Home | History | Annotate | Line # | Download | only in raidframe
rf_dagffwr.c revision 1.15
      1 /*	$NetBSD: rf_dagffwr.c,v 1.15 2004/01/09 23:26:17 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagff.c
     31  *
     32  * code for creating fault-free DAGs
     33  *
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: rf_dagffwr.c,v 1.15 2004/01/09 23:26:17 oster Exp $");
     38 
     39 #include <dev/raidframe/raidframevar.h>
     40 
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_dagffrd.h"
     47 #include "rf_general.h"
     48 #include "rf_dagffwr.h"
     49 
     50 /******************************************************************************
     51  *
     52  * General comments on DAG creation:
     53  *
     54  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     55  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     56  * is reached, the execution engine will halt forward execution and work
     57  * backward through the graph, executing the undo functions.  Assuming that
     58  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     59  * does not make changes to permanent state, the graph will fail atomically.
     60  * If an error occurs after the Cmt node executes, the engine will roll-forward
     61  * through the graph, blindly executing nodes until it reaches the end.
     62  * If a graph reaches the end, it is assumed to have completed successfully.
     63  *
     64  * A graph has only 1 Cmt node.
     65  *
     66  */
     67 
     68 
     69 /******************************************************************************
     70  *
     71  * The following wrappers map the standard DAG creation interface to the
     72  * DAG creation routines.  Additionally, these wrappers enable experimentation
     73  * with new DAG structures by providing an extra level of indirection, allowing
     74  * the DAG creation routines to be replaced at this single point.
     75  */
     76 
     77 
     78 void
     79 rf_CreateNonRedundantWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
     80 			      RF_DagHeader_t *dag_h, void *bp,
     81 			      RF_RaidAccessFlags_t flags,
     82 			      RF_AllocListElem_t *allocList,
     83 			      RF_IoType_t type)
     84 {
     85 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     86 				 RF_IO_TYPE_WRITE);
     87 }
     88 
     89 void
     90 rf_CreateRAID0WriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
     91 		       RF_DagHeader_t *dag_h, void *bp,
     92 		       RF_RaidAccessFlags_t flags,
     93 		       RF_AllocListElem_t *allocList,
     94 		       RF_IoType_t type)
     95 {
     96 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     97 				 RF_IO_TYPE_WRITE);
     98 }
     99 
    100 void
    101 rf_CreateSmallWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    102 		       RF_DagHeader_t *dag_h, void *bp,
    103 		       RF_RaidAccessFlags_t flags,
    104 		       RF_AllocListElem_t *allocList)
    105 {
    106 	/* "normal" rollaway */
    107 	rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    108 				     allocList, &rf_xorFuncs, NULL);
    109 }
    110 
    111 void
    112 rf_CreateLargeWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    113 		       RF_DagHeader_t *dag_h, void *bp,
    114 		       RF_RaidAccessFlags_t flags,
    115 		       RF_AllocListElem_t *allocList)
    116 {
    117 	/* "normal" rollaway */
    118 	rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags,
    119 				     allocList, 1, rf_RegularXorFunc, RF_TRUE);
    120 }
    121 
    122 
    123 /******************************************************************************
    124  *
    125  * DAG creation code begins here
    126  */
    127 
    128 
    129 /******************************************************************************
    130  *
    131  * creates a DAG to perform a large-write operation:
    132  *
    133  *           / Rod \           / Wnd \
    134  * H -- block- Rod - Xor - Cmt - Wnd --- T
    135  *           \ Rod /          \  Wnp /
    136  *                             \[Wnq]/
    137  *
    138  * The XOR node also does the Q calculation in the P+Q architecture.
    139  * All nodes are before the commit node (Cmt) are assumed to be atomic and
    140  * undoable - or - they make no changes to permanent state.
    141  *
    142  * Rod = read old data
    143  * Cmt = commit node
    144  * Wnp = write new parity
    145  * Wnd = write new data
    146  * Wnq = write new "q"
    147  * [] denotes optional segments in the graph
    148  *
    149  * Parameters:  raidPtr   - description of the physical array
    150  *              asmap     - logical & physical addresses for this access
    151  *              bp        - buffer ptr (holds write data)
    152  *              flags     - general flags (e.g. disk locking)
    153  *              allocList - list of memory allocated in DAG creation
    154  *              nfaults   - number of faults array can tolerate
    155  *                          (equal to # redundancy units in stripe)
    156  *              redfuncs  - list of redundancy generating functions
    157  *
    158  *****************************************************************************/
    159 
    160 void
    161 rf_CommonCreateLargeWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    162 			     RF_DagHeader_t *dag_h, void *bp,
    163 			     RF_RaidAccessFlags_t flags,
    164 			     RF_AllocListElem_t *allocList,
    165 			     int nfaults, int (*redFunc) (RF_DagNode_t *),
    166 			     int allowBufferRecycle)
    167 {
    168 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
    169 	RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
    170 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
    171 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    172 	RF_StripeNum_t parityStripeID;
    173 	char   *sosBuffer, *eosBuffer;
    174 	RF_ReconUnitNum_t which_ru;
    175 	RF_RaidLayout_t *layoutPtr;
    176 	RF_PhysDiskAddr_t *pda;
    177 
    178 	layoutPtr = &(raidPtr->Layout);
    179 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr,
    180 							asmap->raidAddress,
    181 							&which_ru);
    182 
    183 	if (rf_dagDebug) {
    184 		printf("[Creating large-write DAG]\n");
    185 	}
    186 	dag_h->creator = "LargeWriteDAG";
    187 
    188 	dag_h->numCommitNodes = 1;
    189 	dag_h->numCommits = 0;
    190 	dag_h->numSuccedents = 1;
    191 
    192 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
    193 	nWndNodes = asmap->numStripeUnitsAccessed;
    194 	RF_MallocAndAdd(nodes,
    195 			(nWndNodes + 4 + nfaults) * sizeof(RF_DagNode_t),
