed;
    209  1.3  oster 	RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t),
    210  1.3  oster 	    (RF_DagNode_t *), allocList);
    211  1.3  oster 	i = 0;
    212  1.3  oster 	wndNodes = &nodes[i];
    213  1.3  oster 	i += nWndNodes;
    214  1.3  oster 	xorNode = &nodes[i];
    215  1.3  oster 	i += 1;
    216  1.3  oster 	wnpNode = &nodes[i];
    217  1.3  oster 	i += 1;
    218  1.3  oster 	blockNode = &nodes[i];
    219  1.3  oster 	i += 1;
    220  1.3  oster 	commitNode = &nodes[i];
    221  1.3  oster 	i += 1;
    222  1.3  oster 	termNode = &nodes[i];
    223  1.3  oster 	i += 1;
    224  1.3  oster 	if (nfaults == 2) {
    225  1.3  oster 		wnqNode = &nodes[i];
    226  1.3  oster 		i += 1;
    227  1.3  oster 	} else {
    228  1.3  oster 		wnqNode = NULL;
    229  1.3  oster 	}
    230  1.3  oster 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h,
    231  1.3  oster 	    &nRodNodes, &sosBuffer, &eosBuffer, allocList);
    232  1.3  oster 	if (nRodNodes > 0) {
    233  1.3  oster 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t),
    234  1.3  oster 		    (RF_DagNode_t *), allocList);
    235  1.3  oster 	} else {
    236  1.3  oster 		rodNodes = NULL;
    237  1.3  oster 	}
    238  1.3  oster 
    239  1.3  oster 	/* begin node initialization */
    240  1.3  oster 	if (nRodNodes > 0) {
    241  1.3  oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    242  1.3  oster 		    NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
    243  1.3  oster 	} else {
    244  1.3  oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    245  1.3  oster 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    246  1.3  oster 	}
    247  1.3  oster 
    248  1.3  oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL,
    249  1.3  oster 	    nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    250  1.3  oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL,
    251  1.3  oster 	    0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
    252  1.3  oster 
    253  1.3  oster 	/* initialize the Rod nodes */
    254  1.3  oster 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
    255  1.3  oster 		if (new_asm_h[asmNum]) {
    256  1.3  oster 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
    257  1.3  oster 			while (pda) {
    258  1.3  oster 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc,
    259  1.3  oster 				    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    260  1.3  oster 				    "Rod", allocList);
    261  1.3  oster 				rodNodes[nodeNum].params[0].p = pda;
    262  1.3  oster 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
    263  1.3  oster 				rodNodes[nodeNum].params[2].v = parityStripeID;
    264  1.3  oster 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    265  1.3  oster 				    0, 0, which_ru);
    266  1.3  oster 				nodeNum++;
    267  1.3  oster 				pda = pda->next;
    268  1.3  oster 			}
    269  1.3  oster 		}
    270  1.3  oster 	}
    271  1.3  oster 	RF_ASSERT(nodeNum == nRodNodes);
    272  1.3  oster 
    273  1.3  oster 	/* initialize the wnd nodes */
    274  1.3  oster 	pda = asmap->physInfo;
    275  1.3  oster 	for (i = 0; i < nWndNodes; i++) {
    276  1.3  oster 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    277  1.3  oster 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    278  1.3  oster 		RF_ASSERT(pda != NULL);
    279  1.3  oster 		wndNodes[i].params[0].p = pda;
    280  1.3  oster 		wndNodes[i].params[1].p = pda->bufPtr;
    281  1.3  oster 		wndNodes[i].params[2].v = parityStripeID;
    282  1.3  oster 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    283  1.3  oster 		pda = pda->next;
    284  1.3  oster 	}
    285  1.3  oster 
    286  1.3  oster 	/* initialize the redundancy node */
    287  1.3  oster 	if (nRodNodes > 0) {
    288  1.3  oster 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    289  1.3  oster 		    nRodNodes, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h,
    290  1.3  oster 		    "Xr ", allocList);
    291  1.3  oster 	} else {
    292  1.3  oster 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    293  1.3  oster 		    1, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
    294  1.3  oster 	}
    295  1.3  oster 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
    296  1.3  oster 	for (i = 0; i < nWndNodes; i++) {
    297  1.3  oster 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
    298  1.3  oster 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
    299  1.3  oster 	}
    300  1.3  oster 	for (i = 0; i < nRodNodes; i++) {
    301  1.3  oster 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
    302  1.3  oster 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
    303  1.3  oster 	}
    304  1.3  oster 	/* xor node needs to get at RAID information */
    305  1.3  oster 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
    306  1.3  oster 
    307  1.3  oster 	/*
    308  1.3  oster          * Look for an Rod node that reads a complete SU. If none, alloc a buffer
    309  1.3  oster          * to receive the parity info. Note that we can't use a new data buffer
    310  1.3  oster          * because it will not have gotten written when the xor occurs.
    311  1.3  oster          */
    312  1.3  oster 	if (allowBufferRecycle) {
    313  1.3  oster 		for (i = 0; i < nRodNodes; i++) {
    314  1.3  oster 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
    315  1.3  oster 				break;
    316  1.3  oster 		}
    317  1.3  oster 	}
    318  1.3  oster 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
    319  1.3  oster 		RF_CallocAndAdd(xorNode->results[0], 1,
    320  1.3  oster 		    rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    321  1.3  oster 		    (void *), allocList);
    322  1.3  oster 	} else {
    323  1.3  oster 		xorNode->results[0] = rodNodes[i].params[1].p;
    324  1.3  oster 	}
    325  1.3  oster 
    326  1.3  oster 	/* initialize the Wnp node */
    327  1.3  oster 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    328  1.3  oster 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    329  1.3  oster 	wnpNode->params[0].p = asmap->parityInfo;
    330  1.3  oster 	wnpNode->params[1].p = xorNode->results[0];
    331  1.3  oster 	wnpNode->params[2].v = parityStripeID;
    332  1.3  oster 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    333  1.3  oster 	/* parityInfo must describe entire parity unit */
    334  1.3  oster 	RF_ASSERT(asmap->parityInfo->next == NULL);
    335  1.3  oster 
    336  1.3  oster 	if (nfaults == 2) {
    337  1.3  oster 		/*
    338  1.3  oster 	         * We never try to recycle a buffer for the Q calcuation
    339  1.3  oster 	         * in addition to the parity. This would cause two buffers
    340  1.3  oster 	         * to get smashed during the P and Q calculation, guaranteeing
    341  1.3  oster 	         * one would be wrong.
    342  1.3  oster 	         */
    343  1.3  oster 		RF_CallocAndAdd(xorNode->results[1], 1,
    344  1.3  oster 		    rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    345  1.3  oster 		    (void *), allocList);
    346  1.3  oster 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    347  1.3  oster 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    348  1.3  oster 		wnqNode->params[0].p = asmap->qInfo;
    349  1.3  oster 		wnqNode->params[1].p = xorNode->results[1];
    350  1.3  oster 		wnqNode->params[2].v = parityStripeID;
    351  1.3  oster 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    352  1.3  oster 		/* parityInfo must describe entire parity unit */
    353  1.3  oster 		RF_ASSERT(asmap->parityInfo->next == NULL);
    354  1.3  oster 	}
    355  1.3  oster 	/*
    356  1.3  oster          * Connect nodes to form graph.
    357  1.3  oster          */
    358  1.3  oster 
    359  1.3  oster 	/* connect dag header to block node */
    360  1.3  oster 	RF_ASSERT(blockNode->numAntecedents == 0);
    361  1.3  oster 	dag_h->succedents[0] = blockNode;
    362  1.3  oster 
    363  1.3  oster 	if (nRodNodes > 0) {
    364  1.3  oster 		/* connect the block node to the Rod nodes */
    365  1.3  oster 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
    366  1.3  oster 		RF_ASSERT(xorNode->numAntecedents == nRodNodes);
    367  1.3  oster 		for (i = 0; i < nRodNodes; i++) {
    368  1.3  oster 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
    369  1.3  oster 			blockNode->succedents[i] = &rodNodes[i];
    370  1.3  oster 			rodNodes[i].antecedents[0] = blockNode;
    371  1.3  oster 			rodNodes[i].antType[0] = rf_control;
    372  1.3  oster 
    373  1.3  oster 			/* connect the Rod nodes to the Xor node */
    374  1.3  oster 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
    375  1.3  oster 			rodNodes[i].succedents[0] = xorNode;
    376  1.3  oster 			xorNode->antecedents[i] = &rodNodes[i];
    377  1.3  oster 			xorNode->antType[i] = rf_trueData;
    378  1.3  oster 		}
    379  1.3  oster 	} else {
    380  1.3  oster 		/* connect the block node to the Xor node */
    381  1.3  oster 		RF_ASSERT(blockNode->numSuccedents == 1);
    382  1.3  oster 		RF_ASSERT(xorNode->numAntecedents == 1);
    383  1.3  oster 		blockNode->succedents[0] = xorNode;
    384  1.3  oster 		xorNode->antecedents[0] = blockNode;
    385  1.3  oster 		xorNode->antType[0] = rf_control;
    386  1.3  oster 	}
    387  1.3  oster 
    388  1.3  oster 	/* connect the xor node to the commit node */
    389  1.3  oster 	RF_ASSERT(xorNode->numSuccedents == 1);
    390  1.3  oster 	RF_ASSERT(commitNode->numAntecedents == 1);
    391  1.3  oster 	xorNode->succedents[0] = commitNode;
    392  1.3  oster 	commitNode->antecedents[0] = xorNode;
    393  1.3  oster 	commitNode->antType[0] = rf_control;
    394  1.3  oster 
    395  1.3  oster 	/* connect the commit node to the write nodes */
    396  1.3  oster 	RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
    397  1.3  oster 	for (i = 0; i < nWndNodes; i++) {
    398  1.3  oster 		RF_ASSERT(wndNodes->numAntecedents == 1);
    399  1.3  oster 		commitNode->succedents[i] = &wndNodes[i];
    400  1.3  oster 		wndNodes[i].antecedents[0] = commitNode;
    401  1.3  oster 		wndNodes[i].antType[0] = rf_control;
    402  1.3  oster 	}
    403  1.3  oster 	RF_ASSERT(wnpNode->numAntecedents == 1);
    404  1.3  oster 	commitNode->succedents[nWndNodes] = wnpNode;
    405  1.3  oster 	wnpNode->antecedents[0] = commitNode;
    406  1.3  oster 	wnpNode->antType[0] = rf_trueData;
    407  1.3  oster 	if (nfaults == 2) {
    408  1.3  oster 		RF_ASSERT(wnqNode->numAntecedents == 1);
    409  1.3  oster 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    410  1.3  oster 		wnqNode->antecedents[0] = commitNode;
    411  1.3  oster 		wnqNode->antType[0] = rf_trueData;
    412  1.3  oster 	}
    413  1.3  oster 	/* connect the write nodes to the term node */
    414  1.3  oster 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
    415  1.3  oster 	RF_ASSERT(termNode->numSuccedents == 0);
    416  1.3  oster 	for (i = 0; i < nWndNodes; i++) {
    417  1.3  oster 		RF_ASSERT(wndNodes->numSuccedents == 1);
    418  1.3  oster 		wndNodes[i].succedents[0] = termNode;
    419  1.3  oster 		termNode->antecedents[i] = &wndNodes[i];
    420  1.3  oster 		termNode->antType[i] = rf_control;
    421  1.3  oster 	}
    422  1.3  oster 	RF_ASSERT(wnpNode->numSuccedents == 1);
    423  1.3  oster 	wnpNode->succedents[0] = termNode;
    424  1.3  oster 	termNode->antecedents[nWndNodes] = wnpNode;
    425  1.3  oster 	termNode->antType[nWndNodes] = rf_control;
    426  1.3  oster 	if (nfaults == 2) {
    427  1.3  oster 		RF_ASSERT(wnqNode->numSuccedents == 1);
    428  1.3  oster 		wnqNode->succedents[0] = termNode;
    429  1.3  oster 		termNode->antecedents[nWndNodes + 1] = wnqNode;
    430  1.3  oster 		termNode->antType[nWndNodes + 1] = rf_control;
    431  1.3  oster 	}
    432  1.1  oster }
    433  1.1  oster /******************************************************************************
    434  1.1  oster  *
    435  1.1  oster  * creates a DAG to perform a small-write operation (either raid 5 or pq),
    436  1.1  oster  * which is as follows:
    437  1.1  oster  *
    438  1.1  oster  * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
    439  1.1  oster  *            \- Rod X      /     \----> Wnd [Und]-/
    440  1.1  oster  *           [\- Rod X     /       \---> Wnd [Und]-/]
    441  1.1  oster  *           [\- Roq -> Q /         \--> Wnq [Unq]-/]
    442  1.1  oster  *
    443  1.1  oster  * Rop = read old parity
    444  1.1  oster  * Rod = read old data
    445  1.1  oster  * Roq = read old "q"
    446  1.1  oster  * Cmt = commit node
    447  1.1  oster  * Und = unlock data disk
    448  1.1  oster  * Unp = unlock parity disk
