Home | History | Annotate | Line # | Download | only in raidframe
rf_dagffwr.c revision 1.5
      1 /*	$NetBSD: rf_dagffwr.c,v 1.5 2000/01/07 03:40:58 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagff.c
     31  *
     32  * code for creating fault-free DAGs
     33  *
     34  */
     35 
     36 #include "rf_types.h"
     37 #include "rf_raid.h"
     38 #include "rf_dag.h"
     39 #include "rf_dagutils.h"
     40 #include "rf_dagfuncs.h"
     41 #include "rf_debugMem.h"
     42 #include "rf_dagffrd.h"
     43 #include "rf_memchunk.h"
     44 #include "rf_general.h"
     45 #include "rf_dagffwr.h"
     46 
     47 /******************************************************************************
     48  *
     49  * General comments on DAG creation:
     50  *
     51  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     52  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     53  * is reached, the execution engine will halt forward execution and work
     54  * backward through the graph, executing the undo functions.  Assuming that
     55  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     56  * does not make changes to permanent state, the graph will fail atomically.
     57  * If an error occurs after the Cmt node executes, the engine will roll-forward
     58  * through the graph, blindly executing nodes until it reaches the end.
     59  * If a graph reaches the end, it is assumed to have completed successfully.
     60  *
     61  * A graph has only 1 Cmt node.
     62  *
     63  */
     64 
     65 
     66 /******************************************************************************
     67  *
     68  * The following wrappers map the standard DAG creation interface to the
     69  * DAG creation routines.  Additionally, these wrappers enable experimentation
     70  * with new DAG structures by providing an extra level of indirection, allowing
     71  * the DAG creation routines to be replaced at this single point.
     72  */
     73 
     74 
     75 void
     76 rf_CreateNonRedundantWriteDAG(
     77     RF_Raid_t * raidPtr,
     78     RF_AccessStripeMap_t * asmap,
     79     RF_DagHeader_t * dag_h,
     80     void *bp,
     81     RF_RaidAccessFlags_t flags,
     82     RF_AllocListElem_t * allocList,
     83     RF_IoType_t type)
     84 {
     85 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     86 	    RF_IO_TYPE_WRITE);
     87 }
     88 
     89 void
     90 rf_CreateRAID0WriteDAG(
     91     RF_Raid_t * raidPtr,
     92     RF_AccessStripeMap_t * asmap,
     93     RF_DagHeader_t * dag_h,
     94     void *bp,
     95     RF_RaidAccessFlags_t flags,
     96     RF_AllocListElem_t * allocList,
     97     RF_IoType_t type)
     98 {
     99 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    100 	    RF_IO_TYPE_WRITE);
    101 }
    102 
    103 void
    104 rf_CreateSmallWriteDAG(
    105     RF_Raid_t * raidPtr,
    106     RF_AccessStripeMap_t * asmap,
    107     RF_DagHeader_t * dag_h,
    108     void *bp,
    109     RF_RaidAccessFlags_t flags,
    110     RF_AllocListElem_t * allocList)
    111 {
    112 	/* "normal" rollaway */
    113 	rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    114 	    &rf_xorFuncs, NULL);
    115 }
    116 
    117 void
    118 rf_CreateLargeWriteDAG(
    119     RF_Raid_t * raidPtr,
    120     RF_AccessStripeMap_t * asmap,
    121     RF_DagHeader_t * dag_h,
    122     void *bp,
    123     RF_RaidAccessFlags_t flags,
    124     RF_AllocListElem_t * allocList)
    125 {
    126 	/* "normal" rollaway */
    127 	rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    128 	    1, rf_RegularXorFunc, RF_TRUE);
    129 }
    130 
    131 
    132 /******************************************************************************
    133  *
    134  * DAG creation code begins here
    135  */
    136 
    137 
    138 /******************************************************************************
    139  *
    140  * creates a DAG to perform a large-write operation:
    141  *
    142  *           / Rod \           / Wnd \
    143  * H -- block- Rod - Xor - Cmt - Wnd --- T
    144  *           \ Rod /          \  Wnp /
    145  *                             \[Wnq]/
    146  *
    147  * The XOR node also does the Q calculation in the P+Q architecture.
    148  * All nodes are before the commit node (Cmt) are assumed to be atomic and
    149  * undoable - or - they make no changes to permanent state.
    150  *
    151  * Rod = read old data
    152  * Cmt = commit node
    153  * Wnp = write new parity
    154  * Wnd = write new data
    155  * Wnq = write new "q"
    156  * [] denotes optional segments in the graph
    157  *
    158  * Parameters:  raidPtr   - description of the physical array
    159  *              asmap     - logical & physical addresses for this access
    160  *              bp        - buffer ptr (holds write data)
    161  *              flags     - general flags (e.g. disk locking)
    162  *              allocList - list of memory allocated in DAG creation
    163  *              nfaults   - number of faults array can tolerate
    164  *                          (equal to # redundancy units in stripe)
    165  *              redfuncs  - list of redundancy generating functions
    166  *
    167  *****************************************************************************/
    168 
    169 void
    170 rf_CommonCreateLargeWriteDAG(
    171     RF_Raid_t * raidPtr,
    172     RF_AccessStripeMap_t * asmap,
    173     RF_DagHeader_t * dag_h,
    174     void *bp,
    175     RF_RaidAccessFlags_t flags,
    176     RF_AllocListElem_t * allocList,
    177     int nfaults,
    178     int (*redFunc) (RF_DagNode_t *),
    179     int allowBufferRecycle)
    180 {
    181 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
    182 	RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
    183 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
    184 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    185 	RF_StripeNum_t parityStripeID;
    186 	char   *sosBuffer, *eosBuffer;
    187 	RF_ReconUnitNum_t which_ru;
    188 	RF_RaidLayout_t *layoutPtr;
    189 	RF_PhysDiskAddr_t *pda;
    190 
    191 	layoutPtr = &(raidPtr->Layout);
    192 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    193 	    &which_ru);
    194 
    195 	if (rf_dagDebug) {
    196 		printf("[Creating large-write DAG]\n");
    197 	}
    198 	dag_h->creator = "LargeWriteDAG";
    199 
    200 	dag_h->numCommitNodes = 1;
    201 	dag_h->numCommits = 0;
    202 	dag_h->numSuccedents = 1;
    203 
    204 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
    205 	nWndNodes = asmap->numStripeUnitsAccessed;
    206 	RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t),
    207 	    (RF_DagNode_t *), allocList);
    208 	i = 0;
    209 	wndNodes = &nodes[i];
    210 	i += nWndNodes;
    211 	xorNode = &nodes[i];
    212 	i += 1;
    213 	wnpNode = &nodes[i];
    214 	i += 1;
    215 	blockNode = &nodes[i];
    216 	i += 1;
    217 	commitNode = &nodes[i];
    218 	i += 1;
    219 	termNode = &nodes[i];
    220 	i += 1;
    221 	if (nfaults == 2) {
    222 		wnqNode = &nodes[i];
    223 		i += 1;
    224 	} else {
    225 		wnqNode = NULL;
    226 	}
    227 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h,
    228 	    &nRodNodes, &sosBuffer, &eosBuffer, allocList);
    229 	if (nRodNodes > 0) {
    230 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t),
    231 		    (RF_DagNode_t *), allocList);
    232 	} else {
    233 		rodNodes = NULL;
    234 	}
    235 
    236 	/* begin node initialization */
    237 	if (nRodNodes > 0) {
    238 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    239 		    NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
    240 	} else {
    241 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    242 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    243 	}
    244 
    245 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL,
    246 	    nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    247 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL,
    248 	    0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
    249 
    250 	/* initialize the Rod nodes */
    251 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
    252 		if (new_asm_h[asmNum]) {
    253 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
    254 			while (pda) {
    255 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc,
    256 				    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    257 				    "Rod", allocList);
    258 				rodNodes[nodeNum].params[0].p = pda;
    259 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
    260 				rodNodes[nodeNum].params[2].v = parityStripeID;
    261 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    262 				    0, 0, which_ru);
    263 				nodeNum++;
    264 				pda = pda->next;
    265 			}
    266 		}
    267 	}
    268 	RF_ASSERT(nodeNum == nRodNodes);
    269 
    270 	/* initialize the wnd nodes */
    271 	pda = asmap->physInfo;
    272 	for (i = 0; i < nWndNodes; i++) {
    273 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    274 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    275 		RF_ASSERT(pda != NULL);
    276 		wndNodes[i].params[0].p = pda;
    277 		wndNodes[i].params[1].p = pda->bufPtr;
    278 		wndNodes[i].params[2].v = parityStripeID;
    279 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    280 		pda = pda->next;
    281 	}
    282 
    283 	/* initialize the redundancy node */
    284 	if (nRodNodes > 0) {
    285 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    286 		    nRodNodes, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h,
    287 		    "Xr ", allocList);
    288 	} else {
    289 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    290 		    1, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
    291 	}
    292 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
    293 	for (i = 0; i < nWndNodes; i++) {
    294 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
    295 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
    296 	}
    297 	for (i = 0; i < nRodNodes; i++) {
    298 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
    299 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
    300 	}
    301 	/* xor node needs to get at RAID information */
    302 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
    303 
    304 	/*
    305          * Look for an Rod node that reads a complete SU. If none, alloc a buffer
    306          * to receive the parity info. Note that we can't use a new data buffer
    307          * because it will not have gotten written when the xor occurs.
    308          */
    309 	if (allowBufferRecycle) {
    310 		for (i = 0; i < nRodNodes; i++) {
    311 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
    312 				break;
    313 		}
    314 	}
    315 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
    316 		RF_CallocAndAdd(xorNode->results[0], 1,
    317 		    rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    318 		    (void *), allocList);
    319 	} else {
    320 		xorNode->results[0] = rodNodes[i].params[1].p;
    321 	}
    322 
    323 	/* initialize the Wnp node */
    324 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    325 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    326 	wnpNode->params[0].p = asmap->parityInfo;
    327 	wnpNode->params[1].p = xorNode->results[0];
    328 	wnpNode->params[2].v = parityStripeID;
    329 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    330 	/* parityInfo must describe entire parity unit */
    331 	RF_ASSERT(asmap->parityInfo->next == NULL);
    332 
    333 	if (nfaults == 2) {
    334 		/*
    335 	         * We never try to recycle a buffer for the Q calcuation
    336 	         * in addition to the parity. This would cause two buffers
    337 	         * to get smashed during the P and Q calculation, guaranteeing
    338 	         * one would be wrong.
