rf_dagfuncs.c revision 1.11 1 1.11 oster /* $NetBSD: rf_dagfuncs.c,v 1.11 2002/11/18 23:46:28 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland, William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * dagfuncs.c -- DAG node execution routines
31 1.1 oster *
32 1.1 oster * Rules:
33 1.1 oster * 1. Every DAG execution function must eventually cause node->status to
34 1.1 oster * get set to "good" or "bad", and "FinishNode" to be called. In the
35 1.1 oster * case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 1.1 oster * the node execution function can do these two things directly. In
37 1.1 oster * the case of nodes that have to wait for some event (a disk read to
38 1.1 oster * complete, a lock to be released, etc) to occur before they can
39 1.1 oster * complete, this is typically achieved by having whatever module
40 1.1 oster * is doing the operation call GenericWakeupFunc upon completion.
41 1.1 oster * 2. DAG execution functions should check the status in the DAG header
42 1.1 oster * and NOP out their operations if the status is not "enable". However,
43 1.1 oster * execution functions that release resources must be sure to release
44 1.1 oster * them even when they NOP out the function that would use them.
45 1.1 oster * Functions that acquire resources should go ahead and acquire them
46 1.1 oster * even when they NOP, so that a downstream release node will not have
47 1.1 oster * to check to find out whether or not the acquire was suppressed.
48 1.1 oster */
49 1.8 lukem
50 1.8 lukem #include <sys/cdefs.h>
51 1.11 oster __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.11 2002/11/18 23:46:28 oster Exp $");
52 1.1 oster
53 1.7 mrg #include <sys/param.h>
54 1.1 oster #include <sys/ioctl.h>
55 1.1 oster
56 1.1 oster #include "rf_archs.h"
57 1.1 oster #include "rf_raid.h"
58 1.1 oster #include "rf_dag.h"
59 1.1 oster #include "rf_layout.h"
60 1.1 oster #include "rf_etimer.h"
61 1.1 oster #include "rf_acctrace.h"
62 1.1 oster #include "rf_diskqueue.h"
63 1.1 oster #include "rf_dagfuncs.h"
64 1.1 oster #include "rf_general.h"
65 1.1 oster #include "rf_engine.h"
66 1.1 oster #include "rf_dagutils.h"
67 1.1 oster
68 1.1 oster #include "rf_kintf.h"
69 1.1 oster
70 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
71 1.1 oster #include "rf_paritylog.h"
72 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
73 1.1 oster
74 1.3 oster int (*rf_DiskReadFunc) (RF_DagNode_t *);
75 1.3 oster int (*rf_DiskWriteFunc) (RF_DagNode_t *);
76 1.3 oster int (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77 1.3 oster int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78 1.3 oster int (*rf_DiskUnlockFunc) (RF_DagNode_t *);
79 1.3 oster int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
80 1.3 oster int (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
81 1.3 oster int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
82 1.3 oster int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
83 1.1 oster
84 1.1 oster /*****************************************************************************************
85 1.1 oster * main (only) configuration routine for this module
86 1.1 oster ****************************************************************************************/
87 1.3 oster int
88 1.3 oster rf_ConfigureDAGFuncs(listp)
89 1.3 oster RF_ShutdownList_t **listp;
90 1.3 oster {
91 1.3 oster RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
92 1.3 oster rf_DiskReadFunc = rf_DiskReadFuncForThreads;
93 1.3 oster rf_DiskReadUndoFunc = rf_DiskUndoFunc;
94 1.3 oster rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
95 1.3 oster rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
96 1.3 oster rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
97 1.3 oster rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
98 1.3 oster rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
99 1.3 oster rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
100 1.3 oster rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
101 1.3 oster return (0);
102 1.1 oster }
103 1.1 oster
104 1.1 oster
105 1.1 oster
106 1.1 oster /*****************************************************************************************
107 1.1 oster * the execution function associated with a terminate node
108 1.1 oster ****************************************************************************************/
109 1.3 oster int
110 1.3 oster rf_TerminateFunc(node)
111 1.3 oster RF_DagNode_t *node;
112 1.1 oster {
113 1.3 oster RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
114 1.3 oster node->status = rf_good;
115 1.3 oster return (rf_FinishNode(node, RF_THREAD_CONTEXT));
116 1.1 oster }
117 1.1 oster
118 1.3 oster int
119 1.3 oster rf_TerminateUndoFunc(node)
120 1.3 oster RF_DagNode_t *node;
121 1.1 oster {
122 1.3 oster return (0);
123 1.1 oster }
124 1.1 oster
125 1.1 oster
126 1.1 oster /*****************************************************************************************
