Home | History | Annotate | Line # | Download | only in raidframe
rf_dagffwr.c revision 1.5.6.2
      1 /*	$NetBSD: rf_dagffwr.c,v 1.5.6.2 2001/11/14 19:15:47 nathanw Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagff.c
     31  *
     32  * code for creating fault-free DAGs
     33  *
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: rf_dagffwr.c,v 1.5.6.2 2001/11/14 19:15:47 nathanw Exp $");
     38 
     39 #include <dev/raidframe/raidframevar.h>
     40 
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_dagffrd.h"
     47 #include "rf_memchunk.h"
     48 #include "rf_general.h"
     49 #include "rf_dagffwr.h"
     50 
     51 /******************************************************************************
     52  *
     53  * General comments on DAG creation:
     54  *
     55  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     56  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     57  * is reached, the execution engine will halt forward execution and work
     58  * backward through the graph, executing the undo functions.  Assuming that
     59  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     60  * does not make changes to permanent state, the graph will fail atomically.
     61  * If an error occurs after the Cmt node executes, the engine will roll-forward
     62  * through the graph, blindly executing nodes until it reaches the end.
     63  * If a graph reaches the end, it is assumed to have completed successfully.
     64  *
     65  * A graph has only 1 Cmt node.
     66  *
     67  */
     68 
     69 
     70 /******************************************************************************
     71  *
     72  * The following wrappers map the standard DAG creation interface to the
     73  * DAG creation routines.  Additionally, these wrappers enable experimentation
     74  * with new DAG structures by providing an extra level of indirection, allowing
     75  * the DAG creation routines to be replaced at this single point.
     76  */
     77 
     78 
     79 void
     80 rf_CreateNonRedundantWriteDAG(
     81     RF_Raid_t * raidPtr,
     82     RF_AccessStripeMap_t * asmap,
     83     RF_DagHeader_t * dag_h,
     84     void *bp,
     85     RF_RaidAccessFlags_t flags,
     86     RF_AllocListElem_t * allocList,
     87     RF_IoType_t type)
     88 {
     89 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     90 	    RF_IO_TYPE_WRITE);
     91 }
     92 
     93 void
     94 rf_CreateRAID0WriteDAG(
     95     RF_Raid_t * raidPtr,
     96     RF_AccessStripeMap_t * asmap,
     97     RF_DagHeader_t * dag_h,
     98     void *bp,
     99     RF_RaidAccessFlags_t flags,
    100     RF_AllocListElem_t * allocList,
    101     RF_IoType_t type)
    102 {
    103 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    104 	    RF_IO_TYPE_WRITE);
    105 }
    106 
    107 void
    108 rf_CreateSmallWriteDAG(
    109     RF_Raid_t * raidPtr,
    110     RF_AccessStripeMap_t * asmap,
    111     RF_DagHeader_t * dag_h,
    112     void *bp,
    113     RF_RaidAccessFlags_t flags,
    114     RF_AllocListElem_t * allocList)
    115 {
    116 	/* "normal" rollaway */
    117 	rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    118 	    &rf_xorFuncs, NULL);
    119 }
    120 
    121 void
    122 rf_CreateLargeWriteDAG(
    123     RF_Raid_t * raidPtr,
    124     RF_AccessStripeMap_t * asmap,
    125     RF_DagHeader_t * dag_h,
    126     void *bp,
    127     RF_RaidAccessFlags_t flags,
    128     RF_AllocListElem_t * allocList)
    129 {
    130 	/* "normal" rollaway */
    131 	rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    132 	    1, rf_RegularXorFunc, RF_TRUE);
    133 }
    134 
    135 
    136 /******************************************************************************
    137  *
    138  * DAG creation code begins here
    139  */
    140 
    141 
    142 /******************************************************************************
    143  *
    144  * creates a DAG to perform a large-write operation:
    145  *
    146  *           / Rod \           / Wnd \
    147  * H -- block- Rod - Xor - Cmt - Wnd --- T
    148  *           \ Rod /          \  Wnp /
    149  *                             \[Wnq]/
    150  *
    151  * The XOR node also does the Q calculation in the P+Q architecture.
    152  * All nodes are before the commit node (Cmt) are assumed to be atomic and
    153  * undoable - or - they make no changes to permanent state.
    154  *
    155  * Rod = read old data
    156  * Cmt = commit node
    157  * Wnp = write new parity
    158  * Wnd = write new data
    159  * Wnq = write new "q"
    160  * [] denotes optional segments in the graph
    161  *
    162  * Parameters:  raidPtr   - description of the physical array
    163  *              asmap     - logical & physical addresses for this access
    164  *              bp        - buffer ptr (holds write data)
    165  *              flags     - general flags (e.g. disk locking)
    166  *              allocList - list of memory allocated in DAG creation
    167  *              nfaults   - number of faults array can tolerate
    168  *                          (equal to # redundancy units in stripe)
    169  *              redfuncs  - list of redundancy generating functions
    170  *
    171  *****************************************************************************/
    172 
    173 void
    174 rf_CommonCreateLargeWriteDAG(
    175     RF_Raid_t * raidPtr,
    176     RF_AccessStripeMap_t * asmap,
    177     RF_DagHeader_t * dag_h,
    178     void *bp,
    179     RF_RaidAccessFlags_t flags,
    180     RF_AllocListElem_t * allocList,
    181     int nfaults,
    182     int (*redFunc) (RF_DagNode_t *),
    183     int allowBufferRecycle)
    184 {
    185 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
    186 	RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
    187 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
    188 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    189 	RF_StripeNum_t parityStripeID;
    190 	char   *sosBuffer, *eosBuffer;
    191 	RF_ReconUnitNum_t which_ru;
    192 	RF_RaidLayout_t *layoutPtr;
    193 	RF_PhysDiskAddr_t *pda;
    194 
    195 	layoutPtr = &(raidPtr->Layout);
    196 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    197 	    &which_ru);
    198 
    199 	if (rf_dagDebug) {
    200 		printf("[Creating large-write DAG]\n");
    201 	}
    202 	dag_h->creator = "LargeWriteDAG";
    203 
    204 	dag_h->numCommitNodes = 1;
    205 	dag_h->numCommits = 0;
    206 	dag_h->numSuccedents = 1;
    207 
    208 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
    209 	nWndNodes = asmap->numStripeUnitsAccessed;
    210 	RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t),
    211 	    (RF_DagNode_t *), allocList);
    212 	i = 0;
    213 	wndNodes = &nodes[i];
    214 	i += nWndNodes;
    215 	xorNode = &nodes[i];
    216 	i += 1;
    217 	wnpNode = &nodes[i];
    218 	i += 1;
    219 	blockNode = &nodes[i];
    220 	i += 1;
    221 	commitNode = &nodes[i];
    222 	i += 1;
    223 	termNode = &nodes[i];
    224 	i += 1;
    225 	if (nfaults == 2) {
    226 		wnqNode = &nodes[i];
    227 		i += 1;
    228 	} else {
    229 		wnqNode = NULL;
    230 	}
    231 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h,
    232 	    &nRodNodes, &sosBuffer, &eosBuffer, allocList);
    233 	if (nRodNodes > 0) {
    234 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t),
    235 		    (RF_DagNode_t *), allocList);
    236 	} else {
    237 		rodNodes = NULL;
    238 	}
    239 
    240 	/* begin node initialization */
    241 	if (nRodNodes > 0) {
    242 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    243 		    NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
    244 	} else {
    245 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    246 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    247 	}
    248 
    249 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL,
    250 	    nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    251 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL,
    252 	    0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
    253 
    254 	/* initialize the Rod nodes */
    255 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
    256 		if (new_asm_h[asmNum]) {
    257 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
    258 			while (pda) {
    259 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc,
    260 				    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    261 				    "Rod", allocList);
    262 				rodNodes[nodeNum].params[0].p = pda;
    263 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
    264 				rodNodes[nodeNum].params[2].v = parityStripeID;
    265 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    266 				    0, 0, which_ru);
    267 				nodeNum++;
    268 				pda = pda->next;
    269 			}
    270 		}
    271 	}
    272 	RF_ASSERT(nodeNum == nRodNodes);
    273 
    274 	/* initialize the wnd nodes */
    275 	pda = asmap->physInfo;
    276 	for (i = 0; i < nWndNodes; i++) {
    277 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    278 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    279 		RF_ASSERT(pda != NULL);
    280 		wndNodes[i].params[0].p = pda;
    281 		wndNodes[i].params[1].p = pda->bufPtr;
    282 		wndNodes[i].params[2].v = parityStripeID;
    283 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    284 		pda = pda->next;
    285 	}
    286 
    287 	/* initialize the redundancy node */
    288 	if (nRodNodes > 0) {
    289 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    290 		    nRodNodes, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h,
    291 		    "Xr ", allocList);
    292 	} else {
    293 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    294 		    1, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
    295 	}
    296 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
    297 	for (i = 0; i < nWndNodes; i++) {
    298 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
    299 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
    300 	}
    301 	for (i = 0; i < nRodNodes; i++) {
    302 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
    303 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
    304 	}
    305 	/* xor node needs to get at RAID information */
    306 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
    307 
    308 	/*
    309          * Look for an Rod node that reads a complete SU. If none, alloc a buffer
    310          * to receive the parity info. Note that we can't use a new data buffer
    311          * because it will not have gotten written when the xor occurs.
    312          */
    313 	if (allowBufferRecycle) {
    314 		for (i = 0; i < nRodNodes; i++) {
    315 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
    316 				break;
    317 		}
    318 	}
    319 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
    320 		RF_CallocAndAdd(xorNode->results[0], 1,
    321 		    rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    322 		    (void *), allocList);
    323 	} else {
    324 		xorNode->results[0] = rodNodes[i].params[1].p;
    325 	}
    326 
    327 	/* initialize the Wnp node */
    328 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    329 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    330 	wnpNode->params[0].p = asmap->parityInfo;
    331 	wnpNode->params[1].p = xorNode->results[0];
    332 	wnpNode->params[2].v = parityStripeID;
    333 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    334 	/* parityInfo must describe entire parity unit */
    335 	RF_ASSERT(asmap->parityInfo->next == NULL);
    336 
    337 	if (nfaults == 2) {
    338 		/*
    339 	         * We never try to recycle a buffer for the Q calcuation
    340 	         * in addition to the parity. This would cause two buffers
    341 	         * to get smashed during the P and Q calculation, guaranteeing
    342 	         * one would be wrong.