    339 	         */
    340 		RF_CallocAndAdd(xorNode->results[1], 1,
    341 		    rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    342 		    (void *), allocList);
    343 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    344 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    345 		wnqNode->params[0].p = asmap->qInfo;
    346 		wnqNode->params[1].p = xorNode->results[1];
    347 		wnqNode->params[2].v = parityStripeID;
    348 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    349 		/* parityInfo must describe entire parity unit */
    350 		RF_ASSERT(asmap->parityInfo->next == NULL);
    351 	}
    352 	/*
    353          * Connect nodes to form graph.
    354          */
    355 
    356 	/* connect dag header to block node */
    357 	RF_ASSERT(blockNode->numAntecedents == 0);
    358 	dag_h->succedents[0] = blockNode;
    359 
    360 	if (nRodNodes > 0) {
    361 		/* connect the block node to the Rod nodes */
    362 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
    363 		RF_ASSERT(xorNode->numAntecedents == nRodNodes);
    364 		for (i = 0; i < nRodNodes; i++) {
    365 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
    366 			blockNode->succedents[i] = &rodNodes[i];
    367 			rodNodes[i].antecedents[0] = blockNode;
    368 			rodNodes[i].antType[0] = rf_control;
    369 
    370 			/* connect the Rod nodes to the Xor node */
    371 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
    372 			rodNodes[i].succedents[0] = xorNode;
    373 			xorNode->antecedents[i] = &rodNodes[i];
    374 			xorNode->antType[i] = rf_trueData;
    375 		}
    376 	} else {
    377 		/* connect the block node to the Xor node */
    378 		RF_ASSERT(blockNode->numSuccedents == 1);
    379 		RF_ASSERT(xorNode->numAntecedents == 1);
    380 		blockNode->succedents[0] = xorNode;
    381 		xorNode->antecedents[0] = blockNode;
    382 		xorNode->antType[0] = rf_control;
    383 	}
    384 
    385 	/* connect the xor node to the commit node */
    386 	RF_ASSERT(xorNode->numSuccedents == 1);
    387 	RF_ASSERT(commitNode->numAntecedents == 1);
    388 	xorNode->succedents[0] = commitNode;
    389 	commitNode->antecedents[0] = xorNode;
    390 	commitNode->antType[0] = rf_control;
    391 
    392 	/* connect the commit node to the write nodes */
    393 	RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
    394 	for (i = 0; i < nWndNodes; i++) {
    395 		RF_ASSERT(wndNodes->numAntecedents == 1);
    396 		commitNode->succedents[i] = &wndNodes[i];
    397 		wndNodes[i].antecedents[0] = commitNode;
    398 		wndNodes[i].antType[0] = rf_control;
    399 	}
    400 	RF_ASSERT(wnpNode->numAntecedents == 1);
    401 	commitNode->succedents[nWndNodes] = wnpNode;
    402 	wnpNode->antecedents[0] = commitNode;
    403 	wnpNode->antType[0] = rf_trueData;
    404 	if (nfaults == 2) {
    405 		RF_ASSERT(wnqNode->numAntecedents == 1);
    406 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    407 		wnqNode->antecedents[0] = commitNode;
    408 		wnqNode->antType[0] = rf_trueData;
    409 	}
    410 	/* connect the write nodes to the term node */
    411 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
    412 	RF_ASSERT(termNode->numSuccedents == 0);
    413 	for (i = 0; i < nWndNodes; i++) {
    414 		RF_ASSERT(wndNodes->numSuccedents == 1);
    415 		wndNodes[i].succedents[0] = termNode;
    416 		termNode->antecedents[i] = &wndNodes[i];
    417 		termNode->antType[i] = rf_control;
    418 	}
    419 	RF_ASSERT(wnpNode->numSuccedents == 1);
    420 	wnpNode->succedents[0] = termNode;
    421 	termNode->antecedents[nWndNodes] = wnpNode;
    422 	termNode->antType[nWndNodes] = rf_control;
    423 	if (nfaults == 2) {
    424 		RF_ASSERT(wnqNode->numSuccedents == 1);
    425 		wnqNode->succedents[0] = termNode;
    426 		termNode->antecedents[nWndNodes + 1] = wnqNode;
    427 		termNode->antType[nWndNodes + 1] = rf_control;
    428 	}
    429 }
    430 /******************************************************************************
    431  *
    432  * creates a DAG to perform a small-write operation (either raid 5 or pq),
    433  * which is as follows:
    434  *
    435  * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
    436  *            \- Rod X      /     \----> Wnd [Und]-/
    437  *           [\- Rod X     /       \---> Wnd [Und]-/]
    438  *           [\- Roq -> Q /         \--> Wnq [Unq]-/]
    439  *
    440  * Rop = read old parity
    441  * Rod = read old data
    442  * Roq = read old "q"
    443  * Cmt = commit node
    444  * Und = unlock data disk
    445  * Unp = unlock parity disk
    446  * Unq = unlock q disk
    447  * Wnp = write new parity
    448  * Wnd = write new data
    449  * Wnq = write new "q"
    450  * [ ] denotes optional segments in the graph
    451  *
    452  * Parameters:  raidPtr   - description of the physical array
    453  *              asmap     - logical & physical addresses for this access
    454  *              bp        - buffer ptr (holds write data)
    455  *              flags     - general flags (e.g. disk locking)
    456  *              allocList - list of memory allocated in DAG creation
    457  *              pfuncs    - list of parity generating functions
    458  *              qfuncs    - list of q generating functions
    459  *
    460  * A null qfuncs indicates single fault tolerant
    461  *****************************************************************************/
    462 
    463 void
    464 rf_CommonCreateSmallWriteDAG(
    465     RF_Raid_t * raidPtr,
    466     RF_AccessStripeMap_t * asmap,
    467     RF_DagHeader_t * dag_h,
    468     void *bp,
    469     RF_RaidAccessFlags_t flags,
    470     RF_AllocListElem_t * allocList,
    471     RF_RedFuncs_t * pfuncs,
    472     RF_RedFuncs_t * qfuncs)
    473 {
    474 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
    475 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
    476 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes;
    477 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
    478 	int     i, j, nNodes, totalNumNodes, lu_flag;
    479 	RF_ReconUnitNum_t which_ru;
    480 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    481 	int     (*qfunc) (RF_DagNode_t *);
    482 	int     numDataNodes, numParityNodes;
    483 	RF_StripeNum_t parityStripeID;
    484 	RF_PhysDiskAddr_t *pda;
    485 	char   *name, *qname;
    486 	long    nfaults;
    487 
    488 	nfaults = qfuncs ? 2 : 1;
    489 	lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
    490 
    491 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    492 	    asmap->raidAddress, &which_ru);
    493 	pda = asmap->physInfo;
    494 	numDataNodes = asmap->numStripeUnitsAccessed;
    495 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
    496 
    497 	if (rf_dagDebug) {
    498 		printf("[Creating small-write DAG]\n");
    499 	}
    500 	RF_ASSERT(numDataNodes > 0);
    501 	dag_h->creator = "SmallWriteDAG";
    502 
    503 	dag_h->numCommitNodes = 1;
    504 	dag_h->numCommits = 0;
    505 	dag_h->numSuccedents = 1;
    506 
    507 	/*
    508          * DAG creation occurs in four steps:
    509          * 1. count the number of nodes in the DAG
    510          * 2. create the nodes
    511          * 3. initialize the nodes
    512          * 4. connect the nodes
    513          */
    514 
    515 	/*
    516          * Step 1. compute number of nodes in the graph
    517          */
    518 
    519 	/* number of nodes: a read and write for each data unit a redundancy
    520 	 * computation node for each parity node (nfaults * nparity) a read
    521 	 * and write for each parity unit a block and commit node (2) a
    522 	 * terminate node if atomic RMW an unlock node for each data unit,
    523 	 * redundancy unit */
    524 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
    525 	    + (nfaults * 2 * numParityNodes) + 3;
    526 	if (lu_flag) {
    527 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
    528 	}
    529 	/*
    530          * Step 2. create the nodes
    531          */
    532 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
    533 	    (RF_DagNode_t *), allocList);
    534 	i = 0;
    535 	blockNode = &nodes[i];
    536 	i += 1;
    537 	commitNode = &nodes[i];
    538 	i += 1;
    539 	readDataNodes = &nodes[i];
    540 	i += numDataNodes;
    541 	readParityNodes = &nodes[i];
    542 	i += numParityNodes;
    543 	writeDataNodes = &nodes[i];
    544 	i += numDataNodes;
    545 	writeParityNodes = &nodes[i];
    546 	i += numParityNodes;
    547 	xorNodes = &nodes[i];
    548 	i += numParityNodes;
    549 	termNode = &nodes[i];
    550 	i += 1;
    551 	if (lu_flag) {
    552 		unlockDataNodes = &nodes[i];
    553 		i += numDataNodes;
    554 		unlockParityNodes = &nodes[i];
    555 		i += numParityNodes;
    556 	} else {
    557 		unlockDataNodes = unlockParityNodes = NULL;
    558 	}
    559 	if (nfaults == 2) {
    560 		readQNodes = &nodes[i];
    561 		i += numParityNodes;
    562 		writeQNodes = &nodes[i];
    563 		i += numParityNodes;
    564 		qNodes = &nodes[i];
    565 		i += numParityNodes;
    566 		if (lu_flag) {
    567 			unlockQNodes = &nodes[i];
    568 			i += numParityNodes;
    569 		} else {
    570 			unlockQNodes = NULL;
    571 		}
    572 	} else {
    573 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
    574 	}
    575 	RF_ASSERT(i == totalNumNodes);
    576 
    577 	/*
    578          * Step 3. initialize the nodes
    579          */
    580 	/* initialize block node (Nil) */
    581 	nNodes = numDataNodes + (nfaults * numParityNodes);
    582 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    583 	    NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
    584 
    585 	/* initialize commit node (Cmt) */
    586 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    587 	    NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
    588 
    589 	/* initialize terminate node (Trm) */
    590 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    591 	    NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
    592 
    593 	/* initialize nodes which read old data (Rod) */
    594 	for (i = 0; i < numDataNodes; i++) {
    595 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    596 		    rf_GenericWakeupFunc, (nfaults * numParityNodes), 1, 4, 0, dag_h,
    597 		    "Rod", allocList);
    598 		RF_ASSERT(pda != NULL);
    599 		/* physical disk addr desc */
    600 		readDataNodes[i].params[0].p = pda;
    601 		/* buffer to hold old data */
    602 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    603 		    dag_h, pda, allocList);
    604 		readDataNodes[i].params[2].v = parityStripeID;
    605 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    606 		    lu_flag, 0, which_ru);
    607 		pda = pda->next;
    608 		for (j = 0; j < readDataNodes[i].numSuccedents; j++) {
    609 			readDataNodes[i].propList[j] = NULL;