    449  1.1  oster  * Unq = unlock q disk
    450  1.1  oster  * Wnp = write new parity
    451  1.1  oster  * Wnd = write new data
    452  1.1  oster  * Wnq = write new "q"
    453  1.1  oster  * [ ] denotes optional segments in the graph
    454  1.1  oster  *
    455  1.1  oster  * Parameters:  raidPtr   - description of the physical array
    456  1.1  oster  *              asmap     - logical & physical addresses for this access
    457  1.1  oster  *              bp        - buffer ptr (holds write data)
    458  1.3  oster  *              flags     - general flags (e.g. disk locking)
    459  1.1  oster  *              allocList - list of memory allocated in DAG creation
    460  1.1  oster  *              pfuncs    - list of parity generating functions
    461  1.1  oster  *              qfuncs    - list of q generating functions
    462  1.1  oster  *
    463  1.1  oster  * A null qfuncs indicates single fault tolerant
    464  1.1  oster  *****************************************************************************/
    465  1.1  oster 
    466  1.3  oster void
    467  1.3  oster rf_CommonCreateSmallWriteDAG(
    468  1.3  oster     RF_Raid_t * raidPtr,
    469  1.3  oster     RF_AccessStripeMap_t * asmap,
    470  1.3  oster     RF_DagHeader_t * dag_h,
    471  1.3  oster     void *bp,
    472  1.3  oster     RF_RaidAccessFlags_t flags,
    473  1.3  oster     RF_AllocListElem_t * allocList,
    474  1.3  oster     RF_RedFuncs_t * pfuncs,
    475  1.3  oster     RF_RedFuncs_t * qfuncs)
    476  1.1  oster {
    477  1.3  oster 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
    478  1.3  oster 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
    479  1.3  oster 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes;
    480  1.3  oster 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
    481  1.3  oster 	int     i, j, nNodes, totalNumNodes, lu_flag;
    482  1.3  oster 	RF_ReconUnitNum_t which_ru;
    483  1.3  oster 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    484  1.3  oster 	int     (*qfunc) (RF_DagNode_t *);
    485  1.3  oster 	int     numDataNodes, numParityNodes;
    486  1.3  oster 	RF_StripeNum_t parityStripeID;
    487  1.3  oster 	RF_PhysDiskAddr_t *pda;
    488  1.3  oster 	char   *name, *qname;
    489  1.3  oster 	long    nfaults;
    490  1.3  oster 
    491  1.3  oster 	nfaults = qfuncs ? 2 : 1;
    492  1.3  oster 	lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
    493  1.3  oster 
    494  1.3  oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    495  1.3  oster 	    asmap->raidAddress, &which_ru);
    496  1.3  oster 	pda = asmap->physInfo;
    497  1.3  oster 	numDataNodes = asmap->numStripeUnitsAccessed;
    498  1.3  oster 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
    499  1.3  oster 
    500  1.3  oster 	if (rf_dagDebug) {
    501  1.3  oster 		printf("[Creating small-write DAG]\n");
    502  1.3  oster 	}
    503  1.3  oster 	RF_ASSERT(numDataNodes > 0);
    504  1.3  oster 	dag_h->creator = "SmallWriteDAG";
    505  1.3  oster 
    506  1.3  oster 	dag_h->numCommitNodes = 1;
    507  1.3  oster 	dag_h->numCommits = 0;
    508  1.3  oster 	dag_h->numSuccedents = 1;
    509  1.3  oster 
    510  1.3  oster 	/*
    511  1.3  oster          * DAG creation occurs in four steps:
    512  1.3  oster          * 1. count the number of nodes in the DAG
    513  1.3  oster          * 2. create the nodes
    514  1.3  oster          * 3. initialize the nodes
    515  1.3  oster          * 4. connect the nodes
    516  1.3  oster          */
    517  1.3  oster 
    518  1.3  oster 	/*
    519  1.3  oster          * Step 1. compute number of nodes in the graph
    520  1.3  oster          */
    521  1.3  oster 
    522  1.3  oster 	/* number of nodes: a read and write for each data unit a redundancy
    523  1.3  oster 	 * computation node for each parity node (nfaults * nparity) a read
    524  1.3  oster 	 * and write for each parity unit a block and commit node (2) a
    525  1.3  oster 	 * terminate node if atomic RMW an unlock node for each data unit,
    526  1.3  oster 	 * redundancy unit */
    527  1.3  oster 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
    528  1.3  oster 	    + (nfaults * 2 * numParityNodes) + 3;
    529  1.3  oster 	if (lu_flag) {
    530  1.3  oster 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
    531  1.3  oster 	}
    532  1.3  oster 	/*
    533  1.3  oster          * Step 2. create the nodes
    534  1.3  oster          */
    535  1.3  oster 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
    536  1.3  oster 	    (RF_DagNode_t *), allocList);
    537  1.3  oster 	i = 0;
    538  1.3  oster 	blockNode = &nodes[i];
    539  1.3  oster 	i += 1;
    540  1.3  oster 	commitNode = &nodes[i];
    541  1.3  oster 	i += 1;
    542  1.3  oster 	readDataNodes = &nodes[i];
    543  1.3  oster 	i += numDataNodes;
    544  1.3  oster 	readParityNodes = &nodes[i];
    545  1.3  oster 	i += numParityNodes;
    546  1.3  oster 	writeDataNodes = &nodes[i];
    547  1.3  oster 	i += numDataNodes;
    548  1.3  oster 	writeParityNodes = &nodes[i];
    549  1.3  oster 	i += numParityNodes;
    550  1.3  oster 	xorNodes = &nodes[i];
    551  1.3  oster 	i += numParityNodes;
    552  1.3  oster 	termNode = &nodes[i];
    553  1.3  oster 	i += 1;
    554  1.3  oster 	if (lu_flag) {
    555  1.3  oster 		unlockDataNodes = &nodes[i];
    556  1.3  oster 		i += numDataNodes;
    557  1.3  oster 		unlockParityNodes = &nodes[i];
    558  1.3  oster 		i += numParityNodes;
    559  1.3  oster 	} else {
    560  1.3  oster 		unlockDataNodes = unlockParityNodes = NULL;
    561  1.3  oster 	}
    562  1.3  oster 	if (nfaults == 2) {
    563  1.3  oster 		readQNodes = &nodes[i];
    564  1.3  oster 		i += numParityNodes;
    565  1.3  oster 		writeQNodes = &nodes[i];
    566  1.3  oster 		i += numParityNodes;
    567  1.3  oster 		qNodes = &nodes[i];
    568  1.3  oster 		i += numParityNodes;
    569  1.3  oster 		if (lu_flag) {
    570  1.3  oster 			unlockQNodes = &nodes[i];
    571  1.3  oster 			i += numParityNodes;
    572  1.3  oster 		} else {
    573  1.3  oster 			unlockQNodes = NULL;
    574  1.3  oster 		}
    575  1.3  oster 	} else {
    576  1.3  oster 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
    577  1.3  oster 	}
    578  1.3  oster 	RF_ASSERT(i == totalNumNodes);
    579  1.3  oster 
    580  1.3  oster 	/*
    581  1.3  oster          * Step 3. initialize the nodes
    582  1.3  oster          */
    583  1.3  oster 	/* initialize block node (Nil) */
    584  1.3  oster 	nNodes = numDataNodes + (nfaults * numParityNodes);
    585  1.3  oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    586  1.3  oster 	    NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
    587  1.3  oster 
    588  1.3  oster 	/* initialize commit node (Cmt) */
    589  1.3  oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    590  1.3  oster 	    NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
    591  1.3  oster 
    592  1.3  oster 	/* initialize terminate node (Trm) */
    593  1.3  oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    594  1.3  oster 	    NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
    595  1.3  oster 
    596  1.3  oster 	/* initialize nodes which read old data (Rod) */
    597  1.3  oster 	for (i = 0; i < numDataNodes; i++) {
    598  1.3  oster 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    599  1.3  oster 		    rf_GenericWakeupFunc, (nfaults * numParityNodes), 1, 4, 0, dag_h,
    600  1.3  oster 		    "Rod", allocList);
    601  1.3  oster 		RF_ASSERT(pda != NULL);
    602  1.3  oster 		/* physical disk addr desc */
    603  1.3  oster 		readDataNodes[i].params[0].p = pda;
    604  1.3  oster 		/* buffer to hold old data */
    605  1.3  oster 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    606  1.3  oster 		    dag_h, pda, allocList);
    607  1.3  oster 		readDataNodes[i].params[2].v = parityStripeID;
    608  1.3  oster 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    609  1.3  oster 		    lu_flag, 0, which_ru);
    610  1.3  oster 		pda = pda->next;
    611  1.3  oster 		for (j = 0; j < readDataNodes[i].numSuccedents; j++) {
    612  1.3  oster 			readDataNodes[i].propList[j] = NULL;
    613  1.3  oster 		}
    614  1.3  oster 	}
    615  1.3  oster 
    616  1.3  oster 	/* initialize nodes which read old parity (Rop) */
    617  1.3  oster 	pda = asmap->parityInfo;
    618  1.3  oster 	i = 0;
    619  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    620  1.3  oster 		RF_ASSERT(pda != NULL);
    621  1.3  oster 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
    622  1.3  oster 		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4,
    623  1.3  oster 		    0, dag_h, "Rop", allocList);
    624  1.3  oster 		readParityNodes[i].params[0].p = pda;
    625  1.3  oster 		/* buffer to hold old parity */
    626  1.3  oster 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    627  1.3  oster 		    dag_h, pda, allocList);
    628  1.3  oster 		readParityNodes[i].params[2].v = parityStripeID;
    629  1.3  oster 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    630  1.3  oster 		    lu_flag, 0, which_ru);
    631  1.3  oster 		pda = pda->next;
    632  1.3  oster 		for (j = 0; j < readParityNodes[i].numSuccedents; j++) {
    633  1.3  oster 			readParityNodes[i].propList[0] = NULL;
    634  1.3  oster 		}
    635  1.3  oster 	}
    636  1.3  oster 
    637  1.3  oster 	/* initialize nodes which read old Q (Roq) */
    638  1.3  oster 	if (nfaults == 2) {
    639  1.3  oster 		pda = asmap->qInfo;
    640  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    641  1.3  oster 			RF_ASSERT(pda != NULL);
    642  1.3  oster 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    643  1.3  oster 			    rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
    644  1.3  oster 			readQNodes[i].params[0].p = pda;
    645  1.3  oster 			/* buffer to hold old Q */
    646  1.3  oster 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda,
    647  1.3  oster 			    allocList);
    648  1.3  oster 			readQNodes[i].params[2].v = parityStripeID;
    649  1.3  oster 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    650  1.3  oster 			    lu_flag, 0, which_ru);
    651  1.3  oster 			pda = pda->next;
    652  1.3  oster 			for (j = 0; j < readQNodes[i].numSuccedents; j++) {
    653  1.3  oster 				readQNodes[i].propList[0] = NULL;
    654  1.3  oster 			}
    655  1.3  oster 		}
    656  1.3  oster 	}
    657  1.3  oster 	/* initialize nodes which write new data (Wnd) */
    658  1.3  oster 	pda = asmap->physInfo;
    659  1.3  oster 	for (i = 0; i < numDataNodes; i++) {
    660  1.3  oster 		RF_ASSERT(pda != NULL);
    661  1.3  oster 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    662  1.3  oster 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    663  1.3  oster 		    "Wnd", allocList);
    664  1.3  oster 		/* physical disk addr desc */
    665  1.3  oster 		writeDataNodes[i].params[0].p = pda;
    666  1.3  oster 		/* buffer holding new data to be written */
    667  1.3  oster 		writeDataNodes[i].params[1].p = pda->bufPtr;
    668  1.3  oster 		writeDataNodes[i].params[2].v = parityStripeID;
    669  1.3  oster 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    670  1.3  oster 		    0, 0, which_ru);
    671  1.3  oster 		if (lu_flag) {
    672  1.3  oster 			/* initialize node to unlock the disk queue */
    673  1.3  oster 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    674  1.3  oster 			    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    675  1.3  oster 			    "Und", allocList);
    676  1.3  oster 			/* physical disk addr desc */
    677  1.3  oster 			unlockDataNodes[i].params[0].p = pda;
    678  1.3  oster 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    679  1.3  oster 			    0, lu_flag, which_ru);
    680  1.3  oster 		}
    681  1.3  oster 		pda = pda->next;
    682  1.3  oster 	}
    683  1.3  oster 
    684  1.3  oster 	/*
    685  1.3  oster          * Initialize nodes which compute new parity and Q.
    686  1.3  oster          */
    687  1.3  oster 	/*
    688  1.3  oster          * We use the simple XOR func in the double-XOR case, and when
    689  1.3  oster          * we're accessing only a portion of one stripe unit. The distinction
    690  1.3  oster          * between the two is that the regular XOR func assumes that the targbuf
    691  1.3  oster          * is a full SU in size, and examines the pda associated with the buffer
    692  1.3  oster          * to decide where within the buffer to XOR the data, whereas
    693  1.3  oster          * the simple XOR func just XORs the data into the start of the buffer.