    343 	         */
    344 		RF_CallocAndAdd(xorNode->results[1], 1,
    345 		    rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    346 		    (void *), allocList);
    347 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    348 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    349 		wnqNode->params[0].p = asmap->qInfo;
    350 		wnqNode->params[1].p = xorNode->results[1];
    351 		wnqNode->params[2].v = parityStripeID;
    352 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    353 		/* parityInfo must describe entire parity unit */
    354 		RF_ASSERT(asmap->parityInfo->next == NULL);
    355 	}
    356 	/*
    357          * Connect nodes to form graph.
    358          */
    359 
    360 	/* connect dag header to block node */
    361 	RF_ASSERT(blockNode->numAntecedents == 0);
    362 	dag_h->succedents[0] = blockNode;
    363 
    364 	if (nRodNodes > 0) {
    365 		/* connect the block node to the Rod nodes */
    366 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
    367 		RF_ASSERT(xorNode->numAntecedents == nRodNodes);
    368 		for (i = 0; i < nRodNodes; i++) {
    369 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
    370 			blockNode->succedents[i] = &rodNodes[i];
    371 			rodNodes[i].antecedents[0] = blockNode;
    372 			rodNodes[i].antType[0] = rf_control;
    373 
    374 			/* connect the Rod nodes to the Xor node */
    375 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
    376 			rodNodes[i].succedents[0] = xorNode;
    377 			xorNode->antecedents[i] = &rodNodes[i];
    378 			xorNode->antType[i] = rf_trueData;
    379 		}
    380 	} else {
    381 		/* connect the block node to the Xor node */
    382 		RF_ASSERT(blockNode->numSuccedents == 1);
    383 		RF_ASSERT(xorNode->numAntecedents == 1);
    384 		blockNode->succedents[0] = xorNode;
    385 		xorNode->antecedents[0] = blockNode;
    386 		xorNode->antType[0] = rf_control;
    387 	}
    388 
    389 	/* connect the xor node to the commit node */
    390 	RF_ASSERT(xorNode->numSuccedents == 1);
    391 	RF_ASSERT(commitNode->numAntecedents == 1);
    392 	xorNode->succedents[0] = commitNode;
    393 	commitNode->antecedents[0] = xorNode;
    394 	commitNode->antType[0] = rf_control;
    395 
    396 	/* connect the commit node to the write nodes */
    397 	RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
    398 	for (i = 0; i < nWndNodes; i++) {
    399 		RF_ASSERT(wndNodes->numAntecedents == 1);
    400 		commitNode->succedents[i] = &wndNodes[i];
    401 		wndNodes[i].antecedents[0] = commitNode;
    402 		wndNodes[i].antType[0] = rf_control;
    403 	}
    404 	RF_ASSERT(wnpNode->numAntecedents == 1);
    405 	commitNode->succedents[nWndNodes] = wnpNode;
    406 	wnpNode->antecedents[0] = commitNode;
    407 	wnpNode->antType[0] = rf_trueData;
    408 	if (nfaults == 2) {
    409 		RF_ASSERT(wnqNode->numAntecedents == 1);
    410 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    411 		wnqNode->antecedents[0] = commitNode;
    412 		wnqNode->antType[0] = rf_trueData;
    413 	}
    414 	/* connect the write nodes to the term node */
    415 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
    416 	RF_ASSERT(termNode->numSuccedents == 0);
    417 	for (i = 0; i < nWndNodes; i++) {
    418 		RF_ASSERT(wndNodes->numSuccedents == 1);
    419 		wndNodes[i].succedents[0] = termNode;
    420 		termNode->antecedents[i] = &wndNodes[i];
    421 		termNode->antType[i] = rf_control;
    422 	}
    423 	RF_ASSERT(wnpNode->numSuccedents == 1);
    424 	wnpNode->succedents[0] = termNode;
    425 	termNode->antecedents[nWndNodes] = wnpNode;
    426 	termNode->antType[nWndNodes] = rf_control;
    427 	if (nfaults == 2) {
    428 		RF_ASSERT(wnqNode->numSuccedents == 1);
    429 		wnqNode->succedents[0] = termNode;
    430 		termNode->antecedents[nWndNodes + 1] = wnqNode;
    431 		termNode->antType[nWndNodes + 1] = rf_control;
    432 	}
    433 }
    434 /******************************************************************************
    435  *
    436  * creates a DAG to perform a small-write operation (either raid 5 or pq),
    437  * which is as follows:
    438  *
    439  * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
    440  *            \- Rod X      /     \----> Wnd [Und]-/
    441  *           [\- Rod X     /       \---> Wnd [Und]-/]
    442  *           [\- Roq -> Q /         \--> Wnq [Unq]-/]
    443  *
    444  * Rop = read old parity
    445  * Rod = read old data
    446  * Roq = read old "q"
    447  * Cmt = commit node
    448  * Und = unlock data disk
    449  * Unp = unlock parity disk
    450  * Unq = unlock q disk
    451  * Wnp = write new parity
    452  * Wnd = write new data
    453  * Wnq = write new "q"
    454  * [ ] denotes optional segments in the graph
    455  *
    456  * Parameters:  raidPtr   - description of the physical array
    457  *              asmap     - logical & physical addresses for this access
    458  *              bp        - buffer ptr (holds write data)
    459  *              flags     - general flags (e.g. disk locking)
    460  *              allocList - list of memory allocated in DAG creation
    461  *              pfuncs    - list of parity generating functions
    462  *              qfuncs    - list of q generating functions
    463  *
    464  * A null qfuncs indicates single fault tolerant
    465  *****************************************************************************/
    466 
    467 void
    468 rf_CommonCreateSmallWriteDAG(
    469     RF_Raid_t * raidPtr,
    470     RF_AccessStripeMap_t * asmap,
    471     RF_DagHeader_t * dag_h,
    472     void *bp,
    473     RF_RaidAccessFlags_t flags,
    474     RF_AllocListElem_t * allocList,
    475     RF_RedFuncs_t * pfuncs,
    476     RF_RedFuncs_t * qfuncs)
    477 {
    478 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
    479 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
    480 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes;
    481 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
    482 	int     i, j, nNodes, totalNumNodes, lu_flag;
    483 	RF_ReconUnitNum_t which_ru;
    484 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    485 	int     (*qfunc) (RF_DagNode_t *);
    486 	int     numDataNodes, numParityNodes;
    487 	RF_StripeNum_t parityStripeID;
    488 	RF_PhysDiskAddr_t *pda;
    489 	char   *name, *qname;
    490 	long    nfaults;
    491 
    492 	nfaults = qfuncs ? 2 : 1;
    493 	lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
    494 
    495 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    496 	    asmap->raidAddress, &which_ru);
    497 	pda = asmap->physInfo;
    498 	numDataNodes = asmap->numStripeUnitsAccessed;
    499 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
    500 
    501 	if (rf_dagDebug) {
    502 		printf("[Creating small-write DAG]\n");
    503 	}
    504 	RF_ASSERT(numDataNodes > 0);
    505 	dag_h->creator = "SmallWriteDAG";
    506 
    507 	dag_h->numCommitNodes = 1;
    508 	dag_h->numCommits = 0;
    509 	dag_h->numSuccedents = 1;
    510 
    511 	/*
    512          * DAG creation occurs in four steps:
    513          * 1. count the number of nodes in the DAG
    514          * 2. create the nodes
    515          * 3. initialize the nodes
    516          * 4. connect the nodes
    517          */
    518 
    519 	/*
    520          * Step 1. compute number of nodes in the graph
    521          */
    522 
    523 	/* number of nodes: a read and write for each data unit a redundancy
    524 	 * computation node for each parity node (nfaults * nparity) a read
    525 	 * and write for each parity unit a block and commit node (2) a
    526 	 * terminate node if atomic RMW an unlock node for each data unit,
    527 	 * redundancy unit */
    528 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
    529 	    + (nfaults * 2 * numParityNodes) + 3;
    530 	if (lu_flag) {
    531 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
    532 	}
    533 	/*
    534          * Step 2. create the nodes
    535          */
    536 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
    537 	    (RF_DagNode_t *), allocList);
    538 	i = 0;
    539 	blockNode = &nodes[i];
    540 	i += 1;
    541 	commitNode = &nodes[i];
    542 	i += 1;
    543 	readDataNodes = &nodes[i];
    544 	i += numDataNodes;
    545 	readParityNodes = &nodes[i];
    546 	i += numParityNodes;
    547 	writeDataNodes = &nodes[i];
    548 	i += numDataNodes;
    549 	writeParityNodes = &nodes[i];
    550 	i += numParityNodes;
    551 	xorNodes = &nodes[i];
    552 	i += numParityNodes;
    553 	termNode = &nodes[i];
    554 	i += 1;
    555 	if (lu_flag) {
    556 		unlockDataNodes = &nodes[i];
    557 		i += numDataNodes;
    558 		unlockParityNodes = &nodes[i];
    559 		i += numParityNodes;
    560 	} else {
    561 		unlockDataNodes = unlockParityNodes = NULL;
    562 	}
    563 	if (nfaults == 2) {
    564 		readQNodes = &nodes[i];
    565 		i += numParityNodes;
    566 		writeQNodes = &nodes[i];
    567 		i += numParityNodes;
    568 		qNodes = &nodes[i];
    569 		i += numParityNodes;
    570 		if (lu_flag) {
    571 			unlockQNodes = &nodes[i];
    572 			i += numParityNodes;
    573 		} else {
    574 			unlockQNodes = NULL;
    575 		}
    576 	} else {
    577 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
    578 	}
    579 	RF_ASSERT(i == totalNumNodes);
    580 
    581 	/*
    582          * Step 3. initialize the nodes
    583          */
    584 	/* initialize block node (Nil) */
    585 	nNodes = numDataNodes + (nfaults * numParityNodes);
    586 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    587 	    NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
    588 
    589 	/* initialize commit node (Cmt) */
    590 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    591 	    NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
    592 
    593 	/* initialize terminate node (Trm) */
    594 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    595 	    NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
    596 
    597 	/* initialize nodes which read old data (Rod) */
    598 	for (i = 0; i < numDataNodes; i++) {
    599 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    600 		    rf_GenericWakeupFunc, (nfaults * numParityNodes), 1, 4, 0, dag_h,
    601 		    "Rod", allocList);
    602 		RF_ASSERT(pda != NULL);
    603 		/* physical disk addr desc */
    604 		readDataNodes[i].params[0].p = pda;
    605 		/* buffer to hold old data */
    606 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    607 		    dag_h, pda, allocList);
    608 		readDataNodes[i].params[2].v = parityStripeID;
    609 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    610 		    lu_flag, 0, which_ru);
    611 		pda = pda->next;
    612 		for (j = 0; j < readDataNodes[i].numSuccedents; j++) {
    613 			readDataNodes[i].propList[j] = NULL;
