Home | History | Annotate | Line # | Download | only in raidframe
rf_dagffwr.c revision 1.9
      1 /*	$NetBSD: rf_dagffwr.c,v 1.9 2002/09/21 00:50:10 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * rf_dagff.c
     31  *
     32  * code for creating fault-free DAGs
     33  *
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: rf_dagffwr.c,v 1.9 2002/09/21 00:50:10 oster Exp $");
     38 
     39 #include <dev/raidframe/raidframevar.h>
     40 
     41 #include "rf_raid.h"
     42 #include "rf_dag.h"
     43 #include "rf_dagutils.h"
     44 #include "rf_dagfuncs.h"
     45 #include "rf_debugMem.h"
     46 #include "rf_dagffrd.h"
     47 #include "rf_general.h"
     48 #include "rf_dagffwr.h"
     49 
     50 /******************************************************************************
     51  *
     52  * General comments on DAG creation:
     53  *
     54  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
     55  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
     56  * is reached, the execution engine will halt forward execution and work
     57  * backward through the graph, executing the undo functions.  Assuming that
     58  * each node in the graph prior to the Cmt node are undoable and atomic - or -
     59  * does not make changes to permanent state, the graph will fail atomically.
     60  * If an error occurs after the Cmt node executes, the engine will roll-forward
     61  * through the graph, blindly executing nodes until it reaches the end.
     62  * If a graph reaches the end, it is assumed to have completed successfully.
     63  *
     64  * A graph has only 1 Cmt node.
     65  *
     66  */
     67 
     68 
     69 /******************************************************************************
     70  *
     71  * The following wrappers map the standard DAG creation interface to the
     72  * DAG creation routines.  Additionally, these wrappers enable experimentation
     73  * with new DAG structures by providing an extra level of indirection, allowing
     74  * the DAG creation routines to be replaced at this single point.
     75  */
     76 
     77 
     78 void
     79 rf_CreateNonRedundantWriteDAG(
     80     RF_Raid_t * raidPtr,
     81     RF_AccessStripeMap_t * asmap,
     82     RF_DagHeader_t * dag_h,
     83     void *bp,
     84     RF_RaidAccessFlags_t flags,
     85     RF_AllocListElem_t * allocList,
     86     RF_IoType_t type)
     87 {
     88 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
     89 	    RF_IO_TYPE_WRITE);
     90 }
     91 
     92 void
     93 rf_CreateRAID0WriteDAG(
     94     RF_Raid_t * raidPtr,
     95     RF_AccessStripeMap_t * asmap,
     96     RF_DagHeader_t * dag_h,
     97     void *bp,
     98     RF_RaidAccessFlags_t flags,
     99     RF_AllocListElem_t * allocList,
    100     RF_IoType_t type)
    101 {
    102 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    103 	    RF_IO_TYPE_WRITE);
    104 }
    105 
    106 void
    107 rf_CreateSmallWriteDAG(
    108     RF_Raid_t * raidPtr,
    109     RF_AccessStripeMap_t * asmap,
    110     RF_DagHeader_t * dag_h,
    111     void *bp,
    112     RF_RaidAccessFlags_t flags,
    113     RF_AllocListElem_t * allocList)
    114 {
    115 	/* "normal" rollaway */
    116 	rf_CommonCreateSmallWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    117 	    &rf_xorFuncs, NULL);
    118 }
    119 
    120 void
    121 rf_CreateLargeWriteDAG(
    122     RF_Raid_t * raidPtr,
    123     RF_AccessStripeMap_t * asmap,
    124     RF_DagHeader_t * dag_h,
    125     void *bp,
    126     RF_RaidAccessFlags_t flags,
    127     RF_AllocListElem_t * allocList)
    128 {
    129 	/* "normal" rollaway */
    130 	rf_CommonCreateLargeWriteDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
    131 	    1, rf_RegularXorFunc, RF_TRUE);
    132 }
    133 
    134 
    135 /******************************************************************************
    136  *
    137  * DAG creation code begins here
    138  */
    139 
    140 
    141 /******************************************************************************
    142  *
    143  * creates a DAG to perform a large-write operation:
    144  *
    145  *           / Rod \           / Wnd \
    146  * H -- block- Rod - Xor - Cmt - Wnd --- T
    147  *           \ Rod /          \  Wnp /
    148  *                             \[Wnq]/
    149  *
    150  * The XOR node also does the Q calculation in the P+Q architecture.
    151  * All nodes are before the commit node (Cmt) are assumed to be atomic and
    152  * undoable - or - they make no changes to permanent state.
    153  *
    154  * Rod = read old data
    155  * Cmt = commit node
    156  * Wnp = write new parity
    157  * Wnd = write new data
    158  * Wnq = write new "q"
    159  * [] denotes optional segments in the graph
    160  *
    161  * Parameters:  raidPtr   - description of the physical array
    162  *              asmap     - logical & physical addresses for this access
    163  *              bp        - buffer ptr (holds write data)
    164  *              flags     - general flags (e.g. disk locking)
    165  *              allocList - list of memory allocated in DAG creation
    166  *              nfaults   - number of faults array can tolerate
    167  *                          (equal to # redundancy units in stripe)
    168  *              redfuncs  - list of redundancy generating functions
    169  *
    170  *****************************************************************************/
    171 
    172 void
    173 rf_CommonCreateLargeWriteDAG(
    174     RF_Raid_t * raidPtr,
    175     RF_AccessStripeMap_t * asmap,
    176     RF_DagHeader_t * dag_h,
    177     void *bp,
    178     RF_RaidAccessFlags_t flags,
    179     RF_AllocListElem_t * allocList,
    180     int nfaults,
    181     int (*redFunc) (RF_DagNode_t *),
    182     int allowBufferRecycle)
    183 {
    184 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
    185 	RF_DagNode_t *wnqNode, *blockNode, *commitNode, *termNode;
    186 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
    187 	RF_AccessStripeMapHeader_t *new_asm_h[2];
    188 	RF_StripeNum_t parityStripeID;
    189 	char   *sosBuffer, *eosBuffer;
    190 	RF_ReconUnitNum_t which_ru;
    191 	RF_RaidLayout_t *layoutPtr;
    192 	RF_PhysDiskAddr_t *pda;
    193 
    194 	layoutPtr = &(raidPtr->Layout);
    195 	parityStripeID = rf_RaidAddressToParityStripeID(layoutPtr, asmap->raidAddress,
    196 	    &which_ru);
    197 
    198 	if (rf_dagDebug) {
    199 		printf("[Creating large-write DAG]\n");
    200 	}
    201 	dag_h->creator = "LargeWriteDAG";
    202 
    203 	dag_h->numCommitNodes = 1;
    204 	dag_h->numCommits = 0;
    205 	dag_h->numSuccedents = 1;
    206 
    207 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
    208 	nWndNodes = asmap->numStripeUnitsAccessed;
    209 	RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t),
    210 	    (RF_DagNode_t *), allocList);
    211 	i = 0;
    212 	wndNodes = &nodes[i];
    213 	i += nWndNodes;
    214 	xorNode = &nodes[i];
    215 	i += 1;
    216 	wnpNode = &nodes[i];
    217 	i += 1;
    218 	blockNode = &nodes[i];
    219 	i += 1;
    220 	commitNode = &nodes[i];
    221 	i += 1;
    222 	termNode = &nodes[i];
    223 	i += 1;
    224 	if (nfaults == 2) {
    225 		wnqNode = &nodes[i];
    226 		i += 1;
    227 	} else {
    228 		wnqNode = NULL;
    229 	}
    230 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h,
    231 	    &nRodNodes, &sosBuffer, &eosBuffer, allocList);
    232 	if (nRodNodes > 0) {
    233 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t),
    234 		    (RF_DagNode_t *), allocList);
    235 	} else {
    236 		rodNodes = NULL;
    237 	}
    238 
    239 	/* begin node initialization */
    240 	if (nRodNodes > 0) {
    241 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    242 		    NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
    243 	} else {
    244 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    245 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
    246 	}
    247 
    248 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL,
    249 	    nWndNodes + nfaults, 1, 0, 0, dag_h, "Cmt", allocList);
    250 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL,
    251 	    0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
    252 
    253 	/* initialize the Rod nodes */
    254 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
    255 		if (new_asm_h[asmNum]) {
    256 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
    257 			while (pda) {
    258 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc,
    259 				    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    260 				    "Rod", allocList);
    261 				rodNodes[nodeNum].params[0].p = pda;
    262 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
    263 				rodNodes[nodeNum].params[2].v = parityStripeID;
    264 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    265 				    0, 0, which_ru);
    266 				nodeNum++;
    267 				pda = pda->next;
    268 			}
    269 		}
    270 	}
    271 	RF_ASSERT(nodeNum == nRodNodes);
    272 
    273 	/* initialize the wnd nodes */
    274 	pda = asmap->physInfo;
    275 	for (i = 0; i < nWndNodes; i++) {
    276 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    277 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
    278 		RF_ASSERT(pda != NULL);
    279 		wndNodes[i].params[0].p = pda;
    280 		wndNodes[i].params[1].p = pda->bufPtr;
    281 		wndNodes[i].params[2].v = parityStripeID;
    282 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    283 		pda = pda->next;
    284 	}
    285 
    286 	/* initialize the redundancy node */
    287 	if (nRodNodes > 0) {
    288 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    289 		    nRodNodes, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h,
    290 		    "Xr ", allocList);
    291 	} else {
    292 		rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1,
    293 		    1, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
    294 	}
    295 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
    296 	for (i = 0; i < nWndNodes; i++) {
    297 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
    298 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
    299 	}
    300 	for (i = 0; i < nRodNodes; i++) {
    301 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
    302 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
    303 	}
    304 	/* xor node needs to get at RAID information */
    305 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;
    306 
    307 	/*
    308          * Look for an Rod node that reads a complete SU. If none, alloc a buffer
    309          * to receive the parity info. Note that we can't use a new data buffer
    310          * because it will not have gotten written when the xor occurs.
    311          */
    312 	if (allowBufferRecycle) {
    313 		for (i = 0; i < nRodNodes; i++) {
    314 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
    315 				break;
    316 		}
    317 	}
    318 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
    319 		RF_CallocAndAdd(xorNode->results[0], 1,
    320 		    rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    321 		    (void *), allocList);
    322 	} else {
    323 		xorNode->results[0] = rodNodes[i].params[1].p;
    324 	}
    325 
    326 	/* initialize the Wnp node */
    327 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    328 	    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
    329 	wnpNode->params[0].p = asmap->parityInfo;
    330 	wnpNode->params[1].p = xorNode->results[0];
    331 	wnpNode->params[2].v = parityStripeID;
    332 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    333 	/* parityInfo must describe entire parity unit */
    334 	RF_ASSERT(asmap->parityInfo->next == NULL);
    335 
    336 	if (nfaults == 2) {
    337 		/*
    338 	         * We never try to recycle a buffer for the Q calcuation
    339 	         * in addition to the parity. This would cause two buffers
    340 	         * to get smashed during the P and Q calculation, guaranteeing
    341 	         * one would be wrong.
    342 	         */
    343 		RF_CallocAndAdd(xorNode->results[1], 1,
    344 		    rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit),
    345 		    (void *), allocList);
    346 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
    347 		    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
    348 		wnqNode->params[0].p = asmap->qInfo;
    349 		wnqNode->params[1].p = xorNode->results[1];
    350 		wnqNode->params[2].v = parityStripeID;
    351 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
    352 		/* parityInfo must describe entire parity unit */
    353 		RF_ASSERT(asmap->parityInfo->next == NULL);
    354 	}
    355 	/*
    356          * Connect nodes to form graph.