    694  1.3  oster          */
    695  1.3  oster 	if ((numParityNodes == 2) || ((numDataNodes == 1)
    696  1.3  oster 		&& (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
    697  1.3  oster 		func = pfuncs->simple;
    698  1.3  oster 		undoFunc = rf_NullNodeUndoFunc;
    699  1.3  oster 		name = pfuncs->SimpleName;
    700  1.3  oster 		if (qfuncs) {
    701  1.3  oster 			qfunc = qfuncs->simple;
    702  1.3  oster 			qname = qfuncs->SimpleName;
    703  1.3  oster 		} else {
    704  1.3  oster 			qfunc = NULL;
    705  1.3  oster 			qname = NULL;
    706  1.3  oster 		}
    707  1.3  oster 	} else {
    708  1.3  oster 		func = pfuncs->regular;
    709  1.3  oster 		undoFunc = rf_NullNodeUndoFunc;
    710  1.3  oster 		name = pfuncs->RegularName;
    711  1.3  oster 		if (qfuncs) {
    712  1.3  oster 			qfunc = qfuncs->regular;
    713  1.3  oster 			qname = qfuncs->RegularName;
    714  1.3  oster 		} else {
    715  1.3  oster 			qfunc = NULL;
    716  1.3  oster 			qname = NULL;
    717  1.3  oster 		}
    718  1.3  oster 	}
    719  1.3  oster 	/*
    720  1.3  oster          * Initialize the xor nodes: params are {pda,buf}
    721  1.3  oster          * from {Rod,Wnd,Rop} nodes, and raidPtr
    722  1.3  oster          */
    723  1.3  oster 	if (numParityNodes == 2) {
    724  1.3  oster 		/* double-xor case */
    725  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    726  1.3  oster 			/* note: no wakeup func for xor */
    727  1.3  oster 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL,
    728  1.3  oster 			    1, (numDataNodes + numParityNodes), 7, 1, dag_h, name, allocList);
    729  1.3  oster 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
    730  1.3  oster 			xorNodes[i].params[0] = readDataNodes[i].params[0];
    731  1.3  oster 			xorNodes[i].params[1] = readDataNodes[i].params[1];
    732  1.3  oster 			xorNodes[i].params[2] = readParityNodes[i].params[0];
    733  1.3  oster 			xorNodes[i].params[3] = readParityNodes[i].params[1];
    734  1.3  oster 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
    735  1.3  oster 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
    736  1.3  oster 			xorNodes[i].params[6].p = raidPtr;
    737  1.3  oster 			/* use old parity buf as target buf */
    738  1.3  oster 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;
    739  1.3  oster 			if (nfaults == 2) {
    740  1.3  oster 				/* note: no wakeup func for qor */
    741  1.3  oster 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
    742  1.3  oster 				    (numDataNodes + numParityNodes), 7, 1, dag_h, qname, allocList);
    743  1.3  oster 				qNodes[i].params[0] = readDataNodes[i].params[0];
    744  1.3  oster 				qNodes[i].params[1] = readDataNodes[i].params[1];
    745  1.3  oster 				qNodes[i].params[2] = readQNodes[i].params[0];
    746  1.3  oster 				qNodes[i].params[3] = readQNodes[i].params[1];
    747  1.3  oster 				qNodes[i].params[4] = writeDataNodes[i].params[0];
    748  1.3  oster 				qNodes[i].params[5] = writeDataNodes[i].params[1];
    749  1.3  oster 				qNodes[i].params[6].p = raidPtr;
    750  1.3  oster 				/* use old Q buf as target buf */
    751  1.3  oster 				qNodes[i].results[0] = readQNodes[i].params[1].p;
    752  1.3  oster 			}
    753  1.3  oster 		}
    754  1.3  oster 	} else {
    755  1.3  oster 		/* there is only one xor node in this case */
    756  1.3  oster 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, 1,
    757  1.3  oster 		    (numDataNodes + numParityNodes),
    758  1.3  oster 		    (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
    759  1.3  oster 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
    760  1.3  oster 		for (i = 0; i < numDataNodes + 1; i++) {
    761  1.3  oster 			/* set up params related to Rod and Rop nodes */
    762  1.3  oster 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    763  1.3  oster 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    764  1.3  oster 		}
    765  1.3  oster 		for (i = 0; i < numDataNodes; i++) {
    766  1.3  oster 			/* set up params related to Wnd and Wnp nodes */
    767  1.3  oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    768  1.3  oster 			    writeDataNodes[i].params[0];
    769  1.3  oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    770  1.3  oster 			    writeDataNodes[i].params[1];
    771  1.3  oster 		}
    772  1.3  oster 		/* xor node needs to get at RAID information */
    773  1.3  oster 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    774  1.3  oster 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
    775  1.3  oster 		if (nfaults == 2) {
    776  1.3  oster 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
    777  1.3  oster 			    (numDataNodes + numParityNodes),
    778  1.3  oster 			    (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h,
    779  1.3  oster 			    qname, allocList);
    780  1.3  oster 			for (i = 0; i < numDataNodes; i++) {
    781  1.3  oster 				/* set up params related to Rod */
    782  1.3  oster 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    783  1.3  oster 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    784  1.3  oster 			}
    785  1.3  oster 			/* and read old q */
    786  1.3  oster 			qNodes[0].params[2 * numDataNodes + 0] =	/* pda */
    787  1.3  oster 			    readQNodes[0].params[0];
    788  1.3  oster 			qNodes[0].params[2 * numDataNodes + 1] =	/* buffer ptr */
    789  1.3  oster 			    readQNodes[0].params[1];
    790  1.3  oster 			for (i = 0; i < numDataNodes; i++) {
    791  1.3  oster 				/* set up params related to Wnd nodes */
    792  1.3  oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    793  1.3  oster 				    writeDataNodes[i].params[0];
    794  1.3  oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    795  1.3  oster 				    writeDataNodes[i].params[1];
    796  1.3  oster 			}
    797  1.3  oster 			/* xor node needs to get at RAID information */
    798  1.3  oster 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    799  1.3  oster 			qNodes[0].results[0] = readQNodes[0].params[1].p;
    800  1.3  oster 		}
    801  1.3  oster 	}
    802  1.3  oster 
    803  1.3  oster 	/* initialize nodes which write new parity (Wnp) */
    804  1.3  oster 	pda = asmap->parityInfo;
    805  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    806  1.3  oster 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    807  1.3  oster 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    808  1.3  oster 		    "Wnp", allocList);
    809  1.3  oster 		RF_ASSERT(pda != NULL);
    810  1.3  oster 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    811  1.3  oster 							 * filled in by xor node */
    812  1.3  oster 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
    813  1.3  oster 										 * parity write
    814  1.3  oster 										 * operation */
    815  1.3  oster 		writeParityNodes[i].params[2].v = parityStripeID;
    816  1.3  oster 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    817  1.3  oster 		    0, 0, which_ru);
    818  1.3  oster 		if (lu_flag) {
    819  1.3  oster 			/* initialize node to unlock the disk queue */
    820  1.3  oster 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    821  1.3  oster 			    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    822  1.3  oster 			    "Unp", allocList);
    823  1.3  oster 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
    824  1.3  oster 								 * desc */
    825  1.3  oster 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    826  1.3  oster 			    0, lu_flag, which_ru);
    827  1.3  oster 		}
    828  1.3  oster 		pda = pda->next;
    829  1.3  oster 	}
    830  1.3  oster 
    831  1.3  oster 	/* initialize nodes which write new Q (Wnq) */
    832  1.3  oster 	if (nfaults == 2) {
    833  1.3  oster 		pda = asmap->qInfo;
    834  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    835  1.3  oster 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    836  1.3  oster 			    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    837  1.3  oster 			    "Wnq", allocList);
    838  1.3  oster 			RF_ASSERT(pda != NULL);
    839  1.3  oster 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    840  1.3  oster 								 * filled in by xor node */
    841  1.3  oster 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
    842  1.3  oster 										 * parity write
    843  1.3  oster 										 * operation */
    844  1.3  oster 			writeQNodes[i].params[2].v = parityStripeID;
    845  1.3  oster 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    846  1.3  oster 			    0, 0, which_ru);
    847  1.3  oster 			if (lu_flag) {
    848  1.3  oster 				/* initialize node to unlock the disk queue */
    849  1.3  oster 				rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    850  1.3  oster 				    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    851  1.3  oster 				    "Unq", allocList);
    852  1.3  oster 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
    853  1.3  oster 									 * desc */
    854  1.3  oster 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    855  1.3  oster 				    0, lu_flag, which_ru);
    856  1.3  oster 			}
    857  1.3  oster 			pda = pda->next;
    858  1.3  oster 		}
    859  1.3  oster 	}
    860  1.3  oster 	/*
    861  1.3  oster          * Step 4. connect the nodes.
    862  1.3  oster          */
    863  1.3  oster 
    864  1.3  oster 	/* connect header to block node */
    865  1.3  oster 	dag_h->succedents[0] = blockNode;
    866  1.3  oster 
    867  1.3  oster 	/* connect block node to read old data nodes */
    868  1.3  oster 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
    869  1.3  oster 	for (i = 0; i < numDataNodes; i++) {
    870  1.3  oster 		blockNode->succedents[i] = &readDataNodes[i];
    871  1.3  oster 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
    872  1.3  oster 		readDataNodes[i].antecedents[0] = blockNode;
    873  1.3  oster 		readDataNodes[i].antType[0] = rf_control;
    874  1.3  oster 	}
    875  1.3  oster 
    876  1.3  oster 	/* connect block node to read old parity nodes */
    877  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    878  1.3  oster 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
    879  1.3  oster 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
    880  1.3  oster 		readParityNodes[i].antecedents[0] = blockNode;
    881  1.3  oster 		readParityNodes[i].antType[0] = rf_control;
    882  1.3  oster 	}
    883  1.3  oster 
    884  1.3  oster 	/* connect block node to read old Q nodes */
    885  1.3  oster 	if (nfaults == 2) {
    886  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    887  1.3  oster 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
    888  1.3  oster 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
    889  1.3  oster 			readQNodes[i].antecedents[0] = blockNode;
    890  1.3  oster 			readQNodes[i].antType[0] = rf_control;
    891  1.3  oster 		}
    892  1.3  oster 	}
    893  1.3  oster 	/* connect read old data nodes to xor nodes */
    894  1.3  oster 	for (i = 0; i < numDataNodes; i++) {
    895  1.3  oster 		RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes));
    896  1.3  oster 		for (j = 0; j < numParityNodes; j++) {
    897  1.3  oster 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
    898  1.3  oster 			readDataNodes[i].succedents[j] = &xorNodes[j];
    899  1.3  oster 			xorNodes[j].antecedents[i] = &readDataNodes[i];
    900  1.3  oster 			xorNodes[j].antType[i] = rf_trueData;
    901  1.3  oster 		}
    902  1.3  oster 	}
    903  1.3  oster 
    904  1.3  oster 	/* connect read old data nodes to q nodes */
    905  1.3  oster 	if (nfaults == 2) {
    906  1.3  oster 		for (i = 0; i < numDataNodes; i++) {
    907  1.3  oster 			for (j = 0; j < numParityNodes; j++) {
    908  1.3  oster 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
    909  1.3  oster 				readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j];
    910  1.3  oster 				qNodes[j].antecedents[i] = &readDataNodes[i];
    911  1.3  oster 				qNodes[j].antType[i] = rf_trueData;
    912  1.3  oster 			}
    913  1.3  oster 		}
    914  1.3  oster 	}
    915  1.3  oster 	/* connect read old parity nodes to xor nodes */
    916  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    917  1.3  oster 		RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    918  1.3  oster 		for (j = 0; j < numParityNodes; j++) {
    919  1.3  oster 			readParityNodes[i].succedents[j] = &xorNodes[j];
    920  1.3  oster 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    921  1.3  oster 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
    922  1.3  oster 		}
    923  1.3  oster 	}
    924  1.3  oster 
    925  1.3  oster 	/* connect read old q nodes to q nodes */
    926  1.3  oster 	if (nfaults == 2) {
    927  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    928  1.3  oster 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    929  1.3  oster 			for (j = 0; j < numParityNodes; j++) {
    930  1.3  oster 				readQNodes[i].succedents[j] = &qNodes[j];
    931  1.3  oster 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
    932  1.3  oster 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
    933  1.3  oster 			}
    934  1.3  oster 		}
    935  1.3  oster 	}
    936  1.3  oster 	/* connect xor nodes to commit node */
    937  1.3  oster 	RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
    938  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    939  1.3  oster 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
    940  1.3  oster 		xorNodes[i].succedents[0] = commitNode;
    941  1.3  oster 		commitNode->antecedents[i] = &xorNodes[i];
    942  1.3  oster 		commitNode->antType[i] = rf_control;
    943  1.3  oster 	}
    944  1.3  oster 
    945  1.3  oster 	/* connect q nodes to commit node */
    946  1.3  oster 	if (nfaults == 2) {
    947  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    948  1.3  oster 			RF_ASSERT(qNodes[i].numSuccedents == 1);