    614 		}
    615 	}
    616 
    617 	/* initialize nodes which read old parity (Rop) */
    618 	pda = asmap->parityInfo;
    619 	i = 0;
    620 	for (i = 0; i < numParityNodes; i++) {
    621 		RF_ASSERT(pda != NULL);
    622 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
    623 		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4,
    624 		    0, dag_h, "Rop", allocList);
    625 		readParityNodes[i].params[0].p = pda;
    626 		/* buffer to hold old parity */
    627 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    628 		    dag_h, pda, allocList);
    629 		readParityNodes[i].params[2].v = parityStripeID;
    630 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    631 		    lu_flag, 0, which_ru);
    632 		pda = pda->next;
    633 		for (j = 0; j < readParityNodes[i].numSuccedents; j++) {
    634 			readParityNodes[i].propList[0] = NULL;
    635 		}
    636 	}
    637 
    638 	/* initialize nodes which read old Q (Roq) */
    639 	if (nfaults == 2) {
    640 		pda = asmap->qInfo;
    641 		for (i = 0; i < numParityNodes; i++) {
    642 			RF_ASSERT(pda != NULL);
    643 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    644 			    rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
    645 			readQNodes[i].params[0].p = pda;
    646 			/* buffer to hold old Q */
    647 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda,
    648 			    allocList);
    649 			readQNodes[i].params[2].v = parityStripeID;
    650 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    651 			    lu_flag, 0, which_ru);
    652 			pda = pda->next;
    653 			for (j = 0; j < readQNodes[i].numSuccedents; j++) {
    654 				readQNodes[i].propList[0] = NULL;
    655 			}
    656 		}
    657 	}
    658 	/* initialize nodes which write new data (Wnd) */
    659 	pda = asmap->physInfo;
    660 	for (i = 0; i < numDataNodes; i++) {
    661 		RF_ASSERT(pda != NULL);
    662 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    663 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    664 		    "Wnd", allocList);
    665 		/* physical disk addr desc */
    666 		writeDataNodes[i].params[0].p = pda;
    667 		/* buffer holding new data to be written */
    668 		writeDataNodes[i].params[1].p = pda->bufPtr;
    669 		writeDataNodes[i].params[2].v = parityStripeID;
    670 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    671 		    0, 0, which_ru);
    672 		if (lu_flag) {
    673 			/* initialize node to unlock the disk queue */
    674 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    675 			    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    676 			    "Und", allocList);
    677 			/* physical disk addr desc */
    678 			unlockDataNodes[i].params[0].p = pda;
    679 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    680 			    0, lu_flag, which_ru);
    681 		}
    682 		pda = pda->next;
    683 	}
    684 
    685 	/*
    686          * Initialize nodes which compute new parity and Q.
    687          */
    688 	/*
    689          * We use the simple XOR func in the double-XOR case, and when
    690          * we're accessing only a portion of one stripe unit. The distinction
    691          * between the two is that the regular XOR func assumes that the targbuf
    692          * is a full SU in size, and examines the pda associated with the buffer
    693          * to decide where within the buffer to XOR the data, whereas
    694          * the simple XOR func just XORs the data into the start of the buffer.
    695          */
    696 	if ((numParityNodes == 2) || ((numDataNodes == 1)
    697 		&& (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
    698 		func = pfuncs->simple;
    699 		undoFunc = rf_NullNodeUndoFunc;
    700 		name = pfuncs->SimpleName;
    701 		if (qfuncs) {
    702 			qfunc = qfuncs->simple;
    703 			qname = qfuncs->SimpleName;
    704 		} else {
    705 			qfunc = NULL;
    706 			qname = NULL;
    707 		}
    708 	} else {
    709 		func = pfuncs->regular;
    710 		undoFunc = rf_NullNodeUndoFunc;
    711 		name = pfuncs->RegularName;
    712 		if (qfuncs) {
    713 			qfunc = qfuncs->regular;
    714 			qname = qfuncs->RegularName;
    715 		} else {
    716 			qfunc = NULL;
    717 			qname = NULL;
    718 		}
    719 	}
    720 	/*
    721          * Initialize the xor nodes: params are {pda,buf}
    722          * from {Rod,Wnd,Rop} nodes, and raidPtr
    723          */
    724 	if (numParityNodes == 2) {
    725 		/* double-xor case */
    726 		for (i = 0; i < numParityNodes; i++) {
    727 			/* note: no wakeup func for xor */
    728 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL,
    729 			    1, (numDataNodes + numParityNodes), 7, 1, dag_h, name, allocList);
    730 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
    731 			xorNodes[i].params[0] = readDataNodes[i].params[0];
    732 			xorNodes[i].params[1] = readDataNodes[i].params[1];
    733 			xorNodes[i].params[2] = readParityNodes[i].params[0];
    734 			xorNodes[i].params[3] = readParityNodes[i].params[1];
    735 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
    736 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
    737 			xorNodes[i].params[6].p = raidPtr;
    738 			/* use old parity buf as target buf */
    739 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;
    740 			if (nfaults == 2) {
    741 				/* note: no wakeup func for qor */
    742 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
    743 				    (numDataNodes + numParityNodes), 7, 1, dag_h, qname, allocList);
    744 				qNodes[i].params[0] = readDataNodes[i].params[0];
    745 				qNodes[i].params[1] = readDataNodes[i].params[1];
    746 				qNodes[i].params[2] = readQNodes[i].params[0];
    747 				qNodes[i].params[3] = readQNodes[i].params[1];
    748 				qNodes[i].params[4] = writeDataNodes[i].params[0];
    749 				qNodes[i].params[5] = writeDataNodes[i].params[1];
    750 				qNodes[i].params[6].p = raidPtr;
    751 				/* use old Q buf as target buf */
    752 				qNodes[i].results[0] = readQNodes[i].params[1].p;
    753 			}
    754 		}
    755 	} else {
    756 		/* there is only one xor node in this case */
    757 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, 1,
    758 		    (numDataNodes + numParityNodes),
    759 		    (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
    760 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
    761 		for (i = 0; i < numDataNodes + 1; i++) {
    762 			/* set up params related to Rod and Rop nodes */
    763 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    764 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    765 		}
    766 		for (i = 0; i < numDataNodes; i++) {
    767 			/* set up params related to Wnd and Wnp nodes */
    768 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    769 			    writeDataNodes[i].params[0];
    770 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    771 			    writeDataNodes[i].params[1];
    772 		}
    773 		/* xor node needs to get at RAID information */
    774 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    775 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
    776 		if (nfaults == 2) {
    777 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
    778 			    (numDataNodes + numParityNodes),
    779 			    (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h,
    780 			    qname, allocList);
    781 			for (i = 0; i < numDataNodes; i++) {
    782 				/* set up params related to Rod */
    783 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    784 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    785 			}
    786 			/* and read old q */
    787 			qNodes[0].params[2 * numDataNodes + 0] =	/* pda */
    788 			    readQNodes[0].params[0];
    789 			qNodes[0].params[2 * numDataNodes + 1] =	/* buffer ptr */
    790 			    readQNodes[0].params[1];
    791 			for (i = 0; i < numDataNodes; i++) {
    792 				/* set up params related to Wnd nodes */
    793 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    794 				    writeDataNodes[i].params[0];
    795 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    796 				    writeDataNodes[i].params[1];
    797 			}
    798 			/* xor node needs to get at RAID information */
    799 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    800 			qNodes[0].results[0] = readQNodes[0].params[1].p;
    801 		}
    802 	}
    803 
    804 	/* initialize nodes which write new parity (Wnp) */
    805 	pda = asmap->parityInfo;
    806 	for (i = 0; i < numParityNodes; i++) {
    807 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    808 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    809 		    "Wnp", allocList);
    810 		RF_ASSERT(pda != NULL);
    811 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    812 							 * filled in by xor node */
    813 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
    814 										 * parity write
    815 										 * operation */
    816 		writeParityNodes[i].params[2].v = parityStripeID;
    817 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    818 		    0, 0, which_ru);
    819 		if (lu_flag) {
    820 			/* initialize node to unlock the disk queue */
    821 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    822 			    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    823 			    "Unp", allocList);
    824 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
    825 								 * desc */
    826 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    827 			    0, lu_flag, which_ru);
    828 		}
    829 		pda = pda->next;
    830 	}
    831 
    832 	/* initialize nodes which write new Q (Wnq) */
    833 	if (nfaults == 2) {
    834 		pda = asmap->qInfo;
    835 		for (i = 0; i < numParityNodes; i++) {
    836 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    837 			    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    838 			    "Wnq", allocList);
    839 			RF_ASSERT(pda != NULL);
    840 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    841 								 * filled in by xor node */
    842 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
    843 										 * parity write
    844 										 * operation */
    845 			writeQNodes[i].params[2].v = parityStripeID;
    846 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    847 			    0, 0, which_ru);
    848 			if (lu_flag) {
    849 				/* initialize node to unlock the disk queue */
    850 				rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    851 				    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    852 				    "Unq", allocList);
    853 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
    854 									 * desc */
    855 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    856 				    0, lu_flag, which_ru);
    857 			}
    858 			pda = pda->next;
    859 		}
    860 	}
    861 	/*
    862          * Step 4. connect the nodes.