    196 			(RF_DagNode_t *), allocList);
    197 	i = 0;
    198 	wndNodes = &nodes[i];
    199 	i += nWndNodes;
    200 	xorNode = &nodes[i];
    201 	i += 1;
    202 	wnpNode = &nodes[i];
    203 	i += 1;
    204 	blockNode = &nodes[i];
    205 	i += 1;
    206 	commitNode = &nodes[i];
    207 	i += 1;
    208 	termNode = &nodes[i];
    209 	i += 1;
    210 	if (nfaults == 2) {
    211 		wnqNode = &nodes[i];
    212 		i += 1;
    213 	} else {
    214 		wnqNode = NULL;
    215 	}
    216 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h,
    217 					new_asm_h, &nRodNodes, &sosBuffer,
    218 					&eosBuffer, allocList);
    219 	if (nRodNodes > 0) {
    220 		RF_MallocAndAdd(rodNodes, nRodNodes * sizeof(RF_DagNode_t),
    221 				(RF_DagNode_t *), allocList);
    222 	} else {
    223 		rodNodes = NULL;
    224 	}
    225 
    226 	/* begin node initialization */
    227 	if (nRodNodes > 0) {
    228 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
    229 			    rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0,
    230 			    dag_h, "Nil", allocList);
    231 	} else {
    232 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
    233 			    rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0,
    234 			    dag_h, "Nil", allocList);
    235 	}
    236 
    237 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
    238 		    rf_NullNodeUndoFunc, NULL, nWndNodes + nfaults, 1, 0, 0,
    239 		    dag_h, "Cmt", allocList);
    240 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
    241 		    rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0,
    242 		    dag_h, "Trm", allocList);
    243 
    244 	/* initialize the Rod nodes */
    245 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
    246 		if (new_asm_h[asmNum]) {
    247 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
    248 			while (pda) {
    249 				rf_InitNode(&rodNodes[nodeNum], rf_wait,
    250 					    RF_FALSE, rf_DiskReadFunc,
    251 					    rf_DiskReadUndoFunc,
    252 					    rf_GenericWakeupFunc,
    253 					    1, 1, 4, 0, dag_h,
    254 					    "Rod", allocList);
    255 				rodNodes[nodeNum].params[0].p = pda;
    256 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
    257 				rodNodes[nodeNum].params[2].v = parityStripeID;
    258 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    259 				    0, 0, which_ru);
    260 				nodeNum++;
    261 				pda = pda->next;
    262 			}
    263 		}
    264 	}
    265 	RF_ASSERT(nodeNum == nRodNodes);
    266 
    267 	/* initialize the wnd nodes */
    268 	pda = asmap->physInfo;
    269 	for (i = 0; i < nWndNodes; i++) {
    270 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE,
    271 			    rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    272 			    rf_GenericWakeupFunc, 1, 1, 4, 0,
    273 			    dag_h, "Wnd", allocList);
    274 		RF_ASSERT(pda != NULL);
    275 		wndNodes[i].params[0].p = pda;
    276 		wndNodes[i].params[1].p = pda->bufPtr;
    277 		wndNodes[i].params[2].v = parityStripeID;
    278 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    279 		pda = pda->next;
    280 	}
    281 
    282 	/* initialize the redundancy node */
    283 	if (nRodNodes > 0) {
    284 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc,
    285 			    rf_NullNodeUndoFunc, NULL, 1,
    286 			    nRodNodes, 2 * (nWndNodes + nRodNodes) + 1,
    287 			    nfaults, dag_h, "Xr ", allocList);
    288 	} else {
    289 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc,
    290 			    rf_NullNodeUndoFunc, NULL, 1,
    291 			    1, 2 * (nWndNodes + nRodNodes) + 1,
    292 			    nfaults, dag_h, "Xr ", allocList);
    293 	}
    294 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
    295 	for (i = 0; i < nWndNodes; i++) {
    296 		/* pda */
    297 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];
    298 		/* buf ptr */
    299 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];
    300 	}
    301 	for (i = 0; i < nRodNodes; i++) {
    302 		/* pda */
    303 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];
    304 		/* buf ptr */
    305 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];
    306 	}
    307 	/* xor node needs to get at RAID information */
    308 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
    309 
    310 	/*
    311          * Look for an Rod node that reads a complete SU. If none,
    312          * alloc a buffer to receive the parity info. Note that we
    313          * can't use a new data buffer because it will not have gotten
    314          * written when the xor occurs.  */
    315 	if (allowBufferRecycle) {
    316 		for (i = 0; i < nRodNodes; i++) {
    317 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
    318 				break;
    319 		}
    320 	}
    321 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
    322 		RF_MallocAndAdd(xorNode->results[0],
    323 				rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    324 				(void *), allocList);
    325 	} else {
    326 		xorNode->results[0] = rodNodes[i].params[1].p;
    327 	}
    328 
    329 	/* initialize the Wnp node */
    330 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc,
    331 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0,
    332 		    dag_h, "Wnp", allocList);
    333 	wnpNode->params[0].p = asmap->parityInfo;
    334 	wnpNode->params[1].p = xorNode->results[0];
    335 	wnpNode->params[2].v = parityStripeID;
    336 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    337 	/* parityInfo must describe entire parity unit */
    338 	RF_ASSERT(asmap->parityInfo->next == NULL);
    339 
    340 	if (nfaults == 2) {
    341 		/*
    342 	         * We never try to recycle a buffer for the Q calcuation
    343 	         * in addition to the parity. This would cause two buffers
    344 	         * to get smashed during the P and Q calculation, guaranteeing
    345 	         * one would be wrong.
    346 	         */
    347 		RF_MallocAndAdd(xorNode->results[1],
    348 				rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    349 				(void *), allocList);
    350 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc,
    351 			    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc,
    352 			    1, 1, 4, 0, dag_h, "Wnq", allocList);
    353 		wnqNode->params[0].p = asmap->qInfo;
    354 		wnqNode->params[1].p = xorNode->results[1];
    355 		wnqNode->params[2].v = parityStripeID;
    356 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    357 		/* parityInfo must describe entire parity unit */
    358 		RF_ASSERT(asmap->parityInfo->next == NULL);
    359 	}
    360 	/*
    361          * Connect nodes to form graph.