    610 		}
    611 	}
    612 
    613 	/* initialize nodes which read old parity (Rop) */
    614 	pda = asmap->parityInfo;
    615 	i = 0;
    616 	for (i = 0; i < numParityNodes; i++) {
    617 		RF_ASSERT(pda != NULL);
    618 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
    619 		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4,
    620 		    0, dag_h, "Rop", allocList);
    621 		readParityNodes[i].params[0].p = pda;
    622 		/* buffer to hold old parity */
    623 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    624 		    dag_h, pda, allocList);
    625 		readParityNodes[i].params[2].v = parityStripeID;
    626 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    627 		    lu_flag, 0, which_ru);
    628 		pda = pda->next;
    629 		for (j = 0; j < readParityNodes[i].numSuccedents; j++) {
    630 			readParityNodes[i].propList[0] = NULL;
    631 		}
    632 	}
    633 
    634 	/* initialize nodes which read old Q (Roq) */
    635 	if (nfaults == 2) {
    636 		pda = asmap->qInfo;
    637 		for (i = 0; i < numParityNodes; i++) {
    638 			RF_ASSERT(pda != NULL);
    639 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    640 			    rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
    641 			readQNodes[i].params[0].p = pda;
    642 			/* buffer to hold old Q */
    643 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda,
    644 			    allocList);
    645 			readQNodes[i].params[2].v = parityStripeID;
    646 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    647 			    lu_flag, 0, which_ru);
    648 			pda = pda->next;
    649 			for (j = 0; j < readQNodes[i].numSuccedents; j++) {
    650 				readQNodes[i].propList[0] = NULL;
    651 			}
    652 		}
    653 	}
    654 	/* initialize nodes which write new data (Wnd) */
    655 	pda = asmap->physInfo;
    656 	for (i = 0; i < numDataNodes; i++) {
    657 		RF_ASSERT(pda != NULL);
    658 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    659 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    660 		    "Wnd", allocList);
    661 		/* physical disk addr desc */
    662 		writeDataNodes[i].params[0].p = pda;
    663 		/* buffer holding new data to be written */
    664 		writeDataNodes[i].params[1].p = pda->bufPtr;
    665 		writeDataNodes[i].params[2].v = parityStripeID;
    666 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    667 		    0, 0, which_ru);
    668 		if (lu_flag) {
    669 			/* initialize node to unlock the disk queue */
    670 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    671 			    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    672 			    "Und", allocList);
    673 			/* physical disk addr desc */
    674 			unlockDataNodes[i].params[0].p = pda;
    675 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    676 			    0, lu_flag, which_ru);
    677 		}
    678 		pda = pda->next;
    679 	}
    680 
    681 	/*
    682          * Initialize nodes which compute new parity and Q.
    683          */
    684 	/*
    685          * We use the simple XOR func in the double-XOR case, and when
    686          * we're accessing only a portion of one stripe unit. The distinction
    687          * between the two is that the regular XOR func assumes that the targbuf
    688          * is a full SU in size, and examines the pda associated with the buffer
    689          * to decide where within the buffer to XOR the data, whereas
    690          * the simple XOR func just XORs the data into the start of the buffer.
    691          */
    692 	if ((numParityNodes == 2) || ((numDataNodes == 1)
    693 		&& (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
    694 		func = pfuncs->simple;
    695 		undoFunc = rf_NullNodeUndoFunc;
    696 		name = pfuncs->SimpleName;
    697 		if (qfuncs) {
    698 			qfunc = qfuncs->simple;
    699 			qname = qfuncs->SimpleName;
    700 		} else {
    701 			qfunc = NULL;
    702 			qname = NULL;
    703 		}
    704 	} else {
    705 		func = pfuncs->regular;
    706 		undoFunc = rf_NullNodeUndoFunc;
    707 		name = pfuncs->RegularName;
    708 		if (qfuncs) {
    709 			qfunc = qfuncs->regular;
    710 			qname = qfuncs->RegularName;
    711 		} else {
    712 			qfunc = NULL;
    713 			qname = NULL;
    714 		}
    715 	}
    716 	/*
    717          * Initialize the xor nodes: params are {pda,buf}
    718          * from {Rod,Wnd,Rop} nodes, and raidPtr
    719          */
    720 	if (numParityNodes == 2) {
    721 		/* double-xor case */
    722 		for (i = 0; i < numParityNodes; i++) {
    723 			/* note: no wakeup func for xor */
    724 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL,
    725 			    1, (numDataNodes + numParityNodes), 7, 1, dag_h, name, allocList);
    726 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
    727 			xorNodes[i].params[0] = readDataNodes[i].params[0];
    728 			xorNodes[i].params[1] = readDataNodes[i].params[1];
    729 			xorNodes[i].params[2] = readParityNodes[i].params[0];
    730 			xorNodes[i].params[3] = readParityNodes[i].params[1];
    731 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
    732 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
    733 			xorNodes[i].params[6].p = raidPtr;
    734 			/* use old parity buf as target buf */
    735 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;
    736 			if (nfaults == 2) {
    737 				/* note: no wakeup func for qor */
    738 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
    739 				    (numDataNodes + numParityNodes), 7, 1, dag_h, qname, allocList);
    740 				qNodes[i].params[0] = readDataNodes[i].params[0];
    741 				qNodes[i].params[1] = readDataNodes[i].params[1];
    742 				qNodes[i].params[2] = readQNodes[i].params[0];
    743 				qNodes[i].params[3] = readQNodes[i].params[1];
    744 				qNodes[i].params[4] = writeDataNodes[i].params[0];
    745 				qNodes[i].params[5] = writeDataNodes[i].params[1];
    746 				qNodes[i].params[6].p = raidPtr;
    747 				/* use old Q buf as target buf */
    748 				qNodes[i].results[0] = readQNodes[i].params[1].p;
    749 			}
    750 		}
    751 	} else {
    752 		/* there is only one xor node in this case */
    753 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, 1,
    754 		    (numDataNodes + numParityNodes),
    755 		    (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
    756 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
    757 		for (i = 0; i < numDataNodes + 1; i++) {
    758 			/* set up params related to Rod and Rop nodes */
    759 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    760 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    761 		}
    762 		for (i = 0; i < numDataNodes; i++) {
    763 			/* set up params related to Wnd and Wnp nodes */
    764 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    765 			    writeDataNodes[i].params[0];
    766 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    767 			    writeDataNodes[i].params[1];
    768 		}
    769 		/* xor node needs to get at RAID information */
    770 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    771 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
    772 		if (nfaults == 2) {
    773 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
    774 			    (numDataNodes + numParityNodes),
    775 			    (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h,
    776 			    qname, allocList);
    777 			for (i = 0; i < numDataNodes; i++) {
    778 				/* set up params related to Rod */
    779 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    780 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    781 			}
    782 			/* and read old q */
    783 			qNodes[0].params[2 * numDataNodes + 0] =	/* pda */
    784 			    readQNodes[0].params[0];
    785 			qNodes[0].params[2 * numDataNodes + 1] =	/* buffer ptr */
    786 			    readQNodes[0].params[1];
    787 			for (i = 0; i < numDataNodes; i++) {
    788 				/* set up params related to Wnd nodes */
    789 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    790 				    writeDataNodes[i].params[0];
    791 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    792 				    writeDataNodes[i].params[1];
    793 			}
    794 			/* xor node needs to get at RAID information */
    795 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    796 			qNodes[0].results[0] = readQNodes[0].params[1].p;
    797 		}
    798 	}
    799 
    800 	/* initialize nodes which write new parity (Wnp) */
    801 	pda = asmap->parityInfo;
    802 	for (i = 0; i < numParityNodes; i++) {
    803 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    804 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    805 		    "Wnp", allocList);
    806 		RF_ASSERT(pda != NULL);
    807 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    808 							 * filled in by xor node */
    809 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
    810 										 * parity write
    811 										 * operation */
    812 		writeParityNodes[i].params[2].v = parityStripeID;
    813 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    814 		    0, 0, which_ru);
    815 		if (lu_flag) {
    816 			/* initialize node to unlock the disk queue */
    817 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    818 			    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    819 			    "Unp", allocList);
    820 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
    821 								 * desc */
    822 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    823 			    0, lu_flag, which_ru);
    824 		}
    825 		pda = pda->next;
    826 	}
    827 
    828 	/* initialize nodes which write new Q (Wnq) */
    829 	if (nfaults == 2) {
    830 		pda = asmap->qInfo;
    831 		for (i = 0; i < numParityNodes; i++) {
    832 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    833 			    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    834 			    "Wnq", allocList);
    835 			RF_ASSERT(pda != NULL);
    836 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    837 								 * filled in by xor node */
    838 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
    839 										 * parity write
    840 										 * operation */
    841 			writeQNodes[i].params[2].v = parityStripeID;
    842 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    843 			    0, 0, which_ru);
    844 			if (lu_flag) {
    845 				/* initialize node to unlock the disk queue */
    846 				rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    847 				    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    848 				    "Unq", allocList);
    849 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
    850 									 * desc */
    851 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    852 				    0, lu_flag, which_ru);
    853 			}
    854 			pda = pda->next;
    855 		}
    856 	}
    857 	/*
    858          * Step 4. connect the nodes.