    863          */
    864 
    865 	/* connect header to block node */
    866 	dag_h->succedents[0] = blockNode;
    867 
    868 	/* connect block node to read old data nodes */
    869 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
    870 	for (i = 0; i < numDataNodes; i++) {
    871 		blockNode->succedents[i] = &readDataNodes[i];
    872 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
    873 		readDataNodes[i].antecedents[0] = blockNode;
    874 		readDataNodes[i].antType[0] = rf_control;
    875 	}
    876 
    877 	/* connect block node to read old parity nodes */
    878 	for (i = 0; i < numParityNodes; i++) {
    879 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
    880 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
    881 		readParityNodes[i].antecedents[0] = blockNode;
    882 		readParityNodes[i].antType[0] = rf_control;
    883 	}
    884 
    885 	/* connect block node to read old Q nodes */
    886 	if (nfaults == 2) {
    887 		for (i = 0; i < numParityNodes; i++) {
    888 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
    889 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
    890 			readQNodes[i].antecedents[0] = blockNode;
    891 			readQNodes[i].antType[0] = rf_control;
    892 		}
    893 	}
    894 	/* connect read old data nodes to xor nodes */
    895 	for (i = 0; i < numDataNodes; i++) {
    896 		RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes));
    897 		for (j = 0; j < numParityNodes; j++) {
    898 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
    899 			readDataNodes[i].succedents[j] = &xorNodes[j];
    900 			xorNodes[j].antecedents[i] = &readDataNodes[i];
    901 			xorNodes[j].antType[i] = rf_trueData;
    902 		}
    903 	}
    904 
    905 	/* connect read old data nodes to q nodes */
    906 	if (nfaults == 2) {
    907 		for (i = 0; i < numDataNodes; i++) {
    908 			for (j = 0; j < numParityNodes; j++) {
    909 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
    910 				readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j];
    911 				qNodes[j].antecedents[i] = &readDataNodes[i];
    912 				qNodes[j].antType[i] = rf_trueData;
    913 			}
    914 		}
    915 	}
    916 	/* connect read old parity nodes to xor nodes */
    917 	for (i = 0; i < numParityNodes; i++) {
    918 		RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    919 		for (j = 0; j < numParityNodes; j++) {
    920 			readParityNodes[i].succedents[j] = &xorNodes[j];
    921 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    922 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
    923 		}
    924 	}
    925 
    926 	/* connect read old q nodes to q nodes */
    927 	if (nfaults == 2) {
    928 		for (i = 0; i < numParityNodes; i++) {
    929 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    930 			for (j = 0; j < numParityNodes; j++) {
    931 				readQNodes[i].succedents[j] = &qNodes[j];
    932 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
    933 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
    934 			}
    935 		}
    936 	}
    937 	/* connect xor nodes to commit node */
    938 	RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
    939 	for (i = 0; i < numParityNodes; i++) {
    940 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
    941 		xorNodes[i].succedents[0] = commitNode;
    942 		commitNode->antecedents[i] = &xorNodes[i];
    943 		commitNode->antType[i] = rf_control;
    944 	}
    945 
    946 	/* connect q nodes to commit node */
    947 	if (nfaults == 2) {
    948 		for (i = 0; i < numParityNodes; i++) {
    949 			RF_ASSERT(qNodes[i].numSuccedents == 1);
    950 			qNodes[i].succedents[0] = commitNode;
    951 			commitNode->antecedents[i + numParityNodes] = &qNodes[i];
    952 			commitNode->antType[i + numParityNodes] = rf_control;
    953 		}
    954 	}
    955 	/* connect commit node to write nodes */
    956 	RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
    957 	for (i = 0; i < numDataNodes; i++) {
    958 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
    959 		commitNode->succedents[i] = &writeDataNodes[i];
    960 		writeDataNodes[i].antecedents[0] = commitNode;
    961 		writeDataNodes[i].antType[0] = rf_trueData;
    962 	}
    963 	for (i = 0; i < numParityNodes; i++) {
    964 		RF_ASSERT(writeParityNodes[i].numAntecedents == 1);
    965 		commitNode->succedents[i + numDataNodes] = &writeParityNodes[i];
    966 		writeParityNodes[i].antecedents[0] = commitNode;
    967 		writeParityNodes[i].antType[0] = rf_trueData;
    968 	}
    969 	if (nfaults == 2) {
    970 		for (i = 0; i < numParityNodes; i++) {
    971 			RF_ASSERT(writeQNodes[i].numAntecedents == 1);
    972 			commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i];
    973 			writeQNodes[i].antecedents[0] = commitNode;
    974 			writeQNodes[i].antType[0] = rf_trueData;
    975 		}
    976 	}
    977 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    978 	RF_ASSERT(termNode->numSuccedents == 0);
    979 	for (i = 0; i < numDataNodes; i++) {
    980 		if (lu_flag) {
    981 			/* connect write new data nodes to unlock nodes */
    982 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    983 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
    984 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
    985 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
    986 			unlockDataNodes[i].antType[0] = rf_control;
    987 
    988 			/* connect unlock nodes to term node */
    989 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
    990 			unlockDataNodes[i].succedents[0] = termNode;
    991 			termNode->antecedents[i] = &unlockDataNodes[i];
    992 			termNode->antType[i] = rf_control;
    993 		} else {
    994 			/* connect write new data nodes to term node */
    995 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    996 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    997 			writeDataNodes[i].succedents[0] = termNode;
    998 			termNode->antecedents[i] = &writeDataNodes[i];
    999 			termNode->antType[i] = rf_control;
   1000 		}
   1001 	}
   1002 
   1003 	for (i = 0; i < numParityNodes; i++) {
   1004 		if (lu_flag) {
   1005 			/* connect write new parity nodes to unlock nodes */
   1006 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1007 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1008 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1009 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1010 			unlockParityNodes[i].antType[0] = rf_control;
   1011 
   1012 			/* connect unlock nodes to term node */
   1013 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1014 			unlockParityNodes[i].succedents[0] = termNode;
   1015 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1016 			termNode->antType[numDataNodes + i] = rf_control;
   1017 		} else {
   1018 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1019 			writeParityNodes[i].succedents[0] = termNode;
   1020 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1021 			termNode->antType[numDataNodes + i] = rf_control;
   1022 		}
   1023 	}
   1024 
   1025 	if (nfaults == 2) {
   1026 		for (i = 0; i < numParityNodes; i++) {
   1027 			if (lu_flag) {
   1028 				/* connect write new Q nodes to unlock nodes */
   1029 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1030 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1031 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1032 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1033 				unlockQNodes[i].antType[0] = rf_control;
   1034 
   1035 				/* connect unlock nodes to unblock node */
   1036 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1037 				unlockQNodes[i].succedents[0] = termNode;
   1038 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1039 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1040 			} else {
   1041 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1042 				writeQNodes[i].succedents[0] = termNode;
   1043 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1044 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1045 			}
   1046 		}
   1047 	}
   1048 }
   1049 
   1050 
   1051 /******************************************************************************
   1052  * create a write graph (fault-free or degraded) for RAID level 1
   1053  *
   1054  * Hdr -> Commit -> Wpd -> Nil -> Trm
   1055  *               -> Wsd ->
   1056  *
   1057  * The "Wpd" node writes data to the primary copy in the mirror pair
   1058  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1059  *
   1060  * Parameters:  raidPtr   - description of the physical array
   1061  *              asmap     - logical & physical addresses for this access
   1062  *              bp        - buffer ptr (holds write data)
   1063  *              flags     - general flags (e.g. disk locking)
   1064  *              allocList - list of memory allocated in DAG creation
   1065  *****************************************************************************/
   1066 
   1067 void
   1068 rf_CreateRaidOneWriteDAG(
   1069     RF_Raid_t * raidPtr,
   1070     RF_AccessStripeMap_t * asmap,
   1071     RF_DagHeader_t * dag_h,
   1072     void *bp,
   1073     RF_RaidAccessFlags_t flags,
   1074     RF_AllocListElem_t * allocList)
   1075 {
   1076 	RF_DagNode_t *unblockNode, *termNode, *commitNode;
   1077 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   1078 	int     nWndNodes, nWmirNodes, i;
   1079 	RF_ReconUnitNum_t which_ru;
   1080 	RF_PhysDiskAddr_t *pda, *pdaP;
   1081 	RF_StripeNum_t parityStripeID;
   1082 
   1083 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   1084 	    asmap->raidAddress, &which_ru);
   1085 	if (rf_dagDebug) {
   1086 		printf("[Creating RAID level 1 write DAG]\n");
   1087 	}
   1088 	dag_h->creator = "RaidOneWriteDAG";
   1089 
   1090 	/* 2 implies access not SU aligned */
   1091 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
   1092 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   1093 
   1094 	/* alloc the Wnd nodes and the Wmir node */
   1095 	if (asmap->numDataFailed == 1)
   1096 		nWndNodes--;
   1097 	if (asmap->numParityFailed == 1)
   1098 		nWmirNodes--;
   1099 
   1100 	/* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
   1101 	 * + terminator) */
   1102 	RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t),
   1103 	    (RF_DagNode_t *), allocList);
   1104 	i = 0;
   1105 	wndNode = &nodes[i];
   1106 	i += nWndNodes;
   1107 	wmirNode = &nodes[i];
   1108 	i += nWmirNodes;
   1109 	commitNode = &nodes[i];
   1110 	i += 1;
   1111 	unblockNode = &nodes[i];