    357          */
    358 
    359 	/* connect dag header to block node */
    360 	RF_ASSERT(blockNode->numAntecedents == 0);
    361 	dag_h->succedents[0] = blockNode;
    362 
    363 	if (nRodNodes > 0) {
    364 		/* connect the block node to the Rod nodes */
    365 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
    366 		RF_ASSERT(xorNode->numAntecedents == nRodNodes);
    367 		for (i = 0; i < nRodNodes; i++) {
    368 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
    369 			blockNode->succedents[i] = &rodNodes[i];
    370 			rodNodes[i].antecedents[0] = blockNode;
    371 			rodNodes[i].antType[0] = rf_control;
    372 
    373 			/* connect the Rod nodes to the Xor node */
    374 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
    375 			rodNodes[i].succedents[0] = xorNode;
    376 			xorNode->antecedents[i] = &rodNodes[i];
    377 			xorNode->antType[i] = rf_trueData;
    378 		}
    379 	} else {
    380 		/* connect the block node to the Xor node */
    381 		RF_ASSERT(blockNode->numSuccedents == 1);
    382 		RF_ASSERT(xorNode->numAntecedents == 1);
    383 		blockNode->succedents[0] = xorNode;
    384 		xorNode->antecedents[0] = blockNode;
    385 		xorNode->antType[0] = rf_control;
    386 	}
    387 
    388 	/* connect the xor node to the commit node */
    389 	RF_ASSERT(xorNode->numSuccedents == 1);
    390 	RF_ASSERT(commitNode->numAntecedents == 1);
    391 	xorNode->succedents[0] = commitNode;
    392 	commitNode->antecedents[0] = xorNode;
    393 	commitNode->antType[0] = rf_control;
    394 
    395 	/* connect the commit node to the write nodes */
    396 	RF_ASSERT(commitNode->numSuccedents == nWndNodes + nfaults);
    397 	for (i = 0; i < nWndNodes; i++) {
    398 		RF_ASSERT(wndNodes->numAntecedents == 1);
    399 		commitNode->succedents[i] = &wndNodes[i];
    400 		wndNodes[i].antecedents[0] = commitNode;
    401 		wndNodes[i].antType[0] = rf_control;
    402 	}
    403 	RF_ASSERT(wnpNode->numAntecedents == 1);
    404 	commitNode->succedents[nWndNodes] = wnpNode;
    405 	wnpNode->antecedents[0] = commitNode;
    406 	wnpNode->antType[0] = rf_trueData;
    407 	if (nfaults == 2) {
    408 		RF_ASSERT(wnqNode->numAntecedents == 1);
    409 		commitNode->succedents[nWndNodes + 1] = wnqNode;
    410 		wnqNode->antecedents[0] = commitNode;
    411 		wnqNode->antType[0] = rf_trueData;
    412 	}
    413 	/* connect the write nodes to the term node */
    414 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
    415 	RF_ASSERT(termNode->numSuccedents == 0);
    416 	for (i = 0; i < nWndNodes; i++) {
    417 		RF_ASSERT(wndNodes->numSuccedents == 1);
    418 		wndNodes[i].succedents[0] = termNode;
    419 		termNode->antecedents[i] = &wndNodes[i];
    420 		termNode->antType[i] = rf_control;
    421 	}
    422 	RF_ASSERT(wnpNode->numSuccedents == 1);
    423 	wnpNode->succedents[0] = termNode;
    424 	termNode->antecedents[nWndNodes] = wnpNode;
    425 	termNode->antType[nWndNodes] = rf_control;
    426 	if (nfaults == 2) {
    427 		RF_ASSERT(wnqNode->numSuccedents == 1);
    428 		wnqNode->succedents[0] = termNode;
    429 		termNode->antecedents[nWndNodes + 1] = wnqNode;
    430 		termNode->antType[nWndNodes + 1] = rf_control;
    431 	}
    432 }
    433 /******************************************************************************
    434  *
    435  * creates a DAG to perform a small-write operation (either raid 5 or pq),
    436  * which is as follows:
    437  *
    438  * Hdr -> Nil -> Rop -> Xor -> Cmt ----> Wnp [Unp] --> Trm
    439  *            \- Rod X      /     \----> Wnd [Und]-/
    440  *           [\- Rod X     /       \---> Wnd [Und]-/]
    441  *           [\- Roq -> Q /         \--> Wnq [Unq]-/]
    442  *
    443  * Rop = read old parity
    444  * Rod = read old data
    445  * Roq = read old "q"
    446  * Cmt = commit node
    447  * Und = unlock data disk
    448  * Unp = unlock parity disk
    449  * Unq = unlock q disk
    450  * Wnp = write new parity
    451  * Wnd = write new data
    452  * Wnq = write new "q"
    453  * [ ] denotes optional segments in the graph
    454  *
    455  * Parameters:  raidPtr   - description of the physical array
    456  *              asmap     - logical & physical addresses for this access
    457  *              bp        - buffer ptr (holds write data)
    458  *              flags     - general flags (e.g. disk locking)
    459  *              allocList - list of memory allocated in DAG creation
    460  *              pfuncs    - list of parity generating functions
    461  *              qfuncs    - list of q generating functions
    462  *
    463  * A null qfuncs indicates single fault tolerant
    464  *****************************************************************************/
    465 
    466 void
    467 rf_CommonCreateSmallWriteDAG(
    468     RF_Raid_t * raidPtr,
    469     RF_AccessStripeMap_t * asmap,
    470     RF_DagHeader_t * dag_h,
    471     void *bp,
    472     RF_RaidAccessFlags_t flags,
    473     RF_AllocListElem_t * allocList,
    474     RF_RedFuncs_t * pfuncs,
    475     RF_RedFuncs_t * qfuncs)
    476 {
    477 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
    478 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
    479 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *commitNode, *nodes;
    480 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
    481 	int     i, j, nNodes, totalNumNodes, lu_flag;
    482 	RF_ReconUnitNum_t which_ru;
    483 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
    484 	int     (*qfunc) (RF_DagNode_t *);
    485 	int     numDataNodes, numParityNodes;
    486 	RF_StripeNum_t parityStripeID;
    487 	RF_PhysDiskAddr_t *pda;
    488 	char   *name, *qname;
    489 	long    nfaults;
    490 
    491 	nfaults = qfuncs ? 2 : 1;
    492 	lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
    493 
    494 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
    495 	    asmap->raidAddress, &which_ru);
    496 	pda = asmap->physInfo;
    497 	numDataNodes = asmap->numStripeUnitsAccessed;
    498 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
    499 
    500 	if (rf_dagDebug) {
    501 		printf("[Creating small-write DAG]\n");
    502 	}
    503 	RF_ASSERT(numDataNodes > 0);
    504 	dag_h->creator = "SmallWriteDAG";
    505 
    506 	dag_h->numCommitNodes = 1;
    507 	dag_h->numCommits = 0;
    508 	dag_h->numSuccedents = 1;
    509 
    510 	/*
    511          * DAG creation occurs in four steps:
    512          * 1. count the number of nodes in the DAG
    513          * 2. create the nodes
    514          * 3. initialize the nodes
    515          * 4. connect the nodes
    516          */
    517 
    518 	/*
    519          * Step 1. compute number of nodes in the graph
    520          */
    521 
    522 	/* number of nodes: a read and write for each data unit a redundancy
    523 	 * computation node for each parity node (nfaults * nparity) a read
    524 	 * and write for each parity unit a block and commit node (2) a
    525 	 * terminate node if atomic RMW an unlock node for each data unit,
    526 	 * redundancy unit */
    527 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes)
    528 	    + (nfaults * 2 * numParityNodes) + 3;
    529 	if (lu_flag) {
    530 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
    531 	}
    532 	/*
    533          * Step 2. create the nodes
    534          */
    535 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t),
    536 	    (RF_DagNode_t *), allocList);
    537 	i = 0;
    538 	blockNode = &nodes[i];
    539 	i += 1;
    540 	commitNode = &nodes[i];
    541 	i += 1;
    542 	readDataNodes = &nodes[i];
    543 	i += numDataNodes;
    544 	readParityNodes = &nodes[i];
    545 	i += numParityNodes;
    546 	writeDataNodes = &nodes[i];
    547 	i += numDataNodes;
    548 	writeParityNodes = &nodes[i];
    549 	i += numParityNodes;
    550 	xorNodes = &nodes[i];
    551 	i += numParityNodes;
    552 	termNode = &nodes[i];
    553 	i += 1;
    554 	if (lu_flag) {
    555 		unlockDataNodes = &nodes[i];
    556 		i += numDataNodes;
    557 		unlockParityNodes = &nodes[i];
    558 		i += numParityNodes;
    559 	} else {
    560 		unlockDataNodes = unlockParityNodes = NULL;
    561 	}
    562 	if (nfaults == 2) {
    563 		readQNodes = &nodes[i];
    564 		i += numParityNodes;
    565 		writeQNodes = &nodes[i];
    566 		i += numParityNodes;
    567 		qNodes = &nodes[i];
    568 		i += numParityNodes;
    569 		if (lu_flag) {
    570 			unlockQNodes = &nodes[i];
    571 			i += numParityNodes;
    572 		} else {
    573 			unlockQNodes = NULL;
    574 		}
    575 	} else {
    576 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
    577 	}
    578 	RF_ASSERT(i == totalNumNodes);
    579 
    580 	/*
    581          * Step 3. initialize the nodes
    582          */
    583 	/* initialize block node (Nil) */
    584 	nNodes = numDataNodes + (nfaults * numParityNodes);
    585 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    586 	    NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
    587 
    588 	/* initialize commit node (Cmt) */
    589 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
    590 	    NULL, nNodes, (nfaults * numParityNodes), 0, 0, dag_h, "Cmt", allocList);
    591 
    592 	/* initialize terminate node (Trm) */
    593 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
    594 	    NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
    595 
    596 	/* initialize nodes which read old data (Rod) */
    597 	for (i = 0; i < numDataNodes; i++) {
    598 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    599 		    rf_GenericWakeupFunc, (nfaults * numParityNodes), 1, 4, 0, dag_h,
    600 		    "Rod", allocList);
    601 		RF_ASSERT(pda != NULL);
    602 		/* physical disk addr desc */
    603 		readDataNodes[i].params[0].p = pda;
    604 		/* buffer to hold old data */
    605 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    606 		    dag_h, pda, allocList);
    607 		readDataNodes[i].params[2].v = parityStripeID;
    608 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    609 		    lu_flag, 0, which_ru);
    610 		pda = pda->next;
    611 		for (j = 0; j < readDataNodes[i].numSuccedents; j++) {
    612 			readDataNodes[i].propList[j] = NULL;
    613 		}
    614 	}
    615 
    616 	/* initialize nodes which read old parity (Rop) */
    617 	pda = asmap->parityInfo;
    618 	i = 0;
    619 	for (i = 0; i < numParityNodes; i++) {
    620 		RF_ASSERT(pda != NULL);
    621 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc,
    622 		    rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4,
    623 		    0, dag_h, "Rop", allocList);
    624 		readParityNodes[i].params[0].p = pda;
    625 		/* buffer to hold old parity */
    626 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr,
    627 		    dag_h, pda, allocList);
    628 		readParityNodes[i].params[2].v = parityStripeID;
    629 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    630 		    lu_flag, 0, which_ru);
    631 		pda = pda->next;
    632 		for (j = 0; j < readParityNodes[i].numSuccedents; j++) {
    633 			readParityNodes[i].propList[0] = NULL;
    634 		}
    635 	}
    636 
    637 	/* initialize nodes which read old Q (Roq) */
    638 	if (nfaults == 2) {
    639 		pda = asmap->qInfo;
    640 		for (i = 0; i < numParityNodes; i++) {
    641 			RF_ASSERT(pda != NULL);
    642 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc,
    643 			    rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
    644 			readQNodes[i].params[0].p = pda;
    645 			/* buffer to hold old Q */
    646 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda,
    647 			    allocList);
    648 			readQNodes[i].params[2].v = parityStripeID;
    649 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    650 			    lu_flag, 0, which_ru);
    651 			pda = pda->next;
    652 			for (j = 0; j < readQNodes[i].numSuccedents; j++) {
    653 				readQNodes[i].propList[0] = NULL;
    654 			}
    655 		}
    656 	}
    657 	/* initialize nodes which write new data (Wnd) */
    658 	pda = asmap->physInfo;
    659 	for (i = 0; i < numDataNodes; i++) {
    660 		RF_ASSERT(pda != NULL);
    661 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    662 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    663 		    "Wnd", allocList);
    664 		/* physical disk addr desc */
    665 		writeDataNodes[i].params[0].p = pda;
    666 		/* buffer holding new data to be written */
    667 		writeDataNodes[i].params[1].p = pda->bufPtr;
    668 		writeDataNodes[i].params[2].v = parityStripeID;
    669 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    670 		    0, 0, which_ru);
    671 		if (lu_flag) {
    672 			/* initialize node to unlock the disk queue */
    673 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    674 			    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    675 			    "Und", allocList);
    676 			/* physical disk addr desc */
    677 			unlockDataNodes[i].params[0].p = pda;
    678 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    679 			    0, lu_flag, which_ru);
    680 		}
    681 		pda = pda->next;
    682 	}
    683 
    684 	/*
    685          * Initialize nodes which compute new parity and Q.