    859          */
    860 
    861 	/* connect header to block node */
    862 	dag_h->succedents[0] = blockNode;
    863 
    864 	/* connect block node to read old data nodes */
    865 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
    866 	for (i = 0; i < numDataNodes; i++) {
    867 		blockNode->succedents[i] = &readDataNodes[i];
    868 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
    869 		readDataNodes[i].antecedents[0] = blockNode;
    870 		readDataNodes[i].antType[0] = rf_control;
    871 	}
    872 
    873 	/* connect block node to read old parity nodes */
    874 	for (i = 0; i < numParityNodes; i++) {
    875 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
    876 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
    877 		readParityNodes[i].antecedents[0] = blockNode;
    878 		readParityNodes[i].antType[0] = rf_control;
    879 	}
    880 
    881 	/* connect block node to read old Q nodes */
    882 	if (nfaults == 2) {
    883 		for (i = 0; i < numParityNodes; i++) {
    884 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
    885 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
    886 			readQNodes[i].antecedents[0] = blockNode;
    887 			readQNodes[i].antType[0] = rf_control;
    888 		}
    889 	}
    890 	/* connect read old data nodes to xor nodes */
    891 	for (i = 0; i < numDataNodes; i++) {
    892 		RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes));
    893 		for (j = 0; j < numParityNodes; j++) {
    894 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
    895 			readDataNodes[i].succedents[j] = &xorNodes[j];
    896 			xorNodes[j].antecedents[i] = &readDataNodes[i];
    897 			xorNodes[j].antType[i] = rf_trueData;
    898 		}
    899 	}
    900 
    901 	/* connect read old data nodes to q nodes */
    902 	if (nfaults == 2) {
    903 		for (i = 0; i < numDataNodes; i++) {
    904 			for (j = 0; j < numParityNodes; j++) {
    905 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
    906 				readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j];
    907 				qNodes[j].antecedents[i] = &readDataNodes[i];
    908 				qNodes[j].antType[i] = rf_trueData;
    909 			}
    910 		}
    911 	}
    912 	/* connect read old parity nodes to xor nodes */
    913 	for (i = 0; i < numParityNodes; i++) {
    914 		RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    915 		for (j = 0; j < numParityNodes; j++) {
    916 			readParityNodes[i].succedents[j] = &xorNodes[j];
    917 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    918 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
    919 		}
    920 	}
    921 
    922 	/* connect read old q nodes to q nodes */
    923 	if (nfaults == 2) {
    924 		for (i = 0; i < numParityNodes; i++) {
    925 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    926 			for (j = 0; j < numParityNodes; j++) {
    927 				readQNodes[i].succedents[j] = &qNodes[j];
    928 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
    929 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
    930 			}
    931 		}
    932 	}
    933 	/* connect xor nodes to commit node */
    934 	RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
    935 	for (i = 0; i < numParityNodes; i++) {
    936 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
    937 		xorNodes[i].succedents[0] = commitNode;
    938 		commitNode->antecedents[i] = &xorNodes[i];
    939 		commitNode->antType[i] = rf_control;
    940 	}
    941 
    942 	/* connect q nodes to commit node */
    943 	if (nfaults == 2) {
    944 		for (i = 0; i < numParityNodes; i++) {
    945 			RF_ASSERT(qNodes[i].numSuccedents == 1);
    946 			qNodes[i].succedents[0] = commitNode;
    947 			commitNode->antecedents[i + numParityNodes] = &qNodes[i];
    948 			commitNode->antType[i + numParityNodes] = rf_control;
    949 		}
    950 	}
    951 	/* connect commit node to write nodes */
    952 	RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
    953 	for (i = 0; i < numDataNodes; i++) {
    954 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
    955 		commitNode->succedents[i] = &writeDataNodes[i];
    956 		writeDataNodes[i].antecedents[0] = commitNode;
    957 		writeDataNodes[i].antType[0] = rf_trueData;
    958 	}
    959 	for (i = 0; i < numParityNodes; i++) {
    960 		RF_ASSERT(writeParityNodes[i].numAntecedents == 1);
    961 		commitNode->succedents[i + numDataNodes] = &writeParityNodes[i];
    962 		writeParityNodes[i].antecedents[0] = commitNode;
    963 		writeParityNodes[i].antType[0] = rf_trueData;
    964 	}
    965 	if (nfaults == 2) {
    966 		for (i = 0; i < numParityNodes; i++) {
    967 			RF_ASSERT(writeQNodes[i].numAntecedents == 1);
    968 			commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i];
    969 			writeQNodes[i].antecedents[0] = commitNode;
    970 			writeQNodes[i].antType[0] = rf_trueData;
    971 		}
    972 	}
    973 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    974 	RF_ASSERT(termNode->numSuccedents == 0);
    975 	for (i = 0; i < numDataNodes; i++) {
    976 		if (lu_flag) {
    977 			/* connect write new data nodes to unlock nodes */
    978 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    979 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
    980 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
    981 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
    982 			unlockDataNodes[i].antType[0] = rf_control;
    983 
    984 			/* connect unlock nodes to term node */
    985 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
    986 			unlockDataNodes[i].succedents[0] = termNode;
    987 			termNode->antecedents[i] = &unlockDataNodes[i];
    988 			termNode->antType[i] = rf_control;
    989 		} else {
    990 			/* connect write new data nodes to term node */
    991 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    992 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    993 			writeDataNodes[i].succedents[0] = termNode;
    994 			termNode->antecedents[i] = &writeDataNodes[i];
    995 			termNode->antType[i] = rf_control;
    996 		}
    997 	}
    998 
    999 	for (i = 0; i < numParityNodes; i++) {
   1000 		if (lu_flag) {
   1001 			/* connect write new parity nodes to unlock nodes */
   1002 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1003 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1004 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1005 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1006 			unlockParityNodes[i].antType[0] = rf_control;
   1007 
   1008 			/* connect unlock nodes to term node */
   1009 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1010 			unlockParityNodes[i].succedents[0] = termNode;
   1011 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1012 			termNode->antType[numDataNodes + i] = rf_control;
   1013 		} else {
   1014 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1015 			writeParityNodes[i].succedents[0] = termNode;
   1016 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1017 			termNode->antType[numDataNodes + i] = rf_control;
   1018 		}
   1019 	}
   1020 
   1021 	if (nfaults == 2) {
   1022 		for (i = 0; i < numParityNodes; i++) {
   1023 			if (lu_flag) {
   1024 				/* connect write new Q nodes to unlock nodes */
   1025 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1026 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1027 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1028 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1029 				unlockQNodes[i].antType[0] = rf_control;
   1030 
   1031 				/* connect unlock nodes to unblock node */
   1032 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1033 				unlockQNodes[i].succedents[0] = termNode;
   1034 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1035 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1036 			} else {
   1037 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1038 				writeQNodes[i].succedents[0] = termNode;
   1039 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1040 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1041 			}
   1042 		}
   1043 	}
   1044 }
   1045 
   1046 
   1047 /******************************************************************************
   1048  * create a write graph (fault-free or degraded) for RAID level 1
   1049  *
   1050  * Hdr -> Commit -> Wpd -> Nil -> Trm
   1051  *               -> Wsd ->
   1052  *
   1053  * The "Wpd" node writes data to the primary copy in the mirror pair
   1054  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1055  *
   1056  * Parameters:  raidPtr   - description of the physical array
   1057  *              asmap     - logical & physical addresses for this access
   1058  *              bp        - buffer ptr (holds write data)
   1059  *              flags     - general flags (e.g. disk locking)
   1060  *              allocList - list of memory allocated in DAG creation
   1061  *****************************************************************************/
   1062 
   1063 void
   1064 rf_CreateRaidOneWriteDAG(
   1065     RF_Raid_t * raidPtr,
   1066     RF_AccessStripeMap_t * asmap,
   1067     RF_DagHeader_t * dag_h,
   1068     void *bp,
   1069     RF_RaidAccessFlags_t flags,
   1070     RF_AllocListElem_t * allocList)
   1071 {
   1072 	RF_DagNode_t *unblockNode, *termNode, *commitNode;
   1073 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   1074 	int     nWndNodes, nWmirNodes, i;
   1075 	RF_ReconUnitNum_t which_ru;
   1076 	RF_PhysDiskAddr_t *pda, *pdaP;
   1077 	RF_StripeNum_t parityStripeID;
   1078 
   1079 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   1080 	    asmap->raidAddress, &which_ru);
   1081 	if (rf_dagDebug) {
   1082 		printf("[Creating RAID level 1 write DAG]\n");
   1083 	}
   1084 	dag_h->creator = "RaidOneWriteDAG";
   1085 
   1086 	/* 2 implies access not SU aligned */
   1087 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
   1088 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   1089 
   1090 	/* alloc the Wnd nodes and the Wmir node */
   1091 	if (asmap->numDataFailed == 1)
   1092 		nWndNodes--;
   1093 	if (asmap->numParityFailed == 1)
   1094 		nWmirNodes--;
   1095 
   1096 	/* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
   1097 	 * + terminator) */
   1098 	RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t),
   1099 	    (RF_DagNode_t *), allocList);
   1100 	i = 0;
   1101 	wndNode = &nodes[i];
   1102 	i += nWndNodes;
   1103 	wmirNode = &nodes[i];
   1104 	i += nWmirNodes;
   1105 	commitNode = &nodes[i];
   1106 	i += 1;
   1107 	unblockNode = &nodes[i];