127 1.1 oster * execution functions associated with a mirror node
128 1.1 oster *
129 1.1 oster * parameters:
130 1.1 oster *
131 1.1 oster * 0 - physical disk addres of data
132 1.1 oster * 1 - buffer for holding read data
133 1.1 oster * 2 - parity stripe ID
134 1.1 oster * 3 - flags
135 1.1 oster * 4 - physical disk address of mirror (parity)
136 1.1 oster *
137 1.1 oster ****************************************************************************************/
138 1.1 oster
139 1.3 oster int
140 1.3 oster rf_DiskReadMirrorIdleFunc(node)
141 1.3 oster RF_DagNode_t *node;
142 1.1 oster {
143 1.3 oster /* select the mirror copy with the shortest queue and fill in node
144 1.3 oster * parameters with physical disk address */
145 1.1 oster
146 1.3 oster rf_SelectMirrorDiskIdle(node);
147 1.3 oster return (rf_DiskReadFunc(node));
148 1.1 oster }
149 1.1 oster
150 1.11 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
151 1.3 oster int
152 1.3 oster rf_DiskReadMirrorPartitionFunc(node)
153 1.3 oster RF_DagNode_t *node;
154 1.1 oster {
155 1.3 oster /* select the mirror copy with the shortest queue and fill in node
156 1.3 oster * parameters with physical disk address */
157 1.1 oster
158 1.3 oster rf_SelectMirrorDiskPartition(node);
159 1.3 oster return (rf_DiskReadFunc(node));
160 1.1 oster }
161 1.11 oster #endif
162 1.1 oster
163 1.3 oster int
164 1.3 oster rf_DiskReadMirrorUndoFunc(node)
165 1.3 oster RF_DagNode_t *node;
166 1.1 oster {
167 1.3 oster return (0);
168 1.1 oster }
169 1.1 oster
170 1.1 oster
171 1.1 oster
172 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
173 1.1 oster /*****************************************************************************************
174 1.1 oster * the execution function associated with a parity log update node
175 1.1 oster ****************************************************************************************/
176 1.3 oster int
177 1.3 oster rf_ParityLogUpdateFunc(node)
178 1.3 oster RF_DagNode_t *node;
179 1.3 oster {
180 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
181 1.3 oster caddr_t buf = (caddr_t) node->params[1].p;
182 1.3 oster RF_ParityLogData_t *logData;
183 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
184 1.3 oster RF_Etimer_t timer;
185 1.3 oster
186 1.3 oster if (node->dagHdr->status == rf_enable) {
187 1.3 oster RF_ETIMER_START(timer);
188 1.3 oster logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
189 1.3 oster (RF_Raid_t *) (node->dagHdr->raidPtr),
190 1.3 oster node->wakeFunc, (void *) node,
191 1.3 oster node->dagHdr->tracerec, timer);
192 1.3 oster if (logData)
193 1.3 oster rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
194 1.3 oster else {
195 1.3 oster RF_ETIMER_STOP(timer);
196 1.3 oster RF_ETIMER_EVAL(timer);
197 1.3 oster tracerec->plog_us += RF_ETIMER_VAL_US(timer);
198 1.3 oster (node->wakeFunc) (node, ENOMEM);
199 1.3 oster }
200 1.1 oster }
201 1.3 oster return (0);
202 1.1 oster }
203 1.1 oster
204 1.1 oster
205 1.1 oster /*****************************************************************************************
206 1.1 oster * the execution function associated with a parity log overwrite node
207 1.1 oster ****************************************************************************************/
208 1.3 oster int
209 1.3 oster rf_ParityLogOverwriteFunc(node)
210 1.3 oster RF_DagNode_t *node;
211 1.3 oster {
212 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
213 1.3 oster caddr_t buf = (caddr_t) node->params[1].p;
214 1.3 oster RF_ParityLogData_t *logData;
215 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
216 1.3 oster RF_Etimer_t timer;
217 1.3 oster
218 1.3 oster if (node->dagHdr->status == rf_enable) {
219 1.3 oster RF_ETIMER_START(timer);
220 1.3 oster logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
221 1.3 oster node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
222 1.3 oster if (logData)
223 1.3 oster rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
224 1.3 oster else {
225 1.3 oster RF_ETIMER_STOP(timer);
226 1.3 oster RF_ETIMER_EVAL(timer);
227 1.3 oster tracerec->plog_us += RF_ETIMER_VAL_US(timer);
228 1.3 oster (node->wakeFunc) (node, ENOMEM);
229 1.3 oster }
230 1.1 oster }
231 1.3 oster return (0);
232 1.1 oster }
233 1.1 oster
234 1.3 oster int
235 1.3 oster rf_ParityLogUpdateUndoFunc(node)
236 1.3 oster RF_DagNode_t *node;
237 1.1 oster {
238 1.3 oster return (0);
239 1.1 oster }
240 1.1 oster
241 1.3 oster int
242 1.3 oster rf_ParityLogOverwriteUndoFunc(node)
243 1.3 oster RF_DagNode_t *node;
244 1.1 oster {
245 1.3 oster return (0);
246 1.1 oster }
247 1.10 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
248 1.10 oster
249 1.1 oster /*****************************************************************************************
250 1.1 oster * the execution function associated with a NOP node
251 1.1 oster ****************************************************************************************/