    686          */
    687 	/*
    688          * We use the simple XOR func in the double-XOR case, and when
    689          * we're accessing only a portion of one stripe unit. The distinction
    690          * between the two is that the regular XOR func assumes that the targbuf
    691          * is a full SU in size, and examines the pda associated with the buffer
    692          * to decide where within the buffer to XOR the data, whereas
    693          * the simple XOR func just XORs the data into the start of the buffer.
    694          */
    695 	if ((numParityNodes == 2) || ((numDataNodes == 1)
    696 		&& (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
    697 		func = pfuncs->simple;
    698 		undoFunc = rf_NullNodeUndoFunc;
    699 		name = pfuncs->SimpleName;
    700 		if (qfuncs) {
    701 			qfunc = qfuncs->simple;
    702 			qname = qfuncs->SimpleName;
    703 		} else {
    704 			qfunc = NULL;
    705 			qname = NULL;
    706 		}
    707 	} else {
    708 		func = pfuncs->regular;
    709 		undoFunc = rf_NullNodeUndoFunc;
    710 		name = pfuncs->RegularName;
    711 		if (qfuncs) {
    712 			qfunc = qfuncs->regular;
    713 			qname = qfuncs->RegularName;
    714 		} else {
    715 			qfunc = NULL;
    716 			qname = NULL;
    717 		}
    718 	}
    719 	/*
    720          * Initialize the xor nodes: params are {pda,buf}
    721          * from {Rod,Wnd,Rop} nodes, and raidPtr
    722          */
    723 	if (numParityNodes == 2) {
    724 		/* double-xor case */
    725 		for (i = 0; i < numParityNodes; i++) {
    726 			/* note: no wakeup func for xor */
    727 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL,
    728 			    1, (numDataNodes + numParityNodes), 7, 1, dag_h, name, allocList);
    729 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
    730 			xorNodes[i].params[0] = readDataNodes[i].params[0];
    731 			xorNodes[i].params[1] = readDataNodes[i].params[1];
    732 			xorNodes[i].params[2] = readParityNodes[i].params[0];
    733 			xorNodes[i].params[3] = readParityNodes[i].params[1];
    734 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
    735 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
    736 			xorNodes[i].params[6].p = raidPtr;
    737 			/* use old parity buf as target buf */
    738 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;
    739 			if (nfaults == 2) {
    740 				/* note: no wakeup func for qor */
    741 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
    742 				    (numDataNodes + numParityNodes), 7, 1, dag_h, qname, allocList);
    743 				qNodes[i].params[0] = readDataNodes[i].params[0];
    744 				qNodes[i].params[1] = readDataNodes[i].params[1];
    745 				qNodes[i].params[2] = readQNodes[i].params[0];
    746 				qNodes[i].params[3] = readQNodes[i].params[1];
    747 				qNodes[i].params[4] = writeDataNodes[i].params[0];
    748 				qNodes[i].params[5] = writeDataNodes[i].params[1];
    749 				qNodes[i].params[6].p = raidPtr;
    750 				/* use old Q buf as target buf */
    751 				qNodes[i].results[0] = readQNodes[i].params[1].p;
    752 			}
    753 		}
    754 	} else {
    755 		/* there is only one xor node in this case */
    756 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, 1,
    757 		    (numDataNodes + numParityNodes),
    758 		    (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
    759 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
    760 		for (i = 0; i < numDataNodes + 1; i++) {
    761 			/* set up params related to Rod and Rop nodes */
    762 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    763 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    764 		}
    765 		for (i = 0; i < numDataNodes; i++) {
    766 			/* set up params related to Wnd and Wnp nodes */
    767 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    768 			    writeDataNodes[i].params[0];
    769 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    770 			    writeDataNodes[i].params[1];
    771 		}
    772 		/* xor node needs to get at RAID information */
    773 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    774 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
    775 		if (nfaults == 2) {
    776 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, 1,
    777 			    (numDataNodes + numParityNodes),
    778 			    (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h,
    779 			    qname, allocList);
    780 			for (i = 0; i < numDataNodes; i++) {
    781 				/* set up params related to Rod */
    782 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
    783 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer ptr */
    784 			}
    785 			/* and read old q */
    786 			qNodes[0].params[2 * numDataNodes + 0] =	/* pda */
    787 			    readQNodes[0].params[0];
    788 			qNodes[0].params[2 * numDataNodes + 1] =	/* buffer ptr */
    789 			    readQNodes[0].params[1];
    790 			for (i = 0; i < numDataNodes; i++) {
    791 				/* set up params related to Wnd nodes */
    792 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] =	/* pda */
    793 				    writeDataNodes[i].params[0];
    794 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] =	/* buffer ptr */
    795 				    writeDataNodes[i].params[1];
    796 			}
    797 			/* xor node needs to get at RAID information */
    798 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;
    799 			qNodes[0].results[0] = readQNodes[0].params[1].p;
    800 		}
    801 	}
    802 
    803 	/* initialize nodes which write new parity (Wnp) */
    804 	pda = asmap->parityInfo;
    805 	for (i = 0; i < numParityNodes; i++) {
    806 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    807 		    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    808 		    "Wnp", allocList);
    809 		RF_ASSERT(pda != NULL);
    810 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    811 							 * filled in by xor node */
    812 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
    813 										 * parity write
    814 										 * operation */
    815 		writeParityNodes[i].params[2].v = parityStripeID;
    816 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    817 		    0, 0, which_ru);
    818 		if (lu_flag) {
    819 			/* initialize node to unlock the disk queue */
    820 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    821 			    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    822 			    "Unp", allocList);
    823 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
    824 								 * desc */
    825 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    826 			    0, lu_flag, which_ru);
    827 		}
    828 		pda = pda->next;
    829 	}
    830 
    831 	/* initialize nodes which write new Q (Wnq) */
    832 	if (nfaults == 2) {
    833 		pda = asmap->qInfo;
    834 		for (i = 0; i < numParityNodes; i++) {
    835 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc,
    836 			    rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h,
    837 			    "Wnq", allocList);
    838 			RF_ASSERT(pda != NULL);
    839 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
    840 								 * filled in by xor node */
    841 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
    842 										 * parity write
    843 										 * operation */
    844 			writeQNodes[i].params[2].v = parityStripeID;
    845 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    846 			    0, 0, which_ru);
    847 			if (lu_flag) {
    848 				/* initialize node to unlock the disk queue */
    849 				rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc,
    850 				    rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h,
    851 				    "Unq", allocList);
    852 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
    853 									 * desc */
    854 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY,
    855 				    0, lu_flag, which_ru);
    856 			}
    857 			pda = pda->next;
    858 		}
    859 	}
    860 	/*
    861          * Step 4. connect the nodes.
    862          */
    863 
    864 	/* connect header to block node */
    865 	dag_h->succedents[0] = blockNode;
    866 
    867 	/* connect block node to read old data nodes */
    868 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
    869 	for (i = 0; i < numDataNodes; i++) {
    870 		blockNode->succedents[i] = &readDataNodes[i];
    871 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
    872 		readDataNodes[i].antecedents[0] = blockNode;
    873 		readDataNodes[i].antType[0] = rf_control;
    874 	}
    875 
    876 	/* connect block node to read old parity nodes */
    877 	for (i = 0; i < numParityNodes; i++) {
    878 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
    879 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
    880 		readParityNodes[i].antecedents[0] = blockNode;
    881 		readParityNodes[i].antType[0] = rf_control;
    882 	}
    883 
    884 	/* connect block node to read old Q nodes */
    885 	if (nfaults == 2) {
    886 		for (i = 0; i < numParityNodes; i++) {
    887 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
    888 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
    889 			readQNodes[i].antecedents[0] = blockNode;
    890 			readQNodes[i].antType[0] = rf_control;
    891 		}
    892 	}
    893 	/* connect read old data nodes to xor nodes */
    894 	for (i = 0; i < numDataNodes; i++) {
    895 		RF_ASSERT(readDataNodes[i].numSuccedents == (nfaults * numParityNodes));
    896 		for (j = 0; j < numParityNodes; j++) {
    897 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
    898 			readDataNodes[i].succedents[j] = &xorNodes[j];
    899 			xorNodes[j].antecedents[i] = &readDataNodes[i];
    900 			xorNodes[j].antType[i] = rf_trueData;
    901 		}
    902 	}
    903 
    904 	/* connect read old data nodes to q nodes */
    905 	if (nfaults == 2) {
    906 		for (i = 0; i < numDataNodes; i++) {
    907 			for (j = 0; j < numParityNodes; j++) {
    908 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
    909 				readDataNodes[i].succedents[numParityNodes + j] = &qNodes[j];
    910 				qNodes[j].antecedents[i] = &readDataNodes[i];
    911 				qNodes[j].antType[i] = rf_trueData;
    912 			}
    913 		}
    914 	}
    915 	/* connect read old parity nodes to xor nodes */
    916 	for (i = 0; i < numParityNodes; i++) {
    917 		RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    918 		for (j = 0; j < numParityNodes; j++) {
    919 			readParityNodes[i].succedents[j] = &xorNodes[j];
    920 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
    921 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
    922 		}
    923 	}
    924 
    925 	/* connect read old q nodes to q nodes */
    926 	if (nfaults == 2) {
    927 		for (i = 0; i < numParityNodes; i++) {
    928 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
    929 			for (j = 0; j < numParityNodes; j++) {
    930 				readQNodes[i].succedents[j] = &qNodes[j];
    931 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
    932 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
    933 			}
    934 		}
    935 	}
    936 	/* connect xor nodes to commit node */
    937 	RF_ASSERT(commitNode->numAntecedents == (nfaults * numParityNodes));
    938 	for (i = 0; i < numParityNodes; i++) {
    939 		RF_ASSERT(xorNodes[i].numSuccedents == 1);
    940 		xorNodes[i].succedents[0] = commitNode;
    941 		commitNode->antecedents[i] = &xorNodes[i];
    942 		commitNode->antType[i] = rf_control;
    943 	}