    362          */
    363 
    364 	/* connect dag header to block node */
    365 	RF_ASSERT(blockNode->numAntecedents == 0);
    366 	dag_h->succedents[0] = blockNode;
    367 
    368 	if (nRodNodes > 0) {
    369 		/* connect the block node to the Rod nodes */
    370 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
    371 		RF_ASSERT(xorNode->numAntecedents == nRodNodes);
    372 		for (i = 0; i < nRodNodes; i++) {
    373 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
    374 			blockNode->succedents[i] = &rodNodes[i];
    375 			rodNodes[i].antecedents[0] = blockNode;
    376 			rodNodes[i].antType[0] = rf_control;
    377 
    378 			/* connect the Rod nodes to the Xor node */
    379 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
    380 			rodNodes[i].succedents[0] = xorNode;
    381 			xorNode->antecedents[i] = &rodNodes[i];
    382 			xorNode->antType[i] = rf_trueData;
    383 		}
    384 	} else {
    385 		/* connect the block node to the Xor node */
    386 		RF_ASSERT(blockNode->numSuccedents == 1);
    387 		RF_ASSERT(xorNode->numAntecedents == 1);
    388 		blockNode->succedents[0] = xorNode;
    389 		xorNode->antecedents[0] = blockNode;
    390 		xorNode->antType[0] = rf_control;
    391 	}
    392 
    393 	/* connect the xor node to the commit node */
    394 	RF_ASSERT(xorNode->numSuccedents == 1);
    395 	RF_ASSERT(commitNode->numAntecedents == 1);
    396 	xorNode->succedents[0] = commitNode;
    397 	commitNode->antecedents[0] = xorNode;
    398 	commitNode->antType[0] = rf_control;
    399 
    400 	/* connect the commit node to the write nodes */
    401 	RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
    402 	for (i = 0; i < nWndNodes; i++) {
    403 		RF_ASSERT(wndNodes->numAntecedents == 1);
    404 		commitNode->succedents[i] = &wndNodes[i];
    405 		wndNodes[i].antecedents[0] = commitNode;
    406 		wndNodes[i].antType[0] = rf_control;
    407 	}
    408 	RF_ASSERT(wnpNode->numAntecedents == 1);
    409 	commitNode->succedents[nWndNodes] = wnpNode;
    410 	wnpNode->antecedents[0] = commitNode;
    411 	wnpNode->antType[0] = rf_trueData;
    412 	if (nfaults == 2) {
    413 		RF_ASSERT(wnqNode->numAntecedents == 1);
    414 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    415 		wnqNode->antecedents[0] = commitNode;
    416 		wnqNode->antType[0] = rf_trueData;
    417 	}
    418 	/* connect the write nodes to the term node */
    419 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
    420 	RF_ASSERT(termNode->numSuccedents == 0);
    421 	for (i = 0; i < nWndNodes; i++) {
    422 		RF_ASSERT(wndNodes->numSuccedents == 1);
    423 		wndNodes[i].succedents[0] = termNode;
    424 		termNode->antecedents[i] = &wndNodes[i];
    425 		termNode->antType[i] = rf_control;
    426 	}
    427 	RF_ASSERT(wnpNode->numSuccedents == 1);
    428 	wnpNode->succedents[0] = termNode;
    429 	termNode->antecedents[nWndNodes] = wnpNode;
    430 	termNode->antType[nWndNodes] = rf_control;
    431 	if (nfaults == 2) {
    432 		RF_ASSERT(wnqNode->numSuccedents == 1);
    433 		wnqNode->succedents[0] = termNode;
    434 		termNode->antecedents[nWndNodes + 1] = wnqNode;
    435 		termNode->antType[nWndNodes + 1] = rf_control;
    436 	}
    437 }
    438 /******************************************************************************
    439  *
    440  * creates a DAG to perform a small-write operation (either raid 5 or pq),
    441  * which is as follows:
    442  *
    443  * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
    444  *            \- Rod X      /     \----> Wnd [Und]-/
    445  *           [\- Rod X     /       \---> Wnd [Und]-/]
    446  *           [\- Roq -> Q /         \--> Wnq [Unq]-/]
    447  *
    448  * Rop = read old parity
    449  * Rod = read old data
    450  * Roq = read old "q"
    451  * Cmt = commit node
    452  * Und = unlock data disk
    453  * Unp = unlock parity disk
    454  * Unq = unlock q disk
    455  * Wnp = write new parity
    456  * Wnd = write new data
    457  * Wnq = write new "q"
    458  * [ ] denotes optional segments in the graph
    459  *
    460  * Parameters:  raidPtr   - description of the physical array
    461  *              asmap     - logical & physical addresses for this access
    462  *              bp        - buffer ptr (holds write data)
    463  *              flags     - general flags (e.g. disk locking)
    464  *              allocList - list of memory allocated in DAG creation
    465  *              pfuncs    - list of parity generating functions
    466  *              qfuncs    - list of q generating functions
    467  *
    468  * A null qfuncs indicates single fault tolerant
    469  *****************************************************************************/
    470 
    471 void
    472 rf_CommonCreateSmallWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
    473 			     RF_DagHeader_t *dag_h, void *bp,
    474 			     RF_RaidAccessFlags_t flags,
    475 			     RF_AllocListElem_t *allocList,
    476 			     const RF_RedFuncs_t *pfuncs,
    477 			     const RF_RedFuncs_t *qfuncs)
    478 {
    479 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
    480 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
    481 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes;
    482 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
    483 	int     i, j, nNodes, totalNumNodes, lu_flag;
    484 	RF_ReconUnitNum_t which_ru;
    485 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    486 	int     (*qfunc) (RF_DagNode_t *);
    487 	int     numDataNodes, numParityNodes;
    488 	RF_StripeNum_t parityStripeID;
    489 	RF_PhysDiskAddr_t *pda;
    490 	char   *name, *qname;
    491 	long    nfaults;
    492 
    493 	nfaults = qfuncs ? 2 : 1;
    494 	lu_flag = 0;	/* lock/unlock flag */
    495 
    496 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    497 	    asmap->raidAddress, &which_ru);
    498 	pda = asmap->physInfo;
    499 	numDataNodes = asmap->numStripeUnitsAccessed;
    500 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
    501 
    502 	if (rf_dagDebug) {
    503 		printf("[Creating small-write DAG]\n");
    504 	}