   1108 	i += 1;
   1109 	termNode = &nodes[i];
   1110 	i += 1;
   1111 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   1112 
   1113 	/* this dag can commit immediately */
   1114 	dag_h->numCommitNodes = 1;
   1115 	dag_h->numCommits = 0;
   1116 	dag_h->numSuccedents = 1;
   1117 
   1118 	/* initialize the commit, unblock, and term nodes */
   1119 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
   1120 	    NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Cmt", allocList);
   1121 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
   1122 	    NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
   1123 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
   1124 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
   1125 
   1126 	/* initialize the wnd nodes */
   1127 	if (nWndNodes > 0) {
   1128 		pda = asmap->physInfo;
   1129 		for (i = 0; i < nWndNodes; i++) {
   1130 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1131 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
   1132 			RF_ASSERT(pda != NULL);
   1133 			wndNode[i].params[0].p = pda;
   1134 			wndNode[i].params[1].p = pda->bufPtr;
   1135 			wndNode[i].params[2].v = parityStripeID;
   1136 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1137 			pda = pda->next;
   1138 		}
   1139 		RF_ASSERT(pda == NULL);
   1140 	}
   1141 	/* initialize the mirror nodes */
   1142 	if (nWmirNodes > 0) {
   1143 		pda = asmap->physInfo;
   1144 		pdaP = asmap->parityInfo;
   1145 		for (i = 0; i < nWmirNodes; i++) {
   1146 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1147 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
   1148 			RF_ASSERT(pda != NULL);
   1149 			wmirNode[i].params[0].p = pdaP;
   1150 			wmirNode[i].params[1].p = pda->bufPtr;
   1151 			wmirNode[i].params[2].v = parityStripeID;
   1152 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1153 			pda = pda->next;
   1154 			pdaP = pdaP->next;
   1155 		}
   1156 		RF_ASSERT(pda == NULL);
   1157 		RF_ASSERT(pdaP == NULL);
   1158 	}
   1159 	/* link the header node to the commit node */
   1160 	RF_ASSERT(dag_h->numSuccedents == 1);
   1161 	RF_ASSERT(commitNode->numAntecedents == 0);
   1162 	dag_h->succedents[0] = commitNode;
   1163 
   1164 	/* link the commit node to the write nodes */
   1165 	RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
   1166 	for (i = 0; i < nWndNodes; i++) {
   1167 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   1168 		commitNode->succedents[i] = &wndNode[i];
   1169 		wndNode[i].antecedents[0] = commitNode;
   1170 		wndNode[i].antType[0] = rf_control;
   1171 	}
   1172 	for (i = 0; i < nWmirNodes; i++) {
   1173 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   1174 		commitNode->succedents[i + nWndNodes] = &wmirNode[i];
   1175 		wmirNode[i].antecedents[0] = commitNode;
   1176 		wmirNode[i].antType[0] = rf_control;
   1177 	}
   1178 
   1179 	/* link the write nodes to the unblock node */
   1180 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   1181 	for (i = 0; i < nWndNodes; i++) {
   1182 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   1183 		wndNode[i].succedents[0] = unblockNode;
   1184 		unblockNode->antecedents[i] = &wndNode[i];
   1185 		unblockNode->antType[i] = rf_control;
   1186 	}
   1187 	for (i = 0; i < nWmirNodes; i++) {
   1188 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   1189 		wmirNode[i].succedents[0] = unblockNode;
   1190 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   1191 		unblockNode->antType[i + nWndNodes] = rf_control;
   1192 	}
   1193 
   1194 	/* link the unblock node to the term node */
   1195 	RF_ASSERT(unblockNode->numSuccedents == 1);
   1196 	RF_ASSERT(termNode->numAntecedents == 1);
   1197 	RF_ASSERT(termNode->numSuccedents == 0);
   1198 	unblockNode->succedents[0] = termNode;
   1199 	termNode->antecedents[0] = unblockNode;
   1200 	termNode->antType[0] = rf_control;
   1201 }
   1202 
   1203 
   1204 
   1205 /* DAGs which have no commit points.
   1206  *
   1207  * The following DAGs are used in forward and backward error recovery experiments.
   1208  * They are identical to the DAGs above this comment with the exception that the
   1209  * the commit points have been removed.
   1210  */
   1211 
   1212 
   1213 
   1214 void
   1215 rf_CommonCreateLargeWriteDAGFwd(
   1216     RF_Raid_t * raidPtr,
   1217     RF_AccessStripeMap_t * asmap,
   1218     RF_DagHeader_t * dag_h,
   1219     void *bp,
   1220     RF_RaidAccessFlags_t flags,
   1221     RF_AllocListElem_t * allocList,
   1222     int nfaults,
   1223     int (*redFunc) (RF_DagNode_t *),
   1224     int allowBufferRecycle)
   1225 {
   1226 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
   1227 	RF_DagNode_t *wnqNode, *blockNode, *syncNode, *termNode;
   1228 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
   1229 	RF_AccessStripeMapHeader_t *new_asm_h[2];
   1230 	RF_StripeNum_t parityStripeID;
   1231 	char   *sosBuffer, *eosBuffer;
   1232 	RF_ReconUnitNum_t which_ru;
   1233 	RF_RaidLayout_t *layoutPtr;
   1234 	RF_PhysDiskAddr_t *pda;
   1235 
   1236 	layoutPtr = &(raidPtr->Layout);
   1237 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
   1238 
   1239 	if (rf_dagDebug)
   1240 		printf("[Creating large-write DAG]\n");
   1241 	dag_h->creator = "LargeWriteDAGFwd";
   1242 
   1243 	dag_h->numCommitNodes = 0;
   1244 	dag_h->numCommits = 0;
   1245 	dag_h->numSuccedents = 1;
   1246 
   1247 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
   1248 	nWndNodes = asmap->numStripeUnitsAccessed;
   1249 	RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1250 	i = 0;
   1251 	wndNodes = &nodes[i];
   1252 	i += nWndNodes;
   1253 	xorNode = &nodes[i];
   1254 	i += 1;
   1255 	wnpNode = &nodes[i];
   1256 	i += 1;
   1257 	blockNode = &nodes[i];
   1258 	i += 1;
   1259 	syncNode = &nodes[i];
   1260 	i += 1;
   1261 	termNode = &nodes[i];
   1262 	i += 1;
   1263 	if (nfaults == 2) {
   1264 		wnqNode = &nodes[i];
   1265 		i += 1;
   1266 	} else {
   1267 		wnqNode = NULL;
   1268 	}
   1269 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
   1270 	if (nRodNodes > 0) {
   1271 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1272 	} else {
   1273 		rodNodes = NULL;
   1274 	}
   1275 
   1276 	/* begin node initialization */
   1277 	if (nRodNodes > 0) {
   1278 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1279 		rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes, 0, 0, dag_h, "Nil", allocList);
   1280 	} else {
   1281 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
   1282 		rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, 1, 0, 0, dag_h, "Nil", allocList);
   1283 	}
   1284 
   1285 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
   1286 
   1287 	/* initialize the Rod nodes */
   1288 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
   1289 		if (new_asm_h[asmNum]) {
   1290 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
   1291 			while (pda) {
   1292 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
   1293 				rodNodes[nodeNum].params[0].p = pda;
   1294 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
   1295 				rodNodes[nodeNum].params[2].v = parityStripeID;
   1296 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1297 				nodeNum++;
   1298 				pda = pda->next;
   1299 			}
   1300 		}
   1301 	}
   1302 	RF_ASSERT(nodeNum == nRodNodes);
   1303 
   1304 	/* initialize the wnd nodes */
   1305 	pda = asmap->physInfo;
   1306 	for (i = 0; i < nWndNodes; i++) {
   1307 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
   1308 		RF_ASSERT(pda != NULL);
   1309 		wndNodes[i].params[0].p = pda;
   1310 		wndNodes[i].params[1].p = pda->bufPtr;
   1311 		wndNodes[i].params[2].v = parityStripeID;
   1312 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1313 		pda = pda->next;
   1314 	}
   1315 
   1316 	/* initialize the redundancy node */
   1317 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nfaults, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
   1318 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
   1319 	for (i = 0; i < nWndNodes; i++) {
   1320 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
   1321 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
   1322 	}
   1323 	for (i = 0; i < nRodNodes; i++) {
   1324 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
   1325 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
   1326 	}
   1327 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
   1328 									 * at RAID information */
   1329 
   1330 	/* look for an Rod node that reads a complete SU.  If none, alloc a
   1331 	 * buffer to receive the parity info. Note that we can't use a new
   1332 	 * data buffer because it will not have gotten written when the xor
   1333 	 * occurs. */
   1334 	if (allowBufferRecycle) {
   1335 		for (i = 0; i < nRodNodes; i++)
   1336 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
   1337 				break;
   1338 	}
   1339 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
   1340 		RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
   1341 	} else
   1342 		xorNode->results[0] = rodNodes[i].params[1].p;
   1343 
   1344 	/* initialize the Wnp node */
   1345 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
   1346 	wnpNode->params[0].p = asmap->parityInfo;
   1347 	wnpNode->params[1].p = xorNode->results[0];
   1348 	wnpNode->params[2].v = parityStripeID;
   1349 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1350 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
   1351 							 * describe entire
   1352 							 * parity unit */
   1353 
   1354 	if (nfaults == 2) {
   1355 		/* we never try to recycle a buffer for the Q calcuation in
   1356 		 * addition to the parity. This would cause two buffers to get
   1357 		 * smashed during the P and Q calculation, guaranteeing one
   1358 		 * would be wrong. */
   1359 		RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
   1360 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
   1361 		wnqNode->params[0].p = asmap->qInfo;
   1362 		wnqNode->params[1].p = xorNode->results[1];
   1363 		wnqNode->params[2].v = parityStripeID;
   1364 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1365 		RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
   1366 								 * describe entire
   1367 								 * parity unit */
   1368 	}
   1369 	/* connect nodes to form graph */
   1370 
   1371 	/* connect dag header to block node */
   1372 	RF_ASSERT(blockNode->numAntecedents == 0);
   1373 	dag_h->succedents[0] = blockNode;
   1374 