   1112 	i += 1;
   1113 	termNode = &nodes[i];
   1114 	i += 1;
   1115 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   1116 
   1117 	/* this dag can commit immediately */
   1118 	dag_h->numCommitNodes = 1;
   1119 	dag_h->numCommits = 0;
   1120 	dag_h->numSuccedents = 1;
   1121 
   1122 	/* initialize the commit, unblock, and term nodes */
   1123 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
   1124 	    NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Cmt", allocList);
   1125 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
   1126 	    NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
   1127 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
   1128 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
   1129 
   1130 	/* initialize the wnd nodes */
   1131 	if (nWndNodes > 0) {
   1132 		pda = asmap->physInfo;
   1133 		for (i = 0; i < nWndNodes; i++) {
   1134 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1135 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
   1136 			RF_ASSERT(pda != NULL);
   1137 			wndNode[i].params[0].p = pda;
   1138 			wndNode[i].params[1].p = pda->bufPtr;
   1139 			wndNode[i].params[2].v = parityStripeID;
   1140 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1141 			pda = pda->next;
   1142 		}
   1143 		RF_ASSERT(pda == NULL);
   1144 	}
   1145 	/* initialize the mirror nodes */
   1146 	if (nWmirNodes > 0) {
   1147 		pda = asmap->physInfo;
   1148 		pdaP = asmap->parityInfo;
   1149 		for (i = 0; i < nWmirNodes; i++) {
   1150 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1151 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
   1152 			RF_ASSERT(pda != NULL);
   1153 			wmirNode[i].params[0].p = pdaP;
   1154 			wmirNode[i].params[1].p = pda->bufPtr;
   1155 			wmirNode[i].params[2].v = parityStripeID;
   1156 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1157 			pda = pda->next;
   1158 			pdaP = pdaP->next;
   1159 		}
   1160 		RF_ASSERT(pda == NULL);
   1161 		RF_ASSERT(pdaP == NULL);
   1162 	}
   1163 	/* link the header node to the commit node */
   1164 	RF_ASSERT(dag_h->numSuccedents == 1);
   1165 	RF_ASSERT(commitNode->numAntecedents == 0);
   1166 	dag_h->succedents[0] = commitNode;
   1167 
   1168 	/* link the commit node to the write nodes */
   1169 	RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
   1170 	for (i = 0; i < nWndNodes; i++) {
   1171 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   1172 		commitNode->succedents[i] = &wndNode[i];
   1173 		wndNode[i].antecedents[0] = commitNode;
   1174 		wndNode[i].antType[0] = rf_control;
   1175 	}
   1176 	for (i = 0; i < nWmirNodes; i++) {
   1177 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   1178 		commitNode->succedents[i + nWndNodes] = &wmirNode[i];
   1179 		wmirNode[i].antecedents[0] = commitNode;
   1180 		wmirNode[i].antType[0] = rf_control;
   1181 	}
   1182 
   1183 	/* link the write nodes to the unblock node */
   1184 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   1185 	for (i = 0; i < nWndNodes; i++) {
   1186 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   1187 		wndNode[i].succedents[0] = unblockNode;
   1188 		unblockNode->antecedents[i] = &wndNode[i];
   1189 		unblockNode->antType[i] = rf_control;
   1190 	}
   1191 	for (i = 0; i < nWmirNodes; i++) {
   1192 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   1193 		wmirNode[i].succedents[0] = unblockNode;
   1194 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   1195 		unblockNode->antType[i + nWndNodes] = rf_control;
   1196 	}
   1197 
   1198 	/* link the unblock node to the term node */
   1199 	RF_ASSERT(unblockNode->numSuccedents == 1);
   1200 	RF_ASSERT(termNode->numAntecedents == 1);
   1201 	RF_ASSERT(termNode->numSuccedents == 0);
   1202 	unblockNode->succedents[0] = termNode;
   1203 	termNode->antecedents[0] = unblockNode;
   1204 	termNode->antType[0] = rf_control;
   1205 }
   1206 
   1207 
   1208 
   1209 /* DAGs which have no commit points.
   1210  *
   1211  * The following DAGs are used in forward and backward error recovery experiments.
   1212  * They are identical to the DAGs above this comment with the exception that the
   1213  * the commit points have been removed.
   1214  */
   1215 
   1216 
   1217 
   1218 void
   1219 rf_CommonCreateLargeWriteDAGFwd(
   1220     RF_Raid_t * raidPtr,
   1221     RF_AccessStripeMap_t * asmap,
   1222     RF_DagHeader_t * dag_h,
   1223     void *bp,
   1224     RF_RaidAccessFlags_t flags,
   1225     RF_AllocListElem_t * allocList,
   1226     int nfaults,
   1227     int (*redFunc) (RF_DagNode_t *),
   1228     int allowBufferRecycle)
   1229 {
   1230 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
   1231 	RF_DagNode_t *wnqNode, *blockNode, *syncNode, *termNode;
   1232 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
   1233 	RF_AccessStripeMapHeader_t *new_asm_h[2];
   1234 	RF_StripeNum_t parityStripeID;
   1235 	char   *sosBuffer, *eosBuffer;
   1236 	RF_ReconUnitNum_t which_ru;
   1237 	RF_RaidLayout_t *layoutPtr;
   1238 	RF_PhysDiskAddr_t *pda;
   1239 
   1240 	layoutPtr = &(raidPtr->Layout);
   1241 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
   1242 
   1243 	if (rf_dagDebug)
   1244 		printf("[Creating large-write DAG]\n");
   1245 	dag_h->creator = "LargeWriteDAGFwd";
   1246 
   1247 	dag_h->numCommitNodes = 0;
   1248 	dag_h->numCommits = 0;
   1249 	dag_h->numSuccedents = 1;
   1250 
   1251 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
   1252 	nWndNodes = asmap->numStripeUnitsAccessed;
   1253 	RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1254 	i = 0;
   1255 	wndNodes = &nodes[i];
   1256 	i += nWndNodes;
   1257 	xorNode = &nodes[i];
   1258 	i += 1;
   1259 	wnpNode = &nodes[i];
   1260 	i += 1;
   1261 	blockNode = &nodes[i];
   1262 	i += 1;
   1263 	syncNode = &nodes[i];
   1264 	i += 1;
   1265 	termNode = &nodes[i];
   1266 	i += 1;
   1267 	if (nfaults == 2) {
   1268 		wnqNode = &nodes[i];
   1269 		i += 1;
   1270 	} else {
   1271 		wnqNode = NULL;
   1272 	}
   1273 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
   1274 	if (nRodNodes > 0) {
   1275 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1276 	} else {
   1277 		rodNodes = NULL;
   1278 	}
   1279 
   1280 	/* begin node initialization */
   1281 	if (nRodNodes > 0) {
   1282 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1283 		rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes, 0, 0, dag_h, "Nil", allocList);
   1284 	} else {
   1285 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
   1286 		rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, 1, 0, 0, dag_h, "Nil", allocList);
   1287 	}
   1288 
   1289 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
   1290 
   1291 	/* initialize the Rod nodes */
   1292 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
   1293 		if (new_asm_h[asmNum]) {
   1294 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
   1295 			while (pda) {
   1296 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
   1297 				rodNodes[nodeNum].params[0].p = pda;
   1298 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
   1299 				rodNodes[nodeNum].params[2].v = parityStripeID;
   1300 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1301 				nodeNum++;
   1302 				pda = pda->next;
   1303 			}
   1304 		}
   1305 	}
   1306 	RF_ASSERT(nodeNum == nRodNodes);
   1307 
   1308 	/* initialize the wnd nodes */
   1309 	pda = asmap->physInfo;
   1310 	for (i = 0; i < nWndNodes; i++) {
   1311 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
   1312 		RF_ASSERT(pda != NULL);
   1313 		wndNodes[i].params[0].p = pda;
   1314 		wndNodes[i].params[1].p = pda->bufPtr;
   1315 		wndNodes[i].params[2].v = parityStripeID;
   1316 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1317 		pda = pda->next;
   1318 	}
   1319 
   1320 	/* initialize the redundancy node */
   1321 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nfaults, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
   1322 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
   1323 	for (i = 0; i < nWndNodes; i++) {
   1324 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
   1325 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
   1326 	}
   1327 	for (i = 0; i < nRodNodes; i++) {
   1328 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
   1329 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
   1330 	}
   1331 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
   1332 									 * at RAID information */
   1333 
   1334 	/* look for an Rod node that reads a complete SU.  If none, alloc a
   1335 	 * buffer to receive the parity info. Note that we can't use a new
   1336 	 * data buffer because it will not have gotten written when the xor
   1337 	 * occurs. */
   1338 	if (allowBufferRecycle) {
   1339 		for (i = 0; i < nRodNodes; i++)
   1340 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
   1341 				break;
   1342 	}
   1343 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
   1344 		RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
   1345 	} else
   1346 		xorNode->results[0] = rodNodes[i].params[1].p;
   1347 
   1348 	/* initialize the Wnp node */
   1349 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
   1350 	wnpNode->params[0].p = asmap->parityInfo;
   1351 	wnpNode->params[1].p = xorNode->results[0];
   1352 	wnpNode->params[2].v = parityStripeID;
   1353 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1354 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
   1355 							 * describe entire
   1356 							 * parity unit */
   1357 
   1358 	if (nfaults == 2) {
   1359 		/* we never try to recycle a buffer for the Q calcuation in
   1360 		 * addition to the parity. This would cause two buffers to get
   1361 		 * smashed during the P and Q calculation, guaranteeing one
   1362 		 * would be wrong. */
   1363 		RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
   1364 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
   1365 		wnqNode->params[0].p = asmap->qInfo;
   1366 		wnqNode->params[1].p = xorNode->results[1];
   1367 		wnqNode->params[2].v = parityStripeID;
   1368 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1369 		RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
   1370 								 * describe entire
   1371 								 * parity unit */
   1372 	}
   1373 	/* connect nodes to form graph */
   1374 
   1375 	/* connect dag header to block node */
   1376 	RF_ASSERT(blockNode->numAntecedents == 0);
   1377 	dag_h->succedents[0] = blockNode;
   1378 