    505 	RF_ASSERT(numDataNodes > 0);
    506 	dag_h->creator = "SmallWriteDAG";
    507 
    508 	dag_h->numCommitNodes = 1;
    509 	dag_h->numCommits = 0;
    510 	dag_h->numSuccedents = 1;
    511 
    512 	/*
    513          * DAG creation occurs in four steps:
    514          * 1. count the number of nodes in the DAG
    515          * 2. create the nodes
    516          * 3. initialize the nodes
    517          * 4. connect the nodes
    518          */
    519 
    520 	/*
    521          * Step 1. compute number of nodes in the graph
    522          */
    523 
    524 	/* number of nodes: a read and write for each data unit a
    525 	 * redundancy computation node for each parity node (nfaults *
    526 	 * nparity) a read and write for each parity unit a block and
    527 	 * commit node (2) a terminate node if atomic RMW an unlock
    528 	 * node for each data unit, redundancy unit */
    529 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
    530 	    + (nfaults * 2 * numParityNodes) + 3;
    531 	if (lu_flag) {
    532 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
    533 	}
    534 	/*
    535          * Step 2. create the nodes
    536          */
    537 	RF_MallocAndAdd(nodes, totalNumNodes * sizeof(RF_DagNode_t),
    538 			(RF_DagNode_t *), allocList);
    539 	i = 0;
    540 	blockNode = &nodes[i];
    541 	i += 1;
    542 	commitNode = &nodes[i];
    543 	i += 1;
    544 	readDataNodes = &nodes[i];
    545 	i += numDataNodes;
    546 	readParityNodes = &nodes[i];
    547 	i += numParityNodes;
    548 	writeDataNodes = &nodes[i];
    549 	i += numDataNodes;
    550 	writeParityNodes = &nodes[i];
    551 	i += numParityNodes;
    552 	xorNodes = &nodes[i];
    553 	i += numParityNodes;
    554 	termNode = &nodes[i];
    555 	i += 1;
    556 	if (lu_flag) {
    557 		unlockDataNodes = &nodes[i];
    558 		i += numDataNodes;
    559 		unlockParityNodes = &nodes[i];
    560 		i += numParityNodes;
    561 	} else {
    562 		unlockDataNodes = unlockParityNodes = NULL;
    563 	}
    564 	if (nfaults == 2) {
    565 		readQNodes = &nodes[i];
    566 		i += numParityNodes;
    567 		writeQNodes = &nodes[i];
    568 		i += numParityNodes;
    569 		qNodes = &nodes[i];
    570 		i += numParityNodes;
    571 		if (lu_flag) {
    572 			unlockQNodes = &nodes[i];
    573 			i += numParityNodes;
    574 		} else {
    575 			unlockQNodes = NULL;
    576 		}
    577 	} else {
    578 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
    579 	}
    580 	RF_ASSERT(i == totalNumNodes);
    581 
    582 	/*
    583          * Step 3. initialize the nodes
    584          */
    585 	/* initialize block node (Nil) */
    586 	nNodes = numDataNodes + (nfaults * numParityNodes);
    587 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
    588 		    rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0,
    589 		    dag_h, "Nil", allocList);
    590 
    591 	/* initialize commit node (Cmt) */
    592 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
    593 		    rf_NullNodeUndoFunc, NULL, nNodes,
    594 		    (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
    595 
    596 	/* initialize terminate node (Trm) */
    597 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
    598 		    rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0,
    599 		    dag_h, "Trm", allocList);
    600 
    601 	/* initialize nodes which read old data (Rod) */
    602 	for (i = 0; i < numDataNodes; i++) {
    603 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE,
    604 			    rf_DiskReadFunc, rf_DiskReadUndoFunc,
    605 			    rf_GenericWakeupFunc, (nfaults * numParityNodes),
    606 			    1, 4, 0, dag_h, "Rod", allocList);
    607 		RF_ASSERT(pda != NULL);
    608 		/* physical disk addr desc */
    609 		readDataNodes[i].params[0].p = pda;
    610 		/* buffer to hold old data */
    611 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    612 		    dag_h, pda, allocList);
    613 		readDataNodes[i].params[2].v = parityStripeID;
    614 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    615 		    lu_flag, 0, which_ru);
    616 		pda = pda->next;
    617 		for (j = 0; j < readDataNodes[i].numSuccedents; j++) {
    618 			readDataNodes[i].propList[j] = NULL;
    619 		}
    620 	}
    621 
    622 	/* initialize nodes which read old parity (Rop) */
    623 	pda = asmap->parityInfo;
    624 	i = 0;
    625 	for (i = 0; i < numParityNodes; i++) {
    626 		RF_ASSERT(pda != NULL);
    627 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE,
    628 			    rf_DiskReadFunc, rf_DiskReadUndoFunc,
    629 			    rf_GenericWakeupFunc, numParityNodes, 1, 4, 0,
    630 			    dag_h, "Rop", allocList);
    631 		readParityNodes[i].params[0].p = pda;
    632 		/* buffer to hold old parity */
    633 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    634 		    dag_h, pda, allocList);
    635 		readParityNodes[i].params[2].v = parityStripeID;
    636 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    637 		    lu_flag, 0, which_ru);
    638 		pda = pda->next;
    639 		for (j = 0; j < readParityNodes[i].numSuccedents; j++) {
    640 			readParityNodes[i].propList[0] = NULL;
    641 		}
    642 	}
    643 
    644 	/* initialize nodes which read old Q (Roq) */
    645 	if (nfaults == 2) {
    646 		pda = asmap->qInfo;
    647 		for (i = 0; i < numParityNodes; i++) {
    648 			RF_ASSERT(pda != NULL);
    649 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE,
    650 				    rf_DiskReadFunc, rf_DiskReadUndoFunc,
    651 				    rf_GenericWakeupFunc, numParityNodes,
    652 				    1, 4, 0, dag_h, "Roq", allocList);
    653 			readQNodes[i].params[0].p = pda;
    654 			/* buffer to hold old Q */
    655 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    656 								   dag_h, pda,
    657 								   allocList);
    658 			readQNodes[i].params[2].v = parityStripeID;
    659 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    660 			    lu_flag, 0, which_ru);
    661 			pda = pda->next;
    662 			for (j = 0; j < readQNodes[i].numSuccedents; j++) {
    663 				readQNodes[i].propList[0] = NULL;
    664 			}
    665 		}
    666 	}
