rf_dagfuncs.c revision 1.10 1 1.10 oster /* $NetBSD: rf_dagfuncs.c,v 1.10 2002/09/21 00:52:49 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland, William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * dagfuncs.c -- DAG node execution routines
31 1.1 oster *
32 1.1 oster * Rules:
33 1.1 oster * 1. Every DAG execution function must eventually cause node->status to
34 1.1 oster * get set to "good" or "bad", and "FinishNode" to be called. In the
35 1.1 oster * case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 1.1 oster * the node execution function can do these two things directly. In
37 1.1 oster * the case of nodes that have to wait for some event (a disk read to
38 1.1 oster * complete, a lock to be released, etc) to occur before they can
39 1.1 oster * complete, this is typically achieved by having whatever module
40 1.1 oster * is doing the operation call GenericWakeupFunc upon completion.
41 1.1 oster * 2. DAG execution functions should check the status in the DAG header
42 1.1 oster * and NOP out their operations if the status is not "enable". However,
43 1.1 oster * execution functions that release resources must be sure to release
44 1.1 oster * them even when they NOP out the function that would use them.
45 1.1 oster * Functions that acquire resources should go ahead and acquire them
46 1.1 oster * even when they NOP, so that a downstream release node will not have
47 1.1 oster * to check to find out whether or not the acquire was suppressed.
48 1.1 oster */
49 1.8 lukem
50 1.8 lukem #include <sys/cdefs.h>
51 1.10 oster __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.10 2002/09/21 00:52:49 oster Exp $");
52 1.1 oster
53 1.7 mrg #include <sys/param.h>
54 1.1 oster #include <sys/ioctl.h>
55 1.1 oster
56 1.1 oster #include "rf_archs.h"
57 1.1 oster #include "rf_raid.h"
58 1.1 oster #include "rf_dag.h"
59 1.1 oster #include "rf_layout.h"
60 1.1 oster #include "rf_etimer.h"
61 1.1 oster #include "rf_acctrace.h"
62 1.1 oster #include "rf_diskqueue.h"
63 1.1 oster #include "rf_dagfuncs.h"
64 1.1 oster #include "rf_general.h"
65 1.1 oster #include "rf_engine.h"
66 1.1 oster #include "rf_dagutils.h"
67 1.1 oster
68 1.1 oster #include "rf_kintf.h"
69 1.1 oster
70 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
71 1.1 oster #include "rf_paritylog.h"
72 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
73 1.1 oster
74 1.3 oster int (*rf_DiskReadFunc) (RF_DagNode_t *);
75 1.3 oster int (*rf_DiskWriteFunc) (RF_DagNode_t *);
76 1.3 oster int (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77 1.3 oster int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78 1.3 oster int (*rf_DiskUnlockFunc) (RF_DagNode_t *);
79 1.3 oster int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
80 1.3 oster int (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
81 1.3 oster int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
82 1.3 oster int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
83 1.1 oster
84 1.1 oster /*****************************************************************************************
85 1.1 oster * main (only) configuration routine for this module
86 1.1 oster ****************************************************************************************/
87 1.3 oster int
88 1.3 oster rf_ConfigureDAGFuncs(listp)
89 1.3 oster RF_ShutdownList_t **listp;
90 1.3 oster {
91 1.3 oster RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
92 1.3 oster rf_DiskReadFunc = rf_DiskReadFuncForThreads;
93 1.3 oster rf_DiskReadUndoFunc = rf_DiskUndoFunc;
94 1.3 oster rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
95 1.3 oster rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
96 1.3 oster rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
97 1.3 oster rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
98 1.3 oster rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
99 1.3 oster rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
100 1.3 oster rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
101 1.3 oster return (0);
102 1.1 oster }
103 1.1 oster
104 1.1 oster
105 1.1 oster
106 1.1 oster /*****************************************************************************************
107 1.1 oster * the execution function associated with a terminate node
108 1.1 oster ****************************************************************************************/
109 1.3 oster int
110 1.3 oster rf_TerminateFunc(node)
111 1.3 oster RF_DagNode_t *node;
112 1.1 oster {
113 1.3 oster RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
114 1.3 oster node->status = rf_good;
115 1.3 oster return (rf_FinishNode(node, RF_THREAD_CONTEXT));
116 1.1 oster }
117 1.1 oster
118 1.3 oster int
119 1.3 oster rf_TerminateUndoFunc(node)
120 1.3 oster RF_DagNode_t *node;
121 1.1 oster {
122 1.3 oster return (0);
123 1.1 oster }
124 1.1 oster
125 1.1 oster