   1379 	if (nRodNodes > 0) {
   1380 		/* connect the block node to the Rod nodes */
   1381 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
   1382 		RF_ASSERT(syncNode->numAntecedents == nRodNodes);
   1383 		for (i = 0; i < nRodNodes; i++) {
   1384 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
   1385 			blockNode->succedents[i] = &rodNodes[i];
   1386 			rodNodes[i].antecedents[0] = blockNode;
   1387 			rodNodes[i].antType[0] = rf_control;
   1388 
   1389 			/* connect the Rod nodes to the Nil node */
   1390 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
   1391 			rodNodes[i].succedents[0] = syncNode;
   1392 			syncNode->antecedents[i] = &rodNodes[i];
   1393 			syncNode->antType[i] = rf_trueData;
   1394 		}
   1395 	} else {
   1396 		/* connect the block node to the Nil node */
   1397 		RF_ASSERT(blockNode->numSuccedents == 1);
   1398 		RF_ASSERT(syncNode->numAntecedents == 1);
   1399 		blockNode->succedents[0] = syncNode;
   1400 		syncNode->antecedents[0] = blockNode;
   1401 		syncNode->antType[0] = rf_control;
   1402 	}
   1403 
   1404 	/* connect the sync node to the Wnd nodes */
   1405 	RF_ASSERT(syncNode->numSuccedents == (1 + nWndNodes));
   1406 	for (i = 0; i < nWndNodes; i++) {
   1407 		RF_ASSERT(wndNodes->numAntecedents == 1);
   1408 		syncNode->succedents[i] = &wndNodes[i];
   1409 		wndNodes[i].antecedents[0] = syncNode;
   1410 		wndNodes[i].antType[0] = rf_control;
   1411 	}
   1412 
   1413 	/* connect the sync node to the Xor node */
   1414 	RF_ASSERT(xorNode->numAntecedents == 1);
   1415 	syncNode->succedents[nWndNodes] = xorNode;
   1416 	xorNode->antecedents[0] = syncNode;
   1417 	xorNode->antType[0] = rf_control;
   1418 
   1419 	/* connect the xor node to the write parity node */
   1420 	RF_ASSERT(xorNode->numSuccedents == nfaults);
   1421 	RF_ASSERT(wnpNode->numAntecedents == 1);
   1422 	xorNode->succedents[0] = wnpNode;
   1423 	wnpNode->antecedents[0] = xorNode;
   1424 	wnpNode->antType[0] = rf_trueData;
   1425 	if (nfaults == 2) {
   1426 		RF_ASSERT(wnqNode->numAntecedents == 1);
   1427 		xorNode->succedents[1] = wnqNode;
   1428 		wnqNode->antecedents[0] = xorNode;
   1429 		wnqNode->antType[0] = rf_trueData;
   1430 	}
   1431 	/* connect the write nodes to the term node */
   1432 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
   1433 	RF_ASSERT(termNode->numSuccedents == 0);
   1434 	for (i = 0; i < nWndNodes; i++) {
   1435 		RF_ASSERT(wndNodes->numSuccedents == 1);
   1436 		wndNodes[i].succedents[0] = termNode;
   1437 		termNode->antecedents[i] = &wndNodes[i];
   1438 		termNode->antType[i] = rf_control;
   1439 	}
   1440 	RF_ASSERT(wnpNode->numSuccedents == 1);
   1441 	wnpNode->succedents[0] = termNode;
   1442 	termNode->antecedents[nWndNodes] = wnpNode;
   1443 	termNode->antType[nWndNodes] = rf_control;
   1444 	if (nfaults == 2) {
   1445 		RF_ASSERT(wnqNode->numSuccedents == 1);
   1446 		wnqNode->succedents[0] = termNode;
   1447 		termNode->antecedents[nWndNodes + 1] = wnqNode;
   1448 		termNode->antType[nWndNodes + 1] = rf_control;
   1449 	}
   1450 }
   1451 
   1452 
   1453 /******************************************************************************
   1454  *
   1455  * creates a DAG to perform a small-write operation (either raid 5 or pq),
   1456  * which is as follows:
   1457  *
   1458  * Hdr -> Nil -> Rop - Xor - Wnp [Unp] -- Trm
   1459  *            \- Rod X- Wnd [Und] -------/
   1460  *           [\- Rod X- Wnd [Und] ------/]
   1461  *           [\- Roq - Q --> Wnq [Unq]-/]
   1462  *
   1463  * Rop = read old parity
   1464  * Rod = read old data
   1465  * Roq = read old "q"
   1466  * Cmt = commit node
   1467  * Und = unlock data disk
   1468  * Unp = unlock parity disk
   1469  * Unq = unlock q disk
   1470  * Wnp = write new parity
   1471  * Wnd = write new data
   1472  * Wnq = write new "q"
   1473  * [ ] denotes optional segments in the graph
   1474  *
   1475  * Parameters:  raidPtr   - description of the physical array
   1476  *              asmap     - logical & physical addresses for this access
   1477  *              bp        - buffer ptr (holds write data)
   1478  *              flags     - general flags (e.g. disk locking)
   1479  *              allocList - list of memory allocated in DAG creation
   1480  *              pfuncs    - list of parity generating functions
   1481  *              qfuncs    - list of q generating functions
   1482  *
   1483  * A null qfuncs indicates single fault tolerant
   1484  *****************************************************************************/
   1485 
   1486 void
   1487 rf_CommonCreateSmallWriteDAGFwd(
   1488     RF_Raid_t * raidPtr,
   1489     RF_AccessStripeMap_t * asmap,
   1490     RF_DagHeader_t * dag_h,
   1491     void *bp,
   1492     RF_RaidAccessFlags_t flags,
   1493     RF_AllocListElem_t * allocList,
   1494     RF_RedFuncs_t * pfuncs,
   1495     RF_RedFuncs_t * qfuncs)
   1496 {
   1497 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
   1498 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
   1499 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *nodes;
   1500 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
   1501 	int     i, j, nNodes, totalNumNodes, lu_flag;
   1502 	RF_ReconUnitNum_t which_ru;
   1503 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
   1504 	int     (*qfunc) (RF_DagNode_t *);
   1505 	int     numDataNodes, numParityNodes;
   1506 	RF_StripeNum_t parityStripeID;
   1507 	RF_PhysDiskAddr_t *pda;
   1508 	char   *name, *qname;
   1509 	long    nfaults;
   1510 
   1511 	nfaults = qfuncs ? 2 : 1;
   1512 	lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
   1513 
   1514 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
   1515 	pda = asmap->physInfo;
   1516 	numDataNodes = asmap->numStripeUnitsAccessed;
   1517 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
   1518 
   1519 	if (rf_dagDebug)
   1520 		printf("[Creating small-write DAG]\n");
   1521 	RF_ASSERT(numDataNodes > 0);
   1522 	dag_h->creator = "SmallWriteDAGFwd";
   1523 
   1524 	dag_h->numCommitNodes = 0;
   1525 	dag_h->numCommits = 0;
   1526 	dag_h->numSuccedents = 1;
   1527 
   1528 	qfunc = NULL;
   1529 	qname = NULL;
   1530 
   1531 	/* DAG creation occurs in four steps: 1. count the number of nodes in
   1532 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
   1533 	 * nodes */
   1534 
   1535 	/* Step 1. compute number of nodes in the graph */
   1536 
   1537 	/* number of nodes: a read and write for each data unit a redundancy
   1538 	 * computation node for each parity node (nfaults * nparity) a read
   1539 	 * and write for each parity unit a block node a terminate node if
   1540 	 * atomic RMW an unlock node for each data unit, redundancy unit */
   1541 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 2;
   1542 	if (lu_flag)
   1543 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
   1544 
   1545 
   1546 	/* Step 2. create the nodes */
   1547 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1548 	i = 0;
   1549 	blockNode = &nodes[i];
   1550 	i += 1;
   1551 	readDataNodes = &nodes[i];
   1552 	i += numDataNodes;
   1553 	readParityNodes = &nodes[i];
   1554 	i += numParityNodes;
   1555 	writeDataNodes = &nodes[i];
   1556 	i += numDataNodes;
   1557 	writeParityNodes = &nodes[i];
   1558 	i += numParityNodes;
   1559 	xorNodes = &nodes[i];
   1560 	i += numParityNodes;
   1561 	termNode = &nodes[i];
   1562 	i += 1;
   1563 	if (lu_flag) {
   1564 		unlockDataNodes = &nodes[i];
   1565 		i += numDataNodes;
   1566 		unlockParityNodes = &nodes[i];
   1567 		i += numParityNodes;
   1568 	} else {
   1569 		unlockDataNodes = unlockParityNodes = NULL;
   1570 	}
   1571 	if (nfaults == 2) {
   1572 		readQNodes = &nodes[i];
   1573 		i += numParityNodes;
   1574 		writeQNodes = &nodes[i];
   1575 		i += numParityNodes;
   1576 		qNodes = &nodes[i];
   1577 		i += numParityNodes;
   1578 		if (lu_flag) {
   1579 			unlockQNodes = &nodes[i];
   1580 			i += numParityNodes;
   1581 		} else {
   1582 			unlockQNodes = NULL;
   1583 		}
   1584 	} else {
   1585 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
   1586 	}
   1587 	RF_ASSERT(i == totalNumNodes);
   1588 
   1589 	/* Step 3. initialize the nodes */
   1590 	/* initialize block node (Nil) */
   1591 	nNodes = numDataNodes + (nfaults * numParityNodes);
   1592 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1593 
   1594 	/* initialize terminate node (Trm) */
   1595 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
   1596 
   1597 	/* initialize nodes which read old data (Rod) */
   1598 	for (i = 0; i < numDataNodes; i++) {
   1599 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, (numParityNodes * nfaults) + 1, 1, 4, 0, dag_h, "Rod", allocList);
   1600 		RF_ASSERT(pda != NULL);
   1601 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
   1602 							 * desc */
   1603 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
   1604 												 * data */
   1605 		readDataNodes[i].params[2].v = parityStripeID;
   1606 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1607 		pda = pda->next;
   1608 		for (j = 0; j < readDataNodes[i].numSuccedents; j++)
   1609 			readDataNodes[i].propList[j] = NULL;
   1610 	}
   1611 
   1612 	/* initialize nodes which read old parity (Rop) */
   1613 	pda = asmap->parityInfo;
   1614 	i = 0;
   1615 	for (i = 0; i < numParityNodes; i++) {
   1616 		RF_ASSERT(pda != NULL);
   1617 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Rop", allocList);
   1618 		readParityNodes[i].params[0].p = pda;
   1619 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
   1620 													 * parity */
   1621 		readParityNodes[i].params[2].v = parityStripeID;
   1622 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1623 		for (j = 0; j < readParityNodes[i].numSuccedents; j++)
   1624 			readParityNodes[i].propList[0] = NULL;
   1625 		pda = pda->next;
   1626 	}
   1627 
   1628 	/* initialize nodes which read old Q (Roq) */
   1629 	if (nfaults == 2) {
   1630 		pda = asmap->qInfo;
   1631 		for (i = 0; i < numParityNodes; i++) {
   1632 			RF_ASSERT(pda != NULL);
   1633 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
   1634 			readQNodes[i].params[0].p = pda;
   1635 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old Q */
   1636 			readQNodes[i].params[2].v = parityStripeID;
   1637 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1638 			for (j = 0; j < readQNodes[i].numSuccedents; j++)
   1639 				readQNodes[i].propList[0] = NULL;
   1640 			pda = pda->next;
   1641 		}