   1375 	if (nRodNodes > 0) {
   1376 		/* connect the block node to the Rod nodes */
   1377 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
   1378 		RF_ASSERT(syncNode->numAntecedents == nRodNodes);
   1379 		for (i = 0; i < nRodNodes; i++) {
   1380 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
   1381 			blockNode->succedents[i] = &rodNodes[i];
   1382 			rodNodes[i].antecedents[0] = blockNode;
   1383 			rodNodes[i].antType[0] = rf_control;
   1384 
   1385 			/* connect the Rod nodes to the Nil node */
   1386 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
   1387 			rodNodes[i].succedents[0] = syncNode;
   1388 			syncNode->antecedents[i] = &rodNodes[i];
   1389 			syncNode->antType[i] = rf_trueData;
   1390 		}
   1391 	} else {
   1392 		/* connect the block node to the Nil node */
   1393 		RF_ASSERT(blockNode->numSuccedents == 1);
   1394 		RF_ASSERT(syncNode->numAntecedents == 1);
   1395 		blockNode->succedents[0] = syncNode;
   1396 		syncNode->antecedents[0] = blockNode;
   1397 		syncNode->antType[0] = rf_control;
   1398 	}
   1399 
   1400 	/* connect the sync node to the Wnd nodes */
   1401 	RF_ASSERT(syncNode->numSuccedents == (1 + nWndNodes));
   1402 	for (i = 0; i < nWndNodes; i++) {
   1403 		RF_ASSERT(wndNodes->numAntecedents == 1);
   1404 		syncNode->succedents[i] = &wndNodes[i];
   1405 		wndNodes[i].antecedents[0] = syncNode;
   1406 		wndNodes[i].antType[0] = rf_control;
   1407 	}
   1408 
   1409 	/* connect the sync node to the Xor node */
   1410 	RF_ASSERT(xorNode->numAntecedents == 1);
   1411 	syncNode->succedents[nWndNodes] = xorNode;
   1412 	xorNode->antecedents[0] = syncNode;
   1413 	xorNode->antType[0] = rf_control;
   1414 
   1415 	/* connect the xor node to the write parity node */
   1416 	RF_ASSERT(xorNode->numSuccedents == nfaults);
   1417 	RF_ASSERT(wnpNode->numAntecedents == 1);
   1418 	xorNode->succedents[0] = wnpNode;
   1419 	wnpNode->antecedents[0] = xorNode;
   1420 	wnpNode->antType[0] = rf_trueData;
   1421 	if (nfaults == 2) {
   1422 		RF_ASSERT(wnqNode->numAntecedents == 1);
   1423 		xorNode->succedents[1] = wnqNode;
   1424 		wnqNode->antecedents[0] = xorNode;
   1425 		wnqNode->antType[0] = rf_trueData;
   1426 	}
   1427 	/* connect the write nodes to the term node */
   1428 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
   1429 	RF_ASSERT(termNode->numSuccedents == 0);
   1430 	for (i = 0; i < nWndNodes; i++) {
   1431 		RF_ASSERT(wndNodes->numSuccedents == 1);
   1432 		wndNodes[i].succedents[0] = termNode;
   1433 		termNode->antecedents[i] = &wndNodes[i];
   1434 		termNode->antType[i] = rf_control;
   1435 	}
   1436 	RF_ASSERT(wnpNode->numSuccedents == 1);
   1437 	wnpNode->succedents[0] = termNode;
   1438 	termNode->antecedents[nWndNodes] = wnpNode;
   1439 	termNode->antType[nWndNodes] = rf_control;
   1440 	if (nfaults == 2) {
   1441 		RF_ASSERT(wnqNode->numSuccedents == 1);
   1442 		wnqNode->succedents[0] = termNode;
   1443 		termNode->antecedents[nWndNodes + 1] = wnqNode;
   1444 		termNode->antType[nWndNodes + 1] = rf_control;
   1445 	}
   1446 }
   1447 
   1448 
   1449 /******************************************************************************
   1450  *
   1451  * creates a DAG to perform a small-write operation (either raid 5 or pq),
   1452  * which is as follows:
   1453  *
   1454  * Hdr -> Nil -> Rop - Xor - Wnp [Unp] -- Trm
   1455  *            \- Rod X- Wnd [Und] -------/
   1456  *           [\- Rod X- Wnd [Und] ------/]
   1457  *           [\- Roq - Q --> Wnq [Unq]-/]
   1458  *
   1459  * Rop = read old parity
   1460  * Rod = read old data
   1461  * Roq = read old "q"
   1462  * Cmt = commit node
   1463  * Und = unlock data disk
   1464  * Unp = unlock parity disk
   1465  * Unq = unlock q disk
   1466  * Wnp = write new parity
   1467  * Wnd = write new data
   1468  * Wnq = write new "q"
   1469  * [ ] denotes optional segments in the graph
   1470  *
   1471  * Parameters:  raidPtr   - description of the physical array
   1472  *              asmap     - logical & physical addresses for this access
   1473  *              bp        - buffer ptr (holds write data)
   1474  *              flags     - general flags (e.g. disk locking)
   1475  *              allocList - list of memory allocated in DAG creation
   1476  *              pfuncs    - list of parity generating functions
   1477  *              qfuncs    - list of q generating functions
   1478  *
   1479  * A null qfuncs indicates single fault tolerant
   1480  *****************************************************************************/
   1481 
   1482 void
   1483 rf_CommonCreateSmallWriteDAGFwd(
   1484     RF_Raid_t * raidPtr,
   1485     RF_AccessStripeMap_t * asmap,
   1486     RF_DagHeader_t * dag_h,
   1487     void *bp,
   1488     RF_RaidAccessFlags_t flags,
   1489     RF_AllocListElem_t * allocList,
   1490     RF_RedFuncs_t * pfuncs,
   1491     RF_RedFuncs_t * qfuncs)
   1492 {
   1493 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
   1494 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
   1495 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *nodes;
   1496 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
   1497 	int     i, j, nNodes, totalNumNodes, lu_flag;
   1498 	RF_ReconUnitNum_t which_ru;
   1499 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
   1500 	int     (*qfunc) (RF_DagNode_t *);
   1501 	int     numDataNodes, numParityNodes;
   1502 	RF_StripeNum_t parityStripeID;
   1503 	RF_PhysDiskAddr_t *pda;
   1504 	char   *name, *qname;
   1505 	long    nfaults;
   1506 
   1507 	nfaults = qfuncs ? 2 : 1;
   1508 	lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
   1509 
   1510 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
   1511 	pda = asmap->physInfo;
   1512 	numDataNodes = asmap->numStripeUnitsAccessed;
   1513 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
   1514 
   1515 	if (rf_dagDebug)
   1516 		printf("[Creating small-write DAG]\n");
   1517 	RF_ASSERT(numDataNodes > 0);
   1518 	dag_h->creator = "SmallWriteDAGFwd";
   1519 
   1520 	dag_h->numCommitNodes = 0;
   1521 	dag_h->numCommits = 0;
   1522 	dag_h->numSuccedents = 1;
   1523 
   1524 	qfunc = NULL;
   1525 	qname = NULL;
   1526 
   1527 	/* DAG creation occurs in four steps: 1. count the number of nodes in
   1528 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
   1529 	 * nodes */
   1530 
   1531 	/* Step 1. compute number of nodes in the graph */
   1532 
   1533 	/* number of nodes: a read and write for each data unit a redundancy
   1534 	 * computation node for each parity node (nfaults * nparity) a read
   1535 	 * and write for each parity unit a block node a terminate node if
   1536 	 * atomic RMW an unlock node for each data unit, redundancy unit */
   1537 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 2;
   1538 	if (lu_flag)
   1539 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
   1540 
   1541 
   1542 	/* Step 2. create the nodes */
   1543 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1544 	i = 0;
   1545 	blockNode = &nodes[i];
   1546 	i += 1;
   1547 	readDataNodes = &nodes[i];
   1548 	i += numDataNodes;
   1549 	readParityNodes = &nodes[i];
   1550 	i += numParityNodes;
   1551 	writeDataNodes = &nodes[i];
   1552 	i += numDataNodes;
   1553 	writeParityNodes = &nodes[i];
   1554 	i += numParityNodes;
   1555 	xorNodes = &nodes[i];
   1556 	i += numParityNodes;
   1557 	termNode = &nodes[i];
   1558 	i += 1;
   1559 	if (lu_flag) {
   1560 		unlockDataNodes = &nodes[i];
   1561 		i += numDataNodes;
   1562 		unlockParityNodes = &nodes[i];
   1563 		i += numParityNodes;
   1564 	} else {
   1565 		unlockDataNodes = unlockParityNodes = NULL;
   1566 	}
   1567 	if (nfaults == 2) {
   1568 		readQNodes = &nodes[i];
   1569 		i += numParityNodes;
   1570 		writeQNodes = &nodes[i];
   1571 		i += numParityNodes;
   1572 		qNodes = &nodes[i];
   1573 		i += numParityNodes;
   1574 		if (lu_flag) {
   1575 			unlockQNodes = &nodes[i];
   1576 			i += numParityNodes;
   1577 		} else {
   1578 			unlockQNodes = NULL;
   1579 		}
   1580 	} else {
   1581 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
   1582 	}
   1583 	RF_ASSERT(i == totalNumNodes);
   1584 
   1585 	/* Step 3. initialize the nodes */
   1586 	/* initialize block node (Nil) */
   1587 	nNodes = numDataNodes + (nfaults * numParityNodes);
   1588 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1589 
   1590 	/* initialize terminate node (Trm) */
   1591 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
   1592 
   1593 	/* initialize nodes which read old data (Rod) */
   1594 	for (i = 0; i < numDataNodes; i++) {
   1595 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, (numParityNodes * nfaults) + 1, 1, 4, 0, dag_h, "Rod", allocList);
   1596 		RF_ASSERT(pda != NULL);
   1597 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
   1598 							 * desc */
   1599 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
   1600 												 * data */
   1601 		readDataNodes[i].params[2].v = parityStripeID;
   1602 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1603 		pda = pda->next;
   1604 		for (j = 0; j < readDataNodes[i].numSuccedents; j++)
   1605 			readDataNodes[i].propList[j] = NULL;
   1606 	}
   1607 
   1608 	/* initialize nodes which read old parity (Rop) */
   1609 	pda = asmap->parityInfo;
   1610 	i = 0;
   1611 	for (i = 0; i < numParityNodes; i++) {
   1612 		RF_ASSERT(pda != NULL);
   1613 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Rop", allocList);
   1614 		readParityNodes[i].params[0].p = pda;
   1615 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
   1616 													 * parity */
   1617 		readParityNodes[i].params[2].v = parityStripeID;
   1618 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1619 		for (j = 0; j < readParityNodes[i].numSuccedents; j++)
   1620 			readParityNodes[i].propList[0] = NULL;
   1621 		pda = pda->next;
   1622 	}
   1623 
   1624 	/* initialize nodes which read old Q (Roq) */
   1625 	if (nfaults == 2) {
   1626 		pda = asmap->qInfo;
   1627 		for (i = 0; i < numParityNodes; i++) {
   1628 			RF_ASSERT(pda != NULL);
   1629 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
   1630 			readQNodes[i].params[0].p = pda;
   1631 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old Q */
   1632 			readQNodes[i].params[2].v = parityStripeID;
   1633 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1634 			for (j = 0; j < readQNodes[i].numSuccedents; j++)
   1635 				readQNodes[i].propList[0] = NULL;
   1636 			pda = pda->next;
   1637 		}