252 1.3 oster int
253 1.3 oster rf_NullNodeFunc(node)
254 1.3 oster RF_DagNode_t *node;
255 1.1 oster {
256 1.3 oster node->status = rf_good;
257 1.3 oster return (rf_FinishNode(node, RF_THREAD_CONTEXT));
258 1.1 oster }
259 1.1 oster
260 1.3 oster int
261 1.3 oster rf_NullNodeUndoFunc(node)
262 1.3 oster RF_DagNode_t *node;
263 1.1 oster {
264 1.3 oster node->status = rf_undone;
265 1.3 oster return (rf_FinishNode(node, RF_THREAD_CONTEXT));
266 1.1 oster }
267 1.1 oster
268 1.1 oster
269 1.1 oster /*****************************************************************************************
270 1.1 oster * the execution function associated with a disk-read node
271 1.1 oster ****************************************************************************************/
272 1.3 oster int
273 1.3 oster rf_DiskReadFuncForThreads(node)
274 1.3 oster RF_DagNode_t *node;
275 1.3 oster {
276 1.3 oster RF_DiskQueueData_t *req;
277 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
278 1.3 oster caddr_t buf = (caddr_t) node->params[1].p;
279 1.3 oster RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
280 1.3 oster unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
281 1.3 oster unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
282 1.3 oster unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
283 1.3 oster unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
284 1.3 oster RF_DiskQueueDataFlags_t flags = 0;
285 1.3 oster RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
286 1.3 oster RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
287 1.3 oster void *b_proc = NULL;
288 1.1 oster
289 1.3 oster if (node->dagHdr->bp)
290 1.3 oster b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
291 1.1 oster
292 1.3 oster RF_ASSERT(!(lock && unlock));
293 1.3 oster flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
294 1.3 oster flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
295 1.5 oster
296 1.3 oster req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
297 1.3 oster buf, parityStripeID, which_ru,
298 1.3 oster (int (*) (void *, int)) node->wakeFunc,
299 1.3 oster node, NULL, node->dagHdr->tracerec,
300 1.3 oster (void *) (node->dagHdr->raidPtr), flags, b_proc);
301 1.3 oster if (!req) {
302 1.3 oster (node->wakeFunc) (node, ENOMEM);
303 1.3 oster } else {
304 1.3 oster node->dagFuncData = (void *) req;
305 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
306 1.3 oster }
307 1.3 oster return (0);
308 1.1 oster }
309 1.1 oster
310 1.1 oster
311 1.1 oster /*****************************************************************************************
312 1.1 oster * the execution function associated with a disk-write node
313 1.1 oster ****************************************************************************************/
314 1.3 oster int
315 1.3 oster rf_DiskWriteFuncForThreads(node)
316 1.3 oster RF_DagNode_t *node;
317 1.3 oster {
318 1.3 oster RF_DiskQueueData_t *req;
319 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
320 1.3 oster caddr_t buf = (caddr_t) node->params[1].p;
321 1.3 oster RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
322 1.3 oster unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
323 1.3 oster unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
324 1.3 oster unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
325 1.3 oster unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
326 1.3 oster RF_DiskQueueDataFlags_t flags = 0;
327 1.3 oster RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
328 1.3 oster RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
329 1.3 oster void *b_proc = NULL;
330 1.1 oster
331 1.3 oster if (node->dagHdr->bp)
332 1.3 oster b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
333 1.1 oster
334 1.3 oster /* normal processing (rollaway or forward recovery) begins here */
335 1.3 oster RF_ASSERT(!(lock && unlock));
336 1.3 oster flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
337 1.3 oster flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
338 1.3 oster req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
339 1.3 oster buf, parityStripeID, which_ru,
340 1.3 oster (int (*) (void *, int)) node->wakeFunc,
341 1.3 oster (void *) node, NULL,
342 1.3 oster node->dagHdr->tracerec,
343 1.3 oster (void *) (node->dagHdr->raidPtr),
344 1.3 oster flags, b_proc);
345 1.3 oster
346 1.3 oster if (!req) {
347 1.3 oster (node->wakeFunc) (node, ENOMEM);
348 1.3 oster } else {
349 1.3 oster node->dagFuncData = (void *) req;
350 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
351 1.3 oster }
352 1.3 oster
353 1.3 oster return (0);
354 1.1 oster }
355 1.1 oster /*****************************************************************************************
356 1.1 oster * the undo function for disk nodes
357 1.1 oster * Note: this is not a proper undo of a write node, only locks are released.
358 1.1 oster * old data is not restored to disk!