    667 	/* initialize nodes which write new data (Wnd) */
    668 	pda = asmap->physInfo;
    669 	for (i = 0; i < numDataNodes; i++) {
    670 		RF_ASSERT(pda != NULL);
    671 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE,
    672 			    rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    673 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    674 			    "Wnd", allocList);
    675 		/* physical disk addr desc */
    676 		writeDataNodes[i].params[0].p = pda;
    677 		/* buffer holding new data to be written */
    678 		writeDataNodes[i].params[1].p = pda->bufPtr;
    679 		writeDataNodes[i].params[2].v = parityStripeID;
    680 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    681 		    0, 0, which_ru);
    682 		if (lu_flag) {
    683 			/* initialize node to unlock the disk queue */
    684 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE,
    685 				    rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc,
    686 				    rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    687 				    "Und", allocList);
    688 			/* physical disk addr desc */
    689 			unlockDataNodes[i].params[0].p = pda;
    690 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    691 			    0, lu_flag, which_ru);
    692 		}
    693 		pda = pda->next;
    694 	}
    695 
    696 	/*
    697          * Initialize nodes which compute new parity and Q.
    698          */
    699 	/*
    700          * We use the simple XOR func in the double-XOR case, and when
    701          * we're accessing only a portion of one stripe unit. The
    702          * distinction between the two is that the regular XOR func
    703          * assumes that the targbuf is a full SU in size, and examines
    704          * the pda associated with the buffer to decide where within
    705          * the buffer to XOR the data, whereas the simple XOR func
    706          * just XORs the data into the start of the buffer.  */
    707 	if ((numParityNodes == 2) || ((numDataNodes == 1)
    708 		&& (asmap->totalSectorsAccessed <
    709 		    raidPtr->Layout.sectorsPerStripeUnit))) {
    710 		func = pfuncs->simple;
    711 		undoFunc = rf_NullNodeUndoFunc;
    712 		name = pfuncs->SimpleName;
    713 		if (qfuncs) {
    714 			qfunc = qfuncs->simple;
    715 			qname = qfuncs->SimpleName;
    716 		} else {
    717 			qfunc = NULL;
    718 			qname = NULL;
    719 		}
    720 	} else {
    721 		func = pfuncs->regular;
    722 		undoFunc = rf_NullNodeUndoFunc;
    723 		name = pfuncs->RegularName;
    724 		if (qfuncs) {
    725 			qfunc = qfuncs->regular;
    726 			qname = qfuncs->RegularName;
    727 		} else {
    728 			qfunc = NULL;
    729 			qname = NULL;
    730 		}
    731 	}
    732 	/*
    733          * Initialize the xor nodes: params are {pda,buf}
    734          * from {Rod,Wnd,Rop} nodes, and raidPtr
    735          */
    736 	if (numParityNodes == 2) {
    737 		/* double-xor case */
    738 		for (i = 0; i < numParityNodes; i++) {
    739 			/* note: no wakeup func for xor */
    740 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func,
    741 				    undoFunc, NULL, 1,
    742 				    (numDataNodes + numParityNodes),
    743 				    7, 1, dag_h, name, allocList);
    744 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
    745 			xorNodes[i].params[0] = readDataNodes[i].params[0];
    746 			xorNodes[i].params[1] = readDataNodes[i].params[1];
    747 			xorNodes[i].params[2] = readParityNodes[i].params[0];
    748 			xorNodes[i].params[3] = readParityNodes[i].params[1];
    749 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
    750 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
    751 			xorNodes[i].params[6].p = raidPtr;
    752 			/* use old parity buf as target buf */
    753 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;
    754 			if (nfaults == 2) {
    755 				/* note: no wakeup func for qor */
    756 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE,
    757 					    qfunc, undoFunc, NULL, 1,
    758 					    (numDataNodes + numParityNodes),
    759 					    7, 1, dag_h, qname, allocList);
    760 				qNodes[i].params[0] = readDataNodes[i].params[0];
    761 				qNodes[i].params[1] = readDataNodes[i].params[1];
    762 				qNodes[i].params[2] = readQNodes[i].params[0];
    763 				qNodes[i].params[3] = readQNodes[i].params[1];
    764 				qNodes[i].params[4] = writeDataNodes[i].params[0];
    765 				qNodes[i].params[5] = writeDataNodes[i].params[1];
    766 				qNodes[i].params[6].p = raidPtr;
    767 				/* use old Q buf as target buf */
    768 				qNodes[i].results[0] = readQNodes[i].params[1].p;
    769 			}
    770 		}
    771 	} else {
    772 		/* there is only one xor node in this case */
    773 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func,
    774 			    undoFunc, NULL, 1, (numDataNodes + numParityNodes),
    775 			    (2 * (numDataNodes + numDataNodes + 1) + 1), 1,
    776 			    dag_h, name, allocList);
    777 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
    778 		for (i = 0; i < numDataNodes + 1; i++) {
    779 			/* set up params related to Rod and Rop nodes */
    780 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    781 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    782 		}
    783 		for (i = 0; i < numDataNodes; i++) {
    784 			/* set up params related to Wnd and Wnp nodes */
    785 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    786 			    writeDataNodes[i].params[0];
    787 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    788 			    writeDataNodes[i].params[1];
    789 		}
    790 		/* xor node needs to get at RAID information */
    791 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    792 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
    793 		if (nfaults == 2) {
    794 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc,
    795 				    undoFunc, NULL, 1,
    796 				    (numDataNodes + numParityNodes),
    797 				    (2 * (numDataNodes + numDataNodes + 1) + 1), 1,
    798 				    dag_h, qname, allocList);
    799 			for (i = 0; i < numDataNodes; i++) {
    800 				/* set up params related to Rod */