126 1.1 oster /*****************************************************************************************
127 1.1 oster * execution functions associated with a mirror node
128 1.1 oster *
129 1.1 oster * parameters:
130 1.1 oster *
131 1.1 oster * 0 - physical disk addres of data
132 1.1 oster * 1 - buffer for holding read data
133 1.1 oster * 2 - parity stripe ID
134 1.1 oster * 3 - flags
135 1.1 oster * 4 - physical disk address of mirror (parity)
136 1.1 oster *
137 1.1 oster ****************************************************************************************/
138 1.1 oster
139 1.3 oster int
140 1.3 oster rf_DiskReadMirrorIdleFunc(node)
141 1.3 oster RF_DagNode_t *node;
142 1.1 oster {
143 1.3 oster /* select the mirror copy with the shortest queue and fill in node
144 1.3 oster * parameters with physical disk address */
145 1.1 oster
146 1.3 oster rf_SelectMirrorDiskIdle(node);
147 1.3 oster return (rf_DiskReadFunc(node));
148 1.1 oster }
149 1.1 oster
150 1.3 oster int
151 1.3 oster rf_DiskReadMirrorPartitionFunc(node)
152 1.3 oster RF_DagNode_t *node;
153 1.1 oster {
154 1.3 oster /* select the mirror copy with the shortest queue and fill in node
155 1.3 oster * parameters with physical disk address */
156 1.1 oster
157 1.3 oster rf_SelectMirrorDiskPartition(node);
158 1.3 oster return (rf_DiskReadFunc(node));
159 1.1 oster }
160 1.1 oster
161 1.3 oster int
162 1.3 oster rf_DiskReadMirrorUndoFunc(node)
163 1.3 oster RF_DagNode_t *node;
164 1.1 oster {
165 1.3 oster return (0);
166 1.1 oster }
167 1.1 oster
168 1.1 oster
169 1.1 oster
170 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
171 1.1 oster /*****************************************************************************************
172 1.1 oster * the execution function associated with a parity log update node
173 1.1 oster ****************************************************************************************/
174 1.3 oster int
175 1.3 oster rf_ParityLogUpdateFunc(node)
176 1.3 oster RF_DagNode_t *node;
177 1.3 oster {
178 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
179 1.3 oster caddr_t buf = (caddr_t) node->params[1].p;
180 1.3 oster RF_ParityLogData_t *logData;
181 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
182 1.3 oster RF_Etimer_t timer;
183 1.3 oster
184 1.3 oster if (node->dagHdr->status == rf_enable) {
185 1.3 oster RF_ETIMER_START(timer);
186 1.3 oster logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
187 1.3 oster (RF_Raid_t *) (node->dagHdr->raidPtr),
188 1.3 oster node->wakeFunc, (void *) node,
189 1.3 oster node->dagHdr->tracerec, timer);
190 1.3 oster if (logData)
191 1.3 oster rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
192 1.3 oster else {
193 1.3 oster RF_ETIMER_STOP(timer);
194 1.3 oster RF_ETIMER_EVAL(timer);
195 1.3 oster tracerec->plog_us += RF_ETIMER_VAL_US(timer);
196 1.3 oster (node->wakeFunc) (node, ENOMEM);
197 1.3 oster }
198 1.1 oster }
199 1.3 oster return (0);
200 1.1 oster }
201 1.1 oster
202 1.1 oster
203 1.1 oster /*****************************************************************************************
204 1.1 oster * the execution function associated with a parity log overwrite node
205 1.1 oster ****************************************************************************************/
206 1.3 oster int
207 1.3 oster rf_ParityLogOverwriteFunc(node)
208 1.3 oster RF_DagNode_t *node;
209 1.3 oster {
210 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
211 1.3 oster caddr_t buf = (caddr_t) node->params[1].p;
212 1.3 oster RF_ParityLogData_t *logData;
213 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
214 1.3 oster RF_Etimer_t timer;
215 1.3 oster
216 1.3 oster if (node->dagHdr->status == rf_enable) {
217 1.3 oster RF_ETIMER_START(timer);
218 1.3 oster logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
219 1.3 oster node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
220 1.3 oster if (logData)
221 1.3 oster rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
222 1.3 oster else {
223 1.3 oster RF_ETIMER_STOP(timer);
224 1.3 oster RF_ETIMER_EVAL(timer);
225 1.3 oster tracerec->plog_us += RF_ETIMER_VAL_US(timer);
226 1.3 oster (node->wakeFunc) (node, ENOMEM);
227 1.3 oster }
228 1.1 oster }
229 1.3 oster return (0);
230 1.1 oster }
231 1.1 oster
232 1.3 oster int
233 1.3 oster rf_ParityLogUpdateUndoFunc(node)
234 1.3 oster RF_DagNode_t *node;
235 1.1 oster {
236 1.3 oster return (0);
237 1.1 oster }
238 1.1 oster
239 1.3 oster int
240 1.3 oster rf_ParityLogOverwriteUndoFunc(node)
241 1.3 oster RF_DagNode_t *node;
242 1.1 oster {
243 1.3 oster return (0);
244 1.1 oster }
245 1.10 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
246 1.10 oster
247 1.1 oster /*****************************************************************************************
248 1.1 oster * the execution function associated with a NOP node
249 1.1 oster ****************************************************************************************/