    944 
    945 	/* connect q nodes to commit node */
    946 	if (nfaults == 2) {
    947 		for (i = 0; i < numParityNodes; i++) {
    948 			RF_ASSERT(qNodes[i].numSuccedents == 1);
    949 			qNodes[i].succedents[0] = commitNode;
    950 			commitNode->antecedents[i + numParityNodes] = &qNodes[i];
    951 			commitNode->antType[i + numParityNodes] = rf_control;
    952 		}
    953 	}
    954 	/* connect commit node to write nodes */
    955 	RF_ASSERT(commitNode->numSuccedents == (numDataNodes + (nfaults * numParityNodes)));
    956 	for (i = 0; i < numDataNodes; i++) {
    957 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
    958 		commitNode->succedents[i] = &writeDataNodes[i];
    959 		writeDataNodes[i].antecedents[0] = commitNode;
    960 		writeDataNodes[i].antType[0] = rf_trueData;
    961 	}
    962 	for (i = 0; i < numParityNodes; i++) {
    963 		RF_ASSERT(writeParityNodes[i].numAntecedents == 1);
    964 		commitNode->succedents[i + numDataNodes] = &writeParityNodes[i];
    965 		writeParityNodes[i].antecedents[0] = commitNode;
    966 		writeParityNodes[i].antType[0] = rf_trueData;
    967 	}
    968 	if (nfaults == 2) {
    969 		for (i = 0; i < numParityNodes; i++) {
    970 			RF_ASSERT(writeQNodes[i].numAntecedents == 1);
    971 			commitNode->succedents[i + numDataNodes + numParityNodes] = &writeQNodes[i];
    972 			writeQNodes[i].antecedents[0] = commitNode;
    973 			writeQNodes[i].antType[0] = rf_trueData;
    974 		}
    975 	}
    976 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    977 	RF_ASSERT(termNode->numSuccedents == 0);
    978 	for (i = 0; i < numDataNodes; i++) {
    979 		if (lu_flag) {
    980 			/* connect write new data nodes to unlock nodes */
    981 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    982 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
    983 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
    984 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
    985 			unlockDataNodes[i].antType[0] = rf_control;
    986 
    987 			/* connect unlock nodes to term node */
    988 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
    989 			unlockDataNodes[i].succedents[0] = termNode;
    990 			termNode->antecedents[i] = &unlockDataNodes[i];
    991 			termNode->antType[i] = rf_control;
    992 		} else {
    993 			/* connect write new data nodes to term node */
    994 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
    995 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
    996 			writeDataNodes[i].succedents[0] = termNode;
    997 			termNode->antecedents[i] = &writeDataNodes[i];
    998 			termNode->antType[i] = rf_control;
    999 		}
   1000 	}
   1001 
   1002 	for (i = 0; i < numParityNodes; i++) {
   1003 		if (lu_flag) {
   1004 			/* connect write new parity nodes to unlock nodes */
   1005 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1006 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1007 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1008 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1009 			unlockParityNodes[i].antType[0] = rf_control;
   1010 
   1011 			/* connect unlock nodes to term node */
   1012 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1013 			unlockParityNodes[i].succedents[0] = termNode;
   1014 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1015 			termNode->antType[numDataNodes + i] = rf_control;
   1016 		} else {
   1017 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1018 			writeParityNodes[i].succedents[0] = termNode;
   1019 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1020 			termNode->antType[numDataNodes + i] = rf_control;
   1021 		}
   1022 	}
   1023 
   1024 	if (nfaults == 2) {
   1025 		for (i = 0; i < numParityNodes; i++) {
   1026 			if (lu_flag) {
   1027 				/* connect write new Q nodes to unlock nodes */
   1028 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1029 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1030 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1031 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1032 				unlockQNodes[i].antType[0] = rf_control;
   1033 
   1034 				/* connect unlock nodes to unblock node */
   1035 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1036 				unlockQNodes[i].succedents[0] = termNode;
   1037 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1038 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1039 			} else {
   1040 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1041 				writeQNodes[i].succedents[0] = termNode;
   1042 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1043 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1044 			}
   1045 		}
   1046 	}
   1047 }
   1048 
   1049 
   1050 /******************************************************************************
   1051  * create a write graph (fault-free or degraded) for RAID level 1
   1052  *
   1053  * Hdr -> Commit -> Wpd -> Nil -> Trm
   1054  *               -> Wsd ->
   1055  *
   1056  * The "Wpd" node writes data to the primary copy in the mirror pair
   1057  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1058  *
   1059  * Parameters:  raidPtr   - description of the physical array
   1060  *              asmap     - logical & physical addresses for this access
   1061  *              bp        - buffer ptr (holds write data)
   1062  *              flags     - general flags (e.g. disk locking)
   1063  *              allocList - list of memory allocated in DAG creation
   1064  *****************************************************************************/
   1065 
   1066 void
   1067 rf_CreateRaidOneWriteDAG(
   1068     RF_Raid_t * raidPtr,
   1069     RF_AccessStripeMap_t * asmap,
   1070     RF_DagHeader_t * dag_h,
   1071     void *bp,
   1072     RF_RaidAccessFlags_t flags,
   1073     RF_AllocListElem_t * allocList)
   1074 {
   1075 	RF_DagNode_t *unblockNode, *termNode, *commitNode;
   1076 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   1077 	int     nWndNodes, nWmirNodes, i;
   1078 	RF_ReconUnitNum_t which_ru;
   1079 	RF_PhysDiskAddr_t *pda, *pdaP;
   1080 	RF_StripeNum_t parityStripeID;
   1081 
   1082 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   1083 	    asmap->raidAddress, &which_ru);
   1084 	if (rf_dagDebug) {
   1085 		printf("[Creating RAID level 1 write DAG]\n");
   1086 	}
   1087 	dag_h->creator = "RaidOneWriteDAG";
   1088 
   1089 	/* 2 implies access not SU aligned */
   1090 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;
   1091 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   1092 
   1093 	/* alloc the Wnd nodes and the Wmir node */
   1094 	if (asmap->numDataFailed == 1)
   1095 		nWndNodes--;
   1096 	if (asmap->numParityFailed == 1)
   1097 		nWmirNodes--;
   1098 
   1099 	/* total number of nodes = nWndNodes + nWmirNodes + (commit + unblock
   1100 	 * + terminator) */
   1101 	RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t),
   1102 	    (RF_DagNode_t *), allocList);
   1103 	i = 0;
   1104 	wndNode = &nodes[i];
   1105 	i += nWndNodes;
   1106 	wmirNode = &nodes[i];
   1107 	i += nWmirNodes;
   1108 	commitNode = &nodes[i];
   1109 	i += 1;
   1110 	unblockNode = &nodes[i];
   1111 	i += 1;
   1112 	termNode = &nodes[i];
   1113 	i += 1;
   1114 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   1115 
   1116 	/* this dag can commit immediately */
   1117 	dag_h->numCommitNodes = 1;
   1118 	dag_h->numCommits = 0;
   1119 	dag_h->numSuccedents = 1;
   1120 
   1121 	/* initialize the commit, unblock, and term nodes */
   1122 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
   1123 	    NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Cmt", allocList);
   1124 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
   1125 	    NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
   1126 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
   1127 	    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
   1128 
   1129 	/* initialize the wnd nodes */
   1130 	if (nWndNodes > 0) {
   1131 		pda = asmap->physInfo;
   1132 		for (i = 0; i < nWndNodes; i++) {
   1133 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1134 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
   1135 			RF_ASSERT(pda != NULL);
   1136 			wndNode[i].params[0].p = pda;
   1137 			wndNode[i].params[1].p = pda->bufPtr;
   1138 			wndNode[i].params[2].v = parityStripeID;
   1139 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1140 			pda = pda->next;
   1141 		}
   1142 		RF_ASSERT(pda == NULL);
   1143 	}
   1144 	/* initialize the mirror nodes */
   1145 	if (nWmirNodes > 0) {
   1146 		pda = asmap->physInfo;
   1147 		pdaP = asmap->parityInfo;
   1148 		for (i = 0; i < nWmirNodes; i++) {
   1149 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
   1150 			    rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
   1151 			RF_ASSERT(pda != NULL);
   1152 			wmirNode[i].params[0].p = pdaP;
   1153 			wmirNode[i].params[1].p = pda->bufPtr;
   1154 			wmirNode[i].params[2].v = parityStripeID;
   1155 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1156 			pda = pda->next;
   1157 			pdaP = pdaP->next;
   1158 		}
   1159 		RF_ASSERT(pda == NULL);
   1160 		RF_ASSERT(pdaP == NULL);
   1161 	}
   1162 	/* link the header node to the commit node */
   1163 	RF_ASSERT(dag_h->numSuccedents == 1);
   1164 	RF_ASSERT(commitNode->numAntecedents == 0);
   1165 	dag_h->succedents[0] = commitNode;
   1166 
   1167 	/* link the commit node to the write nodes */
   1168 	RF_ASSERT(commitNode->numSuccedents == (nWndNodes + nWmirNodes));
   1169 	for (i = 0; i < nWndNodes; i++) {
   1170 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   1171 		commitNode->succedents[i] = &wndNode[i];
   1172 		wndNode[i].antecedents[0] = commitNode;
   1173 		wndNode[i].antType[0] = rf_control;
   1174 	}
   1175 	for (i = 0; i < nWmirNodes; i++) {
   1176 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   1177 		commitNode->succedents[i + nWndNodes] = &wmirNode[i];
   1178 		wmirNode[i].antecedents[0] = commitNode;
   1179 		wmirNode[i].antType[0] = rf_control;
   1180 	}
   1181 
   1182 	/* link the write nodes to the unblock node */
   1183 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   1184 	for (i = 0; i < nWndNodes; i++) {
   1185 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   1186 		wndNode[i].succedents[0] = unblockNode;
   1187 		unblockNode->antecedents[i] = &wndNode[i];
   1188 		unblockNode->antType[i] = rf_control;
   1189 	}
   1190 	for (i = 0; i < nWmirNodes; i++) {
   1191 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   1192 		wmirNode[i].succedents[0] = unblockNode;
   1193 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   1194 		unblockNode->antType[i + nWndNodes] = rf_control;
   1195 	}
   1196 
   1197 	/* link the unblock node to the term node */
   1198 	RF_ASSERT(unblockNode->numSuccedents == 1);
   1199 	RF_ASSERT(termNode->numAntecedents == 1);
   1200 	RF_ASSERT(termNode->numSuccedents == 0);
   1201 	unblockNode->succedents[0] = termNode;
   1202 	termNode->antecedents[0] = unblockNode;
   1203 	termNode->antType[0] = rf_control;
   1204 }
   1205 
   1206 
   1207 #if 0
   1208 /* DAGs which have no commit points.
   1209  *
   1210  * The following DAGs are used in forward and backward error recovery experiments.
   1211  * They are identical to the DAGs above this comment with the exception that the
   1212  * the commit points have been removed.