    949  1.3  oster 			qNodes[i].succedents[0] = commitNode;
    950  1.3  oster 			commitNode->antecedents[i + numParityNodes] = &qNodes[i];
    951  1.3  oster 			commitNode->antType[i + numParityNodes] = rf_control;
    952  1.3  oster 		}
    953  1.3  oster 	}
    954  1.3  oster 	/* connect commit node to write nodes */
    955  1.3  oster 	RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
    956  1.3  oster 	for (i = 0; i < numDataNodes; i++) {
    957  1.3  oster 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
    958  1.3  oster 		commitNode->succedents[i] = &writeDataNodes[i];
    959  1.3  oster 		writeDataNodes[i].antecedents[0] = commitNode;
    960  1.3  oster 		writeDataNodes[i].antType[0] = rf_trueData;
    961  1.3  oster 	}
    962  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
    963  1.3  oster 		RF_ASSERT(writeParityNodes[i].numAntecedents == 1);
    964  1.3  oster 		commitNode->succedents[i + numDataNodes] = &writeParityNodes[i];
    965  1.3  oster 		writeParityNodes[i].antecedents[0] = commitNode;
    966  1.3  oster 		writeParityNodes[i].antType[0] = rf_trueData;
    967  1.3  oster 	}
    968  1.3  oster 	if (nfaults == 2) {
    969  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
    970  1.3  oster 			RF_ASSERT(writeQNodes[i].numAntecedents == 1);
    971  1.3  oster 			commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i];
    972  1.3  oster 			writeQNodes[i].antecedents[0] = commitNode;
    973  1.3  oster 			writeQNodes[i].antType[0] = rf_trueData;
    974  1.3  oster 		}
    975  1.3  oster 	}
    976  1.3  oster 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    977  1.3  oster 	RF_ASSERT(termNode->numSuccedents == 0);
    978  1.3  oster 	for (i = 0; i < numDataNodes; i++) {
    979  1.3  oster 		if (lu_flag) {
    980  1.3  oster 			/* connect write new data nodes to unlock nodes */
    981  1.3  oster 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    982  1.3  oster 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
    983  1.3  oster 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
    984  1.3  oster 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
    985  1.3  oster 			unlockDataNodes[i].antType[0] = rf_control;
    986  1.3  oster 
    987  1.3  oster 			/* connect unlock nodes to term node */
    988  1.3  oster 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
    989  1.3  oster 			unlockDataNodes[i].succedents[0] = termNode;
    990  1.3  oster 			termNode->antecedents[i] = &unlockDataNodes[i];
    991  1.3  oster 			termNode->antType[i] = rf_control;
    992  1.3  oster 		} else {
    993  1.3  oster 			/* connect write new data nodes to term node */
    994  1.3  oster 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    995  1.3  oster 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    996  1.3  oster 			writeDataNodes[i].succedents[0] = termNode;
    997  1.3  oster 			termNode->antecedents[i] = &writeDataNodes[i];
    998  1.3  oster 			termNode->antType[i] = rf_control;
    999  1.3  oster 		}
   1000  1.3  oster 	}
   1001  1.3  oster 
   1002  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
   1003  1.3  oster 		if (lu_flag) {
   1004  1.3  oster 			/* connect write new parity nodes to unlock nodes */
   1005  1.3  oster 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1006  1.3  oster 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1007  1.3  oster 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1008  1.3  oster 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1009  1.3  oster 			unlockParityNodes[i].antType[0] = rf_control;
   1010  1.3  oster 
   1011  1.3  oster 			/* connect unlock nodes to term node */
   1012  1.3  oster 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1013  1.3  oster 			unlockParityNodes[i].succedents[0] = termNode;
   1014  1.3  oster 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1015  1.3  oster 			termNode->antType[numDataNodes + i] = rf_control;
   1016  1.3  oster 		} else {
   1017  1.3  oster 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1018  1.3  oster 			writeParityNodes[i].succedents[0] = termNode;
   1019  1.3  oster 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1020  1.3  oster 			termNode->antType[numDataNodes + i] = rf_control;
   1021  1.3  oster 		}
   1022  1.3  oster 	}
   1023  1.3  oster 
   1024  1.3  oster 	if (nfaults == 2) {
   1025  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
   1026  1.3  oster 			if (lu_flag) {
   1027  1.3  oster 				/* connect write new Q nodes to unlock nodes */
   1028  1.3  oster 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1029  1.3  oster 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1030  1.3  oster 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1031  1.3  oster 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1032  1.3  oster 				unlockQNodes[i].antType[0] = rf_control;
   1033  1.3  oster 
   1034  1.3  oster 				/* connect unlock nodes to unblock node */
   1035  1.3  oster 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1036  1.3  oster 				unlockQNodes[i].succedents[0] = termNode;
   1037  1.3  oster 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1038  1.3  oster 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1039  1.3  oster 			} else {
   1040  1.3  oster 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1041  1.3  oster 				writeQNodes[i].succedents[0] = termNode;
   1042  1.3  oster 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1043  1.3  oster 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1044  1.3  oster 			}
   1045  1.3  oster 		}
   1046  1.3  oster 	}
   1047  1.1  oster }
   1048  1.1  oster 
   1049  1.1  oster 
   1050  1.1  oster /******************************************************************************
   1051  1.1  oster  * create a write graph (fault-free or degraded) for RAID level 1
   1052  1.1  oster  *
   1053  1.1  oster  * Hdr -> Commit -> Wpd -> Nil -> Trm
   1054  1.1  oster  *               -> Wsd ->
   1055  1.1  oster  *
   1056  1.1  oster  * The "Wpd" node writes data to the primary copy in the mirror pair
   1057  1.1  oster  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1058  1.1  oster  *
   1059  1.1  oster  * Parameters:  raidPtr   - description of the physical array
   1060  1.1  oster  *              asmap     - logical & physical addresses for this access
   1061  1.1  oster  *              bp        - buffer ptr (holds write data)
   1062  1.3  oster  *              flags     - general flags (e.g. disk locking)
   1063  1.1  oster  *              allocList - list of memory allocated in DAG creation
   1064  1.1  oster  *****************************************************************************/
   1065  1.1  oster 
   1066  1.3  oster void
   1067  1.3  oster rf_CreateRaidOneWriteDAG(
   1068  1.3  oster     RF_Raid_t * raidPtr,
   1069  1.3  oster     RF_AccessStripeMap_t * asmap,
   1070  1.3  oster     RF_DagHeader_t * dag_h,
   1071  1.3  oster     void *bp,
   1072  1.3  oster     RF_RaidAccessFlags_t flags,
   1073  1.3  oster     RF_AllocListElem_t * allocList)
   1074  1.1  oster {
   1075  1.3  oster 	RF_DagNode_t *unblockNode, *termNode, *commitNode;
   1076  1.3  oster 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   1077  1.3  oster 	int     nWndNodes, nWmirNodes, i;
   1078  1.3  oster 	RF_ReconUnitNum_t which_ru;
   1079  1.3  oster 	RF_PhysDiskAddr_t *pda, *pdaP;
   1080  1.3  oster 	RF_StripeNum_t parityStripeID;
   1081  1.3  oster 
   1082  1.3  oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   1083  1.3  oster 	    asmap->raidAddress, &which_ru);
   1084  1.3  oster 	if (rf_dagDebug) {
   1085  1.3  oster 		printf("[Creating RAID level 1 write DAG]\n");
   1086  1.3  oster 	}
   1087  1.3  oster 	dag_h->creator = "RaidOneWriteDAG";
   1088  1.3  oster 
   1089  1.3  oster 	/* 2 implies access not SU aligned */
   1090  1.3  oster 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
   1091  1.3  oster 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   1092  1.3  oster 
   1093  1.3  oster 	/* alloc the Wnd nodes and the Wmir node */
   1094  1.3  oster 	if (asmap->numDataFailed == 1)
   1095  1.3  oster 		nWndNodes--;
   1096  1.3  oster 	if (asmap->numParityFailed == 1)
   1097  1.3  oster 		nWmirNodes--;
   1098  1.3  oster 
   1099  1.3  oster 	/* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
   1100  1.3  oster 	 * + terminator) */
   1101  1.3  oster 	RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t),
   1102  1.3  oster 	    (RF_DagNode_t *), allocList);
   1103  1.3  oster 	i = 0;
   1104  1.3  oster 	wndNode = &nodes[i];
   1105  1.3  oster 	i += nWndNodes;
   1106  1.3  oster 	wmirNode = &nodes[i];
   1107  1.3  oster 	i += nWmirNodes;
   1108  1.3  oster 	commitNode = &nodes[i];
   1109  1.3  oster 	i += 1;
   1110  1.3  oster 	unblockNode = &nodes[i];
   1111  1.3  oster 	i += 1;
   1112  1.3  oster 	termNode = &nodes[i];
   1113  1.3  oster 	i += 1;
   1114  1.3  oster 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   1115  1.3  oster 
   1116  1.3  oster 	/* this dag can commit immediately */
   1117  1.3  oster 	dag_h->numCommitNodes = 1;
   1118  1.3  oster 	dag_h->numCommits = 0;
   1119  1.3  oster 	dag_h->numSuccedents = 1;
   1120  1.3  oster 
   1121  1.3  oster 	/* initialize the commit, unblock, and term nodes */
   1122  1.3  oster 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
   1123  1.3  oster 	    NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Cmt", allocList);
   1124  1.3  oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
   1125  1.3  oster 	    NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
   1126  1.3  oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
   1127  1.3  oster 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
   1128  1.3  oster 
   1129  1.3  oster 	/* initialize the wnd nodes */
   1130  1.3  oster 	if (nWndNodes > 0) {
   1131  1.3  oster 		pda = asmap->physInfo;
   1132  1.3  oster 		for (i = 0; i < nWndNodes; i++) {
   1133  1.3  oster 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1134  1.3  oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
   1135  1.3  oster 			RF_ASSERT(pda != NULL);
   1136  1.3  oster 			wndNode[i].params[0].p = pda;
   1137  1.3  oster 			wndNode[i].params[1].p = pda->bufPtr;
   1138  1.3  oster 			wndNode[i].params[2].v = parityStripeID;
   1139  1.3  oster 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1140  1.3  oster 			pda = pda->next;
   1141  1.3  oster 		}
   1142  1.3  oster 		RF_ASSERT(pda == NULL);
   1143  1.3  oster 	}
   1144  1.3  oster 	/* initialize the mirror nodes */
   1145  1.3  oster 	if (nWmirNodes > 0) {
   1146  1.3  oster 		pda = asmap->physInfo;
   1147  1.3  oster 		pdaP = asmap->parityInfo;
   1148  1.3  oster 		for (i = 0; i < nWmirNodes; i++) {
   1149  1.3  oster 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1150  1.3  oster 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
   1151  1.3  oster 			RF_ASSERT(pda != NULL);
   1152  1.3  oster 			wmirNode[i].params[0].p = pdaP;
   1153  1.3  oster 			wmirNode[i].params[1].p = pda->bufPtr;
   1154  1.3  oster 			wmirNode[i].params[2].v = parityStripeID;
   1155  1.3  oster 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1156  1.3  oster 			pda = pda->next;
   1157  1.3  oster 			pdaP = pdaP->next;
   1158  1.3  oster 		}
   1159  1.3  oster 		RF_ASSERT(pda == NULL);
   1160  1.3  oster 		RF_ASSERT(pdaP == NULL);
   1161  1.3  oster 	}
   1162  1.3  oster 	/* link the header node to the commit node */
   1163  1.3  oster 	RF_ASSERT(dag_h->numSuccedents == 1);
   1164  1.3  oster 	RF_ASSERT(commitNode->numAntecedents == 0);
   1165  1.3  oster 	dag_h->succedents[0] = commitNode;
   1166  1.3  oster 
   1167  1.3  oster 	/* link the commit node to the write nodes */
   1168  1.3  oster 	RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
   1169  1.3  oster 	for (i = 0; i < nWndNodes; i++) {
   1170  1.3  oster 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   1171  1.3  oster 		commitNode->succedents[i] = &wndNode[i];
   1172  1.3  oster 		wndNode[i].antecedents[0] = commitNode;
   1173  1.3  oster 		wndNode[i].antType[0] = rf_control;
   1174  1.3  oster 	}
   1175  1.3  oster 	for (i = 0; i < nWmirNodes; i++) {
   1176  1.3  oster 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   1177  1.3  oster 		commitNode->succedents[i + nWndNodes] = &wmirNode[i];
   1178  1.3  oster 		wmirNode[i].antecedents[0] = commitNode;
   1179  1.3  oster 		wmirNode[i].antType[0] = rf_control;
   1180  1.3  oster 	}
   1181  1.3  oster 
   1182  1.3  oster 	/* link the write nodes to the unblock node */
   1183  1.3  oster 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   1184  1.3  oster 	for (i = 0; i < nWndNodes; i++) {
   1185  1.3  oster 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   1186  1.3  oster 		wndNode[i].succedents[0] = unblockNode;
   1187  1.3  oster 		unblockNode->antecedents[i] = &wndNode[i];
   1188  1.3  oster 		unblockNode->antType[i] = rf_control;
   1189  1.3  oster 	}
   1190  1.3  oster 	for (i = 0; i < nWmirNodes; i++) {
   1191  1.3  oster 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   1192  1.3  oster 		wmirNode[i].succedents[0] = unblockNode;
   1193  1.3  oster 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   1194  1.3  oster 		unblockNode->antType[i + nWndNodes] = rf_control;
   1195  1.3  oster 	}
   1196  1.3  oster 
   1197  1.3  oster 	/* link the unblock node to the term node */
   1198  1.3  oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
   1199  1.3  oster 	RF_ASSERT(termNode->numAntecedents == 1);
   1200  1.3  oster 	RF_ASSERT(termNode->numSuccedents == 0);
   1201  1.3  oster 	unblockNode->succedents[0] = termNode;
   1202  1.3  oster 	termNode->antecedents[0] = unblockNode;
   1203  1.3  oster 	termNode->antType[0] = rf_control;
   1204  1.1  oster }
   1205  1.1  oster 
   1206  1.1  oster 
   1207  1.9  oster #if 0
   1208  1.1  oster /* DAGs which have no commit points.