250 1.3 oster int
251 1.3 oster rf_NullNodeFunc(node)
252 1.3 oster RF_DagNode_t *node;
253 1.1 oster {
254 1.3 oster node->status = rf_good;
255 1.3 oster return (rf_FinishNode(node, RF_THREAD_CONTEXT));
256 1.1 oster }
257 1.1 oster
258 1.3 oster int
259 1.3 oster rf_NullNodeUndoFunc(node)
260 1.3 oster RF_DagNode_t *node;
261 1.1 oster {
262 1.3 oster node->status = rf_undone;
263 1.3 oster return (rf_FinishNode(node, RF_THREAD_CONTEXT));
264 1.1 oster }
265 1.1 oster
266 1.1 oster
267 1.1 oster /*****************************************************************************************
268 1.1 oster * the execution function associated with a disk-read node
269 1.1 oster ****************************************************************************************/
270 1.3 oster int
271 1.3 oster rf_DiskReadFuncForThreads(node)
272 1.3 oster RF_DagNode_t *node;
273 1.3 oster {
274 1.3 oster RF_DiskQueueData_t *req;
275 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
276 1.3 oster caddr_t buf = (caddr_t) node->params[1].p;
277 1.3 oster RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
278 1.3 oster unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
279 1.3 oster unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
280 1.3 oster unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
281 1.3 oster unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
282 1.3 oster RF_DiskQueueDataFlags_t flags = 0;
283 1.3 oster RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
284 1.3 oster RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
285 1.3 oster void *b_proc = NULL;
286 1.1 oster
287 1.3 oster if (node->dagHdr->bp)
288 1.3 oster b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
289 1.1 oster
290 1.3 oster RF_ASSERT(!(lock && unlock));
291 1.3 oster flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
292 1.3 oster flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
293 1.5 oster
294 1.3 oster req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
295 1.3 oster buf, parityStripeID, which_ru,
296 1.3 oster (int (*) (void *, int)) node->wakeFunc,
297 1.3 oster node, NULL, node->dagHdr->tracerec,
298 1.3 oster (void *) (node->dagHdr->raidPtr), flags, b_proc);
299 1.3 oster if (!req) {
300 1.3 oster (node->wakeFunc) (node, ENOMEM);
301 1.3 oster } else {
302 1.3 oster node->dagFuncData = (void *) req;
303 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
304 1.3 oster }
305 1.3 oster return (0);
306 1.1 oster }
307 1.1 oster
308 1.1 oster
309 1.1 oster /*****************************************************************************************
310 1.1 oster * the execution function associated with a disk-write node
311 1.1 oster ****************************************************************************************/
312 1.3 oster int
313 1.3 oster rf_DiskWriteFuncForThreads(node)
314 1.3 oster RF_DagNode_t *node;
315 1.3 oster {
316 1.3 oster RF_DiskQueueData_t *req;
317 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
318 1.3 oster caddr_t buf = (caddr_t) node->params[1].p;
319 1.3 oster RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
320 1.3 oster unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
321 1.3 oster unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
322 1.3 oster unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
323 1.3 oster unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
324 1.3 oster RF_DiskQueueDataFlags_t flags = 0;
325 1.3 oster RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
326 1.3 oster RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
327 1.3 oster void *b_proc = NULL;
328 1.1 oster
329 1.3 oster if (node->dagHdr->bp)
330 1.3 oster b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
331 1.1 oster
332 1.3 oster /* normal processing (rollaway or forward recovery) begins here */
333 1.3 oster RF_ASSERT(!(lock && unlock));
334 1.3 oster flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
335 1.3 oster flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
336 1.3 oster req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
337 1.3 oster buf, parityStripeID, which_ru,
338 1.3 oster (int (*) (void *, int)) node->wakeFunc,
339 1.3 oster (void *) node, NULL,
340 1.3 oster node->dagHdr->tracerec,
341 1.3 oster (void *) (node->dagHdr->raidPtr),
342 1.3 oster flags, b_proc);
343 1.3 oster
344 1.3 oster if (!req) {
345 1.3 oster (node->wakeFunc) (node, ENOMEM);
346 1.3 oster } else {
347 1.3 oster node->dagFuncData = (void *) req;
348 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
349 1.3 oster }
350 1.3 oster
351 1.3 oster return (0);
352 1.1 oster }
353 1.1 oster /*****************************************************************************************
354 1.1 oster * the undo function for disk nodes
355 1.1 oster * Note: this is not a proper undo of a write node, only locks are released.
356 1.1 oster * old data is not restored to disk!