   1642 	}
   1643 	/* initialize nodes which write new data (Wnd) */
   1644 	pda = asmap->physInfo;
   1645 	for (i = 0; i < numDataNodes; i++) {
   1646 		RF_ASSERT(pda != NULL);
   1647 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
   1648 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
   1649 							 * desc */
   1650 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
   1651 								 * data to be written */
   1652 		writeDataNodes[i].params[2].v = parityStripeID;
   1653 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1654 
   1655 		if (lu_flag) {
   1656 			/* initialize node to unlock the disk queue */
   1657 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
   1658 			unlockDataNodes[i].params[0].p = pda;	/* physical disk addr
   1659 								 * desc */
   1660 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1661 		}
   1662 		pda = pda->next;
   1663 	}
   1664 
   1665 
   1666 	/* initialize nodes which compute new parity and Q */
   1667 	/* we use the simple XOR func in the double-XOR case, and when we're
   1668 	 * accessing only a portion of one stripe unit. the distinction
   1669 	 * between the two is that the regular XOR func assumes that the
   1670 	 * targbuf is a full SU in size, and examines the pda associated with
   1671 	 * the buffer to decide where within the buffer to XOR the data,
   1672 	 * whereas the simple XOR func just XORs the data into the start of
   1673 	 * the buffer. */
   1674 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
   1675 		func = pfuncs->simple;
   1676 		undoFunc = rf_NullNodeUndoFunc;
   1677 		name = pfuncs->SimpleName;
   1678 		if (qfuncs) {
   1679 			qfunc = qfuncs->simple;
   1680 			qname = qfuncs->SimpleName;
   1681 		}
   1682 	} else {
   1683 		func = pfuncs->regular;
   1684 		undoFunc = rf_NullNodeUndoFunc;
   1685 		name = pfuncs->RegularName;
   1686 		if (qfuncs) {
   1687 			qfunc = qfuncs->regular;
   1688 			qname = qfuncs->RegularName;
   1689 		}
   1690 	}
   1691 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
   1692 	 * nodes, and raidPtr  */
   1693 	if (numParityNodes == 2) {	/* double-xor case */
   1694 		for (i = 0; i < numParityNodes; i++) {
   1695 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
   1696 																						 * xor */
   1697 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
   1698 			xorNodes[i].params[0] = readDataNodes[i].params[0];
   1699 			xorNodes[i].params[1] = readDataNodes[i].params[1];
   1700 			xorNodes[i].params[2] = readParityNodes[i].params[0];
   1701 			xorNodes[i].params[3] = readParityNodes[i].params[1];
   1702 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
   1703 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
   1704 			xorNodes[i].params[6].p = raidPtr;
   1705 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
   1706 											 * target buf */
   1707 			if (nfaults == 2) {
   1708 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, qname, allocList);	/* no wakeup func for
   1709 																							 * xor */
   1710 				qNodes[i].params[0] = readDataNodes[i].params[0];
   1711 				qNodes[i].params[1] = readDataNodes[i].params[1];
   1712 				qNodes[i].params[2] = readQNodes[i].params[0];
   1713 				qNodes[i].params[3] = readQNodes[i].params[1];
   1714 				qNodes[i].params[4] = writeDataNodes[i].params[0];
   1715 				qNodes[i].params[5] = writeDataNodes[i].params[1];
   1716 				qNodes[i].params[6].p = raidPtr;
   1717 				qNodes[i].results[0] = readQNodes[i].params[1].p;	/* use old Q buf as
   1718 											 * target buf */
   1719 			}
   1720 		}
   1721 	} else {
   1722 		/* there is only one xor node in this case */
   1723 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
   1724 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
   1725 		for (i = 0; i < numDataNodes + 1; i++) {
   1726 			/* set up params related to Rod and Rop nodes */
   1727 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
   1728 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
   1729 		}
   1730 		for (i = 0; i < numDataNodes; i++) {
   1731 			/* set up params related to Wnd and Wnp nodes */
   1732 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
   1733 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
   1734 		}
   1735 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
   1736 											 * at RAID information */
   1737 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
   1738 		if (nfaults == 2) {
   1739 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, qname, allocList);
   1740 			for (i = 0; i < numDataNodes; i++) {
   1741 				/* set up params related to Rod */
   1742 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
   1743 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
   1744 			}
   1745 			/* and read old q */
   1746 			qNodes[0].params[2 * numDataNodes + 0] = readQNodes[0].params[0];	/* pda */
   1747 			qNodes[0].params[2 * numDataNodes + 1] = readQNodes[0].params[1];	/* buffer pointer */
   1748 			for (i = 0; i < numDataNodes; i++) {
   1749 				/* set up params related to Wnd nodes */
   1750 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
   1751 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
   1752 			}
   1753 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
   1754 												 * at RAID information */
   1755 			qNodes[0].results[0] = readQNodes[0].params[1].p;
   1756 		}
   1757 	}
   1758 
   1759 	/* initialize nodes which write new parity (Wnp) */
   1760 	pda = asmap->parityInfo;
   1761 	for (i = 0; i < numParityNodes; i++) {
   1762 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnp", allocList);
   1763 		RF_ASSERT(pda != NULL);
   1764 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
   1765 							 * filled in by xor node */
   1766 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
   1767 										 * parity write
   1768 										 * operation */
   1769 		writeParityNodes[i].params[2].v = parityStripeID;
   1770 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1771 
   1772 		if (lu_flag) {
   1773 			/* initialize node to unlock the disk queue */
   1774 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unp", allocList);
   1775 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
   1776 								 * desc */
   1777 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1778 		}
   1779 		pda = pda->next;
   1780 	}
   1781 
   1782 	/* initialize nodes which write new Q (Wnq) */
   1783 	if (nfaults == 2) {
   1784 		pda = asmap->qInfo;
   1785 		for (i = 0; i < numParityNodes; i++) {
   1786 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnq", allocList);
   1787 			RF_ASSERT(pda != NULL);
   1788 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
   1789 								 * filled in by xor node */
   1790 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
   1791 										 * parity write
   1792 										 * operation */
   1793 			writeQNodes[i].params[2].v = parityStripeID;
   1794 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1795 
   1796 			if (lu_flag) {
   1797 				/* initialize node to unlock the disk queue */
   1798 				rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unq", allocList);
   1799 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
   1800 									 * desc */
   1801 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1802 			}
   1803 			pda = pda->next;
   1804 		}
   1805 	}
   1806 	/* Step 4. connect the nodes */
   1807 
   1808 	/* connect header to block node */
   1809 	dag_h->succedents[0] = blockNode;
   1810 
   1811 	/* connect block node to read old data nodes */
   1812 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
   1813 	for (i = 0; i < numDataNodes; i++) {
   1814 		blockNode->succedents[i] = &readDataNodes[i];
   1815 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
   1816 		readDataNodes[i].antecedents[0] = blockNode;
   1817 		readDataNodes[i].antType[0] = rf_control;
   1818 	}
   1819 
   1820 	/* connect block node to read old parity nodes */
   1821 	for (i = 0; i < numParityNodes; i++) {
   1822 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
   1823 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
   1824 		readParityNodes[i].antecedents[0] = blockNode;
   1825 		readParityNodes[i].antType[0] = rf_control;
   1826 	}
   1827 
   1828 	/* connect block node to read old Q nodes */
   1829 	if (nfaults == 2)
   1830 		for (i = 0; i < numParityNodes; i++) {
   1831 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
   1832 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
   1833 			readQNodes[i].antecedents[0] = blockNode;
   1834 			readQNodes[i].antType[0] = rf_control;
   1835 		}
   1836 
   1837 	/* connect read old data nodes to write new data nodes */
   1838 	for (i = 0; i < numDataNodes; i++) {
   1839 		RF_ASSERT(readDataNodes[i].numSuccedents == ((nfaults * numParityNodes) + 1));
   1840 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
   1841 		readDataNodes[i].succedents[0] = &writeDataNodes[i];
   1842 		writeDataNodes[i].antecedents[0] = &readDataNodes[i];
   1843 		writeDataNodes[i].antType[0] = rf_antiData;
   1844 	}
   1845 
   1846 	/* connect read old data nodes to xor nodes */
   1847 	for (i = 0; i < numDataNodes; i++) {
   1848 		for (j = 0; j < numParityNodes; j++) {
   1849 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
   1850 			readDataNodes[i].succedents[1 + j] = &xorNodes[j];
   1851 			xorNodes[j].antecedents[i] = &readDataNodes[i];
   1852 			xorNodes[j].antType[i] = rf_trueData;
   1853 		}
   1854 	}
   1855 
   1856 	/* connect read old data nodes to q nodes */
   1857 	if (nfaults == 2)
   1858 		for (i = 0; i < numDataNodes; i++)
   1859 			for (j = 0; j < numParityNodes; j++) {
   1860 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
   1861 				readDataNodes[i].succedents[1 + numParityNodes + j] = &qNodes[j];
   1862 				qNodes[j].antecedents[i] = &readDataNodes[i];
   1863 				qNodes[j].antType[i] = rf_trueData;
   1864 			}
   1865 
   1866 	/* connect read old parity nodes to xor nodes */
   1867 	for (i = 0; i < numParityNodes; i++) {
   1868 		for (j = 0; j < numParityNodes; j++) {
   1869 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
   1870 			readParityNodes[i].succedents[j] = &xorNodes[j];
   1871 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
   1872 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
   1873 		}
   1874 	}
   1875 
   1876 	/* connect read old q nodes to q nodes */
   1877 	if (nfaults == 2)
   1878 		for (i = 0; i < numParityNodes; i++) {