    801 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    802 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    803 			}
    804 			/* and read old q */
    805 			qNodes[0].params[2 * numDataNodes + 0] =	/* pda */
    806 			    readQNodes[0].params[0];
    807 			qNodes[0].params[2 * numDataNodes + 1] =	/* buffer ptr */
    808 			    readQNodes[0].params[1];
    809 			for (i = 0; i < numDataNodes; i++) {
    810 				/* set up params related to Wnd nodes */
    811 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    812 				    writeDataNodes[i].params[0];
    813 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    814 				    writeDataNodes[i].params[1];
    815 			}
    816 			/* xor node needs to get at RAID information */
    817 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    818 			qNodes[0].results[0] = readQNodes[0].params[1].p;
    819 		}
    820 	}
    821 
    822 	/* initialize nodes which write new parity (Wnp) */
    823 	pda = asmap->parityInfo;
    824 	for (i = 0; i < numParityNodes; i++) {
    825 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE,
    826 			    rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    827 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    828 			    "Wnp", allocList);
    829 		RF_ASSERT(pda != NULL);
    830 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    831 							 * filled in by xor node */
    832 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
    833 										 * parity write
    834 										 * operation */
    835 		writeParityNodes[i].params[2].v = parityStripeID;
    836 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    837 		    0, 0, which_ru);
    838 		if (lu_flag) {
    839 			/* initialize node to unlock the disk queue */
    840 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE,
    841 				    rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc,
    842 				    rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    843 				    "Unp", allocList);
    844 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
    845 								 * desc */
    846 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    847 			    0, lu_flag, which_ru);
    848 		}
    849 		pda = pda->next;
    850 	}
    851 
    852 	/* initialize nodes which write new Q (Wnq) */
    853 	if (nfaults == 2) {
    854 		pda = asmap->qInfo;
    855 		for (i = 0; i < numParityNodes; i++) {
    856 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE,
    857 				    rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    858 				    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    859 				    "Wnq", allocList);
    860 			RF_ASSERT(pda != NULL);
    861 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    862 								 * filled in by xor node */
    863 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
    864 										 * parity write
    865 										 * operation */
    866 			writeQNodes[i].params[2].v = parityStripeID;
    867 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    868 			    0, 0, which_ru);
    869 			if (lu_flag) {
    870 				/* initialize node to unlock the disk queue */
    871 				rf_InitNode(&unlockQNodes[i], rf_wait,
    872 					    RF_FALSE, rf_DiskUnlockFunc,
    873 					    rf_DiskUnlockUndoFunc,
    874 					    rf_GenericWakeupFunc, 1, 1, 2, 0,
    875 					    dag_h, "Unq", allocList);
    876 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
    877 									 * desc */
    878 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    879 				    0, lu_flag, which_ru);
    880 			}
    881 			pda = pda->next;
    882 		}
    883 	}
    884 	/*
    885          * Step 4. connect the nodes.
    886          */
    887 
    888 	/* connect header to block node */
    889 	dag_h->succedents[0] = blockNode;
    890 
    891 	/* connect block node to read old data nodes */
    892 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
    893 	for (i = 0; i < numDataNodes; i++) {
    894 		blockNode->succedents[i] = &readDataNodes[i];
    895 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
    896 		readDataNodes[i].antecedents[0] = blockNode;
    897 		readDataNodes[i].antType[0] = rf_control;
    898 	}
    899 
    900 	/* connect block node to read old parity nodes */
    901 	for (i = 0; i < numParityNodes; i++) {
    902 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
    903 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
    904 		readParityNodes[i].antecedents[0] = blockNode;
    905 		readParityNodes[i].antType[0] = rf_control;
    906 	}
    907 
    908 	/* connect block node to read old Q nodes */
    909 	if (nfaults == 2) {
    910 		for (i = 0; i < numParityNodes; i++) {
    911 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
    912 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
    913 			readQNodes[i].antecedents[0] = blockNode;
    914 			readQNodes[i].antType[0] = rf_control;
    915 		}
    916 	}
    917 	/* connect read old data nodes to xor nodes */
    918 	for (i = 0; i < numDataNodes; i++) {
    919 		RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes));
    920 		for (j = 0; j < numParityNodes; j++) {
    921 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
    922 			readDataNodes[i].succedents[j] = &xorNodes[j];
    923 			xorNodes[j].antecedents[i] = &readDataNodes[i];
    924 			xorNodes[j].antType[i] = rf_trueData;
    925 		}
    926 	}
    927 
    928 	/* connect read old data nodes to q nodes */
    929 	if (nfaults == 2) {
    930 		for (i = 0; i < numDataNodes; i++) {
    931 			for (j = 0; j < numParityNodes; j++) {
    932 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
    933 				readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j];
    934 				qNodes[j].antecedents[i] = &readDataNodes[i];
    935 				qNodes[j].antType[i] = rf_trueData;
    936 			}
    937 		}
    938 	}
    939 	/* connect read old parity nodes to xor nodes */
    940 	for (i = 0; i < numParityNodes; i++) {
    941 		RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    942 		for (j = 0; j < numParityNodes; j++) {
    943 			readParityNodes[i].succedents[j] = &xorNodes[j];