357 1.1 oster ****************************************************************************************/
358 1.3 oster int
359 1.3 oster rf_DiskUndoFunc(node)
360 1.3 oster RF_DagNode_t *node;
361 1.3 oster {
362 1.3 oster RF_DiskQueueData_t *req;
363 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
364 1.3 oster RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
365 1.3 oster
366 1.3 oster req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
367 1.3 oster 0L, 0, NULL, 0L, 0,
368 1.3 oster (int (*) (void *, int)) node->wakeFunc,
369 1.3 oster (void *) node,
370 1.3 oster NULL, node->dagHdr->tracerec,
371 1.3 oster (void *) (node->dagHdr->raidPtr),
372 1.3 oster RF_UNLOCK_DISK_QUEUE, NULL);
373 1.3 oster if (!req)
374 1.3 oster (node->wakeFunc) (node, ENOMEM);
375 1.3 oster else {
376 1.3 oster node->dagFuncData = (void *) req;
377 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
378 1.3 oster }
379 1.1 oster
380 1.3 oster return (0);
381 1.1 oster }
382 1.1 oster /*****************************************************************************************
383 1.1 oster * the execution function associated with an "unlock disk queue" node
384 1.1 oster ****************************************************************************************/
385 1.3 oster int
386 1.3 oster rf_DiskUnlockFuncForThreads(node)
387 1.3 oster RF_DagNode_t *node;
388 1.3 oster {
389 1.3 oster RF_DiskQueueData_t *req;
390 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
391 1.3 oster RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
392 1.3 oster
393 1.3 oster req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
394 1.3 oster 0L, 0, NULL, 0L, 0,
395 1.3 oster (int (*) (void *, int)) node->wakeFunc,
396 1.3 oster (void *) node,
397 1.3 oster NULL, node->dagHdr->tracerec,
398 1.3 oster (void *) (node->dagHdr->raidPtr),
399 1.3 oster RF_UNLOCK_DISK_QUEUE, NULL);
400 1.3 oster if (!req)
401 1.3 oster (node->wakeFunc) (node, ENOMEM);
402 1.3 oster else {
403 1.3 oster node->dagFuncData = (void *) req;
404 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
405 1.3 oster }
406 1.1 oster
407 1.3 oster return (0);
408 1.1 oster }
409 1.1 oster /*****************************************************************************************
410 1.1 oster * Callback routine for DiskRead and DiskWrite nodes. When the disk op completes,
411 1.1 oster * the routine is called to set the node status and inform the execution engine that
412 1.1 oster * the node has fired.
413 1.1 oster ****************************************************************************************/
414 1.3 oster int
415 1.3 oster rf_GenericWakeupFunc(node, status)
416 1.3 oster RF_DagNode_t *node;
417 1.3 oster int status;
418 1.3 oster {
419 1.3 oster switch (node->status) {
420 1.3 oster case rf_bwd1:
421 1.3 oster node->status = rf_bwd2;
422 1.3 oster if (node->dagFuncData)
423 1.3 oster rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
424 1.3 oster return (rf_DiskWriteFuncForThreads(node));
425 1.3 oster break;
426 1.3 oster case rf_fired:
427 1.3 oster if (status)
428 1.3 oster node->status = rf_bad;
429 1.3 oster else
430 1.3 oster node->status = rf_good;
431 1.3 oster break;
432 1.3 oster case rf_recover:
433 1.3 oster /* probably should never reach this case */
434 1.3 oster if (status)
435 1.3 oster node->status = rf_panic;
436 1.3 oster else
437 1.3 oster node->status = rf_undone;
438 1.3 oster break;
439 1.3 oster default:
440 1.4 oster printf("rf_GenericWakeupFunc:");
441 1.4 oster printf("node->status is %d,", node->status);
442 1.4 oster printf("status is %d \n", status);
443 1.3 oster RF_PANIC();
444 1.3 oster break;
445 1.3 oster }
446 1.3 oster if (node->dagFuncData)
447 1.3 oster rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
448 1.3 oster return (rf_FinishNode(node, RF_INTR_CONTEXT));
449 1.1 oster }
450 1.1 oster
451 1.1 oster
452 1.1 oster /*****************************************************************************************
453 1.1 oster * there are three distinct types of xor nodes
454 1.1 oster * A "regular xor" is used in the fault-free case where the access spans a complete
455 1.1 oster * stripe unit. It assumes that the result buffer is one full stripe unit in size,
456 1.1 oster * and uses the stripe-unit-offset values that it computes from the PDAs to determine
457 1.1 oster * where within the stripe unit to XOR each argument buffer.
458 1.1 oster *
459 1.1 oster * A "simple xor" is used in the fault-free case where the access touches only a portion
460 1.1 oster * of one (or two, in some cases) stripe unit(s). It assumes that all the argument
461 1.1 oster * buffers are of the same size and have the same stripe unit offset.