359 1.1 oster ****************************************************************************************/
360 1.3 oster int
361 1.3 oster rf_DiskUndoFunc(node)
362 1.3 oster RF_DagNode_t *node;
363 1.3 oster {
364 1.3 oster RF_DiskQueueData_t *req;
365 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
366 1.3 oster RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
367 1.3 oster
368 1.3 oster req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
369 1.3 oster 0L, 0, NULL, 0L, 0,
370 1.3 oster (int (*) (void *, int)) node->wakeFunc,
371 1.3 oster (void *) node,
372 1.3 oster NULL, node->dagHdr->tracerec,
373 1.3 oster (void *) (node->dagHdr->raidPtr),
374 1.3 oster RF_UNLOCK_DISK_QUEUE, NULL);
375 1.3 oster if (!req)
376 1.3 oster (node->wakeFunc) (node, ENOMEM);
377 1.3 oster else {
378 1.3 oster node->dagFuncData = (void *) req;
379 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
380 1.3 oster }
381 1.1 oster
382 1.3 oster return (0);
383 1.1 oster }
384 1.1 oster /*****************************************************************************************
385 1.1 oster * the execution function associated with an "unlock disk queue" node
386 1.1 oster ****************************************************************************************/
387 1.3 oster int
388 1.3 oster rf_DiskUnlockFuncForThreads(node)
389 1.3 oster RF_DagNode_t *node;
390 1.3 oster {
391 1.3 oster RF_DiskQueueData_t *req;
392 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
393 1.3 oster RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
394 1.3 oster
395 1.3 oster req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
396 1.3 oster 0L, 0, NULL, 0L, 0,
397 1.3 oster (int (*) (void *, int)) node->wakeFunc,
398 1.3 oster (void *) node,
399 1.3 oster NULL, node->dagHdr->tracerec,
400 1.3 oster (void *) (node->dagHdr->raidPtr),
401 1.3 oster RF_UNLOCK_DISK_QUEUE, NULL);
402 1.3 oster if (!req)
403 1.3 oster (node->wakeFunc) (node, ENOMEM);
404 1.3 oster else {
405 1.3 oster node->dagFuncData = (void *) req;
406 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
407 1.3 oster }
408 1.1 oster
409 1.3 oster return (0);
410 1.1 oster }
411 1.1 oster /*****************************************************************************************
412 1.1 oster * Callback routine for DiskRead and DiskWrite nodes. When the disk op completes,
413 1.1 oster * the routine is called to set the node status and inform the execution engine that
414 1.1 oster * the node has fired.
415 1.1 oster ****************************************************************************************/
416 1.3 oster int
417 1.3 oster rf_GenericWakeupFunc(node, status)
418 1.3 oster RF_DagNode_t *node;
419 1.3 oster int status;
420 1.3 oster {
421 1.3 oster switch (node->status) {
422 1.3 oster case rf_bwd1:
423 1.3 oster node->status = rf_bwd2;
424 1.3 oster if (node->dagFuncData)
425 1.3 oster rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
426 1.3 oster return (rf_DiskWriteFuncForThreads(node));
427 1.3 oster break;
428 1.3 oster case rf_fired:
429 1.3 oster if (status)
430 1.3 oster node->status = rf_bad;
431 1.3 oster else
432 1.3 oster node->status = rf_good;
433 1.3 oster break;
434 1.3 oster case rf_recover:
435 1.3 oster /* probably should never reach this case */
436 1.3 oster if (status)
437 1.3 oster node->status = rf_panic;
438 1.3 oster else
439 1.3 oster node->status = rf_undone;
440 1.3 oster break;
441 1.3 oster default:
442 1.4 oster printf("rf_GenericWakeupFunc:");
443 1.4 oster printf("node->status is %d,", node->status);
444 1.4 oster printf("status is %d \n", status);
445 1.3 oster RF_PANIC();
446 1.3 oster break;
447 1.3 oster }
448 1.3 oster if (node->dagFuncData)
449 1.3 oster rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
450 1.3 oster return (rf_FinishNode(node, RF_INTR_CONTEXT));
451 1.1 oster }
452 1.1 oster
453 1.1 oster
454 1.1 oster /*****************************************************************************************
455 1.1 oster * there are three distinct types of xor nodes
456 1.1 oster * A "regular xor" is used in the fault-free case where the access spans a complete
457 1.1 oster * stripe unit. It assumes that the result buffer is one full stripe unit in size,
458 1.1 oster * and uses the stripe-unit-offset values that it computes from the PDAs to determine
459 1.1 oster * where within the stripe unit to XOR each argument buffer.
460 1.1 oster *
461 1.1 oster * A "simple xor" is used in the fault-free case where the access touches only a portion
462 1.1 oster * of one (or two, in some cases) stripe unit(s). It assumes that all the argument
463 1.1 oster * buffers are of the same size and have the same stripe unit offset.