   1213  */
   1214 
   1215 
   1216 
   1217 void
   1218 rf_CommonCreateLargeWriteDAGFwd(
   1219     RF_Raid_t * raidPtr,
   1220     RF_AccessStripeMap_t * asmap,
   1221     RF_DagHeader_t * dag_h,
   1222     void *bp,
   1223     RF_RaidAccessFlags_t flags,
   1224     RF_AllocListElem_t * allocList,
   1225     int nfaults,
   1226     int (*redFunc) (RF_DagNode_t *),
   1227     int allowBufferRecycle)
   1228 {
   1229 	RF_DagNode_t *nodes, *wndNodes, *rodNodes, *xorNode, *wnpNode;
   1230 	RF_DagNode_t *wnqNode, *blockNode, *syncNode, *termNode;
   1231 	int     nWndNodes, nRodNodes, i, nodeNum, asmNum;
   1232 	RF_AccessStripeMapHeader_t *new_asm_h[2];
   1233 	RF_StripeNum_t parityStripeID;
   1234 	char   *sosBuffer, *eosBuffer;
   1235 	RF_ReconUnitNum_t which_ru;
   1236 	RF_RaidLayout_t *layoutPtr;
   1237 	RF_PhysDiskAddr_t *pda;
   1238 
   1239 	layoutPtr = &(raidPtr->Layout);
   1240 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
   1241 
   1242 	if (rf_dagDebug)
   1243 		printf("[Creating large-write DAG]\n");
   1244 	dag_h->creator = "LargeWriteDAGFwd";
   1245 
   1246 	dag_h->numCommitNodes = 0;
   1247 	dag_h->numCommits = 0;
   1248 	dag_h->numSuccedents = 1;
   1249 
   1250 	/* alloc the nodes: Wnd, xor, commit, block, term, and  Wnp */
   1251 	nWndNodes = asmap->numStripeUnitsAccessed;
   1252 	RF_CallocAndAdd(nodes, nWndNodes + 4 + nfaults, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1253 	i = 0;
   1254 	wndNodes = &nodes[i];
   1255 	i += nWndNodes;
   1256 	xorNode = &nodes[i];
   1257 	i += 1;
   1258 	wnpNode = &nodes[i];
   1259 	i += 1;
   1260 	blockNode = &nodes[i];
   1261 	i += 1;
   1262 	syncNode = &nodes[i];
   1263 	i += 1;
   1264 	termNode = &nodes[i];
   1265 	i += 1;
   1266 	if (nfaults == 2) {
   1267 		wnqNode = &nodes[i];
   1268 		i += 1;
   1269 	} else {
   1270 		wnqNode = NULL;
   1271 	}
   1272 	rf_MapUnaccessedPortionOfStripe(raidPtr, layoutPtr, asmap, dag_h, new_asm_h, &nRodNodes, &sosBuffer, &eosBuffer, allocList);
   1273 	if (nRodNodes > 0) {
   1274 		RF_CallocAndAdd(rodNodes, nRodNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1275 	} else {
   1276 		rodNodes = NULL;
   1277 	}
   1278 
   1279 	/* begin node initialization */
   1280 	if (nRodNodes > 0) {
   1281 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nRodNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1282 		rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, nRodNodes, 0, 0, dag_h, "Nil", allocList);
   1283 	} else {
   1284 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
   1285 		rf_InitNode(syncNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nWndNodes + 1, 1, 0, 0, dag_h, "Nil", allocList);
   1286 	}
   1287 
   1288 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nWndNodes + nfaults, 0, 0, dag_h, "Trm", allocList);
   1289 
   1290 	/* initialize the Rod nodes */
   1291 	for (nodeNum = asmNum = 0; asmNum < 2; asmNum++) {
   1292 		if (new_asm_h[asmNum]) {
   1293 			pda = new_asm_h[asmNum]->stripeMap->physInfo;
   1294 			while (pda) {
   1295 				rf_InitNode(&rodNodes[nodeNum], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Rod", allocList);
   1296 				rodNodes[nodeNum].params[0].p = pda;
   1297 				rodNodes[nodeNum].params[1].p = pda->bufPtr;
   1298 				rodNodes[nodeNum].params[2].v = parityStripeID;
   1299 				rodNodes[nodeNum].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1300 				nodeNum++;
   1301 				pda = pda->next;
   1302 			}
   1303 		}
   1304 	}
   1305 	RF_ASSERT(nodeNum == nRodNodes);
   1306 
   1307 	/* initialize the wnd nodes */
   1308 	pda = asmap->physInfo;
   1309 	for (i = 0; i < nWndNodes; i++) {
   1310 		rf_InitNode(&wndNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
   1311 		RF_ASSERT(pda != NULL);
   1312 		wndNodes[i].params[0].p = pda;
   1313 		wndNodes[i].params[1].p = pda->bufPtr;
   1314 		wndNodes[i].params[2].v = parityStripeID;
   1315 		wndNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1316 		pda = pda->next;
   1317 	}
   1318 
   1319 	/* initialize the redundancy node */
   1320 	rf_InitNode(xorNode, rf_wait, RF_FALSE, redFunc, rf_NullNodeUndoFunc, NULL, 1, nfaults, 2 * (nWndNodes + nRodNodes) + 1, nfaults, dag_h, "Xr ", allocList);
   1321 	xorNode->flags |= RF_DAGNODE_FLAG_YIELD;
   1322 	for (i = 0; i < nWndNodes; i++) {
   1323 		xorNode->params[2 * i + 0] = wndNodes[i].params[0];	/* pda */
   1324 		xorNode->params[2 * i + 1] = wndNodes[i].params[1];	/* buf ptr */
   1325 	}
   1326 	for (i = 0; i < nRodNodes; i++) {
   1327 		xorNode->params[2 * (nWndNodes + i) + 0] = rodNodes[i].params[0];	/* pda */
   1328 		xorNode->params[2 * (nWndNodes + i) + 1] = rodNodes[i].params[1];	/* buf ptr */
   1329 	}
   1330 	xorNode->params[2 * (nWndNodes + nRodNodes)].p = raidPtr;	/* xor node needs to get
   1331 									 * at RAID information */
   1332 
   1333 	/* look for an Rod node that reads a complete SU.  If none, alloc a
   1334 	 * buffer to receive the parity info. Note that we can't use a new
   1335 	 * data buffer because it will not have gotten written when the xor
   1336 	 * occurs. */
   1337 	if (allowBufferRecycle) {
   1338 		for (i = 0; i < nRodNodes; i++)
   1339 			if (((RF_PhysDiskAddr_t *) rodNodes[i].params[0].p)->numSector == raidPtr->Layout.sectorsPerStripeUnit)
   1340 				break;
   1341 	}
   1342 	if ((!allowBufferRecycle) || (i == nRodNodes)) {
   1343 		RF_CallocAndAdd(xorNode->results[0], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
   1344 	} else
   1345 		xorNode->results[0] = rodNodes[i].params[1].p;
   1346 
   1347 	/* initialize the Wnp node */
   1348 	rf_InitNode(wnpNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnp", allocList);
   1349 	wnpNode->params[0].p = asmap->parityInfo;
   1350 	wnpNode->params[1].p = xorNode->results[0];
   1351 	wnpNode->params[2].v = parityStripeID;
   1352 	wnpNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1353 	RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
   1354 							 * describe entire
   1355 							 * parity unit */
   1356 
   1357 	if (nfaults == 2) {
   1358 		/* we never try to recycle a buffer for the Q calcuation in
   1359 		 * addition to the parity. This would cause two buffers to get
   1360 		 * smashed during the P and Q calculation, guaranteeing one
   1361 		 * would be wrong. */
   1362 		RF_CallocAndAdd(xorNode->results[1], 1, rf_RaidAddressToByte(raidPtr, raidPtr->Layout.sectorsPerStripeUnit), (void *), allocList);
   1363 		rf_InitNode(wnqNode, rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnq", allocList);
   1364 		wnqNode->params[0].p = asmap->qInfo;
   1365 		wnqNode->params[1].p = xorNode->results[1];
   1366 		wnqNode->params[2].v = parityStripeID;
   1367 		wnqNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1368 		RF_ASSERT(asmap->parityInfo->next == NULL);	/* parityInfo must
   1369 								 * describe entire
   1370 								 * parity unit */
   1371 	}
   1372 	/* connect nodes to form graph */
   1373 
   1374 	/* connect dag header to block node */
   1375 	RF_ASSERT(blockNode->numAntecedents == 0);
   1376 	dag_h->succedents[0] = blockNode;
   1377 
   1378 	if (nRodNodes > 0) {
   1379 		/* connect the block node to the Rod nodes */
   1380 		RF_ASSERT(blockNode->numSuccedents == nRodNodes);
   1381 		RF_ASSERT(syncNode->numAntecedents == nRodNodes);
   1382 		for (i = 0; i < nRodNodes; i++) {
   1383 			RF_ASSERT(rodNodes[i].numAntecedents == 1);
   1384 			blockNode->succedents[i] = &rodNodes[i];
   1385 			rodNodes[i].antecedents[0] = blockNode;
   1386 			rodNodes[i].antType[0] = rf_control;
   1387 
   1388 			/* connect the Rod nodes to the Nil node */
   1389 			RF_ASSERT(rodNodes[i].numSuccedents == 1);
   1390 			rodNodes[i].succedents[0] = syncNode;
   1391 			syncNode->antecedents[i] = &rodNodes[i];
   1392 			syncNode->antType[i] = rf_trueData;
   1393 		}
   1394 	} else {
   1395 		/* connect the block node to the Nil node */
   1396 		RF_ASSERT(blockNode->numSuccedents == 1);
   1397 		RF_ASSERT(syncNode->numAntecedents == 1);
   1398 		blockNode->succedents[0] = syncNode;
   1399 		syncNode->antecedents[0] = blockNode;
   1400 		syncNode->antType[0] = rf_control;
   1401 	}
   1402 
   1403 	/* connect the sync node to the Wnd nodes */
   1404 	RF_ASSERT(syncNode->numSuccedents == (1 + nWndNodes));
   1405 	for (i = 0; i < nWndNodes; i++) {
   1406 		RF_ASSERT(wndNodes->numAntecedents == 1);
   1407 		syncNode->succedents[i] = &wndNodes[i];
   1408 		wndNodes[i].antecedents[0] = syncNode;
   1409 		wndNodes[i].antType[0] = rf_control;
   1410 	}
   1411 
   1412 	/* connect the sync node to the Xor node */
   1413 	RF_ASSERT(xorNode->numAntecedents == 1);
   1414 	syncNode->succedents[nWndNodes] = xorNode;
   1415 	xorNode->antecedents[0] = syncNode;
   1416 	xorNode->antType[0] = rf_control;
   1417 
   1418 	/* connect the xor node to the write parity node */
   1419 	RF_ASSERT(xorNode->numSuccedents == nfaults);
   1420 	RF_ASSERT(wnpNode->numAntecedents == 1);
   1421 	xorNode->succedents[0] = wnpNode;
   1422 	wnpNode->antecedents[0] = xorNode;
   1423 	wnpNode->antType[0] = rf_trueData;
   1424 	if (nfaults == 2) {
   1425 		RF_ASSERT(wnqNode->numAntecedents == 1);
   1426 		xorNode->succedents[1] = wnqNode;
   1427 		wnqNode->antecedents[0] = xorNode;
   1428 		wnqNode->antType[0] = rf_trueData;
   1429 	}
   1430 	/* connect the write nodes to the term node */
   1431 	RF_ASSERT(termNode->numAntecedents == nWndNodes + nfaults);
   1432 	RF_ASSERT(termNode->numSuccedents == 0);
   1433 	for (i = 0; i < nWndNodes; i++) {
   1434 		RF_ASSERT(wndNodes->numSuccedents == 1);
   1435 		wndNodes[i].succedents[0] = termNode;
   1436 		termNode->antecedents[i] = &wndNodes[i];
   1437 		termNode->antType[i] = rf_control;
   1438 	}
   1439 	RF_ASSERT(wnpNode->numSuccedents == 1);
   1440 	wnpNode->succedents[0] = termNode;
   1441 	termNode->antecedents[nWndNodes] = wnpNode;
   1442 	termNode->antType[nWndNodes] = rf_control;
   1443 	if (nfaults == 2) {
   1444 		RF_ASSERT(wnqNode->numSuccedents == 1);
   1445 		wnqNode->succedents[0] = termNode;
   1446 		termNode->antecedents[nWndNodes + 1] = wnqNode;
   1447 		termNode->antType[nWndNodes + 1] = rf_control;
   1448 	}
   1449 }
   1450 
   1451 
   1452 /******************************************************************************
   1453  *