462 1.1 oster *
463 1.1 oster * A "recovery xor" is used in the degraded-mode case. It's similar to the regular
464 1.1 oster * xor function except that it takes the failed PDA as an additional parameter, and
465 1.1 oster * uses it to determine what portions of the argument buffers need to be xor'd into
466 1.1 oster * the result buffer, and where in the result buffer they should go.
467 1.1 oster ****************************************************************************************/
468 1.1 oster
469 1.1 oster /* xor the params together and store the result in the result field.
470 1.1 oster * assume the result field points to a buffer that is the size of one SU,
471 1.1 oster * and use the pda params to determine where within the buffer to XOR
472 1.1 oster * the input buffers.
473 1.1 oster */
474 1.3 oster int
475 1.3 oster rf_RegularXorFunc(node)
476 1.3 oster RF_DagNode_t *node;
477 1.3 oster {
478 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
479 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
480 1.3 oster RF_Etimer_t timer;
481 1.3 oster int i, retcode;
482 1.1 oster
483 1.3 oster retcode = 0;
484 1.3 oster if (node->dagHdr->status == rf_enable) {
485 1.3 oster /* don't do the XOR if the input is the same as the output */
486 1.3 oster RF_ETIMER_START(timer);
487 1.3 oster for (i = 0; i < node->numParams - 1; i += 2)
488 1.3 oster if (node->params[i + 1].p != node->results[0]) {
489 1.3 oster retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
490 1.3 oster (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
491 1.3 oster }
492 1.3 oster RF_ETIMER_STOP(timer);
493 1.3 oster RF_ETIMER_EVAL(timer);
494 1.3 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
495 1.3 oster }
496 1.3 oster return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
497 1.3 oster * explicitly since no
498 1.3 oster * I/O in this node */
499 1.1 oster }
500 1.1 oster /* xor the inputs into the result buffer, ignoring placement issues */
501 1.3 oster int
502 1.3 oster rf_SimpleXorFunc(node)
503 1.3 oster RF_DagNode_t *node;
504 1.3 oster {
505 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
506 1.3 oster int i, retcode = 0;
507 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
508 1.3 oster RF_Etimer_t timer;
509 1.1 oster
510 1.3 oster if (node->dagHdr->status == rf_enable) {
511 1.3 oster RF_ETIMER_START(timer);
512 1.3 oster /* don't do the XOR if the input is the same as the output */
513 1.3 oster for (i = 0; i < node->numParams - 1; i += 2)
514 1.3 oster if (node->params[i + 1].p != node->results[0]) {
515 1.3 oster retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
516 1.3 oster rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
517 1.3 oster (struct buf *) node->dagHdr->bp);
518 1.3 oster }
519 1.3 oster RF_ETIMER_STOP(timer);
520 1.3 oster RF_ETIMER_EVAL(timer);
521 1.3 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
522 1.3 oster }
523 1.3 oster return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
524 1.3 oster * explicitly since no
525 1.3 oster * I/O in this node */
526 1.1 oster }
527 1.1 oster /* this xor is used by the degraded-mode dag functions to recover lost data.
528 1.1 oster * the second-to-last parameter is the PDA for the failed portion of the access.
529 1.1 oster * the code here looks at this PDA and assumes that the xor target buffer is
530 1.1 oster * equal in size to the number of sectors in the failed PDA. It then uses
531 1.1 oster * the other PDAs in the parameter list to determine where within the target
532 1.1 oster * buffer the corresponding data should be xored.
533 1.1 oster */
534 1.3 oster int
535 1.3 oster rf_RecoveryXorFunc(node)
536 1.3 oster RF_DagNode_t *node;
537 1.3 oster {
538 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
539 1.3 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
540 1.3 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
541 1.3 oster int i, retcode = 0;
542 1.3 oster RF_PhysDiskAddr_t *pda;
543 1.3 oster int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
544 1.3 oster char *srcbuf, *destbuf;
545 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
546 1.3 oster RF_Etimer_t timer;
547 1.1 oster
548 1.3 oster if (node->dagHdr->status == rf_enable) {
549 1.3 oster RF_ETIMER_START(timer);
550 1.3 oster for (i = 0; i < node->numParams - 2; i += 2)
551 1.3 oster if (node->params[i + 1].p != node->results[0]) {
552 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
553 1.3 oster srcbuf = (char *) node->params[i + 1].p;
554 1.3 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
555 1.3 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
556 1.3 oster retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
557 1.3 oster }
558 1.3 oster RF_ETIMER_STOP(timer);
559 1.3 oster RF_ETIMER_EVAL(timer);
560 1.3 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
561 1.3 oster }
562 1.3 oster return (rf_GenericWakeupFunc(node, retcode));
563 1.1 oster }
564 1.1 oster /*****************************************************************************************
565 1.1 oster * The next three functions are utilities used by the above xor-execution functions.