    944 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    945 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
    946 		}
    947 	}
    948 
    949 	/* connect read old q nodes to q nodes */
    950 	if (nfaults == 2) {
    951 		for (i = 0; i < numParityNodes; i++) {
    952 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    953 			for (j = 0; j < numParityNodes; j++) {
    954 				readQNodes[i].succedents[j] = &qNodes[j];
    955 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
    956 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
    957 			}
    958 		}
    959 	}
    960 	/* connect xor nodes to commit node */
    961 	RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
    962 	for (i = 0; i < numParityNodes; i++) {
    963 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
    964 		xorNodes[i].succedents[0] = commitNode;
    965 		commitNode->antecedents[i] = &xorNodes[i];
    966 		commitNode->antType[i] = rf_control;
    967 	}
    968 
    969 	/* connect q nodes to commit node */
    970 	if (nfaults == 2) {
    971 		for (i = 0; i < numParityNodes; i++) {
    972 			RF_ASSERT(qNodes[i].numSuccedents == 1);
    973 			qNodes[i].succedents[0] = commitNode;
    974 			commitNode->antecedents[i + numParityNodes] = &qNodes[i];
    975 			commitNode->antType[i + numParityNodes] = rf_control;
    976 		}
    977 	}
    978 	/* connect commit node to write nodes */
    979 	RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
    980 	for (i = 0; i < numDataNodes; i++) {
    981 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
    982 		commitNode->succedents[i] = &writeDataNodes[i];
    983 		writeDataNodes[i].antecedents[0] = commitNode;
    984 		writeDataNodes[i].antType[0] = rf_trueData;
    985 	}
    986 	for (i = 0; i < numParityNodes; i++) {
    987 		RF_ASSERT(writeParityNodes[i].numAntecedents == 1);
    988 		commitNode->succedents[i + numDataNodes] = &writeParityNodes[i];
    989 		writeParityNodes[i].antecedents[0] = commitNode;
    990 		writeParityNodes[i].antType[0] = rf_trueData;
    991 	}
    992 	if (nfaults == 2) {
    993 		for (i = 0; i < numParityNodes; i++) {
    994 			RF_ASSERT(writeQNodes[i].numAntecedents == 1);
    995 			commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i];
    996 			writeQNodes[i].antecedents[0] = commitNode;
    997 			writeQNodes[i].antType[0] = rf_trueData;
    998 		}
    999 	}
   1000 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1001 	RF_ASSERT(termNode->numSuccedents == 0);
   1002 	for (i = 0; i < numDataNodes; i++) {
   1003 		if (lu_flag) {
   1004 			/* connect write new data nodes to unlock nodes */
   1005 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1006 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
   1007 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
   1008 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
   1009 			unlockDataNodes[i].antType[0] = rf_control;
   1010 
   1011 			/* connect unlock nodes to term node */
   1012 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
   1013 			unlockDataNodes[i].succedents[0] = termNode;
   1014 			termNode->antecedents[i] = &unlockDataNodes[i];
   1015 			termNode->antType[i] = rf_control;
   1016 		} else {
   1017 			/* connect write new data nodes to term node */
   1018 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1019 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1020 			writeDataNodes[i].succedents[0] = termNode;
   1021 			termNode->antecedents[i] = &writeDataNodes[i];
   1022 			termNode->antType[i] = rf_control;
   1023 		}
   1024 	}
   1025 
   1026 	for (i = 0; i < numParityNodes; i++) {
   1027 		if (lu_flag) {
   1028 			/* connect write new parity nodes to unlock nodes */
   1029 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1030 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1031 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1032 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1033 			unlockParityNodes[i].antType[0] = rf_control;
   1034 
   1035 			/* connect unlock nodes to term node */
   1036 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1037 			unlockParityNodes[i].succedents[0] = termNode;
   1038 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1039 			termNode->antType[numDataNodes + i] = rf_control;
   1040 		} else {
   1041 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1042 			writeParityNodes[i].succedents[0] = termNode;
   1043 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1044 			termNode->antType[numDataNodes + i] = rf_control;
   1045 		}
   1046 	}
   1047 
   1048 	if (nfaults == 2) {
   1049 		for (i = 0; i < numParityNodes; i++) {
   1050 			if (lu_flag) {
   1051 				/* connect write new Q nodes to unlock nodes */
   1052 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1053 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1054 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1055 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1056 				unlockQNodes[i].antType[0] = rf_control;
   1057 
   1058 				/* connect unlock nodes to unblock node */
   1059 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1060 				unlockQNodes[i].succedents[0] = termNode;
   1061 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1062 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1063 			} else {
   1064 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1065 				writeQNodes[i].succedents[0] = termNode;
   1066 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1067 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1068 			}
   1069 		}
   1070 	}
   1071 }
   1072 
   1073 
   1074 /******************************************************************************
   1075  * create a write graph (fault-free or degraded) for RAID level 1
   1076  *
   1077  * Hdr -> Commit -> Wpd -> Nil -> Trm
   1078  *               -> Wsd ->
   1079  *
   1080  * The "Wpd" node writes data to the primary copy in the mirror pair
   1081  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1082  *
   1083  * Parameters:  raidPtr   - description of the physical array
   1084  *              asmap     - logical & physical addresses for this access