   1209  1.1  oster  *
   1210  1.1  oster  * The following DAGs are used in forward and backward error recovery experiments.
   1211  1.1  oster  * They are identical to the DAGs above this comment with the exception that the
   1212  1.1  oster  * the commit points have been removed.
   1213  1.1  oster  */
   1214  1.1  oster 
   1215  1.1  oster 
   1216  1.1  oster 
   1217  1.3  oster void
   1218  1.3  oster rf_CommonCreateLargeWriteDAGFwd(
   1219  1.3  oster     RF_Raid_t * raidPtr,
   1220  1.3  oster     RF_AccessStripeMap_t * asmap,
   1221  1.3  oster     RF_DagHeader_t * dag_h,
   1222  1.3  oster     void *bp,
   1223  1.3  oster     RF_RaidAccessFlags_t flags,
   1224  1.3  oster     RF_AllocListElem_t * allocList,
   1225  1.3  oster     int nfaults,
   1226  1.3  oster     int (*redFunc) (RF_DagNode_t *),
   1227  1.3  oster     int allowBufferRecycle)
   1228  1.1  oster {
   1229  1.3  oster 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
   1230  1.3  oster 	RF_DagNode_t *wnqNode, *blockNode, *syncNode, *termNode;
   1231  1.3  oster 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
   1232  1.3  oster 	RF_AccessStripeMapHeader_t *new_asm_h[2];
   1233  1.3  oster 	RF_StripeNum_t parityStripeID;
   1234  1.3  oster 	char   *sosBuffer, *eosBuffer;
   1235  1.3  oster 	RF_ReconUnitNum_t which_ru;
   1236  1.3  oster 	RF_RaidLayout_t *layoutPtr;
   1237  1.3  oster 	RF_PhysDiskAddr_t *pda;
   1238  1.3  oster 
   1239  1.3  oster 	layoutPtr = &(raidPtr->Layout);
   1240  1.3  oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
   1241  1.3  oster 
   1242  1.3  oster 	if (rf_dagDebug)
   1243  1.3  oster 		printf("[Creating large-write DAG]\n");
   1244  1.3  oster 	dag_h->creator = "LargeWriteDAGFwd";
   1245  1.3  oster 
   1246  1.3  oster 	dag_h->numCommitNodes = 0;
   1247  1.3  oster 	dag_h->numCommits = 0;
   1248  1.3  oster 	dag_h->numSuccedents = 1;
   1249  1.3  oster 
   1250  1.3  oster 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
   1251  1.3  oster 	nWndNodes = asmap->numStripeUnitsAccessed;
   1252  1.3  oster 	RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1253  1.3  oster 	i = 0;
   1254  1.3  oster 	wndNodes = &nodes[i];
   1255  1.3  oster 	i += nWndNodes;
   1256  1.3  oster 	xorNode = &nodes[i];
   1257  1.3  oster 	i += 1;
   1258  1.3  oster 	wnpNode = &nodes[i];
   1259  1.3  oster 	i += 1;
   1260  1.3  oster 	blockNode = &nodes[i];
   1261  1.3  oster 	i += 1;
   1262  1.3  oster 	syncNode = &nodes[i];
   1263  1.3  oster 	i += 1;
   1264  1.3  oster 	termNode = &nodes[i];
   1265  1.3  oster 	i += 1;
   1266  1.3  oster 	if (nfaults == 2) {
   1267  1.3  oster 		wnqNode = &nodes[i];
   1268  1.3  oster 		i += 1;
   1269  1.3  oster 	} else {
   1270  1.3  oster 		wnqNode = NULL;
   1271  1.3  oster 	}
   1272  1.3  oster 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
   1273  1.3  oster 	if (nRodNodes > 0) {
   1274  1.3  oster 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1275  1.3  oster 	} else {
   1276  1.3  oster 		rodNodes = NULL;
   1277  1.3  oster 	}
   1278  1.3  oster 
   1279  1.3  oster 	/* begin node initialization */
   1280  1.3  oster 	if (nRodNodes > 0) {
   1281  1.3  oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1282  1.3  oster 		rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes, 0, 0, dag_h, "Nil", allocList);
   1283  1.3  oster 	} else {
   1284  1.3  oster 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
   1285  1.3  oster 		rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, 1, 0, 0, dag_h, "Nil", allocList);
   1286  1.3  oster 	}
   1287  1.3  oster 
   1288  1.3  oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
   1289  1.3  oster 
   1290  1.3  oster 	/* initialize the Rod nodes */
   1291  1.3  oster 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
   1292  1.3  oster 		if (new_asm_h[asmNum]) {
   1293  1.3  oster 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
   1294  1.3  oster 			while (pda) {
   1295  1.3  oster 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
   1296  1.3  oster 				rodNodes[nodeNum].params[0].p = pda;
   1297  1.3  oster 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
   1298  1.3  oster 				rodNodes[nodeNum].params[2].v = parityStripeID;
   1299  1.3  oster 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1300  1.3  oster 				nodeNum++;
   1301  1.3  oster 				pda = pda->next;
   1302  1.3  oster 			}
   1303  1.3  oster 		}
   1304  1.3  oster 	}
   1305  1.3  oster 	RF_ASSERT(nodeNum == nRodNodes);
   1306  1.3  oster 
   1307  1.3  oster 	/* initialize the wnd nodes */
   1308  1.3  oster 	pda = asmap->physInfo;
   1309  1.3  oster 	for (i = 0; i < nWndNodes; i++) {
   1310  1.3  oster 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
   1311  1.3  oster 		RF_ASSERT(pda != NULL);
   1312  1.3  oster 		wndNodes[i].params[0].p = pda;
   1313  1.3  oster 		wndNodes[i].params[1].p = pda->bufPtr;
   1314  1.3  oster 		wndNodes[i].params[2].v = parityStripeID;
   1315  1.3  oster 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1316  1.3  oster 		pda = pda->next;
   1317  1.3  oster 	}
   1318  1.3  oster 
   1319  1.3  oster 	/* initialize the redundancy node */
   1320  1.3  oster 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nfaults, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
   1321  1.3  oster 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
   1322  1.3  oster 	for (i = 0; i < nWndNodes; i++) {
   1323  1.3  oster 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
   1324  1.3  oster 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
   1325  1.3  oster 	}
   1326  1.3  oster 	for (i = 0; i < nRodNodes; i++) {
   1327  1.3  oster 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
   1328  1.3  oster 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
   1329  1.3  oster 	}
   1330  1.3  oster 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
   1331  1.3  oster 									 * at RAID information */
   1332  1.3  oster 
   1333  1.3  oster 	/* look for an Rod node that reads a complete SU.  If none, alloc a
   1334  1.3  oster 	 * buffer to receive the parity info. Note that we can't use a new
   1335  1.3  oster 	 * data buffer because it will not have gotten written when the xor
   1336  1.3  oster 	 * occurs. */
   1337  1.3  oster 	if (allowBufferRecycle) {
   1338  1.3  oster 		for (i = 0; i < nRodNodes; i++)
   1339  1.3  oster 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
   1340  1.3  oster 				break;
   1341  1.3  oster 	}
   1342  1.3  oster 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
   1343  1.3  oster 		RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
   1344  1.3  oster 	} else
   1345  1.3  oster 		xorNode->results[0] = rodNodes[i].params[1].p;
   1346  1.3  oster 
   1347  1.3  oster 	/* initialize the Wnp node */
   1348  1.3  oster 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
   1349  1.3  oster 	wnpNode->params[0].p = asmap->parityInfo;
   1350  1.3  oster 	wnpNode->params[1].p = xorNode->results[0];
   1351  1.3  oster 	wnpNode->params[2].v = parityStripeID;
   1352  1.3  oster 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1353  1.3  oster 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
   1354  1.3  oster 							 * describe entire
   1355  1.3  oster 							 * parity unit */
   1356  1.3  oster 
   1357  1.3  oster 	if (nfaults == 2) {
   1358  1.3  oster 		/* we never try to recycle a buffer for the Q calcuation in
   1359  1.3  oster 		 * addition to the parity. This would cause two buffers to get
   1360  1.3  oster 		 * smashed during the P and Q calculation, guaranteeing one
   1361  1.3  oster 		 * would be wrong. */
   1362  1.3  oster 		RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
   1363  1.3  oster 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
   1364  1.3  oster 		wnqNode->params[0].p = asmap->qInfo;
   1365  1.3  oster 		wnqNode->params[1].p = xorNode->results[1];
   1366  1.3  oster 		wnqNode->params[2].v = parityStripeID;
   1367  1.3  oster 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1368  1.3  oster 		RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
   1369  1.3  oster 								 * describe entire
   1370  1.3  oster 								 * parity unit */
   1371  1.3  oster 	}
   1372  1.3  oster 	/* connect nodes to form graph */
   1373  1.3  oster 
   1374  1.3  oster 	/* connect dag header to block node */
   1375  1.3  oster 	RF_ASSERT(blockNode->numAntecedents == 0);
   1376  1.3  oster 	dag_h->succedents[0] = blockNode;
   1377  1.3  oster 
   1378  1.3  oster 	if (nRodNodes > 0) {
   1379  1.3  oster 		/* connect the block node to the Rod nodes */
   1380  1.3  oster 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
   1381  1.3  oster 		RF_ASSERT(syncNode->numAntecedents == nRodNodes);
   1382  1.3  oster 		for (i = 0; i < nRodNodes; i++) {
   1383  1.3  oster 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
   1384  1.3  oster 			blockNode->succedents[i] = &rodNodes[i];
   1385  1.3  oster 			rodNodes[i].antecedents[0] = blockNode;
   1386  1.3  oster 			rodNodes[i].antType[0] = rf_control;
   1387  1.3  oster 
   1388  1.3  oster 			/* connect the Rod nodes to the Nil node */
   1389  1.3  oster 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
   1390  1.3  oster 			rodNodes[i].succedents[0] = syncNode;
   1391  1.3  oster 			syncNode->antecedents[i] = &rodNodes[i];
   1392  1.3  oster 			syncNode->antType[i] = rf_trueData;
   1393  1.3  oster 		}
   1394  1.3  oster 	} else {
   1395  1.3  oster 		/* connect the block node to the Nil node */
   1396  1.3  oster 		RF_ASSERT(blockNode->numSuccedents == 1);
   1397  1.3  oster 		RF_ASSERT(syncNode->numAntecedents == 1);
   1398  1.3  oster 		blockNode->succedents[0] = syncNode;
   1399  1.3  oster 		syncNode->antecedents[0] = blockNode;
   1400  1.3  oster 		syncNode->antType[0] = rf_control;
   1401  1.3  oster 	}
   1402  1.3  oster 
   1403  1.3  oster 	/* connect the sync node to the Wnd nodes */
   1404  1.3  oster 	RF_ASSERT(syncNode->numSuccedents == (1 + nWndNodes));
   1405  1.3  oster 	for (i = 0; i < nWndNodes; i++) {
   1406  1.3  oster 		RF_ASSERT(wndNodes->numAntecedents == 1);
   1407  1.3  oster 		syncNode->succedents[i] = &wndNodes[i];
   1408  1.3  oster 		wndNodes[i].antecedents[0] = syncNode;
   1409  1.3  oster 		wndNodes[i].antType[0] = rf_control;
   1410  1.3  oster 	}
   1411  1.3  oster 
   1412  1.3  oster 	/* connect the sync node to the Xor node */
   1413  1.3  oster 	RF_ASSERT(xorNode->numAntecedents == 1);
   1414  1.3  oster 	syncNode->succedents[nWndNodes] = xorNode;
   1415  1.3  oster 	xorNode->antecedents[0] = syncNode;
   1416  1.3  oster 	xorNode->antType[0] = rf_control;
   1417  1.3  oster 
   1418  1.3  oster 	/* connect the xor node to the write parity node */
   1419  1.3  oster 	RF_ASSERT(xorNode->numSuccedents == nfaults);
   1420  1.3  oster 	RF_ASSERT(wnpNode->numAntecedents == 1);
   1421  1.3  oster 	xorNode->succedents[0] = wnpNode;
   1422  1.3  oster 	wnpNode->antecedents[0] = xorNode;
   1423  1.3  oster 	wnpNode->antType[0] = rf_trueData;
   1424  1.3  oster 	if (nfaults == 2) {
   1425  1.3  oster 		RF_ASSERT(wnqNode->numAntecedents == 1);
   1426  1.3  oster 		xorNode->succedents[1] = wnqNode;
   1427  1.3  oster 		wnqNode->antecedents[0] = xorNode;
   1428  1.3  oster 		wnqNode->antType[0] = rf_trueData;
   1429  1.3  oster 	}
   1430  1.3  oster 	/* connect the write nodes to the term node */
   1431  1.3  oster 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
   1432  1.3  oster 	RF_ASSERT(termNode->numSuccedents == 0);
   1433  1.3  oster 	for (i = 0; i < nWndNodes; i++) {
   1434  1.3  oster 		RF_ASSERT(wndNodes->numSuccedents == 1);
   1435  1.3  oster 		wndNodes[i].succedents[0] = termNode;
   1436  1.3  oster 		termNode->antecedents[i] = &wndNodes[i];
   1437  1.3  oster 		termNode->antType[i] = rf_control;
   1438  1.3  oster 	}
   1439  1.3  oster 	RF_ASSERT(wnpNode->numSuccedents == 1);
   1440  1.3  oster 	wnpNode->succedents[0] = termNode;
   1441  1.3  oster 	termNode->antecedents[nWndNodes] = wnpNode;
   1442  1.3  oster 	termNode->antType[nWndNodes] = rf_control;
   1443  1.3  oster 	if (nfaults == 2) {
   1444  1.3  oster 		RF_ASSERT(wnqNode->numSuccedents == 1);
   1445  1.3  oster 		wnqNode->succedents[0] = termNode;