566 1.1 oster ****************************************************************************************/
567 1.1 oster
568 1.1 oster
569 1.1 oster /*
570 1.1 oster * this is just a glorified buffer xor. targbuf points to a buffer that is one full stripe unit
571 1.1 oster * in size. srcbuf points to a buffer that may be less than 1 SU, but never more. When the
572 1.1 oster * access described by pda is one SU in size (which by implication means it's SU-aligned),
573 1.1 oster * all that happens is (targbuf) <- (srcbuf ^ targbuf). When the access is less than one
574 1.1 oster * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
575 1.1 oster */
576 1.1 oster
577 1.3 oster int
578 1.3 oster rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
579 1.3 oster RF_Raid_t *raidPtr;
580 1.3 oster RF_PhysDiskAddr_t *pda;
581 1.3 oster char *srcbuf;
582 1.3 oster char *targbuf;
583 1.3 oster void *bp;
584 1.3 oster {
585 1.3 oster char *targptr;
586 1.3 oster int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
587 1.3 oster int SUOffset = pda->startSector % sectPerSU;
588 1.3 oster int length, retcode = 0;
589 1.3 oster
590 1.3 oster RF_ASSERT(pda->numSector <= sectPerSU);
591 1.3 oster
592 1.3 oster targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
593 1.3 oster length = rf_RaidAddressToByte(raidPtr, pda->numSector);
594 1.3 oster retcode = rf_bxor(srcbuf, targptr, length, bp);
595 1.3 oster return (retcode);
596 1.1 oster }
597 1.1 oster /* it really should be the case that the buffer pointers (returned by malloc)
598 1.1 oster * are aligned to the natural word size of the machine, so this is the only
599 1.1 oster * case we optimize for. The length should always be a multiple of the sector
600 1.1 oster * size, so there should be no problem with leftover bytes at the end.
601 1.1 oster */
602 1.3 oster int
603 1.3 oster rf_bxor(src, dest, len, bp)
604 1.3 oster char *src;
605 1.3 oster char *dest;
606 1.3 oster int len;
607 1.3 oster void *bp;
608 1.3 oster {
609 1.3 oster unsigned mask = sizeof(long) - 1, retcode = 0;
610 1.3 oster
611 1.3 oster if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
612 1.3 oster retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
613 1.3 oster } else {
614 1.3 oster RF_ASSERT(0);
615 1.3 oster }
616 1.3 oster return (retcode);
617 1.1 oster }
618 1.1 oster /* map a user buffer into kernel space, if necessary */
619 1.1 oster #define REMAP_VA(_bp,x,y) (y) = (x)
620 1.1 oster
621 1.1 oster /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
622 1.1 oster * We don't want to assume anything about which input buffers are in kernel/user
623 1.1 oster * space, nor about their alignment, so in each loop we compute the maximum number
624 1.1 oster * of bytes that we can xor without crossing any page boundaries, and do only this many
625 1.1 oster * bytes before the next remap.
626 1.1 oster */
627 1.3 oster int
628 1.3 oster rf_longword_bxor(src, dest, len, bp)
629 1.6 augustss unsigned long *src;
630 1.6 augustss unsigned long *dest;
631 1.3 oster int len; /* longwords */
632 1.3 oster void *bp;
633 1.3 oster {
634 1.6 augustss unsigned long *end = src + len;
635 1.6 augustss unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
636 1.6 augustss unsigned long *pg_src, *pg_dest; /* per-page source/dest
637 1.3 oster * pointers */
638 1.3 oster int longs_this_time;/* # longwords to xor in the current iteration */
639 1.3 oster
640 1.3 oster REMAP_VA(bp, src, pg_src);
641 1.3 oster REMAP_VA(bp, dest, pg_dest);
642 1.3 oster if (!pg_src || !pg_dest)
643 1.3 oster return (EFAULT);
644 1.3 oster
645 1.3 oster while (len >= 4) {
646 1.3 oster longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */
647 1.3 oster src += longs_this_time;
648 1.3 oster dest += longs_this_time;
649 1.3 oster len -= longs_this_time;
650 1.3 oster while (longs_this_time >= 4) {
651 1.3 oster d0 = pg_dest[0];
652 1.3 oster d1 = pg_dest[1];
653 1.3 oster d2 = pg_dest[2];
654 1.3 oster d3 = pg_dest[3];
655 1.3 oster s0 = pg_src[0];
656 1.3 oster s1 = pg_src[1];
657 1.3 oster s2 = pg_src[2];
658 1.3 oster s3 = pg_src[3];
659 1.3 oster pg_dest[0] = d0 ^ s0;
660 1.3 oster pg_dest[1] = d1 ^ s1;
661 1.3 oster pg_dest[2] = d2 ^ s2;
662 1.3 oster pg_dest[3] = d3 ^ s3;
663 1.3 oster pg_src += 4;
664 1.3 oster pg_dest += 4;
665 1.3 oster longs_this_time -= 4;
666 1.3 oster }
667 1.3 oster while (longs_this_time > 0) { /* cannot cross any page
668 1.3 oster * boundaries here */
669 1.3 oster *pg_dest++ ^= *pg_src++;
670 1.3 oster longs_this_time--;
671 1.3 oster }
672 1.3 oster
673 1.3 oster /* either we're done, or we've reached a page boundary on one
674 1.3 oster * (or possibly both) of the pointers */
675 1.3 oster if (len) {
676 1.3 oster if (RF_PAGE_ALIGNED(src))
677 1.3 oster REMAP_VA(bp, src, pg_src);
678 1.3 oster if (RF_PAGE_ALIGNED(dest))
679 1.3 oster REMAP_VA(bp, dest, pg_dest);
680 1.3 oster if (!pg_src || !pg_dest)
681 1.3 oster return (EFAULT);
682 1.3 oster }
683 1.3 oster }
684 1.3 oster while (src < end) {
685 1.3 oster *pg_dest++ ^= *pg_src++;
686 1.3 oster src++;
687 1.3 oster dest++;
688 1.3 oster len--;
689 1.3 oster if (RF_PAGE_ALIGNED(src))
690 1.3 oster REMAP_VA(bp, src, pg_src);
691 1.3 oster if (RF_PAGE_ALIGNED(dest))
692 1.3 oster REMAP_VA(bp, dest, pg_dest);
693 1.3 oster }
694 1.3 oster RF_ASSERT(len == 0);
695 1.3 oster return (0);
696 1.1 oster }
697 1.1 oster
698 1.9 oster #if 0
699 1.1 oster /*
700 1.1 oster dst = a ^ b ^ c;
701 1.1 oster a may equal dst
702 1.1 oster see comment above longword_bxor
703 1.1 oster */
704 1.3 oster int
705 1.3 oster rf_longword_bxor3(dst, a, b, c, len, bp)
706 1.6 augustss unsigned long *dst;
707 1.6 augustss unsigned long *a;
708 1.6 augustss unsigned long *b;
709 1.6 augustss unsigned long *c;
710 1.3 oster int len; /* length in longwords */
711 1.3 oster void *bp;
712 1.3 oster {
713 1.3 oster unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
714 1.6 augustss unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest
715 1.3 oster * pointers */
716 1.3 oster int longs_this_time;/* # longs to xor in the current iteration */
717 1.3 oster char dst_is_a = 0;
718 1.3 oster
719 1.3 oster REMAP_VA(bp, a, pg_a);
720 1.3 oster REMAP_VA(bp, b, pg_b);
721 1.3 oster REMAP_VA(bp, c, pg_c);
722 1.3 oster if (a == dst) {
723 1.3 oster pg_dst = pg_a;
724 1.3 oster dst_is_a = 1;
725 1.3 oster } else {
726 1.3 oster REMAP_VA(bp, dst, pg_dst);
727 1.3 oster }
728 1.3 oster
729 1.3 oster /* align dest to cache line. Can't cross a pg boundary on dst here. */
730 1.3 oster while ((((unsigned long) pg_dst) & 0x1f)) {
731 1.3 oster *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
732 1.3 oster dst++;
733 1.3 oster a++;
734 1.3 oster b++;
735 1.3 oster c++;
736 1.3 oster if (RF_PAGE_ALIGNED(a)) {
737 1.3 oster REMAP_VA(bp, a, pg_a);
738 1.3 oster if (!pg_a)
739 1.3 oster return (EFAULT);
740 1.3 oster }
741 1.3 oster if (RF_PAGE_ALIGNED(b)) {
742 1.3 oster REMAP_VA(bp, a, pg_b);
743 1.3 oster if (!pg_b)
744 1.3 oster return (EFAULT);
745 1.3 oster }
746 1.3 oster if (RF_PAGE_ALIGNED(c)) {
747 1.3 oster REMAP_VA(bp, a, pg_c);
748 1.3 oster if (!pg_c)
749 1.3 oster return (EFAULT);
750 1.3 oster }
751 1.3 oster len--;
752 1.3 oster }
753 1.3 oster
754 1.3 oster while (len > 4) {
755 1.3 oster longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