   1085  *              bp        - buffer ptr (holds write data)
   1086  *              flags     - general flags (e.g. disk locking)
   1087  *              allocList - list of memory allocated in DAG creation
   1088  *****************************************************************************/
   1089 
   1090 void
   1091 rf_CreateRaidOneWriteDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1092 			 RF_DagHeader_t *dag_h, void *bp,
   1093 			 RF_RaidAccessFlags_t flags,
   1094 			 RF_AllocListElem_t *allocList)
   1095 {
   1096 	RF_DagNode_t *unblockNode, *termNode, *commitNode;
   1097 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   1098 	int     nWndNodes, nWmirNodes, i;
   1099 	RF_ReconUnitNum_t which_ru;
   1100 	RF_PhysDiskAddr_t *pda, *pdaP;
   1101 	RF_StripeNum_t parityStripeID;
   1102 
   1103 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   1104 	    asmap->raidAddress, &which_ru);
   1105 	if (rf_dagDebug) {
   1106 		printf("[Creating RAID level 1 write DAG]\n");
   1107 	}
   1108 	dag_h->creator = "RaidOneWriteDAG";
   1109 
   1110 	/* 2 implies access not SU aligned */
   1111 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
   1112 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   1113 
   1114 	/* alloc the Wnd nodes and the Wmir node */
   1115 	if (asmap->numDataFailed == 1)
   1116 		nWndNodes--;
   1117 	if (asmap->numParityFailed == 1)
   1118 		nWmirNodes--;
   1119 
   1120 	/* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
   1121 	 * + terminator) */
   1122 	RF_MallocAndAdd(nodes,
   1123 			(nWndNodes + nWmirNodes + 3) * sizeof(RF_DagNode_t),
   1124 			(RF_DagNode_t *), allocList);
   1125 	i = 0;
   1126 	wndNode = &nodes[i];
   1127 	i += nWndNodes;
   1128 	wmirNode = &nodes[i];
   1129 	i += nWmirNodes;
   1130 	commitNode = &nodes[i];
   1131 	i += 1;
   1132 	unblockNode = &nodes[i];
   1133 	i += 1;
   1134 	termNode = &nodes[i];
   1135 	i += 1;
   1136 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   1137 
   1138 	/* this dag can commit immediately */
   1139 	dag_h->numCommitNodes = 1;
   1140 	dag_h->numCommits = 0;
   1141 	dag_h->numSuccedents = 1;
   1142 
   1143 	/* initialize the commit, unblock, and term nodes */
   1144 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
   1145 		    rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes),
   1146 		    0, 0, 0, dag_h, "Cmt", allocList);
   1147 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
   1148 		    rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes),
   1149 		    0, 0, dag_h, "Nil", allocList);
   1150 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
   1151 		    rf_TerminateUndoFunc, NULL, 0, 1, 0, 0,
   1152 		    dag_h, "Trm", allocList);
   1153 
   1154 	/* initialize the wnd nodes */
   1155 	if (nWndNodes > 0) {
   1156 		pda = asmap->physInfo;
   1157 		for (i = 0; i < nWndNodes; i++) {
   1158 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE,
   1159 				    rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1160 				    rf_GenericWakeupFunc, 1, 1, 4, 0,
   1161 				    dag_h, "Wpd", allocList);
   1162 			RF_ASSERT(pda != NULL);
   1163 			wndNode[i].params[0].p = pda;
   1164 			wndNode[i].params[1].p = pda->bufPtr;
   1165 			wndNode[i].params[2].v = parityStripeID;
   1166 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1167 			pda = pda->next;
   1168 		}
   1169 		RF_ASSERT(pda == NULL);
   1170 	}
   1171 	/* initialize the mirror nodes */
   1172 	if (nWmirNodes > 0) {
   1173 		pda = asmap->physInfo;
   1174 		pdaP = asmap->parityInfo;
   1175 		for (i = 0; i < nWmirNodes; i++) {
   1176 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE,
   1177 				    rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1178 				    rf_GenericWakeupFunc, 1, 1, 4, 0,
   1179 				    dag_h, "Wsd", allocList);
   1180 			RF_ASSERT(pda != NULL);
   1181 			wmirNode[i].params[0].p = pdaP;
   1182 			wmirNode[i].params[1].p = pda->bufPtr;
   1183 			wmirNode[i].params[2].v = parityStripeID;
   1184 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1185 			pda = pda->next;
   1186 			pdaP = pdaP->next;
   1187 		}
   1188 		RF_ASSERT(pda == NULL);
   1189 		RF_ASSERT(pdaP == NULL);
   1190 	}
   1191 	/* link the header node to the commit node */
   1192 	RF_ASSERT(dag_h->numSuccedents == 1);
   1193 	RF_ASSERT(commitNode->numAntecedents == 0);
   1194 	dag_h->succedents[0] = commitNode;
   1195 
   1196 	/* link the commit node to the write nodes */
   1197 	RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
   1198 	for (i = 0; i < nWndNodes; i++) {
   1199 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   1200 		commitNode->succedents[i] = &wndNode[i];
   1201 		wndNode[i].antecedents[0] = commitNode;
   1202 		wndNode[i].antType[0] = rf_control;
   1203 	}
   1204 	for (i = 0; i < nWmirNodes; i++) {
   1205 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   1206 		commitNode->succedents[i + nWndNodes] = &wmirNode[i];
   1207 		wmirNode[i].antecedents[0] = commitNode;
   1208 		wmirNode[i].antType[0] = rf_control;
   1209 	}
   1210 
   1211 	/* link the write nodes to the unblock node */
   1212 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   1213 	for (i = 0; i < nWndNodes; i++) {
   1214 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   1215 		wndNode[i].succedents[0] = unblockNode;
   1216 		unblockNode->antecedents[i] = &wndNode[i];
   1217 		unblockNode->antType[i] = rf_control;
   1218 	}
   1219 	for (i = 0; i < nWmirNodes; i++) {
   1220 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   1221 		wmirNode[i].succedents[0] = unblockNode;
   1222 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   1223 		unblockNode->antType[i + nWndNodes] = rf_control;
   1224 	}
   1225 
   1226 	/* link the unblock node to the term node */
   1227 	RF_ASSERT(unblockNode->numSuccedents == 1);
   1228 	RF_ASSERT(termNode->numAntecedents == 1);
   1229 	RF_ASSERT(termNode->numSuccedents == 0);
   1230 	unblockNode->succedents[0] = termNode;
   1231 	termNode->antecedents[0] = unblockNode;
   1232 	termNode->antType[0] = rf_control;
   1233 }
   1234