   1454  * creates a DAG to perform a small-write operation (either raid 5 or pq),
   1455  * which is as follows:
   1456  *
   1457  * Hdr -> Nil -> Rop - Xor - Wnp [Unp] -- Trm
   1458  *            \- Rod X- Wnd [Und] -------/
   1459  *           [\- Rod X- Wnd [Und] ------/]
   1460  *           [\- Roq - Q --> Wnq [Unq]-/]
   1461  *
   1462  * Rop = read old parity
   1463  * Rod = read old data
   1464  * Roq = read old "q"
   1465  * Cmt = commit node
   1466  * Und = unlock data disk
   1467  * Unp = unlock parity disk
   1468  * Unq = unlock q disk
   1469  * Wnp = write new parity
   1470  * Wnd = write new data
   1471  * Wnq = write new "q"
   1472  * [ ] denotes optional segments in the graph
   1473  *
   1474  * Parameters:  raidPtr   - description of the physical array
   1475  *              asmap     - logical & physical addresses for this access
   1476  *              bp        - buffer ptr (holds write data)
   1477  *              flags     - general flags (e.g. disk locking)
   1478  *              allocList - list of memory allocated in DAG creation
   1479  *              pfuncs    - list of parity generating functions
   1480  *              qfuncs    - list of q generating functions
   1481  *
   1482  * A null qfuncs indicates single fault tolerant
   1483  *****************************************************************************/
   1484 
   1485 void
   1486 rf_CommonCreateSmallWriteDAGFwd(
   1487     RF_Raid_t * raidPtr,
   1488     RF_AccessStripeMap_t * asmap,
   1489     RF_DagHeader_t * dag_h,
   1490     void *bp,
   1491     RF_RaidAccessFlags_t flags,
   1492     RF_AllocListElem_t * allocList,
   1493     RF_RedFuncs_t * pfuncs,
   1494     RF_RedFuncs_t * qfuncs)
   1495 {
   1496 	RF_DagNode_t *readDataNodes, *readParityNodes, *readQNodes, *termNode;
   1497 	RF_DagNode_t *unlockDataNodes, *unlockParityNodes, *unlockQNodes;
   1498 	RF_DagNode_t *xorNodes, *qNodes, *blockNode, *nodes;
   1499 	RF_DagNode_t *writeDataNodes, *writeParityNodes, *writeQNodes;
   1500 	int     i, j, nNodes, totalNumNodes, lu_flag;
   1501 	RF_ReconUnitNum_t which_ru;
   1502 	int     (*func) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
   1503 	int     (*qfunc) (RF_DagNode_t *);
   1504 	int     numDataNodes, numParityNodes;
   1505 	RF_StripeNum_t parityStripeID;
   1506 	RF_PhysDiskAddr_t *pda;
   1507 	char   *name, *qname;
   1508 	long    nfaults;
   1509 
   1510 	nfaults = qfuncs ? 2 : 1;
   1511 	lu_flag = (rf_enableAtomicRMW) ? 1 : 0;	/* lock/unlock flag */
   1512 
   1513 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout), asmap->raidAddress, &which_ru);
   1514 	pda = asmap->physInfo;
   1515 	numDataNodes = asmap->numStripeUnitsAccessed;
   1516 	numParityNodes = (asmap->parityInfo->next) ? 2 : 1;
   1517 
   1518 	if (rf_dagDebug)
   1519 		printf("[Creating small-write DAG]\n");
   1520 	RF_ASSERT(numDataNodes > 0);
   1521 	dag_h->creator = "SmallWriteDAGFwd";
   1522 
   1523 	dag_h->numCommitNodes = 0;
   1524 	dag_h->numCommits = 0;
   1525 	dag_h->numSuccedents = 1;
   1526 
   1527 	qfunc = NULL;
   1528 	qname = NULL;
   1529 
   1530 	/* DAG creation occurs in four steps: 1. count the number of nodes in
   1531 	 * the DAG 2. create the nodes 3. initialize the nodes 4. connect the
   1532 	 * nodes */
   1533 
   1534 	/* Step 1. compute number of nodes in the graph */
   1535 
   1536 	/* number of nodes: a read and write for each data unit a redundancy
   1537 	 * computation node for each parity node (nfaults * nparity) a read
   1538 	 * and write for each parity unit a block node a terminate node if
   1539 	 * atomic RMW an unlock node for each data unit, redundancy unit */
   1540 	totalNumNodes = (2 * numDataNodes) + (nfaults * numParityNodes) + (nfaults * 2 * numParityNodes) + 2;
   1541 	if (lu_flag)
   1542 		totalNumNodes += (numDataNodes + (nfaults * numParityNodes));
   1543 
   1544 
   1545 	/* Step 2. create the nodes */
   1546 	RF_CallocAndAdd(nodes, totalNumNodes, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   1547 	i = 0;
   1548 	blockNode = &nodes[i];
   1549 	i += 1;
   1550 	readDataNodes = &nodes[i];
   1551 	i += numDataNodes;
   1552 	readParityNodes = &nodes[i];
   1553 	i += numParityNodes;
   1554 	writeDataNodes = &nodes[i];
   1555 	i += numDataNodes;
   1556 	writeParityNodes = &nodes[i];
   1557 	i += numParityNodes;
   1558 	xorNodes = &nodes[i];
   1559 	i += numParityNodes;
   1560 	termNode = &nodes[i];
   1561 	i += 1;
   1562 	if (lu_flag) {
   1563 		unlockDataNodes = &nodes[i];
   1564 		i += numDataNodes;
   1565 		unlockParityNodes = &nodes[i];
   1566 		i += numParityNodes;
   1567 	} else {
   1568 		unlockDataNodes = unlockParityNodes = NULL;
   1569 	}
   1570 	if (nfaults == 2) {
   1571 		readQNodes = &nodes[i];
   1572 		i += numParityNodes;
   1573 		writeQNodes = &nodes[i];
   1574 		i += numParityNodes;
   1575 		qNodes = &nodes[i];
   1576 		i += numParityNodes;
   1577 		if (lu_flag) {
   1578 			unlockQNodes = &nodes[i];
   1579 			i += numParityNodes;
   1580 		} else {
   1581 			unlockQNodes = NULL;
   1582 		}
   1583 	} else {
   1584 		readQNodes = writeQNodes = qNodes = unlockQNodes = NULL;
   1585 	}
   1586 	RF_ASSERT(i == totalNumNodes);
   1587 
   1588 	/* Step 3. initialize the nodes */
   1589 	/* initialize block node (Nil) */
   1590 	nNodes = numDataNodes + (nfaults * numParityNodes);
   1591 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, nNodes, 0, 0, 0, dag_h, "Nil", allocList);
   1592 
   1593 	/* initialize terminate node (Trm) */
   1594 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, nNodes, 0, 0, dag_h, "Trm", allocList);
   1595 
   1596 	/* initialize nodes which read old data (Rod) */
   1597 	for (i = 0; i < numDataNodes; i++) {
   1598 		rf_InitNode(&readDataNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, (numParityNodes * nfaults) + 1, 1, 4, 0, dag_h, "Rod", allocList);
   1599 		RF_ASSERT(pda != NULL);
   1600 		readDataNodes[i].params[0].p = pda;	/* physical disk addr
   1601 							 * desc */
   1602 		readDataNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
   1603 												 * data */
   1604 		readDataNodes[i].params[2].v = parityStripeID;
   1605 		readDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1606 		pda = pda->next;
   1607 		for (j = 0; j < readDataNodes[i].numSuccedents; j++)
   1608 			readDataNodes[i].propList[j] = NULL;
   1609 	}
   1610 
   1611 	/* initialize nodes which read old parity (Rop) */
   1612 	pda = asmap->parityInfo;
   1613 	i = 0;
   1614 	for (i = 0; i < numParityNodes; i++) {
   1615 		RF_ASSERT(pda != NULL);
   1616 		rf_InitNode(&readParityNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Rop", allocList);
   1617 		readParityNodes[i].params[0].p = pda;
   1618 		readParityNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old
   1619 													 * parity */
   1620 		readParityNodes[i].params[2].v = parityStripeID;
   1621 		readParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1622 		for (j = 0; j < readParityNodes[i].numSuccedents; j++)
   1623 			readParityNodes[i].propList[0] = NULL;
   1624 		pda = pda->next;
   1625 	}
   1626 
   1627 	/* initialize nodes which read old Q (Roq) */
   1628 	if (nfaults == 2) {
   1629 		pda = asmap->qInfo;
   1630 		for (i = 0; i < numParityNodes; i++) {
   1631 			RF_ASSERT(pda != NULL);
   1632 			rf_InitNode(&readQNodes[i], rf_wait, RF_FALSE, rf_DiskReadFunc, rf_DiskReadUndoFunc, rf_GenericWakeupFunc, numParityNodes, 1, 4, 0, dag_h, "Roq", allocList);
   1633 			readQNodes[i].params[0].p = pda;
   1634 			readQNodes[i].params[1].p = rf_AllocBuffer(raidPtr, dag_h, pda, allocList);	/* buffer to hold old Q */
   1635 			readQNodes[i].params[2].v = parityStripeID;
   1636 			readQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, lu_flag, 0, which_ru);
   1637 			for (j = 0; j < readQNodes[i].numSuccedents; j++)
   1638 				readQNodes[i].propList[0] = NULL;
   1639 			pda = pda->next;
   1640 		}
   1641 	}
   1642 	/* initialize nodes which write new data (Wnd) */
   1643 	pda = asmap->physInfo;
   1644 	for (i = 0; i < numDataNodes; i++) {
   1645 		RF_ASSERT(pda != NULL);
   1646 		rf_InitNode(&writeDataNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wnd", allocList);
   1647 		writeDataNodes[i].params[0].p = pda;	/* physical disk addr
   1648 							 * desc */
   1649 		writeDataNodes[i].params[1].p = pda->bufPtr;	/* buffer holding new
   1650 								 * data to be written */
   1651 		writeDataNodes[i].params[2].v = parityStripeID;
   1652 		writeDataNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1653 
   1654 		if (lu_flag) {
   1655 			/* initialize node to unlock the disk queue */
   1656 			rf_InitNode(&unlockDataNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Und", allocList);
   1657 			unlockDataNodes[i].params[0].p = pda;	/* physical disk addr
   1658 								 * desc */
   1659 			unlockDataNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1660 		}
   1661 		pda = pda->next;
   1662 	}
   1663 
   1664 
   1665 	/* initialize nodes which compute new parity and Q */
   1666 	/* we use the simple XOR func in the double-XOR case, and when we're
   1667 	 * accessing only a portion of one stripe unit. the distinction
   1668 	 * between the two is that the regular XOR func assumes that the
   1669 	 * targbuf is a full SU in size, and examines the pda associated with
   1670 	 * the buffer to decide where within the buffer to XOR the data,
   1671 	 * whereas the simple XOR func just XORs the data into the start of
   1672 	 * the buffer. */
   1673 	if ((numParityNodes == 2) || ((numDataNodes == 1) && (asmap->totalSectorsAccessed < raidPtr->Layout.sectorsPerStripeUnit))) {
   1674 		func = pfuncs->simple;
   1675 		undoFunc = rf_NullNodeUndoFunc;
   1676 		name = pfuncs->SimpleName;
   1677 		if (qfuncs) {
   1678 			qfunc = qfuncs->simple;
   1679 			qname = qfuncs->SimpleName;
   1680 		}
   1681 	} else {
   1682 		func = pfuncs->regular;
   1683 		undoFunc = rf_NullNodeUndoFunc;
   1684 		name = pfuncs->RegularName;
   1685 		if (qfuncs) {
   1686 			qfunc = qfuncs->regular;
   1687 			qname = qfuncs->RegularName;
   1688 		}
   1689 	}
   1690 	/* initialize the xor nodes: params are {pda,buf} from {Rod,Wnd,Rop}
   1691 	 * nodes, and raidPtr  */
   1692 	if (numParityNodes == 2) {	/* double-xor case */