756 1.3 oster a += longs_this_time;
757 1.3 oster b += longs_this_time;
758 1.3 oster c += longs_this_time;
759 1.3 oster dst += longs_this_time;
760 1.3 oster len -= longs_this_time;
761 1.3 oster while (longs_this_time >= 4) {
762 1.3 oster a0 = pg_a[0];
763 1.3 oster longs_this_time -= 4;
764 1.3 oster
765 1.3 oster a1 = pg_a[1];
766 1.3 oster a2 = pg_a[2];
767 1.3 oster
768 1.3 oster a3 = pg_a[3];
769 1.3 oster pg_a += 4;
770 1.3 oster
771 1.3 oster b0 = pg_b[0];
772 1.3 oster b1 = pg_b[1];
773 1.3 oster
774 1.3 oster b2 = pg_b[2];
775 1.3 oster b3 = pg_b[3];
776 1.3 oster /* start dual issue */
777 1.3 oster a0 ^= b0;
778 1.3 oster b0 = pg_c[0];
779 1.3 oster
780 1.3 oster pg_b += 4;
781 1.3 oster a1 ^= b1;
782 1.3 oster
783 1.3 oster a2 ^= b2;
784 1.3 oster a3 ^= b3;
785 1.3 oster
786 1.3 oster b1 = pg_c[1];
787 1.3 oster a0 ^= b0;
788 1.3 oster
789 1.3 oster b2 = pg_c[2];
790 1.3 oster a1 ^= b1;
791 1.3 oster
792 1.3 oster b3 = pg_c[3];
793 1.3 oster a2 ^= b2;
794 1.3 oster
795 1.3 oster pg_dst[0] = a0;
796 1.3 oster a3 ^= b3;
797 1.3 oster pg_dst[1] = a1;
798 1.3 oster pg_c += 4;
799 1.3 oster pg_dst[2] = a2;
800 1.3 oster pg_dst[3] = a3;
801 1.3 oster pg_dst += 4;
802 1.3 oster }
803 1.3 oster while (longs_this_time > 0) { /* cannot cross any page
804 1.3 oster * boundaries here */
805 1.3 oster *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
806 1.3 oster longs_this_time--;
807 1.3 oster }
808 1.3 oster
809 1.3 oster if (len) {
810 1.3 oster if (RF_PAGE_ALIGNED(a)) {
811 1.3 oster REMAP_VA(bp, a, pg_a);
812 1.3 oster if (!pg_a)
813 1.3 oster return (EFAULT);
814 1.3 oster if (dst_is_a)
815 1.3 oster pg_dst = pg_a;
816 1.3 oster }
817 1.3 oster if (RF_PAGE_ALIGNED(b)) {
818 1.3 oster REMAP_VA(bp, b, pg_b);
819 1.3 oster if (!pg_b)
820 1.3 oster return (EFAULT);
821 1.3 oster }
822 1.3 oster if (RF_PAGE_ALIGNED(c)) {
823 1.3 oster REMAP_VA(bp, c, pg_c);
824 1.3 oster if (!pg_c)
825 1.3 oster return (EFAULT);
826 1.3 oster }
827 1.3 oster if (!dst_is_a)
828 1.3 oster if (RF_PAGE_ALIGNED(dst)) {
829 1.3 oster REMAP_VA(bp, dst, pg_dst);
830 1.3 oster if (!pg_dst)
831 1.3 oster return (EFAULT);
832 1.3 oster }
833 1.3 oster }
834 1.3 oster }
835 1.3 oster while (len) {
836 1.3 oster *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
837 1.3 oster dst++;
838 1.3 oster a++;
839 1.3 oster b++;
840 1.3 oster c++;
841 1.3 oster if (RF_PAGE_ALIGNED(a)) {
842 1.3 oster REMAP_VA(bp, a, pg_a);
843 1.3 oster if (!pg_a)
844 1.3 oster return (EFAULT);
845 1.3 oster if (dst_is_a)
846 1.3 oster pg_dst = pg_a;
847 1.3 oster }
848 1.3 oster if (RF_PAGE_ALIGNED(b)) {
849 1.3 oster REMAP_VA(bp, b, pg_b);
850 1.3 oster if (!pg_b)
851 1.3 oster return (EFAULT);
852 1.3 oster }
853 1.3 oster if (RF_PAGE_ALIGNED(c)) {
854 1.3 oster REMAP_VA(bp, c, pg_c);
855 1.3 oster if (!pg_c)
856 1.3 oster return (EFAULT);
857 1.3 oster }
858 1.3 oster if (!dst_is_a)
859 1.3 oster if (RF_PAGE_ALIGNED(dst)) {
860 1.3 oster REMAP_VA(bp, dst, pg_dst);
861 1.3 oster if (!pg_dst)
862 1.3 oster return (EFAULT);
863 1.3 oster }
864 1.3 oster len--;
865 1.3 oster }
866 1.3 oster return (0);
867 1.3 oster }
868 1.3 oster
869 1.3 oster int
870 1.3 oster rf_bxor3(dst, a, b, c, len, bp)
871 1.6 augustss unsigned char *dst;
872 1.6 augustss unsigned char *a;
873 1.6 augustss unsigned char *b;
874 1.6 augustss unsigned char *c;
875 1.3 oster unsigned long len;
876 1.3 oster void *bp;
877 1.1 oster {
878 1.3 oster RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
879 1.1 oster
880 1.3 oster return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
881 1.3 oster (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
882 1.1 oster }
883 1.9 oster #endif
884