   1638 	}
   1639 	/* initialize nodes which write new data (Wnd) */
   1640 	pda = asmap->physInfo;
   1641 	for (i = 0; i < numDataNodes; i++) {
   1642 		RF_ASSERT(pda != NULL);
   1643 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
   1644 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
   1645 							 * desc */
   1646 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
   1647 								 * data to be written */
   1648 		writeDataNodes[i].params[2].v = parityStripeID;
   1649 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1650 
   1651 		if (lu_flag) {
   1652 			/* initialize node to unlock the disk queue */
   1653 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
   1654 			unlockDataNodes[i].params[0].p = pda;	/* physical disk addr
   1655 								 * desc */
   1656 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1657 		}
   1658 		pda = pda->next;
   1659 	}
   1660 
   1661 
   1662 	/* initialize nodes which compute new parity and Q */
   1663 	/* we use the simple XOR func in the double-XOR case, and when we're
   1664 	 * accessing only a portion of one stripe unit. the distinction
   1665 	 * between the two is that the regular XOR func assumes that the
   1666 	 * targbuf is a full SU in size, and examines the pda associated with
   1667 	 * the buffer to decide where within the buffer to XOR the data,
   1668 	 * whereas the simple XOR func just XORs the data into the start of
   1669 	 * the buffer. */
   1670 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
   1671 		func = pfuncs->simple;
   1672 		undoFunc = rf_NullNodeUndoFunc;
   1673 		name = pfuncs->SimpleName;
   1674 		if (qfuncs) {
   1675 			qfunc = qfuncs->simple;
   1676 			qname = qfuncs->SimpleName;
   1677 		}
   1678 	} else {
   1679 		func = pfuncs->regular;
   1680 		undoFunc = rf_NullNodeUndoFunc;
   1681 		name = pfuncs->RegularName;
   1682 		if (qfuncs) {
   1683 			qfunc = qfuncs->regular;
   1684 			qname = qfuncs->RegularName;
   1685 		}
   1686 	}
   1687 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
   1688 	 * nodes, and raidPtr  */
   1689 	if (numParityNodes == 2) {	/* double-xor case */
   1690 		for (i = 0; i < numParityNodes; i++) {
   1691 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
   1692 																						 * xor */
   1693 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
   1694 			xorNodes[i].params[0] = readDataNodes[i].params[0];
   1695 			xorNodes[i].params[1] = readDataNodes[i].params[1];
   1696 			xorNodes[i].params[2] = readParityNodes[i].params[0];
   1697 			xorNodes[i].params[3] = readParityNodes[i].params[1];
   1698 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
   1699 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
   1700 			xorNodes[i].params[6].p = raidPtr;
   1701 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
   1702 											 * target buf */
   1703 			if (nfaults == 2) {
   1704 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, qname, allocList);	/* no wakeup func for
   1705 																							 * xor */
   1706 				qNodes[i].params[0] = readDataNodes[i].params[0];
   1707 				qNodes[i].params[1] = readDataNodes[i].params[1];
   1708 				qNodes[i].params[2] = readQNodes[i].params[0];
   1709 				qNodes[i].params[3] = readQNodes[i].params[1];
   1710 				qNodes[i].params[4] = writeDataNodes[i].params[0];
   1711 				qNodes[i].params[5] = writeDataNodes[i].params[1];
   1712 				qNodes[i].params[6].p = raidPtr;
   1713 				qNodes[i].results[0] = readQNodes[i].params[1].p;	/* use old Q buf as
   1714 											 * target buf */
   1715 			}
   1716 		}
   1717 	} else {
   1718 		/* there is only one xor node in this case */
   1719 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
   1720 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
   1721 		for (i = 0; i < numDataNodes + 1; i++) {
   1722 			/* set up params related to Rod and Rop nodes */
   1723 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
   1724 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
   1725 		}
   1726 		for (i = 0; i < numDataNodes; i++) {
   1727 			/* set up params related to Wnd and Wnp nodes */
   1728 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
   1729 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
   1730 		}
   1731 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
   1732 											 * at RAID information */
   1733 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
   1734 		if (nfaults == 2) {
   1735 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, qname, allocList);
   1736 			for (i = 0; i < numDataNodes; i++) {
   1737 				/* set up params related to Rod */
   1738 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
   1739 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
   1740 			}
   1741 			/* and read old q */
   1742 			qNodes[0].params[2 * numDataNodes + 0] = readQNodes[0].params[0];	/* pda */
   1743 			qNodes[0].params[2 * numDataNodes + 1] = readQNodes[0].params[1];	/* buffer pointer */
   1744 			for (i = 0; i < numDataNodes; i++) {
   1745 				/* set up params related to Wnd nodes */
   1746 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
   1747 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
   1748 			}
   1749 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
   1750 												 * at RAID information */
   1751 			qNodes[0].results[0] = readQNodes[0].params[1].p;
   1752 		}
   1753 	}
   1754 
   1755 	/* initialize nodes which write new parity (Wnp) */
   1756 	pda = asmap->parityInfo;
   1757 	for (i = 0; i < numParityNodes; i++) {
   1758 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnp", allocList);
   1759 		RF_ASSERT(pda != NULL);
   1760 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
   1761 							 * filled in by xor node */
   1762 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
   1763 										 * parity write
   1764 										 * operation */
   1765 		writeParityNodes[i].params[2].v = parityStripeID;
   1766 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1767 
   1768 		if (lu_flag) {
   1769 			/* initialize node to unlock the disk queue */
   1770 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unp", allocList);
   1771 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
   1772 								 * desc */
   1773 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1774 		}
   1775 		pda = pda->next;
   1776 	}
   1777 
   1778 	/* initialize nodes which write new Q (Wnq) */
   1779 	if (nfaults == 2) {
   1780 		pda = asmap->qInfo;
   1781 		for (i = 0; i < numParityNodes; i++) {
   1782 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnq", allocList);
   1783 			RF_ASSERT(pda != NULL);
   1784 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
   1785 								 * filled in by xor node */
   1786 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
   1787 										 * parity write
   1788 										 * operation */
   1789 			writeQNodes[i].params[2].v = parityStripeID;
   1790 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1791 
   1792 			if (lu_flag) {
   1793 				/* initialize node to unlock the disk queue */
   1794 				rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unq", allocList);
   1795 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
   1796 									 * desc */
   1797 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1798 			}
   1799 			pda = pda->next;
   1800 		}
   1801 	}
   1802 	/* Step 4. connect the nodes */
   1803 
   1804 	/* connect header to block node */
   1805 	dag_h->succedents[0] = blockNode;
   1806 
   1807 	/* connect block node to read old data nodes */
   1808 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
   1809 	for (i = 0; i < numDataNodes; i++) {
   1810 		blockNode->succedents[i] = &readDataNodes[i];
   1811 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
   1812 		readDataNodes[i].antecedents[0] = blockNode;
   1813 		readDataNodes[i].antType[0] = rf_control;
   1814 	}
   1815 
   1816 	/* connect block node to read old parity nodes */
   1817 	for (i = 0; i < numParityNodes; i++) {
   1818 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
   1819 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
   1820 		readParityNodes[i].antecedents[0] = blockNode;
   1821 		readParityNodes[i].antType[0] = rf_control;
   1822 	}
   1823 
   1824 	/* connect block node to read old Q nodes */
   1825 	if (nfaults == 2)
   1826 		for (i = 0; i < numParityNodes; i++) {
   1827 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
   1828 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
   1829 			readQNodes[i].antecedents[0] = blockNode;
   1830 			readQNodes[i].antType[0] = rf_control;
   1831 		}
   1832 
   1833 	/* connect read old data nodes to write new data nodes */
   1834 	for (i = 0; i < numDataNodes; i++) {
   1835 		RF_ASSERT(readDataNodes[i].numSuccedents == ((nfaults * numParityNodes) + 1));
   1836 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
   1837 		readDataNodes[i].succedents[0] = &writeDataNodes[i];
   1838 		writeDataNodes[i].antecedents[0] = &readDataNodes[i];
   1839 		writeDataNodes[i].antType[0] = rf_antiData;
   1840 	}
   1841 
   1842 	/* connect read old data nodes to xor nodes */
   1843 	for (i = 0; i < numDataNodes; i++) {
   1844 		for (j = 0; j < numParityNodes; j++) {
   1845 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
   1846 			readDataNodes[i].succedents[1 + j] = &xorNodes[j];
   1847 			xorNodes[j].antecedents[i] = &readDataNodes[i];
   1848 			xorNodes[j].antType[i] = rf_trueData;
   1849 		}
   1850 	}
   1851 
   1852 	/* connect read old data nodes to q nodes */
   1853 	if (nfaults == 2)
   1854 		for (i = 0; i < numDataNodes; i++)
   1855 			for (j = 0; j < numParityNodes; j++) {
   1856 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
   1857 				readDataNodes[i].succedents[1 + numParityNodes + j] = &qNodes[j];
   1858 				qNodes[j].antecedents[i] = &readDataNodes[i];
   1859 				qNodes[j].antType[i] = rf_trueData;
   1860 			}
   1861 
   1862 	/* connect read old parity nodes to xor nodes */
   1863 	for (i = 0; i < numParityNodes; i++) {
   1864 		for (j = 0; j < numParityNodes; j++) {
   1865 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
   1866 			readParityNodes[i].succedents[j] = &xorNodes[j];
   1867 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
   1868 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
   1869 		}
   1870 	}
   1871 
   1872 	/* connect read old q nodes to q nodes */
   1873 	if (nfaults == 2)
   1874 		for (i = 0; i < numParityNodes; i++) {