   1446  1.3  oster 		termNode->antecedents[nWndNodes + 1] = wnqNode;
   1447  1.3  oster 		termNode->antType[nWndNodes + 1] = rf_control;
   1448  1.3  oster 	}
   1449  1.1  oster }
   1450  1.1  oster 
   1451  1.1  oster 
   1452  1.1  oster /******************************************************************************
   1453  1.1  oster  *
   1454  1.1  oster  * creates a DAG to perform a small-write operation (either raid 5 or pq),
   1455  1.1  oster  * which is as follows:
   1456  1.1  oster  *
   1457  1.1  oster  * Hdr -> Nil -> Rop - Xor - Wnp [Unp] -- Trm
   1458  1.1  oster  *            \- Rod X- Wnd [Und] -------/
   1459  1.1  oster  *           [\- Rod X- Wnd [Und] ------/]
   1460  1.1  oster  *           [\- Roq - Q --> Wnq [Unq]-/]
   1461  1.1  oster  *
   1462  1.1  oster  * Rop = read old parity
   1463  1.1  oster  * Rod = read old data
   1464  1.1  oster  * Roq = read old "q"
   1465  1.1  oster  * Cmt = commit node
   1466  1.1  oster  * Und = unlock data disk
   1467  1.1  oster  * Unp = unlock parity disk
   1468  1.1  oster  * Unq = unlock q disk
   1469  1.1  oster  * Wnp = write new parity
   1470  1.1  oster  * Wnd = write new data
   1471  1.1  oster  * Wnq = write new "q"
   1472  1.1  oster  * [ ] denotes optional segments in the graph
   1473  1.1  oster  *
   1474  1.1  oster  * Parameters:  raidPtr   - description of the physical array
   1475  1.1  oster  *              asmap     - logical & physical addresses for this access
   1476  1.1  oster  *              bp        - buffer ptr (holds write data)
   1477  1.3  oster  *              flags     - general flags (e.g. disk locking)
   1478  1.1  oster  *              allocList - list of memory allocated in DAG creation
   1479  1.1  oster  *              pfuncs    - list of parity generating functions
   1480  1.1  oster  *              qfuncs    - list of q generating functions
   1481  1.1  oster  *
   1482  1.1  oster  * A null qfuncs indicates single fault tolerant
   1483  1.1  oster  *****************************************************************************/
   1484  1.1  oster 
   1485  1.3  oster void
   1486  1.3  oster rf_CommonCreateSmallWriteDAGFwd(
   1487  1.3  oster     RF_Raid_t * raidPtr,
   1488  1.3  oster     RF_AccessStripeMap_t * asmap,
   1489  1.3  oster     RF_DagHeader_t * dag_h,
   1490  1.3  oster     void *bp,
   1491  1.3  oster     RF_RaidAccessFlags_t flags,
   1492  1.3  oster     RF_AllocListElem_t * allocList,
   1493  1.3  oster     RF_RedFuncs_t * pfuncs,
   1494  1.3  oster     RF_RedFuncs_t * qfuncs)
   1495  1.1  oster {
   1496  1.3  oster 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
   1497  1.3  oster 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
   1498  1.3  oster 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *nodes;
   1499  1.3  oster 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
   1500  1.3  oster 	int     i, j, nNodes, totalNumNodes, lu_flag;
   1501  1.3  oster 	RF_ReconUnitNum_t which_ru;
   1502  1.3  oster 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
   1503  1.3  oster 	int     (*qfunc) (RF_DagNode_t *);
   1504  1.3  oster 	int     numDataNodes, numParityNodes;
   1505  1.3  oster 	RF_StripeNum_t parityStripeID;
   1506  1.3  oster 	RF_PhysDiskAddr_t *pda;
   1507  1.3  oster 	char   *name, *qname;
   1508  1.3  oster 	long    nfaults;
   1509  1.3  oster 
   1510  1.3  oster 	nfaults = qfuncs ? 2 : 1;
   1511  1.3  oster 	lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
   1512  1.3  oster 
   1513  1.3  oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
   1514  1.3  oster 	pda = asmap->physInfo;
   1515  1.3  oster 	numDataNodes = asmap->numStripeUnitsAccessed;
   1516  1.3  oster 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
   1517  1.3  oster 
   1518  1.3  oster 	if (rf_dagDebug)
   1519  1.3  oster 		printf("[Creating small-write DAG]\n");
   1520  1.3  oster 	RF_ASSERT(numDataNodes > 0);
   1521  1.3  oster 	dag_h->creator = "SmallWriteDAGFwd";
   1522  1.3  oster 
   1523  1.3  oster 	dag_h->numCommitNodes = 0;
   1524  1.3  oster 	dag_h->numCommits = 0;
   1525  1.3  oster 	dag_h->numSuccedents = 1;
   1526  1.3  oster 
   1527  1.3  oster 	qfunc = NULL;
   1528  1.3  oster 	qname = NULL;
   1529  1.3  oster 
   1530  1.3  oster 	/* DAG creation occurs in four steps: 1. count the number of nodes in
   1531  1.3  oster 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
   1532  1.3  oster 	 * nodes */
   1533  1.3  oster 
   1534  1.3  oster 	/* Step 1. compute number of nodes in the graph */
   1535  1.3  oster 
   1536  1.3  oster 	/* number of nodes: a read and write for each data unit a redundancy
   1537  1.3  oster 	 * computation node for each parity node (nfaults * nparity) a read
   1538  1.3  oster 	 * and write for each parity unit a block node a terminate node if
   1539  1.3  oster 	 * atomic RMW an unlock node for each data unit, redundancy unit */
   1540  1.3  oster 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 2;
   1541  1.3  oster 	if (lu_flag)
   1542  1.3  oster 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
   1543  1.3  oster 
   1544  1.3  oster 
   1545  1.3  oster 	/* Step 2. create the nodes */
   1546  1.3  oster 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1547  1.3  oster 	i = 0;
   1548  1.3  oster 	blockNode = &nodes[i];
   1549  1.3  oster 	i += 1;
   1550  1.3  oster 	readDataNodes = &nodes[i];
   1551  1.3  oster 	i += numDataNodes;
   1552  1.3  oster 	readParityNodes = &nodes[i];
   1553  1.3  oster 	i += numParityNodes;
   1554  1.3  oster 	writeDataNodes = &nodes[i];
   1555  1.3  oster 	i += numDataNodes;
   1556  1.3  oster 	writeParityNodes = &nodes[i];
   1557  1.3  oster 	i += numParityNodes;
   1558  1.3  oster 	xorNodes = &nodes[i];
   1559  1.3  oster 	i += numParityNodes;
   1560  1.3  oster 	termNode = &nodes[i];
   1561  1.3  oster 	i += 1;
   1562  1.3  oster 	if (lu_flag) {
   1563  1.3  oster 		unlockDataNodes = &nodes[i];
   1564  1.3  oster 		i += numDataNodes;
   1565  1.3  oster 		unlockParityNodes = &nodes[i];
   1566  1.3  oster 		i += numParityNodes;
   1567  1.3  oster 	} else {
   1568  1.3  oster 		unlockDataNodes = unlockParityNodes = NULL;
   1569  1.3  oster 	}
   1570  1.3  oster 	if (nfaults == 2) {
   1571  1.3  oster 		readQNodes = &nodes[i];
   1572  1.3  oster 		i += numParityNodes;
   1573  1.3  oster 		writeQNodes = &nodes[i];
   1574  1.3  oster 		i += numParityNodes;
   1575  1.3  oster 		qNodes = &nodes[i];
   1576  1.3  oster 		i += numParityNodes;
   1577  1.3  oster 		if (lu_flag) {
   1578  1.3  oster 			unlockQNodes = &nodes[i];
   1579  1.3  oster 			i += numParityNodes;
   1580  1.3  oster 		} else {
   1581  1.3  oster 			unlockQNodes = NULL;
   1582  1.3  oster 		}
   1583  1.3  oster 	} else {
   1584  1.3  oster 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
   1585  1.3  oster 	}
   1586  1.3  oster 	RF_ASSERT(i == totalNumNodes);
   1587  1.1  oster 
   1588  1.3  oster 	/* Step 3. initialize the nodes */
   1589  1.3  oster 	/* initialize block node (Nil) */
   1590  1.3  oster 	nNodes = numDataNodes + (nfaults * numParityNodes);
   1591  1.3  oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1592  1.3  oster 
   1593  1.3  oster 	/* initialize terminate node (Trm) */
   1594  1.3  oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
   1595  1.3  oster 
   1596  1.3  oster 	/* initialize nodes which read old data (Rod) */
   1597  1.3  oster 	for (i = 0; i < numDataNodes; i++) {
   1598  1.3  oster 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, (numParityNodes * nfaults) + 1, 1, 4, 0, dag_h, "Rod", allocList);
   1599  1.3  oster 		RF_ASSERT(pda != NULL);
   1600  1.3  oster 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
   1601  1.3  oster 							 * desc */
   1602  1.3  oster 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
   1603  1.3  oster 												 * data */
   1604  1.3  oster 		readDataNodes[i].params[2].v = parityStripeID;
   1605  1.3  oster 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1606  1.3  oster 		pda = pda->next;
   1607  1.3  oster 		for (j = 0; j < readDataNodes[i].numSuccedents; j++)
   1608  1.3  oster 			readDataNodes[i].propList[j] = NULL;
   1609  1.3  oster 	}
   1610  1.3  oster 
   1611  1.3  oster 	/* initialize nodes which read old parity (Rop) */
   1612  1.3  oster 	pda = asmap->parityInfo;
   1613  1.3  oster 	i = 0;
   1614  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
   1615  1.3  oster 		RF_ASSERT(pda != NULL);
   1616  1.3  oster 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Rop", allocList);
   1617  1.3  oster 		readParityNodes[i].params[0].p = pda;
   1618  1.3  oster 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
   1619  1.3  oster 													 * parity */
   1620  1.3  oster 		readParityNodes[i].params[2].v = parityStripeID;
   1621  1.3  oster 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1622  1.3  oster 		for (j = 0; j < readParityNodes[i].numSuccedents; j++)
   1623  1.3  oster 			readParityNodes[i].propList[0] = NULL;
   1624  1.3  oster 		pda = pda->next;
   1625  1.3  oster 	}
   1626  1.3  oster 
   1627  1.3  oster 	/* initialize nodes which read old Q (Roq) */
   1628  1.3  oster 	if (nfaults == 2) {
   1629  1.3  oster 		pda = asmap->qInfo;
   1630  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
   1631  1.3  oster 			RF_ASSERT(pda != NULL);
   1632  1.3  oster 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
   1633  1.3  oster 			readQNodes[i].params[0].p = pda;
   1634  1.3  oster 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old Q */
   1635  1.3  oster 			readQNodes[i].params[2].v = parityStripeID;
   1636  1.3  oster 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1637  1.3  oster 			for (j = 0; j < readQNodes[i].numSuccedents; j++)
   1638  1.3  oster 				readQNodes[i].propList[0] = NULL;
   1639  1.3  oster 			pda = pda->next;
   1640  1.3  oster 		}
   1641  1.3  oster 	}
   1642  1.3  oster 	/* initialize nodes which write new data (Wnd) */
   1643  1.3  oster 	pda = asmap->physInfo;
   1644  1.3  oster 	for (i = 0; i < numDataNodes; i++) {
   1645  1.3  oster 		RF_ASSERT(pda != NULL);
   1646  1.3  oster 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
   1647  1.3  oster 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
   1648  1.3  oster 							 * desc */
   1649  1.3  oster 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
   1650  1.3  oster 								 * data to be written */
   1651  1.3  oster 		writeDataNodes[i].params[2].v = parityStripeID;
   1652  1.3  oster 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1653  1.3  oster 
   1654  1.3  oster 		if (lu_flag) {
   1655  1.3  oster 			/* initialize node to unlock the disk queue */
   1656  1.3  oster 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
   1657  1.3  oster 			unlockDataNodes[i].params[0].p = pda;	/* physical disk addr
   1658  1.3  oster 								 * desc */
   1659  1.3  oster 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1660  1.3  oster 		}
   1661  1.3  oster 		pda = pda->next;
   1662  1.3  oster 	}
   1663  1.3  oster 
   1664  1.3  oster 
   1665  1.3  oster 	/* initialize nodes which compute new parity and Q */
   1666  1.3  oster 	/* we use the simple XOR func in the double-XOR case, and when we're
   1667  1.3  oster 	 * accessing only a portion of one stripe unit. the distinction
   1668  1.3  oster 	 * between the two is that the regular XOR func assumes that the
   1669  1.3  oster 	 * targbuf is a full SU in size, and examines the pda associated with
   1670  1.3  oster 	 * the buffer to decide where within the buffer to XOR the data,
   1671  1.3  oster 	 * whereas the simple XOR func just XORs the data into the start of
   1672  1.3  oster 	 * the buffer. */
   1673  1.3  oster 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
   1674  1.3  oster 		func = pfuncs->simple;
   1675  1.3  oster 		undoFunc = rf_NullNodeUndoFunc;
   1676  1.3  oster 		name = pfuncs->SimpleName;
   1677  1.3  oster 		if (qfuncs) {
   1678  1.3  oster 			qfunc = qfuncs->simple;
   1679  1.3  oster 			qname = qfuncs->SimpleName;
   1680  1.3  oster 		}
   1681  1.3  oster 	} else {
   1682  1.3  oster 		func = pfuncs->regular;
   1683  1.3  oster 		undoFunc = rf_NullNodeUndoFunc;
   1684  1.3  oster 		name = pfuncs->RegularName;