464 1.1 oster *
465 1.1 oster * A "recovery xor" is used in the degraded-mode case. It's similar to the regular
466 1.1 oster * xor function except that it takes the failed PDA as an additional parameter, and
467 1.1 oster * uses it to determine what portions of the argument buffers need to be xor'd into
468 1.1 oster * the result buffer, and where in the result buffer they should go.
469 1.1 oster ****************************************************************************************/
470 1.1 oster
471 1.1 oster /* xor the params together and store the result in the result field.
472 1.1 oster * assume the result field points to a buffer that is the size of one SU,
473 1.1 oster * and use the pda params to determine where within the buffer to XOR
474 1.1 oster * the input buffers.
475 1.1 oster */
476 1.3 oster int
477 1.3 oster rf_RegularXorFunc(node)
478 1.3 oster RF_DagNode_t *node;
479 1.3 oster {
480 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
481 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
482 1.3 oster RF_Etimer_t timer;
483 1.3 oster int i, retcode;
484 1.1 oster
485 1.3 oster retcode = 0;
486 1.3 oster if (node->dagHdr->status == rf_enable) {
487 1.3 oster /* don't do the XOR if the input is the same as the output */
488 1.3 oster RF_ETIMER_START(timer);
489 1.3 oster for (i = 0; i < node->numParams - 1; i += 2)
490 1.3 oster if (node->params[i + 1].p != node->results[0]) {
491 1.3 oster retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
492 1.3 oster (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
493 1.3 oster }
494 1.3 oster RF_ETIMER_STOP(timer);
495 1.3 oster RF_ETIMER_EVAL(timer);
496 1.3 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
497 1.3 oster }
498 1.3 oster return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
499 1.3 oster * explicitly since no
500 1.3 oster * I/O in this node */
501 1.1 oster }
502 1.1 oster /* xor the inputs into the result buffer, ignoring placement issues */
503 1.3 oster int
504 1.3 oster rf_SimpleXorFunc(node)
505 1.3 oster RF_DagNode_t *node;
506 1.3 oster {
507 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
508 1.3 oster int i, retcode = 0;
509 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
510 1.3 oster RF_Etimer_t timer;
511 1.1 oster
512 1.3 oster if (node->dagHdr->status == rf_enable) {
513 1.3 oster RF_ETIMER_START(timer);
514 1.3 oster /* don't do the XOR if the input is the same as the output */
515 1.3 oster for (i = 0; i < node->numParams - 1; i += 2)
516 1.3 oster if (node->params[i + 1].p != node->results[0]) {
517 1.3 oster retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
518 1.3 oster rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
519 1.3 oster (struct buf *) node->dagHdr->bp);
520 1.3 oster }
521 1.3 oster RF_ETIMER_STOP(timer);
522 1.3 oster RF_ETIMER_EVAL(timer);
523 1.3 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
524 1.3 oster }
525 1.3 oster return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
526 1.3 oster * explicitly since no
527 1.3 oster * I/O in this node */
528 1.1 oster }
529 1.1 oster /* this xor is used by the degraded-mode dag functions to recover lost data.
530 1.1 oster * the second-to-last parameter is the PDA for the failed portion of the access.
531 1.1 oster * the code here looks at this PDA and assumes that the xor target buffer is
532 1.1 oster * equal in size to the number of sectors in the failed PDA. It then uses
533 1.1 oster * the other PDAs in the parameter list to determine where within the target
534 1.1 oster * buffer the corresponding data should be xored.
535 1.1 oster */
536 1.3 oster int
537 1.3 oster rf_RecoveryXorFunc(node)
538 1.3 oster RF_DagNode_t *node;
539 1.3 oster {
540 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
541 1.3 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
542 1.3 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
543 1.3 oster int i, retcode = 0;
544 1.3 oster RF_PhysDiskAddr_t *pda;
545 1.3 oster int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
546 1.3 oster char *srcbuf, *destbuf;
547 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
548 1.3 oster RF_Etimer_t timer;
549 1.1 oster
550 1.3 oster if (node->dagHdr->status == rf_enable) {
551 1.3 oster RF_ETIMER_START(timer);
552 1.3 oster for (i = 0; i < node->numParams - 2; i += 2)
553 1.3 oster if (node->params[i + 1].p != node->results[0]) {
554 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
555 1.3 oster srcbuf = (char *) node->params[i + 1].p;
556 1.3 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
557 1.3 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
558 1.3 oster retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
559 1.3 oster }
560 1.3 oster RF_ETIMER_STOP(timer);
561 1.3 oster RF_ETIMER_EVAL(timer);
562 1.3 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
563 1.3 oster }
564 1.3 oster return (rf_GenericWakeupFunc(node, retcode));
565 1.1 oster }
566 1.1 oster /*****************************************************************************************
567 1.1 oster * The next three functions are utilities used by the above xor-execution functions.