   1875 			for (j = 0; j < numParityNodes; j++) {
   1876 				RF_ASSERT(readQNodes[i].numSuccedents == numParityNodes);
   1877 				readQNodes[i].succedents[j] = &qNodes[j];
   1878 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
   1879 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
   1880 			}
   1881 		}
   1882 
   1883 	/* connect xor nodes to the write new parity nodes */
   1884 	for (i = 0; i < numParityNodes; i++) {
   1885 		RF_ASSERT(writeParityNodes[i].numAntecedents == numParityNodes);
   1886 		for (j = 0; j < numParityNodes; j++) {
   1887 			RF_ASSERT(xorNodes[j].numSuccedents == numParityNodes);
   1888 			xorNodes[i].succedents[j] = &writeParityNodes[j];
   1889 			writeParityNodes[j].antecedents[i] = &xorNodes[i];
   1890 			writeParityNodes[j].antType[i] = rf_trueData;
   1891 		}
   1892 	}
   1893 
   1894 	/* connect q nodes to the write new q nodes */
   1895 	if (nfaults == 2)
   1896 		for (i = 0; i < numParityNodes; i++) {
   1897 			RF_ASSERT(writeQNodes[i].numAntecedents == numParityNodes);
   1898 			for (j = 0; j < numParityNodes; j++) {
   1899 				RF_ASSERT(qNodes[j].numSuccedents == 1);
   1900 				qNodes[i].succedents[j] = &writeQNodes[j];
   1901 				writeQNodes[j].antecedents[i] = &qNodes[i];
   1902 				writeQNodes[j].antType[i] = rf_trueData;
   1903 			}
   1904 		}
   1905 
   1906 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1907 	RF_ASSERT(termNode->numSuccedents == 0);
   1908 	for (i = 0; i < numDataNodes; i++) {
   1909 		if (lu_flag) {
   1910 			/* connect write new data nodes to unlock nodes */
   1911 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1912 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
   1913 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
   1914 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
   1915 			unlockDataNodes[i].antType[0] = rf_control;
   1916 
   1917 			/* connect unlock nodes to term node */
   1918 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
   1919 			unlockDataNodes[i].succedents[0] = termNode;
   1920 			termNode->antecedents[i] = &unlockDataNodes[i];
   1921 			termNode->antType[i] = rf_control;
   1922 		} else {
   1923 			/* connect write new data nodes to term node */
   1924 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1925 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1926 			writeDataNodes[i].succedents[0] = termNode;
   1927 			termNode->antecedents[i] = &writeDataNodes[i];
   1928 			termNode->antType[i] = rf_control;
   1929 		}
   1930 	}
   1931 
   1932 	for (i = 0; i < numParityNodes; i++) {
   1933 		if (lu_flag) {
   1934 			/* connect write new parity nodes to unlock nodes */
   1935 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1936 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1937 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1938 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1939 			unlockParityNodes[i].antType[0] = rf_control;
   1940 
   1941 			/* connect unlock nodes to term node */
   1942 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1943 			unlockParityNodes[i].succedents[0] = termNode;
   1944 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1945 			termNode->antType[numDataNodes + i] = rf_control;
   1946 		} else {
   1947 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1948 			writeParityNodes[i].succedents[0] = termNode;
   1949 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1950 			termNode->antType[numDataNodes + i] = rf_control;
   1951 		}
   1952 	}
   1953 
   1954 	if (nfaults == 2)
   1955 		for (i = 0; i < numParityNodes; i++) {
   1956 			if (lu_flag) {
   1957 				/* connect write new Q nodes to unlock nodes */
   1958 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1959 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1960 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1961 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1962 				unlockQNodes[i].antType[0] = rf_control;
   1963 
   1964 				/* connect unlock nodes to unblock node */
   1965 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1966 				unlockQNodes[i].succedents[0] = termNode;
   1967 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1968 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1969 			} else {
   1970 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1971 				writeQNodes[i].succedents[0] = termNode;
   1972 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1973 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1974 			}
   1975 		}
   1976 }
   1977 
   1978 
   1979 
   1980 /******************************************************************************
   1981  * create a write graph (fault-free or degraded) for RAID level 1
   1982  *
   1983  * Hdr  Nil -> Wpd -> Nil -> Trm
   1984  *      Nil -> Wsd ->
   1985  *
   1986  * The "Wpd" node writes data to the primary copy in the mirror pair
   1987  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1988  *
   1989  * Parameters:  raidPtr   - description of the physical array
   1990  *              asmap     - logical & physical addresses for this access
   1991  *              bp        - buffer ptr (holds write data)
   1992  *              flags     - general flags (e.g. disk locking)
   1993  *              allocList - list of memory allocated in DAG creation
   1994  *****************************************************************************/
   1995 
   1996 void
   1997 rf_CreateRaidOneWriteDAGFwd(
   1998     RF_Raid_t * raidPtr,
   1999     RF_AccessStripeMap_t * asmap,
   2000     RF_DagHeader_t * dag_h,
   2001     void *bp,
   2002     RF_RaidAccessFlags_t flags,
   2003     RF_AllocListElem_t * allocList)
   2004 {
   2005 	RF_DagNode_t *blockNode, *unblockNode, *termNode;
   2006 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   2007 	int     nWndNodes, nWmirNodes, i;
   2008 	RF_ReconUnitNum_t which_ru;
   2009 	RF_PhysDiskAddr_t *pda, *pdaP;
   2010 	RF_StripeNum_t parityStripeID;
   2011 
   2012 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   2013 	    asmap->raidAddress, &which_ru);
   2014 	if (rf_dagDebug) {
   2015 		printf("[Creating RAID level 1 write DAG]\n");
   2016 	}
   2017 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;	/* 2 implies access not
   2018 							 * SU aligned */
   2019 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   2020 
   2021 	/* alloc the Wnd nodes and the Wmir node */
   2022 	if (asmap->numDataFailed == 1)
   2023 		nWndNodes--;
   2024 	if (asmap->numParityFailed == 1)
   2025 		nWmirNodes--;
   2026 
   2027 	/* total number of nodes = nWndNodes + nWmirNodes + (block + unblock +
   2028 	 * terminator) */
   2029 	RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   2030 	i = 0;
   2031 	wndNode = &nodes[i];
   2032 	i += nWndNodes;
   2033 	wmirNode = &nodes[i];
   2034 	i += nWmirNodes;
   2035 	blockNode = &nodes[i];
   2036 	i += 1;
   2037 	unblockNode = &nodes[i];
   2038 	i += 1;
   2039 	termNode = &nodes[i];
   2040 	i += 1;
   2041 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   2042 
   2043 	/* this dag can commit immediately */
   2044 	dag_h->numCommitNodes = 0;
   2045 	dag_h->numCommits = 0;
   2046 	dag_h->numSuccedents = 1;
   2047 
   2048 	/* initialize the unblock and term nodes */
   2049 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Nil", allocList);
   2050 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
   2051 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
   2052 
   2053 	/* initialize the wnd nodes */
   2054 	if (nWndNodes > 0) {
   2055 		pda = asmap->physInfo;
   2056 		for (i = 0; i < nWndNodes; i++) {
   2057 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
   2058 			RF_ASSERT(pda != NULL);
   2059 			wndNode[i].params[0].p = pda;
   2060 			wndNode[i].params[1].p = pda->bufPtr;
   2061 			wndNode[i].params[2].v = parityStripeID;
   2062 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   2063 			pda = pda->next;
   2064 		}
   2065 		RF_ASSERT(pda == NULL);
   2066 	}
   2067 	/* initialize the mirror nodes */
   2068 	if (nWmirNodes > 0) {
   2069 		pda = asmap->physInfo;
   2070 		pdaP = asmap->parityInfo;
   2071 		for (i = 0; i < nWmirNodes; i++) {
   2072 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
   2073 			RF_ASSERT(pda != NULL);
   2074 			wmirNode[i].params[0].p = pdaP;
   2075 			wmirNode[i].params[1].p = pda->bufPtr;
   2076 			wmirNode[i].params[2].v = parityStripeID;
   2077 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   2078 			pda = pda->next;
   2079 			pdaP = pdaP->next;
   2080 		}
   2081 		RF_ASSERT(pda == NULL);
   2082 		RF_ASSERT(pdaP == NULL);
   2083 	}
   2084 	/* link the header node to the block node */
   2085 	RF_ASSERT(dag_h->numSuccedents == 1);
   2086 	RF_ASSERT(blockNode->numAntecedents == 0);
   2087 	dag_h->succedents[0] = blockNode;
   2088 
   2089 	/* link the block node to the write nodes */
   2090 	RF_ASSERT(blockNode->numSuccedents == (nWndNodes + nWmirNodes));
   2091 	for (i = 0; i < nWndNodes; i++) {
   2092 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   2093 		blockNode->succedents[i] = &wndNode[i];
   2094 		wndNode[i].antecedents[0] = blockNode;
   2095 		wndNode[i].antType[0] = rf_control;
   2096 	}
   2097 	for (i = 0; i < nWmirNodes; i++) {
   2098 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   2099 		blockNode->succedents[i + nWndNodes] = &wmirNode[i];
   2100 		wmirNode[i].antecedents[0] = blockNode;
   2101 		wmirNode[i].antType[0] = rf_control;
   2102 	}
   2103 
   2104 	/* link the write nodes to the unblock node */
   2105 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   2106 	for (i = 0; i < nWndNodes; i++) {
   2107 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   2108 		wndNode[i].succedents[0] = unblockNode;
   2109 		unblockNode->antecedents[i] = &wndNode[i];
   2110 		unblockNode->antType[i] = rf_control;
   2111 	}
   2112 	for (i = 0; i < nWmirNodes; i++) {
   2113 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   2114 		wmirNode[i].succedents[0] = unblockNode;
   2115 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   2116 		unblockNode->antType[i + nWndNodes] = rf_control;
   2117 	}
   2118 
   2119 	/* link the unblock node to the term node */
   2120 	RF_ASSERT(unblockNode->numSuccedents == 1);
   2121 	RF_ASSERT(termNode->numAntecedents == 1);
   2122 	RF_ASSERT(termNode->numSuccedents == 0);
   2123 	unblockNode->succedents[0] = termNode;
   2124 	termNode->antecedents[0] = unblockNode;
   2125 	termNode->antType[0] = rf_control;
   2126 
   2127 	return;
   2128 }
   2129