   1693 		for (i = 0; i < numParityNodes; i++) {
   1694 			rf_InitNode(&xorNodes[i], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, name, allocList);	/* no wakeup func for
   1695 																						 * xor */
   1696 			xorNodes[i].flags |= RF_DAGNODE_FLAG_YIELD;
   1697 			xorNodes[i].params[0] = readDataNodes[i].params[0];
   1698 			xorNodes[i].params[1] = readDataNodes[i].params[1];
   1699 			xorNodes[i].params[2] = readParityNodes[i].params[0];
   1700 			xorNodes[i].params[3] = readParityNodes[i].params[1];
   1701 			xorNodes[i].params[4] = writeDataNodes[i].params[0];
   1702 			xorNodes[i].params[5] = writeDataNodes[i].params[1];
   1703 			xorNodes[i].params[6].p = raidPtr;
   1704 			xorNodes[i].results[0] = readParityNodes[i].params[1].p;	/* use old parity buf as
   1705 											 * target buf */
   1706 			if (nfaults == 2) {
   1707 				rf_InitNode(&qNodes[i], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, 7, 1, dag_h, qname, allocList);	/* no wakeup func for
   1708 																							 * xor */
   1709 				qNodes[i].params[0] = readDataNodes[i].params[0];
   1710 				qNodes[i].params[1] = readDataNodes[i].params[1];
   1711 				qNodes[i].params[2] = readQNodes[i].params[0];
   1712 				qNodes[i].params[3] = readQNodes[i].params[1];
   1713 				qNodes[i].params[4] = writeDataNodes[i].params[0];
   1714 				qNodes[i].params[5] = writeDataNodes[i].params[1];
   1715 				qNodes[i].params[6].p = raidPtr;
   1716 				qNodes[i].results[0] = readQNodes[i].params[1].p;	/* use old Q buf as
   1717 											 * target buf */
   1718 			}
   1719 		}
   1720 	} else {
   1721 		/* there is only one xor node in this case */
   1722 		rf_InitNode(&xorNodes[0], rf_wait, RF_FALSE, func, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, name, allocList);
   1723 		xorNodes[0].flags |= RF_DAGNODE_FLAG_YIELD;
   1724 		for (i = 0; i < numDataNodes + 1; i++) {
   1725 			/* set up params related to Rod and Rop nodes */
   1726 			xorNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
   1727 			xorNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
   1728 		}
   1729 		for (i = 0; i < numDataNodes; i++) {
   1730 			/* set up params related to Wnd and Wnp nodes */
   1731 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
   1732 			xorNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
   1733 		}
   1734 		xorNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
   1735 											 * at RAID information */
   1736 		xorNodes[0].results[0] = readParityNodes[0].params[1].p;
   1737 		if (nfaults == 2) {
   1738 			rf_InitNode(&qNodes[0], rf_wait, RF_FALSE, qfunc, undoFunc, NULL, numParityNodes, numParityNodes + numDataNodes, (2 * (numDataNodes + numDataNodes + 1) + 1), 1, dag_h, qname, allocList);
   1739 			for (i = 0; i < numDataNodes; i++) {
   1740 				/* set up params related to Rod */
   1741 				qNodes[0].params[2 * i + 0] = readDataNodes[i].params[0];	/* pda */
   1742 				qNodes[0].params[2 * i + 1] = readDataNodes[i].params[1];	/* buffer pointer */
   1743 			}
   1744 			/* and read old q */
   1745 			qNodes[0].params[2 * numDataNodes + 0] = readQNodes[0].params[0];	/* pda */
   1746 			qNodes[0].params[2 * numDataNodes + 1] = readQNodes[0].params[1];	/* buffer pointer */
   1747 			for (i = 0; i < numDataNodes; i++) {
   1748 				/* set up params related to Wnd nodes */
   1749 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 0] = writeDataNodes[i].params[0];	/* pda */
   1750 				qNodes[0].params[2 * (numDataNodes + 1 + i) + 1] = writeDataNodes[i].params[1];	/* buffer pointer */
   1751 			}
   1752 			qNodes[0].params[2 * (numDataNodes + numDataNodes + 1)].p = raidPtr;	/* xor node needs to get
   1753 												 * at RAID information */
   1754 			qNodes[0].results[0] = readQNodes[0].params[1].p;
   1755 		}
   1756 	}
   1757 
   1758 	/* initialize nodes which write new parity (Wnp) */
   1759 	pda = asmap->parityInfo;
   1760 	for (i = 0; i < numParityNodes; i++) {
   1761 		rf_InitNode(&writeParityNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnp", allocList);
   1762 		RF_ASSERT(pda != NULL);
   1763 		writeParityNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
   1764 							 * filled in by xor node */
   1765 		writeParityNodes[i].params[1].p = xorNodes[i].results[0];	/* buffer pointer for
   1766 										 * parity write
   1767 										 * operation */
   1768 		writeParityNodes[i].params[2].v = parityStripeID;
   1769 		writeParityNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1770 
   1771 		if (lu_flag) {
   1772 			/* initialize node to unlock the disk queue */
   1773 			rf_InitNode(&unlockParityNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unp", allocList);
   1774 			unlockParityNodes[i].params[0].p = pda;	/* physical disk addr
   1775 								 * desc */
   1776 			unlockParityNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1777 		}
   1778 		pda = pda->next;
   1779 	}
   1780 
   1781 	/* initialize nodes which write new Q (Wnq) */
   1782 	if (nfaults == 2) {
   1783 		pda = asmap->qInfo;
   1784 		for (i = 0; i < numParityNodes; i++) {
   1785 			rf_InitNode(&writeQNodes[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, numParityNodes, 4, 0, dag_h, "Wnq", allocList);
   1786 			RF_ASSERT(pda != NULL);
   1787 			writeQNodes[i].params[0].p = pda;	/* param 1 (bufPtr)
   1788 								 * filled in by xor node */
   1789 			writeQNodes[i].params[1].p = qNodes[i].results[0];	/* buffer pointer for
   1790 										 * parity write
   1791 										 * operation */
   1792 			writeQNodes[i].params[2].v = parityStripeID;
   1793 			writeQNodes[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   1794 
   1795 			if (lu_flag) {
   1796 				/* initialize node to unlock the disk queue */
   1797 				rf_InitNode(&unlockQNodes[i], rf_wait, RF_FALSE, rf_DiskUnlockFunc, rf_DiskUnlockUndoFunc, rf_GenericWakeupFunc, 1, 1, 2, 0, dag_h, "Unq", allocList);
   1798 				unlockQNodes[i].params[0].p = pda;	/* physical disk addr
   1799 									 * desc */
   1800 				unlockQNodes[i].params[1].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, lu_flag, which_ru);
   1801 			}
   1802 			pda = pda->next;
   1803 		}
   1804 	}
   1805 	/* Step 4. connect the nodes */
   1806 
   1807 	/* connect header to block node */
   1808 	dag_h->succedents[0] = blockNode;
   1809 
   1810 	/* connect block node to read old data nodes */
   1811 	RF_ASSERT(blockNode->numSuccedents == (numDataNodes + (numParityNodes * nfaults)));
   1812 	for (i = 0; i < numDataNodes; i++) {
   1813 		blockNode->succedents[i] = &readDataNodes[i];
   1814 		RF_ASSERT(readDataNodes[i].numAntecedents == 1);
   1815 		readDataNodes[i].antecedents[0] = blockNode;
   1816 		readDataNodes[i].antType[0] = rf_control;
   1817 	}
   1818 
   1819 	/* connect block node to read old parity nodes */
   1820 	for (i = 0; i < numParityNodes; i++) {
   1821 		blockNode->succedents[numDataNodes + i] = &readParityNodes[i];
   1822 		RF_ASSERT(readParityNodes[i].numAntecedents == 1);
   1823 		readParityNodes[i].antecedents[0] = blockNode;
   1824 		readParityNodes[i].antType[0] = rf_control;
   1825 	}
   1826 
   1827 	/* connect block node to read old Q nodes */
   1828 	if (nfaults == 2)
   1829 		for (i = 0; i < numParityNodes; i++) {
   1830 			blockNode->succedents[numDataNodes + numParityNodes + i] = &readQNodes[i];
   1831 			RF_ASSERT(readQNodes[i].numAntecedents == 1);
   1832 			readQNodes[i].antecedents[0] = blockNode;
   1833 			readQNodes[i].antType[0] = rf_control;
   1834 		}
   1835 
   1836 	/* connect read old data nodes to write new data nodes */
   1837 	for (i = 0; i < numDataNodes; i++) {
   1838 		RF_ASSERT(readDataNodes[i].numSuccedents == ((nfaults * numParityNodes) + 1));
   1839 		RF_ASSERT(writeDataNodes[i].numAntecedents == 1);
   1840 		readDataNodes[i].succedents[0] = &writeDataNodes[i];
   1841 		writeDataNodes[i].antecedents[0] = &readDataNodes[i];
   1842 		writeDataNodes[i].antType[0] = rf_antiData;
   1843 	}
   1844 
   1845 	/* connect read old data nodes to xor nodes */
   1846 	for (i = 0; i < numDataNodes; i++) {
   1847 		for (j = 0; j < numParityNodes; j++) {
   1848 			RF_ASSERT(xorNodes[j].numAntecedents == numDataNodes + numParityNodes);
   1849 			readDataNodes[i].succedents[1 + j] = &xorNodes[j];
   1850 			xorNodes[j].antecedents[i] = &readDataNodes[i];
   1851 			xorNodes[j].antType[i] = rf_trueData;
   1852 		}
   1853 	}
   1854 
   1855 	/* connect read old data nodes to q nodes */
   1856 	if (nfaults == 2)
   1857 		for (i = 0; i < numDataNodes; i++)
   1858 			for (j = 0; j < numParityNodes; j++) {
   1859 				RF_ASSERT(qNodes[j].numAntecedents == numDataNodes + numParityNodes);
   1860 				readDataNodes[i].succedents[1 + numParityNodes + j] = &qNodes[j];
   1861 				qNodes[j].antecedents[i] = &readDataNodes[i];
   1862 				qNodes[j].antType[i] = rf_trueData;
   1863 			}
   1864 
   1865 	/* connect read old parity nodes to xor nodes */
   1866 	for (i = 0; i < numParityNodes; i++) {
   1867 		for (j = 0; j < numParityNodes; j++) {
   1868 			RF_ASSERT(readParityNodes[i].numSuccedents == numParityNodes);
   1869 			readParityNodes[i].succedents[j] = &xorNodes[j];
   1870 			xorNodes[j].antecedents[numDataNodes + i] = &readParityNodes[i];
   1871 			xorNodes[j].antType[numDataNodes + i] = rf_trueData;
   1872 		}
   1873 	}
   1874 
   1875 	/* connect read old q nodes to q nodes */
   1876 	if (nfaults == 2)
   1877 		for (i = 0; i < numParityNodes; i++) {
   1878 			for (j = 0; j < numParityNodes; j++) {
   1879 				RF_ASSERT(readQNodes[i].numSuccedents == numParityNodes);
   1880 				readQNodes[i].succedents[j] = &qNodes[j];
   1881 				qNodes[j].antecedents[numDataNodes + i] = &readQNodes[i];
   1882 				qNodes[j].antType[numDataNodes + i] = rf_trueData;
   1883 			}
   1884 		}
   1885 
   1886 	/* connect xor nodes to the write new parity nodes */
   1887 	for (i = 0; i < numParityNodes; i++) {
   1888 		RF_ASSERT(writeParityNodes[i].numAntecedents == numParityNodes);
   1889 		for (j = 0; j < numParityNodes; j++) {
   1890 			RF_ASSERT(xorNodes[j].numSuccedents == numParityNodes);
   1891 			xorNodes[i].succedents[j] = &writeParityNodes[j];
   1892 			writeParityNodes[j].antecedents[i] = &xorNodes[i];
   1893 			writeParityNodes[j].antType[i] = rf_trueData;
   1894 		}
   1895 	}
   1896 