   1685  1.3  oster 		if (qfuncs) {
   1686  1.3  oster 			qfunc = qfuncs->regular;
   1687  1.3  oster 			qname = qfuncs->RegularName;
   1688  1.3  oster 		}
   1689  1.3  oster 	}
   1690  1.3  oster 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
   1691  1.3  oster 	 * nodes, and raidPtr  */
   1692  1.3  oster 	if (numParityNodes == 2) {	/* double-xor case */
   1693  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
   1694  1.3  oster 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
   1695  1.3  oster 																						 * xor */
   1696  1.3  oster 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
   1697  1.3  oster 			xorNodes[i].params[0] = readDataNodes[i].params[0];
   1698  1.3  oster 			xorNodes[i].params[1] = readDataNodes[i].params[1];
   1699  1.3  oster 			xorNodes[i].params[2] = readParityNodes[i].params[0];
   1700  1.3  oster 			xorNodes[i].params[3] = readParityNodes[i].params[1];
   1701  1.3  oster 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
   1702  1.3  oster 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
   1703  1.3  oster 			xorNodes[i].params[6].p = raidPtr;
   1704  1.3  oster 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
   1705  1.3  oster 											 * target buf */
   1706  1.3  oster 			if (nfaults == 2) {
   1707  1.3  oster 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, qname, allocList);	/* no wakeup func for
   1708  1.3  oster 																							 * xor */
   1709  1.3  oster 				qNodes[i].params[0] = readDataNodes[i].params[0];
   1710  1.3  oster 				qNodes[i].params[1] = readDataNodes[i].params[1];
   1711  1.3  oster 				qNodes[i].params[2] = readQNodes[i].params[0];
   1712  1.3  oster 				qNodes[i].params[3] = readQNodes[i].params[1];
   1713  1.3  oster 				qNodes[i].params[4] = writeDataNodes[i].params[0];
   1714  1.3  oster 				qNodes[i].params[5] = writeDataNodes[i].params[1];
   1715  1.3  oster 				qNodes[i].params[6].p = raidPtr;
   1716  1.3  oster 				qNodes[i].results[0] = readQNodes[i].params[1].p;	/* use old Q buf as
   1717  1.3  oster 											 * target buf */
   1718  1.3  oster 			}
   1719  1.3  oster 		}
   1720  1.3  oster 	} else {
   1721  1.3  oster 		/* there is only one xor node in this case */
   1722  1.3  oster 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
   1723  1.3  oster 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
   1724  1.3  oster 		for (i = 0; i < numDataNodes + 1; i++) {
   1725  1.3  oster 			/* set up params related to Rod and Rop nodes */
   1726  1.3  oster 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
   1727  1.3  oster 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
   1728  1.3  oster 		}
   1729  1.3  oster 		for (i = 0; i < numDataNodes; i++) {
   1730  1.3  oster 			/* set up params related to Wnd and Wnp nodes */
   1731  1.3  oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
   1732  1.3  oster 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
   1733  1.3  oster 		}
   1734  1.3  oster 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
   1735  1.3  oster 											 * at RAID information */
   1736  1.3  oster 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
   1737  1.3  oster 		if (nfaults == 2) {
   1738  1.3  oster 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, qname, allocList);
   1739  1.3  oster 			for (i = 0; i < numDataNodes; i++) {
   1740  1.3  oster 				/* set up params related to Rod */
   1741  1.3  oster 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
   1742  1.3  oster 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
   1743  1.3  oster 			}
   1744  1.3  oster 			/* and read old q */
   1745  1.3  oster 			qNodes[0].params[2 * numDataNodes + 0] = readQNodes[0].params[0];	/* pda */
   1746  1.3  oster 			qNodes[0].params[2 * numDataNodes + 1] = readQNodes[0].params[1];	/* buffer pointer */
   1747  1.3  oster 			for (i = 0; i < numDataNodes; i++) {
   1748  1.3  oster 				/* set up params related to Wnd nodes */
   1749  1.3  oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
   1750  1.3  oster 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
   1751  1.3  oster 			}
   1752  1.3  oster 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
   1753  1.3  oster 												 * at RAID information */
   1754  1.3  oster 			qNodes[0].results[0] = readQNodes[0].params[1].p;
   1755  1.3  oster 		}
   1756  1.3  oster 	}
   1757  1.3  oster 
   1758  1.3  oster 	/* initialize nodes which write new parity (Wnp) */
   1759  1.3  oster 	pda = asmap->parityInfo;
   1760  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
   1761  1.3  oster 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnp", allocList);
   1762  1.3  oster 		RF_ASSERT(pda != NULL);
   1763  1.3  oster 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
   1764  1.3  oster 							 * filled in by xor node */
   1765  1.3  oster 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
   1766  1.3  oster 										 * parity write
   1767  1.3  oster 										 * operation */
   1768  1.3  oster 		writeParityNodes[i].params[2].v = parityStripeID;
   1769  1.3  oster 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1770  1.3  oster 
   1771  1.3  oster 		if (lu_flag) {
   1772  1.3  oster 			/* initialize node to unlock the disk queue */
   1773  1.3  oster 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unp", allocList);
   1774  1.3  oster 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
   1775  1.3  oster 								 * desc */
   1776  1.3  oster 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1777  1.3  oster 		}
   1778  1.3  oster 		pda = pda->next;
   1779  1.3  oster 	}
   1780  1.3  oster 
   1781  1.3  oster 	/* initialize nodes which write new Q (Wnq) */
   1782  1.3  oster 	if (nfaults == 2) {
   1783  1.3  oster 		pda = asmap->qInfo;
   1784  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
   1785  1.3  oster 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnq", allocList);
   1786  1.3  oster 			RF_ASSERT(pda != NULL);
   1787  1.3  oster 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
   1788  1.3  oster 								 * filled in by xor node */
   1789  1.3  oster 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
   1790  1.3  oster 										 * parity write
   1791  1.3  oster 										 * operation */
   1792  1.3  oster 			writeQNodes[i].params[2].v = parityStripeID;
   1793  1.3  oster 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1794  1.3  oster 
   1795  1.3  oster 			if (lu_flag) {
   1796  1.3  oster 				/* initialize node to unlock the disk queue */
   1797  1.3  oster 				rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unq", allocList);
   1798  1.3  oster 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
   1799  1.3  oster 									 * desc */
   1800  1.3  oster 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1801  1.3  oster 			}
   1802  1.3  oster 			pda = pda->next;
   1803  1.3  oster 		}
   1804  1.3  oster 	}
   1805  1.3  oster 	/* Step 4. connect the nodes */
   1806  1.3  oster 
   1807  1.3  oster 	/* connect header to block node */
   1808  1.3  oster 	dag_h->succedents[0] = blockNode;
   1809  1.3  oster 
   1810  1.3  oster 	/* connect block node to read old data nodes */
   1811  1.3  oster 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
   1812  1.3  oster 	for (i = 0; i < numDataNodes; i++) {
   1813  1.3  oster 		blockNode->succedents[i] = &readDataNodes[i];
   1814  1.3  oster 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
   1815  1.3  oster 		readDataNodes[i].antecedents[0] = blockNode;
   1816  1.3  oster 		readDataNodes[i].antType[0] = rf_control;
   1817  1.3  oster 	}
   1818  1.3  oster 
   1819  1.3  oster 	/* connect block node to read old parity nodes */
   1820  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
   1821  1.3  oster 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
   1822  1.3  oster 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
   1823  1.3  oster 		readParityNodes[i].antecedents[0] = blockNode;
   1824  1.3  oster 		readParityNodes[i].antType[0] = rf_control;
   1825  1.3  oster 	}
   1826  1.3  oster 
   1827  1.3  oster 	/* connect block node to read old Q nodes */
   1828  1.3  oster 	if (nfaults == 2)
   1829  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
   1830  1.3  oster 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
   1831  1.3  oster 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
   1832  1.3  oster 			readQNodes[i].antecedents[0] = blockNode;
   1833  1.3  oster 			readQNodes[i].antType[0] = rf_control;
   1834  1.3  oster 		}
   1835  1.3  oster 
   1836  1.3  oster 	/* connect read old data nodes to write new data nodes */
   1837  1.3  oster 	for (i = 0; i < numDataNodes; i++) {
   1838  1.3  oster 		RF_ASSERT(readDataNodes[i].numSuccedents == ((nfaults * numParityNodes) + 1));
   1839  1.3  oster 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
   1840  1.3  oster 		readDataNodes[i].succedents[0] = &writeDataNodes[i];
   1841  1.3  oster 		writeDataNodes[i].antecedents[0] = &readDataNodes[i];
   1842  1.3  oster 		writeDataNodes[i].antType[0] = rf_antiData;
   1843  1.3  oster 	}
   1844  1.3  oster 
   1845  1.3  oster 	/* connect read old data nodes to xor nodes */
   1846  1.3  oster 	for (i = 0; i < numDataNodes; i++) {
   1847  1.3  oster 		for (j = 0; j < numParityNodes; j++) {
   1848  1.3  oster 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
   1849  1.3  oster 			readDataNodes[i].succedents[1 + j] = &xorNodes[j];
   1850  1.3  oster 			xorNodes[j].antecedents[i] = &readDataNodes[i];
   1851  1.3  oster 			xorNodes[j].antType[i] = rf_trueData;
   1852  1.3  oster 		}
   1853  1.3  oster 	}
   1854  1.3  oster 
   1855  1.3  oster 	/* connect read old data nodes to q nodes */
   1856  1.3  oster 	if (nfaults == 2)
   1857  1.3  oster 		for (i = 0; i < numDataNodes; i++)
   1858  1.3  oster 			for (j = 0; j < numParityNodes; j++) {
   1859  1.3  oster 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
   1860  1.3  oster 				readDataNodes[i].succedents[1 + numParityNodes + j] = &qNodes[j];
   1861  1.3  oster 				qNodes[j].antecedents[i] = &readDataNodes[i];
   1862  1.3  oster 				qNodes[j].antType[i] = rf_trueData;
   1863  1.3  oster 			}
   1864  1.3  oster 
   1865  1.3  oster 	/* connect read old parity nodes to xor nodes */
   1866  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
   1867  1.3  oster 		for (j = 0; j < numParityNodes; j++) {
   1868  1.3  oster 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
   1869  1.3  oster 			readParityNodes[i].succedents[j] = &xorNodes[j];
   1870  1.3  oster 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
   1871  1.3  oster 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
   1872  1.3  oster 		}
   1873  1.3  oster 	}
   1874  1.3  oster 
   1875  1.3  oster 	/* connect read old q nodes to q nodes */
   1876  1.3  oster 	if (nfaults == 2)
   1877  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
   1878  1.3  oster 			for (j = 0; j < numParityNodes; j++) {
   1879  1.3  oster 				RF_ASSERT(readQNodes[i].numSuccedents == numParityNodes);
   1880  1.3  oster 				readQNodes[i].succedents[j] = &qNodes[j];
   1881  1.3  oster 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
   1882  1.3  oster 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
   1883  1.3  oster 			}
   1884  1.3  oster 		}
   1885  1.3  oster 
   1886  1.3  oster 	/* connect xor nodes to the write new parity nodes */
   1887  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
   1888  1.3  oster 		RF_ASSERT(writeParityNodes[i].numAntecedents == numParityNodes);
   1889  1.3  oster 		for (j = 0; j < numParityNodes; j++) {
   1890  1.3  oster 			RF_ASSERT(xorNodes[j].numSuccedents == numParityNodes);
   1891  1.3  oster 			xorNodes[i].succedents[j] = &writeParityNodes[j];
   1892  1.3  oster 			writeParityNodes[j].antecedents[i] = &xorNodes[i];
   1893  1.3  oster 			writeParityNodes[j].antType[i] = rf_trueData;
   1894  1.3  oster 		}
   1895  1.3  oster 	}
   1896  1.3  oster 
   1897  1.3  oster 	/* connect q nodes to the write new q nodes */
   1898  1.3  oster 	if (nfaults == 2)
   1899  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
   1900  1.3  oster 			RF_ASSERT(writeQNodes[i].numAntecedents == numParityNodes);