568 1.1 oster ****************************************************************************************/
569 1.1 oster
570 1.1 oster
571 1.1 oster /*
572 1.1 oster * this is just a glorified buffer xor. targbuf points to a buffer that is one full stripe unit
573 1.1 oster * in size. srcbuf points to a buffer that may be less than 1 SU, but never more. When the
574 1.1 oster * access described by pda is one SU in size (which by implication means it's SU-aligned),
575 1.1 oster * all that happens is (targbuf) <- (srcbuf ^ targbuf). When the access is less than one
576 1.1 oster * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
577 1.1 oster */
578 1.1 oster
579 1.3 oster int
580 1.3 oster rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
581 1.3 oster RF_Raid_t *raidPtr;
582 1.3 oster RF_PhysDiskAddr_t *pda;
583 1.3 oster char *srcbuf;
584 1.3 oster char *targbuf;
585 1.3 oster void *bp;
586 1.3 oster {
587 1.3 oster char *targptr;
588 1.3 oster int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
589 1.3 oster int SUOffset = pda->startSector % sectPerSU;
590 1.3 oster int length, retcode = 0;
591 1.3 oster
592 1.3 oster RF_ASSERT(pda->numSector <= sectPerSU);
593 1.3 oster
594 1.3 oster targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
595 1.3 oster length = rf_RaidAddressToByte(raidPtr, pda->numSector);
596 1.3 oster retcode = rf_bxor(srcbuf, targptr, length, bp);
597 1.3 oster return (retcode);
598 1.1 oster }
599 1.1 oster /* it really should be the case that the buffer pointers (returned by malloc)
600 1.1 oster * are aligned to the natural word size of the machine, so this is the only
601 1.1 oster * case we optimize for. The length should always be a multiple of the sector
602 1.1 oster * size, so there should be no problem with leftover bytes at the end.
603 1.1 oster */
604 1.3 oster int
605 1.3 oster rf_bxor(src, dest, len, bp)
606 1.3 oster char *src;
607 1.3 oster char *dest;
608 1.3 oster int len;
609 1.3 oster void *bp;
610 1.3 oster {
611 1.3 oster unsigned mask = sizeof(long) - 1, retcode = 0;
612 1.3 oster
613 1.3 oster if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
614 1.3 oster retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
615 1.3 oster } else {
616 1.3 oster RF_ASSERT(0);
617 1.3 oster }
618 1.3 oster return (retcode);
619 1.1 oster }
620 1.1 oster /* map a user buffer into kernel space, if necessary */
621 1.1 oster #define REMAP_VA(_bp,x,y) (y) = (x)
622 1.1 oster
623 1.1 oster /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
624 1.1 oster * We don't want to assume anything about which input buffers are in kernel/user
625 1.1 oster * space, nor about their alignment, so in each loop we compute the maximum number
626 1.1 oster * of bytes that we can xor without crossing any page boundaries, and do only this many
627 1.1 oster * bytes before the next remap.
628 1.1 oster */
629 1.3 oster int
630 1.3 oster rf_longword_bxor(src, dest, len, bp)
631 1.6 augustss unsigned long *src;
632 1.6 augustss unsigned long *dest;
633 1.3 oster int len; /* longwords */
634 1.3 oster void *bp;
635 1.3 oster {
636 1.6 augustss unsigned long *end = src + len;
637 1.6 augustss unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
638 1.6 augustss unsigned long *pg_src, *pg_dest; /* per-page source/dest
639 1.3 oster * pointers */
640 1.3 oster int longs_this_time;/* # longwords to xor in the current iteration */
641 1.3 oster
642 1.3 oster REMAP_VA(bp, src, pg_src);
643 1.3 oster REMAP_VA(bp, dest, pg_dest);
644 1.3 oster if (!pg_src || !pg_dest)
645 1.3 oster return (EFAULT);
646 1.3 oster
647 1.3 oster while (len >= 4) {
648 1.3 oster longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */
649 1.3 oster src += longs_this_time;
650 1.3 oster dest += longs_this_time;
651 1.3 oster len -= longs_this_time;
652 1.3 oster while (longs_this_time >= 4) {
653 1.3 oster d0 = pg_dest[0];
654 1.3 oster d1 = pg_dest[1];
655 1.3 oster d2 = pg_dest[2];
656 1.3 oster d3 = pg_dest[3];
657 1.3 oster s0 = pg_src[0];
658 1.3 oster s1 = pg_src[1];
659 1.3 oster s2 = pg_src[2];
660 1.3 oster s3 = pg_src[3];
661 1.3 oster pg_dest[0] = d0 ^ s0;
662 1.3 oster pg_dest[1] = d1 ^ s1;
663 1.3 oster pg_dest[2] = d2 ^ s2;
664 1.3 oster pg_dest[3] = d3 ^ s3;
665 1.3 oster pg_src += 4;
666 1.3 oster pg_dest += 4;
667 1.3 oster longs_this_time -= 4;
668 1.3 oster }
669 1.3 oster while (longs_this_time > 0) { /* cannot cross any page
670 1.3 oster * boundaries here */
671 1.3 oster *pg_dest++ ^= *pg_src++;
672 1.3 oster longs_this_time--;
673 1.3 oster }
674 1.3 oster
675 1.3 oster /* either we're done, or we've reached a page boundary on one
676 1.3 oster * (or possibly both) of the pointers */
677 1.3 oster if (len) {
678 1.3 oster if (RF_PAGE_ALIGNED(src))
679 1.3 oster REMAP_VA(bp, src, pg_src);
680 1.3 oster if (RF_PAGE_ALIGNED(dest))
681 1.3 oster REMAP_VA(bp, dest, pg_dest);
682 1.3 oster if (!pg_src || !pg_dest)
683 1.3 oster return (EFAULT);
684 1.3 oster }
685 1.3 oster }
686 1.3 oster while (src < end) {
687 1.3 oster *pg_dest++ ^= *pg_src++;
688 1.3 oster src++;
689 1.3 oster dest++;
690 1.3 oster len--;
691 1.3 oster if (RF_PAGE_ALIGNED(src))
692 1.3 oster REMAP_VA(bp, src, pg_src);
693 1.3 oster if (RF_PAGE_ALIGNED(dest))
694 1.3 oster REMAP_VA(bp, dest, pg_dest);
695 1.3 oster }
696 1.3 oster RF_ASSERT(len == 0);
697 1.3 oster return (0);
698 1.1 oster }
699 1.1 oster
700 1.9 oster #if 0
701 1.1 oster /*
702 1.1 oster dst = a ^ b ^ c;
703 1.1 oster a may equal dst
704 1.1 oster see comment above longword_bxor
705 1.1 oster */
706 1.3 oster int
707 1.3 oster rf_longword_bxor3(dst, a, b, c, len, bp)
708 1.6 augustss unsigned long *dst;
709 1.6 augustss unsigned long *a;
710 1.6 augustss unsigned long *b;
711 1.6 augustss unsigned long *c;
712 1.3 oster int len; /* length in longwords */
713 1.3 oster void *bp;
714 1.3 oster {
715 1.3 oster unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
716 1.6 augustss unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest
717 1.3 oster * pointers */
718 1.3 oster int longs_this_time;/* # longs to xor in the current iteration */
719 1.3 oster char dst_is_a = 0;
720 1.3 oster
721 1.3 oster REMAP_VA(bp, a, pg_a);
722 1.3 oster REMAP_VA(bp, b, pg_b);
723 1.3 oster REMAP_VA(bp, c, pg_c);
724 1.3 oster if (a == dst) {
725 1.3 oster pg_dst = pg_a;
726 1.3 oster dst_is_a = 1;
727 1.3 oster } else {
728 1.3 oster REMAP_VA(bp, dst, pg_dst);
729 1.3 oster }
730 1.3 oster
731 1.3 oster /* align dest to cache line. Can't cross a pg boundary on dst here. */
732 1.3 oster while ((((unsigned long) pg_dst) & 0x1f)) {
733 1.3 oster *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
734 1.3 oster dst++;
735 1.3 oster a++;
736 1.3 oster b++;
737 1.3 oster c++;
738 1.3 oster if (RF_PAGE_ALIGNED(a)) {
739 1.3 oster REMAP_VA(bp, a, pg_a);
740 1.3 oster if (!pg_a)
741 1.3 oster return (EFAULT);
742 1.3 oster }
743 1.3 oster if (RF_PAGE_ALIGNED(b)) {
744 1.3 oster REMAP_VA(bp, a, pg_b);
745 1.3 oster if (!pg_b)
746 1.3 oster return (EFAULT);
747 1.3 oster }
748 1.3 oster if (RF_PAGE_ALIGNED(c)) {
749 1.3 oster REMAP_VA(bp, a, pg_c);
750 1.3 oster if (!pg_c)
751 1.3 oster return (EFAULT);
752 1.3 oster }
753 1.3 oster len--;
754 1.3 oster }
755 1.3 oster
756 1.3 oster while (len > 4) {
757 1.3 oster longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