   1897 	/* connect q nodes to the write new q nodes */
   1898 	if (nfaults == 2)
   1899 		for (i = 0; i < numParityNodes; i++) {
   1900 			RF_ASSERT(writeQNodes[i].numAntecedents == numParityNodes);
   1901 			for (j = 0; j < numParityNodes; j++) {
   1902 				RF_ASSERT(qNodes[j].numSuccedents == 1);
   1903 				qNodes[i].succedents[j] = &writeQNodes[j];
   1904 				writeQNodes[j].antecedents[i] = &qNodes[i];
   1905 				writeQNodes[j].antType[i] = rf_trueData;
   1906 			}
   1907 		}
   1908 
   1909 	RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1910 	RF_ASSERT(termNode->numSuccedents == 0);
   1911 	for (i = 0; i < numDataNodes; i++) {
   1912 		if (lu_flag) {
   1913 			/* connect write new data nodes to unlock nodes */
   1914 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1915 			RF_ASSERT(unlockDataNodes[i].numAntecedents == 1);
   1916 			writeDataNodes[i].succedents[0] = &unlockDataNodes[i];
   1917 			unlockDataNodes[i].antecedents[0] = &writeDataNodes[i];
   1918 			unlockDataNodes[i].antType[0] = rf_control;
   1919 
   1920 			/* connect unlock nodes to term node */
   1921 			RF_ASSERT(unlockDataNodes[i].numSuccedents == 1);
   1922 			unlockDataNodes[i].succedents[0] = termNode;
   1923 			termNode->antecedents[i] = &unlockDataNodes[i];
   1924 			termNode->antType[i] = rf_control;
   1925 		} else {
   1926 			/* connect write new data nodes to term node */
   1927 			RF_ASSERT(writeDataNodes[i].numSuccedents == 1);
   1928 			RF_ASSERT(termNode->numAntecedents == (numDataNodes + (nfaults * numParityNodes)));
   1929 			writeDataNodes[i].succedents[0] = termNode;
   1930 			termNode->antecedents[i] = &writeDataNodes[i];
   1931 			termNode->antType[i] = rf_control;
   1932 		}
   1933 	}
   1934 
   1935 	for (i = 0; i < numParityNodes; i++) {
   1936 		if (lu_flag) {
   1937 			/* connect write new parity nodes to unlock nodes */
   1938 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1939 			RF_ASSERT(unlockParityNodes[i].numAntecedents == 1);
   1940 			writeParityNodes[i].succedents[0] = &unlockParityNodes[i];
   1941 			unlockParityNodes[i].antecedents[0] = &writeParityNodes[i];
   1942 			unlockParityNodes[i].antType[0] = rf_control;
   1943 
   1944 			/* connect unlock nodes to term node */
   1945 			RF_ASSERT(unlockParityNodes[i].numSuccedents == 1);
   1946 			unlockParityNodes[i].succedents[0] = termNode;
   1947 			termNode->antecedents[numDataNodes + i] = &unlockParityNodes[i];
   1948 			termNode->antType[numDataNodes + i] = rf_control;
   1949 		} else {
   1950 			RF_ASSERT(writeParityNodes[i].numSuccedents == 1);
   1951 			writeParityNodes[i].succedents[0] = termNode;
   1952 			termNode->antecedents[numDataNodes + i] = &writeParityNodes[i];
   1953 			termNode->antType[numDataNodes + i] = rf_control;
   1954 		}
   1955 	}
   1956 
   1957 	if (nfaults == 2)
   1958 		for (i = 0; i < numParityNodes; i++) {
   1959 			if (lu_flag) {
   1960 				/* connect write new Q nodes to unlock nodes */
   1961 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1962 				RF_ASSERT(unlockQNodes[i].numAntecedents == 1);
   1963 				writeQNodes[i].succedents[0] = &unlockQNodes[i];
   1964 				unlockQNodes[i].antecedents[0] = &writeQNodes[i];
   1965 				unlockQNodes[i].antType[0] = rf_control;
   1966 
   1967 				/* connect unlock nodes to unblock node */
   1968 				RF_ASSERT(unlockQNodes[i].numSuccedents == 1);
   1969 				unlockQNodes[i].succedents[0] = termNode;
   1970 				termNode->antecedents[numDataNodes + numParityNodes + i] = &unlockQNodes[i];
   1971 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1972 			} else {
   1973 				RF_ASSERT(writeQNodes[i].numSuccedents == 1);
   1974 				writeQNodes[i].succedents[0] = termNode;
   1975 				termNode->antecedents[numDataNodes + numParityNodes + i] = &writeQNodes[i];
   1976 				termNode->antType[numDataNodes + numParityNodes + i] = rf_control;
   1977 			}
   1978 		}
   1979 }
   1980 
   1981 
   1982 
   1983 /******************************************************************************
   1984  * create a write graph (fault-free or degraded) for RAID level 1
   1985  *
   1986  * Hdr  Nil -> Wpd -> Nil -> Trm
   1987  *      Nil -> Wsd ->
   1988  *
   1989  * The "Wpd" node writes data to the primary copy in the mirror pair
   1990  * The "Wsd" node writes data to the secondary copy in the mirror pair
   1991  *
   1992  * Parameters:  raidPtr   - description of the physical array
   1993  *              asmap     - logical & physical addresses for this access
   1994  *              bp        - buffer ptr (holds write data)
   1995  *              flags     - general flags (e.g. disk locking)
   1996  *              allocList - list of memory allocated in DAG creation
   1997  *****************************************************************************/
   1998 
   1999 void
   2000 rf_CreateRaidOneWriteDAGFwd(
   2001     RF_Raid_t * raidPtr,
   2002     RF_AccessStripeMap_t * asmap,
   2003     RF_DagHeader_t * dag_h,
   2004     void *bp,
   2005     RF_RaidAccessFlags_t flags,
   2006     RF_AllocListElem_t * allocList)
   2007 {
   2008 	RF_DagNode_t *blockNode, *unblockNode, *termNode;
   2009 	RF_DagNode_t *nodes, *wndNode, *wmirNode;
   2010 	int     nWndNodes, nWmirNodes, i;
   2011 	RF_ReconUnitNum_t which_ru;
   2012 	RF_PhysDiskAddr_t *pda, *pdaP;
   2013 	RF_StripeNum_t parityStripeID;
   2014 
   2015 	parityStripeID = rf_RaidAddressToParityStripeID(&(raidPtr->Layout),
   2016 	    asmap->raidAddress, &which_ru);
   2017 	if (rf_dagDebug) {
   2018 		printf("[Creating RAID level 1 write DAG]\n");
   2019 	}
   2020 	nWmirNodes = (asmap->parityInfo->next) ? 2 : 1;	/* 2 implies access not
   2021 							 * SU aligned */
   2022 	nWndNodes = (asmap->physInfo->next) ? 2 : 1;
   2023 
   2024 	/* alloc the Wnd nodes and the Wmir node */
   2025 	if (asmap->numDataFailed == 1)
   2026 		nWndNodes--;
   2027 	if (asmap->numParityFailed == 1)
   2028 		nWmirNodes--;
   2029 
   2030 	/* total number of nodes = nWndNodes + nWmirNodes + (block + unblock +
   2031 	 * terminator) */
   2032 	RF_CallocAndAdd(nodes, nWndNodes + nWmirNodes + 3, sizeof(RF_DagNode_t), (RF_DagNode_t *), allocList);
   2033 	i = 0;
   2034 	wndNode = &nodes[i];
   2035 	i += nWndNodes;
   2036 	wmirNode = &nodes[i];
   2037 	i += nWmirNodes;
   2038 	blockNode = &nodes[i];
   2039 	i += 1;
   2040 	unblockNode = &nodes[i];
   2041 	i += 1;
   2042 	termNode = &nodes[i];
   2043 	i += 1;
   2044 	RF_ASSERT(i == (nWndNodes + nWmirNodes + 3));
   2045 
   2046 	/* this dag can commit immediately */
   2047 	dag_h->numCommitNodes = 0;
   2048 	dag_h->numCommits = 0;
   2049 	dag_h->numSuccedents = 1;
   2050 
   2051 	/* initialize the unblock and term nodes */
   2052 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, (nWndNodes + nWmirNodes), 0, 0, 0, dag_h, "Nil", allocList);
   2053 	rf_InitNode(unblockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc, NULL, 1, (nWndNodes + nWmirNodes), 0, 0, dag_h, "Nil", allocList);
   2054 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
   2055 
   2056 	/* initialize the wnd nodes */
   2057 	if (nWndNodes > 0) {
   2058 		pda = asmap->physInfo;
   2059 		for (i = 0; i < nWndNodes; i++) {
   2060 			rf_InitNode(&wndNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wpd", allocList);
   2061 			RF_ASSERT(pda != NULL);
   2062 			wndNode[i].params[0].p = pda;
   2063 			wndNode[i].params[1].p = pda->bufPtr;
   2064 			wndNode[i].params[2].v = parityStripeID;
   2065 			wndNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   2066 			pda = pda->next;
   2067 		}
   2068 		RF_ASSERT(pda == NULL);
   2069 	}
   2070 	/* initialize the mirror nodes */
   2071 	if (nWmirNodes > 0) {
   2072 		pda = asmap->physInfo;
   2073 		pdaP = asmap->parityInfo;
   2074 		for (i = 0; i < nWmirNodes; i++) {
   2075 			rf_InitNode(&wmirNode[i], rf_wait, RF_FALSE, rf_DiskWriteFunc, rf_DiskWriteUndoFunc, rf_GenericWakeupFunc, 1, 1, 4, 0, dag_h, "Wsd", allocList);
   2076 			RF_ASSERT(pda != NULL);
   2077 			wmirNode[i].params[0].p = pdaP;
   2078 			wmirNode[i].params[1].p = pda->bufPtr;
   2079 			wmirNode[i].params[2].v = parityStripeID;
   2080 			wmirNode[i].params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, which_ru);
   2081 			pda = pda->next;
   2082 			pdaP = pdaP->next;
   2083 		}
   2084 		RF_ASSERT(pda == NULL);
   2085 		RF_ASSERT(pdaP == NULL);
   2086 	}
   2087 	/* link the header node to the block node */
   2088 	RF_ASSERT(dag_h->numSuccedents == 1);
   2089 	RF_ASSERT(blockNode->numAntecedents == 0);
   2090 	dag_h->succedents[0] = blockNode;
   2091 
   2092 	/* link the block node to the write nodes */
   2093 	RF_ASSERT(blockNode->numSuccedents == (nWndNodes + nWmirNodes));
   2094 	for (i = 0; i < nWndNodes; i++) {
   2095 		RF_ASSERT(wndNode[i].numAntecedents == 1);
   2096 		blockNode->succedents[i] = &wndNode[i];
   2097 		wndNode[i].antecedents[0] = blockNode;
   2098 		wndNode[i].antType[0] = rf_control;
   2099 	}
   2100 	for (i = 0; i < nWmirNodes; i++) {
   2101 		RF_ASSERT(wmirNode[i].numAntecedents == 1);
   2102 		blockNode->succedents[i + nWndNodes] = &wmirNode[i];
   2103 		wmirNode[i].antecedents[0] = blockNode;
   2104 		wmirNode[i].antType[0] = rf_control;
   2105 	}
   2106 
   2107 	/* link the write nodes to the unblock node */
   2108 	RF_ASSERT(unblockNode->numAntecedents == (nWndNodes + nWmirNodes));
   2109 	for (i = 0; i < nWndNodes; i++) {
   2110 		RF_ASSERT(wndNode[i].numSuccedents == 1);
   2111 		wndNode[i].succedents[0] = unblockNode;
   2112 		unblockNode->antecedents[i] = &wndNode[i];
   2113 		unblockNode->antType[i] = rf_control;
   2114 	}
   2115 	for (i = 0; i < nWmirNodes; i++) {
   2116 		RF_ASSERT(wmirNode[i].numSuccedents == 1);
   2117 		wmirNode[i].succedents[0] = unblockNode;
   2118 		unblockNode->antecedents[i + nWndNodes] = &wmirNode[i];
   2119 		unblockNode->antType[i + nWndNodes] = rf_control;
   2120 	}
   2121 
   2122 	/* link the unblock node to the term node */
   2123 	RF_ASSERT(unblockNode->numSuccedents == 1);
   2124 	RF_ASSERT(termNode->numAntecedents == 1);
   2125 	RF_ASSERT(termNode->numSuccedents == 0);
   2126 	unblockNode->succedents[0] = termNode;
   2127 	termNode->antecedents[0] = unblockNode;
   2128 	termNode->antType[0] = rf_control;
   2129 
   2130 	return;
   2131 }
   2132 #endif
   2133