   1901  1.3  oster 			for (j = 0; j < numParityNodes; j++) {
   1902  1.3  oster 				RF_ASSERT(qNodes[j].numSuccedents == 1);
   1903  1.3  oster 				qNodes[i].succedents[j] = &writeQNodes[j];
   1904  1.3  oster 				writeQNodes[j].antecedents[i] = &qNodes[i];
   1905  1.3  oster 				writeQNodes[j].antType[i] = rf_trueData;
   1906  1.3  oster 			}
   1907  1.3  oster 		}
   1908  1.3  oster 
   1909  1.3  oster 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1910  1.3  oster 	RF_ASSERT(termNode->numSuccedents == 0);
   1911  1.3  oster 	for (i = 0; i < numDataNodes; i++) {
   1912  1.3  oster 		if (lu_flag) {
   1913  1.3  oster 			/* connect write new data nodes to unlock nodes */
   1914  1.3  oster 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1915  1.3  oster 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
   1916  1.3  oster 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
   1917  1.3  oster 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
   1918  1.3  oster 			unlockDataNodes[i].antType[0] = rf_control;
   1919  1.3  oster 
   1920  1.3  oster 			/* connect unlock nodes to term node */
   1921  1.3  oster 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
   1922  1.3  oster 			unlockDataNodes[i].succedents[0] = termNode;
   1923  1.3  oster 			termNode->antecedents[i] = &unlockDataNodes[i];
   1924  1.3  oster 			termNode->antType[i] = rf_control;
   1925  1.3  oster 		} else {
   1926  1.3  oster 			/* connect write new data nodes to term node */
   1927  1.3  oster 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1928  1.3  oster 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1929  1.3  oster 			writeDataNodes[i].succedents[0] = termNode;
   1930  1.3  oster 			termNode->antecedents[i] = &writeDataNodes[i];
   1931  1.3  oster 			termNode->antType[i] = rf_control;
   1932  1.3  oster 		}
   1933  1.3  oster 	}
   1934  1.3  oster 
   1935  1.3  oster 	for (i = 0; i < numParityNodes; i++) {
   1936  1.3  oster 		if (lu_flag) {
   1937  1.3  oster 			/* connect write new parity nodes to unlock nodes */
   1938  1.3  oster 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1939  1.3  oster 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1940  1.3  oster 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1941  1.3  oster 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1942  1.3  oster 			unlockParityNodes[i].antType[0] = rf_control;
   1943  1.3  oster 
   1944  1.3  oster 			/* connect unlock nodes to term node */
   1945  1.3  oster 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1946  1.3  oster 			unlockParityNodes[i].succedents[0] = termNode;
   1947  1.3  oster 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1948  1.3  oster 			termNode->antType[numDataNodes + i] = rf_control;
   1949  1.3  oster 		} else {
   1950  1.3  oster 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1951  1.3  oster 			writeParityNodes[i].succedents[0] = termNode;
   1952  1.3  oster 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1953  1.3  oster 			termNode->antType[numDataNodes + i] = rf_control;
   1954  1.3  oster 		}
   1955  1.3  oster 	}
   1956  1.3  oster 
   1957  1.3  oster 	if (nfaults == 2)
   1958  1.3  oster 		for (i = 0; i < numParityNodes; i++) {
   1959  1.3  oster 			if (lu_flag) {
   1960  1.3  oster 				/* connect write new Q nodes to unlock nodes */
   1961  1.3  oster 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1962  1.3  oster 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1963  1.3  oster 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1964  1.3  oster 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1965  1.3  oster 				unlockQNodes[i].antType[0] = rf_control;
   1966  1.3  oster 
   1967  1.3  oster 				/* connect unlock nodes to unblock node */
   1968  1.3  oster 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1969  1.3  oster 				unlockQNodes[i].succedents[0] = termNode;
   1970  1.3  oster 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1971  1.3  oster 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1972  1.3  oster 			} else {
   1973  1.3  oster 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1974  1.3  oster 				writeQNodes[i].succedents[0] = termNode;
   1975  1.3  oster 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1976  1.3  oster 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1977  1.3  oster 			}
   1978  1.3  oster 		}
   1979  1.1  oster }
   1980  1.1  oster 
   1981  1.1  oster 
   1982  1.1  oster 
   1983  1.1  oster /******************************************************************************
   1984  1.1  oster  * create a write graph (fault-free or degraded) for RAID level 1
   1985  1.1  oster  *
   1986  1.1  oster  * Hdr  Nil -> Wpd -> Nil -> Trm
   1987  1.1  oster  *      Nil -> Wsd ->
   1988  1.1  oster  *
   1989  1.1  oster  * The "Wpd" node writes data to the primary copy in the mirror pair
   1990  1.1  oster  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1991  1.1  oster  *
   1992  1.1  oster  * Parameters:  raidPtr   - description of the physical array
   1993  1.1  oster  *              asmap     - logical & physical addresses for this access
   1994  1.1  oster  *              bp        - buffer ptr (holds write data)
   1995  1.3  oster  *              flags     - general flags (e.g. disk locking)
   1996  1.1  oster  *              allocList - list of memory allocated in DAG creation
   1997  1.1  oster  *****************************************************************************/
   1998  1.1  oster 
   1999  1.3  oster void
   2000  1.3  oster rf_CreateRaidOneWriteDAGFwd(
   2001  1.3  oster     RF_Raid_t * raidPtr,
   2002  1.3  oster     RF_AccessStripeMap_t * asmap,
   2003  1.3  oster     RF_DagHeader_t * dag_h,
   2004  1.3  oster     void *bp,
   2005  1.3  oster     RF_RaidAccessFlags_t flags,
   2006  1.3  oster     RF_AllocListElem_t * allocList)
   2007  1.1  oster {
   2008  1.3  oster 	RF_DagNode_t *blockNode, *unblockNode, *termNode;
   2009  1.3  oster 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   2010  1.3  oster 	int     nWndNodes, nWmirNodes, i;
   2011  1.3  oster 	RF_ReconUnitNum_t which_ru;
   2012  1.3  oster 	RF_PhysDiskAddr_t *pda, *pdaP;
   2013  1.3  oster 	RF_StripeNum_t parityStripeID;
   2014  1.3  oster 
   2015  1.3  oster 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   2016  1.3  oster 	    asmap->raidAddress, &which_ru);
   2017  1.3  oster 	if (rf_dagDebug) {
   2018  1.3  oster 		printf("[Creating RAID level 1 write DAG]\n");
   2019  1.3  oster 	}
   2020  1.3  oster 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;	/* 2 implies access not
   2021  1.3  oster 							 * SU aligned */
   2022  1.3  oster 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   2023  1.3  oster 
   2024  1.3  oster 	/* alloc the Wnd nodes and the Wmir node */
   2025  1.3  oster 	if (asmap->numDataFailed == 1)
   2026  1.3  oster 		nWndNodes--;
   2027  1.3  oster 	if (asmap->numParityFailed == 1)
   2028  1.3  oster 		nWmirNodes--;
   2029  1.3  oster 
   2030  1.3  oster 	/* total number of nodes = nWndNodes + nWmirNodes + (block + unblock +
   2031  1.3  oster 	 * terminator) */
   2032  1.3  oster 	RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   2033  1.3  oster 	i = 0;
   2034  1.3  oster 	wndNode = &nodes[i];
   2035  1.3  oster 	i += nWndNodes;
   2036  1.3  oster 	wmirNode = &nodes[i];
   2037  1.3  oster 	i += nWmirNodes;
   2038  1.3  oster 	blockNode = &nodes[i];
   2039  1.3  oster 	i += 1;
   2040  1.3  oster 	unblockNode = &nodes[i];
   2041  1.3  oster 	i += 1;
   2042  1.3  oster 	termNode = &nodes[i];
   2043  1.3  oster 	i += 1;
   2044  1.3  oster 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   2045  1.3  oster 
   2046  1.3  oster 	/* this dag can commit immediately */
   2047  1.3  oster 	dag_h->numCommitNodes = 0;
   2048  1.3  oster 	dag_h->numCommits = 0;
   2049  1.3  oster 	dag_h->numSuccedents = 1;
   2050  1.3  oster 
   2051  1.3  oster 	/* initialize the unblock and term nodes */
   2052  1.3  oster 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Nil", allocList);
   2053  1.3  oster 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
   2054  1.3  oster 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
   2055  1.3  oster 
   2056  1.3  oster 	/* initialize the wnd nodes */
   2057  1.3  oster 	if (nWndNodes > 0) {
   2058  1.3  oster 		pda = asmap->physInfo;
   2059  1.3  oster 		for (i = 0; i < nWndNodes; i++) {
   2060  1.3  oster 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
   2061  1.3  oster 			RF_ASSERT(pda != NULL);
   2062  1.3  oster 			wndNode[i].params[0].p = pda;
   2063  1.3  oster 			wndNode[i].params[1].p = pda->bufPtr;
   2064  1.3  oster 			wndNode[i].params[2].v = parityStripeID;
   2065  1.3  oster 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   2066  1.3  oster 			pda = pda->next;
   2067  1.3  oster 		}
   2068  1.3  oster 		RF_ASSERT(pda == NULL);
   2069  1.3  oster 	}
   2070  1.3  oster 	/* initialize the mirror nodes */
   2071  1.3  oster 	if (nWmirNodes > 0) {
   2072  1.3  oster 		pda = asmap->physInfo;
   2073  1.3  oster 		pdaP = asmap->parityInfo;
   2074  1.3  oster 		for (i = 0; i < nWmirNodes; i++) {
   2075  1.3  oster 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
   2076  1.3  oster 			RF_ASSERT(pda != NULL);
   2077  1.3  oster 			wmirNode[i].params[0].p = pdaP;
   2078  1.3  oster 			wmirNode[i].params[1].p = pda->bufPtr;
   2079  1.3  oster 			wmirNode[i].params[2].v = parityStripeID;
   2080  1.3  oster 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   2081  1.3  oster 			pda = pda->next;
   2082  1.3  oster 			pdaP = pdaP->next;
   2083  1.3  oster 		}
   2084  1.3  oster 		RF_ASSERT(pda == NULL);
   2085  1.3  oster 		RF_ASSERT(pdaP == NULL);
   2086  1.3  oster 	}
   2087  1.3  oster 	/* link the header node to the block node */
   2088  1.3  oster 	RF_ASSERT(dag_h->numSuccedents == 1);
   2089  1.3  oster 	RF_ASSERT(blockNode->numAntecedents == 0);
   2090  1.3  oster 	dag_h->succedents[0] = blockNode;
   2091  1.3  oster 
   2092  1.3  oster 	/* link the block node to the write nodes */
   2093  1.3  oster 	RF_ASSERT(blockNode->numSuccedents == (nWndNodes + nWmirNodes));
   2094  1.3  oster 	for (i = 0; i < nWndNodes; i++) {
   2095  1.3  oster 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   2096  1.3  oster 		blockNode->succedents[i] = &wndNode[i];
   2097  1.3  oster 		wndNode[i].antecedents[0] = blockNode;
   2098  1.3  oster 		wndNode[i].antType[0] = rf_control;
   2099  1.3  oster 	}
   2100  1.3  oster 	for (i = 0; i < nWmirNodes; i++) {
   2101  1.3  oster 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   2102  1.3  oster 		blockNode->succedents[i + nWndNodes] = &wmirNode[i];
   2103  1.3  oster 		wmirNode[i].antecedents[0] = blockNode;
   2104  1.3  oster 		wmirNode[i].antType[0] = rf_control;
   2105  1.3  oster 	}
   2106  1.3  oster 
   2107  1.3  oster 	/* link the write nodes to the unblock node */
   2108  1.3  oster 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   2109  1.3  oster 	for (i = 0; i < nWndNodes; i++) {
   2110  1.3  oster 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   2111  1.3  oster 		wndNode[i].succedents[0] = unblockNode;
   2112  1.3  oster 		unblockNode->antecedents[i] = &wndNode[i];
   2113  1.3  oster 		unblockNode->antType[i] = rf_control;
   2114  1.3  oster 	}
   2115  1.3  oster 	for (i = 0; i < nWmirNodes; i++) {
   2116  1.3  oster 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   2117  1.3  oster 		wmirNode[i].succedents[0] = unblockNode;
   2118  1.3  oster 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   2119  1.3  oster 		unblockNode->antType[i + nWndNodes] = rf_control;
   2120  1.3  oster 	}
   2121  1.3  oster 
   2122  1.3  oster 	/* link the unblock node to the term node */
   2123  1.3  oster 	RF_ASSERT(unblockNode->numSuccedents == 1);
   2124  1.3  oster 	RF_ASSERT(termNode->numAntecedents == 1);
   2125  1.3  oster 	RF_ASSERT(termNode->numSuccedents == 0);
   2126  1.3  oster 	unblockNode->succedents[0] = termNode;
   2127  1.3  oster 	termNode->antecedents[0] = unblockNode;
   2128  1.3  oster 	termNode->antType[0] = rf_control;
   2129  1.1  oster 
   2130  1.3  oster 	return;
   2131  1.1  oster }
   2132  1.9  oster #endif
   2133