   1879 			for (j = 0; j < numParityNodes; j++) {
   1880 				RF_ASSERT(readQNodes[i].numSuccedents == numParityNodes);
   1881 				readQNodes[i].succedents[j] = &qNodes[j];
   1882 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
   1883 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
   1884 			}
   1885 		}
   1886 
   1887 	/* connect xor nodes to the write new parity nodes */
   1888 	for (i = 0; i < numParityNodes; i++) {
   1889 		RF_ASSERT(writeParityNodes[i].numAntecedents == numParityNodes);
   1890 		for (j = 0; j < numParityNodes; j++) {
   1891 			RF_ASSERT(xorNodes[j].numSuccedents == numParityNodes);
   1892 			xorNodes[i].succedents[j] = &writeParityNodes[j];
   1893 			writeParityNodes[j].antecedents[i] = &xorNodes[i];
   1894 			writeParityNodes[j].antType[i] = rf_trueData;
   1895 		}
   1896 	}
   1897 
   1898 	/* connect q nodes to the write new q nodes */
   1899 	if (nfaults == 2)
   1900 		for (i = 0; i < numParityNodes; i++) {
   1901 			RF_ASSERT(writeQNodes[i].numAntecedents == numParityNodes);
   1902 			for (j = 0; j < numParityNodes; j++) {
   1903 				RF_ASSERT(qNodes[j].numSuccedents == 1);
   1904 				qNodes[i].succedents[j] = &writeQNodes[j];
   1905 				writeQNodes[j].antecedents[i] = &qNodes[i];
   1906 				writeQNodes[j].antType[i] = rf_trueData;
   1907 			}
   1908 		}
   1909 
   1910 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1911 	RF_ASSERT(termNode->numSuccedents == 0);
   1912 	for (i = 0; i < numDataNodes; i++) {
   1913 		if (lu_flag) {
   1914 			/* connect write new data nodes to unlock nodes */
   1915 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1916 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
   1917 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
   1918 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
   1919 			unlockDataNodes[i].antType[0] = rf_control;
   1920 
   1921 			/* connect unlock nodes to term node */
   1922 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
   1923 			unlockDataNodes[i].succedents[0] = termNode;
   1924 			termNode->antecedents[i] = &unlockDataNodes[i];
   1925 			termNode->antType[i] = rf_control;
   1926 		} else {
   1927 			/* connect write new data nodes to term node */
   1928 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1929 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1930 			writeDataNodes[i].succedents[0] = termNode;
   1931 			termNode->antecedents[i] = &writeDataNodes[i];
   1932 			termNode->antType[i] = rf_control;
   1933 		}
   1934 	}
   1935 
   1936 	for (i = 0; i < numParityNodes; i++) {
   1937 		if (lu_flag) {
   1938 			/* connect write new parity nodes to unlock nodes */
   1939 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1940 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1941 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1942 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1943 			unlockParityNodes[i].antType[0] = rf_control;
   1944 
   1945 			/* connect unlock nodes to term node */
   1946 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1947 			unlockParityNodes[i].succedents[0] = termNode;
   1948 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1949 			termNode->antType[numDataNodes + i] = rf_control;
   1950 		} else {
   1951 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1952 			writeParityNodes[i].succedents[0] = termNode;
   1953 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1954 			termNode->antType[numDataNodes + i] = rf_control;
   1955 		}
   1956 	}
   1957 
   1958 	if (nfaults == 2)
   1959 		for (i = 0; i < numParityNodes; i++) {
   1960 			if (lu_flag) {
   1961 				/* connect write new Q nodes to unlock nodes */
   1962 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1963 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1964 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1965 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1966 				unlockQNodes[i].antType[0] = rf_control;
   1967 
   1968 				/* connect unlock nodes to unblock node */
   1969 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1970 				unlockQNodes[i].succedents[0] = termNode;
   1971 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1972 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1973 			} else {
   1974 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1975 				writeQNodes[i].succedents[0] = termNode;
   1976 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1977 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1978 			}
   1979 		}
   1980 }
   1981 
   1982 
   1983 
   1984 /******************************************************************************
   1985  * create a write graph (fault-free or degraded) for RAID level 1
   1986  *
   1987  * Hdr  Nil -> Wpd -> Nil -> Trm
   1988  *      Nil -> Wsd ->
   1989  *
   1990  * The "Wpd" node writes data to the primary copy in the mirror pair
   1991  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1992  *
   1993  * Parameters:  raidPtr   - description of the physical array
   1994  *              asmap     - logical & physical addresses for this access
   1995  *              bp        - buffer ptr (holds write data)
   1996  *              flags     - general flags (e.g. disk locking)
   1997  *              allocList - list of memory allocated in DAG creation
   1998  *****************************************************************************/
   1999 
   2000 void
   2001 rf_CreateRaidOneWriteDAGFwd(
   2002     RF_Raid_t * raidPtr,
   2003     RF_AccessStripeMap_t * asmap,
   2004     RF_DagHeader_t * dag_h,
   2005     void *bp,
   2006     RF_RaidAccessFlags_t flags,
   2007     RF_AllocListElem_t * allocList)
   2008 {
   2009 	RF_DagNode_t *blockNode, *unblockNode, *termNode;
   2010 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   2011 	int     nWndNodes, nWmirNodes, i;
   2012 	RF_ReconUnitNum_t which_ru;
   2013 	RF_PhysDiskAddr_t *pda, *pdaP;
   2014 	RF_StripeNum_t parityStripeID;
   2015 
   2016 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   2017 	    asmap->raidAddress, &which_ru);
   2018 	if (rf_dagDebug) {
   2019 		printf("[Creating RAID level 1 write DAG]\n");
   2020 	}
   2021 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;	/* 2 implies access not
   2022 							 * SU aligned */
   2023 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   2024 
   2025 	/* alloc the Wnd nodes and the Wmir node */
   2026 	if (asmap->numDataFailed == 1)
   2027 		nWndNodes--;
   2028 	if (asmap->numParityFailed == 1)
   2029 		nWmirNodes--;
   2030 
   2031 	/* total number of nodes = nWndNodes + nWmirNodes + (block + unblock +
   2032 	 * terminator) */
   2033 	RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   2034 	i = 0;
   2035 	wndNode = &nodes[i];
   2036 	i += nWndNodes;
   2037 	wmirNode = &nodes[i];
   2038 	i += nWmirNodes;
   2039 	blockNode = &nodes[i];
   2040 	i += 1;
   2041 	unblockNode = &nodes[i];
   2042 	i += 1;
   2043 	termNode = &nodes[i];
   2044 	i += 1;
   2045 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   2046 
   2047 	/* this dag can commit immediately */
   2048 	dag_h->numCommitNodes = 0;
   2049 	dag_h->numCommits = 0;
   2050 	dag_h->numSuccedents = 1;
   2051 
   2052 	/* initialize the unblock and term nodes */
   2053 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Nil", allocList);
   2054 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
   2055 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
   2056 
   2057 	/* initialize the wnd nodes */
   2058 	if (nWndNodes > 0) {
   2059 		pda = asmap->physInfo;
   2060 		for (i = 0; i < nWndNodes; i++) {
   2061 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
   2062 			RF_ASSERT(pda != NULL);
   2063 			wndNode[i].params[0].p = pda;
   2064 			wndNode[i].params[1].p = pda->bufPtr;
   2065 			wndNode[i].params[2].v = parityStripeID;
   2066 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   2067 			pda = pda->next;
   2068 		}
   2069 		RF_ASSERT(pda == NULL);
   2070 	}
   2071 	/* initialize the mirror nodes */
   2072 	if (nWmirNodes > 0) {
   2073 		pda = asmap->physInfo;
   2074 		pdaP = asmap->parityInfo;
   2075 		for (i = 0; i < nWmirNodes; i++) {
   2076 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
   2077 			RF_ASSERT(pda != NULL);
   2078 			wmirNode[i].params[0].p = pdaP;
   2079 			wmirNode[i].params[1].p = pda->bufPtr;
   2080 			wmirNode[i].params[2].v = parityStripeID;
   2081 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   2082 			pda = pda->next;
   2083 			pdaP = pdaP->next;
   2084 		}
   2085 		RF_ASSERT(pda == NULL);
   2086 		RF_ASSERT(pdaP == NULL);
   2087 	}
   2088 	/* link the header node to the block node */
   2089 	RF_ASSERT(dag_h->numSuccedents == 1);
   2090 	RF_ASSERT(blockNode->numAntecedents == 0);
   2091 	dag_h->succedents[0] = blockNode;
   2092 
   2093 	/* link the block node to the write nodes */
   2094 	RF_ASSERT(blockNode->numSuccedents == (nWndNodes + nWmirNodes));
   2095 	for (i = 0; i < nWndNodes; i++) {
   2096 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   2097 		blockNode->succedents[i] = &wndNode[i];
   2098 		wndNode[i].antecedents[0] = blockNode;
   2099 		wndNode[i].antType[0] = rf_control;
   2100 	}
   2101 	for (i = 0; i < nWmirNodes; i++) {
   2102 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   2103 		blockNode->succedents[i + nWndNodes] = &wmirNode[i];
   2104 		wmirNode[i].antecedents[0] = blockNode;
   2105 		wmirNode[i].antType[0] = rf_control;
   2106 	}
   2107 
   2108 	/* link the write nodes to the unblock node */
   2109 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   2110 	for (i = 0; i < nWndNodes; i++) {
   2111 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   2112 		wndNode[i].succedents[0] = unblockNode;
   2113 		unblockNode->antecedents[i] = &wndNode[i];
   2114 		unblockNode->antType[i] = rf_control;
   2115 	}
   2116 	for (i = 0; i < nWmirNodes; i++) {
   2117 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   2118 		wmirNode[i].succedents[0] = unblockNode;
   2119 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   2120 		unblockNode->antType[i + nWndNodes] = rf_control;
   2121 	}
   2122 
   2123 	/* link the unblock node to the term node */
   2124 	RF_ASSERT(unblockNode->numSuccedents == 1);
   2125 	RF_ASSERT(termNode->numAntecedents == 1);
   2126 	RF_ASSERT(termNode->numSuccedents == 0);
   2127 	unblockNode->succedents[0] = termNode;
   2128 	termNode->antecedents[0] = unblockNode;
   2129 	termNode->antType[0] = rf_control;
   2130 
   2131 	return;
   2132 }
   2133