758 1.3 oster a += longs_this_time;
759 1.3 oster b += longs_this_time;
760 1.3 oster c += longs_this_time;
761 1.3 oster dst += longs_this_time;
762 1.3 oster len -= longs_this_time;
763 1.3 oster while (longs_this_time >= 4) {
764 1.3 oster a0 = pg_a[0];
765 1.3 oster longs_this_time -= 4;
766 1.3 oster
767 1.3 oster a1 = pg_a[1];
768 1.3 oster a2 = pg_a[2];
769 1.3 oster
770 1.3 oster a3 = pg_a[3];
771 1.3 oster pg_a += 4;
772 1.3 oster
773 1.3 oster b0 = pg_b[0];
774 1.3 oster b1 = pg_b[1];
775 1.3 oster
776 1.3 oster b2 = pg_b[2];
777 1.3 oster b3 = pg_b[3];
778 1.3 oster /* start dual issue */
779 1.3 oster a0 ^= b0;
780 1.3 oster b0 = pg_c[0];
781 1.3 oster
782 1.3 oster pg_b += 4;
783 1.3 oster a1 ^= b1;
784 1.3 oster
785 1.3 oster a2 ^= b2;
786 1.3 oster a3 ^= b3;
787 1.3 oster
788 1.3 oster b1 = pg_c[1];
789 1.3 oster a0 ^= b0;
790 1.3 oster
791 1.3 oster b2 = pg_c[2];
792 1.3 oster a1 ^= b1;
793 1.3 oster
794 1.3 oster b3 = pg_c[3];
795 1.3 oster a2 ^= b2;
796 1.3 oster
797 1.3 oster pg_dst[0] = a0;
798 1.3 oster a3 ^= b3;
799 1.3 oster pg_dst[1] = a1;
800 1.3 oster pg_c += 4;
801 1.3 oster pg_dst[2] = a2;
802 1.3 oster pg_dst[3] = a3;
803 1.3 oster pg_dst += 4;
804 1.3 oster }
805 1.3 oster while (longs_this_time > 0) { /* cannot cross any page
806 1.3 oster * boundaries here */
807 1.3 oster *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
808 1.3 oster longs_this_time--;
809 1.3 oster }
810 1.3 oster
811 1.3 oster if (len) {
812 1.3 oster if (RF_PAGE_ALIGNED(a)) {
813 1.3 oster REMAP_VA(bp, a, pg_a);
814 1.3 oster if (!pg_a)
815 1.3 oster return (EFAULT);
816 1.3 oster if (dst_is_a)
817 1.3 oster pg_dst = pg_a;
818 1.3 oster }
819 1.3 oster if (RF_PAGE_ALIGNED(b)) {
820 1.3 oster REMAP_VA(bp, b, pg_b);
821 1.3 oster if (!pg_b)
822 1.3 oster return (EFAULT);
823 1.3 oster }
824 1.3 oster if (RF_PAGE_ALIGNED(c)) {
825 1.3 oster REMAP_VA(bp, c, pg_c);
826 1.3 oster if (!pg_c)
827 1.3 oster return (EFAULT);
828 1.3 oster }
829 1.3 oster if (!dst_is_a)
830 1.3 oster if (RF_PAGE_ALIGNED(dst)) {
831 1.3 oster REMAP_VA(bp, dst, pg_dst);
832 1.3 oster if (!pg_dst)
833 1.3 oster return (EFAULT);
834 1.3 oster }
835 1.3 oster }
836 1.3 oster }
837 1.3 oster while (len) {
838 1.3 oster *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
839 1.3 oster dst++;
840 1.3 oster a++;
841 1.3 oster b++;
842 1.3 oster c++;
843 1.3 oster if (RF_PAGE_ALIGNED(a)) {
844 1.3 oster REMAP_VA(bp, a, pg_a);
845 1.3 oster if (!pg_a)
846 1.3 oster return (EFAULT);
847 1.3 oster if (dst_is_a)
848 1.3 oster pg_dst = pg_a;
849 1.3 oster }
850 1.3 oster if (RF_PAGE_ALIGNED(b)) {
851 1.3 oster REMAP_VA(bp, b, pg_b);
852 1.3 oster if (!pg_b)
853 1.3 oster return (EFAULT);
854 1.3 oster }
855 1.3 oster if (RF_PAGE_ALIGNED(c)) {
856 1.3 oster REMAP_VA(bp, c, pg_c);
857 1.3 oster if (!pg_c)
858 1.3 oster return (EFAULT);
859 1.3 oster }
860 1.3 oster if (!dst_is_a)
861 1.3 oster if (RF_PAGE_ALIGNED(dst)) {
862 1.3 oster REMAP_VA(bp, dst, pg_dst);
863 1.3 oster if (!pg_dst)
864 1.3 oster return (EFAULT);
865 1.3 oster }
866 1.3 oster len--;
867 1.3 oster }
868 1.3 oster return (0);
869 1.3 oster }
870 1.3 oster
871 1.3 oster int
872 1.3 oster rf_bxor3(dst, a, b, c, len, bp)
873 1.6 augustss unsigned char *dst;
874 1.6 augustss unsigned char *a;
875 1.6 augustss unsigned char *b;
876 1.6 augustss unsigned char *c;
877 1.3 oster unsigned long len;
878 1.3 oster void *bp;
879 1.1 oster {
880 1.3 oster RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
881 1.1 oster
882 1.3 oster return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
883 1.3 oster (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
884 1.1 oster }
885 1.9 oster #endif
886