Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.11
      1  1.11     oster /*	$NetBSD: rf_dagfuncs.c,v 1.11 2002/11/18 23:46:28 oster Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Author: Mark Holland, William V. Courtright II
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.1     oster /*
     30   1.1     oster  * dagfuncs.c -- DAG node execution routines
     31   1.1     oster  *
     32   1.1     oster  * Rules:
     33   1.1     oster  * 1. Every DAG execution function must eventually cause node->status to
     34   1.1     oster  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35   1.1     oster  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36   1.1     oster  *    the node execution function can do these two things directly. In
     37   1.1     oster  *    the case of nodes that have to wait for some event (a disk read to
     38   1.1     oster  *    complete, a lock to be released, etc) to occur before they can
     39   1.1     oster  *    complete, this is typically achieved by having whatever module
     40   1.1     oster  *    is doing the operation call GenericWakeupFunc upon completion.
     41   1.1     oster  * 2. DAG execution functions should check the status in the DAG header
     42   1.1     oster  *    and NOP out their operations if the status is not "enable". However,
     43   1.1     oster  *    execution functions that release resources must be sure to release
     44   1.1     oster  *    them even when they NOP out the function that would use them.
     45   1.1     oster  *    Functions that acquire resources should go ahead and acquire them
     46   1.1     oster  *    even when they NOP, so that a downstream release node will not have
     47   1.1     oster  *    to check to find out whether or not the acquire was suppressed.
     48   1.1     oster  */
     49   1.8     lukem 
     50   1.8     lukem #include <sys/cdefs.h>
     51  1.11     oster __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.11 2002/11/18 23:46:28 oster Exp $");
     52   1.1     oster 
     53   1.7       mrg #include <sys/param.h>
     54   1.1     oster #include <sys/ioctl.h>
     55   1.1     oster 
     56   1.1     oster #include "rf_archs.h"
     57   1.1     oster #include "rf_raid.h"
     58   1.1     oster #include "rf_dag.h"
     59   1.1     oster #include "rf_layout.h"
     60   1.1     oster #include "rf_etimer.h"
     61   1.1     oster #include "rf_acctrace.h"
     62   1.1     oster #include "rf_diskqueue.h"
     63   1.1     oster #include "rf_dagfuncs.h"
     64   1.1     oster #include "rf_general.h"
     65   1.1     oster #include "rf_engine.h"
     66   1.1     oster #include "rf_dagutils.h"
     67   1.1     oster 
     68   1.1     oster #include "rf_kintf.h"
     69   1.1     oster 
     70   1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
     71   1.1     oster #include "rf_paritylog.h"
     72   1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73   1.1     oster 
     74   1.3     oster int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75   1.3     oster int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76   1.3     oster int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77   1.3     oster int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78   1.3     oster int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
     79   1.3     oster int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
     80   1.3     oster int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     81   1.3     oster int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     82   1.3     oster int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     83   1.1     oster 
     84   1.1     oster /*****************************************************************************************
     85   1.1     oster  * main (only) configuration routine for this module
     86   1.1     oster  ****************************************************************************************/
     87   1.3     oster int
     88   1.3     oster rf_ConfigureDAGFuncs(listp)
     89   1.3     oster 	RF_ShutdownList_t **listp;
     90   1.3     oster {
     91   1.3     oster 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     92   1.3     oster 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     93   1.3     oster 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     94   1.3     oster 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     95   1.3     oster 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     96   1.3     oster 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
     97   1.3     oster 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
     98   1.3     oster 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     99   1.3     oster 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
    100   1.3     oster 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
    101   1.3     oster 	return (0);
    102   1.1     oster }
    103   1.1     oster 
    104   1.1     oster 
    105   1.1     oster 
    106   1.1     oster /*****************************************************************************************
    107   1.1     oster  * the execution function associated with a terminate node
    108   1.1     oster  ****************************************************************************************/
    109   1.3     oster int
    110   1.3     oster rf_TerminateFunc(node)
    111   1.3     oster 	RF_DagNode_t *node;
    112   1.1     oster {
    113   1.3     oster 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    114   1.3     oster 	node->status = rf_good;
    115   1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    116   1.1     oster }
    117   1.1     oster 
    118   1.3     oster int
    119   1.3     oster rf_TerminateUndoFunc(node)
    120   1.3     oster 	RF_DagNode_t *node;
    121   1.1     oster {
    122   1.3     oster 	return (0);
    123   1.1     oster }
    124   1.1     oster 
    125   1.1     oster 
    126   1.1     oster /*****************************************************************************************
    127   1.1     oster  * execution functions associated with a mirror node
    128   1.1     oster  *
    129   1.1     oster  * parameters:
    130   1.1     oster  *
    131   1.1     oster  * 0 - physical disk addres of data
    132   1.1     oster  * 1 - buffer for holding read data
    133   1.1     oster  * 2 - parity stripe ID
    134   1.1     oster  * 3 - flags
    135   1.1     oster  * 4 - physical disk address of mirror (parity)
    136   1.1     oster  *
    137   1.1     oster  ****************************************************************************************/
    138   1.1     oster 
    139   1.3     oster int
    140   1.3     oster rf_DiskReadMirrorIdleFunc(node)
    141   1.3     oster 	RF_DagNode_t *node;
    142   1.1     oster {
    143   1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    144   1.3     oster 	 * parameters with physical disk address */
    145   1.1     oster 
    146   1.3     oster 	rf_SelectMirrorDiskIdle(node);
    147   1.3     oster 	return (rf_DiskReadFunc(node));
    148   1.1     oster }
    149   1.1     oster 
    150  1.11     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    151   1.3     oster int
    152   1.3     oster rf_DiskReadMirrorPartitionFunc(node)
    153   1.3     oster 	RF_DagNode_t *node;
    154   1.1     oster {
    155   1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    156   1.3     oster 	 * parameters with physical disk address */
    157   1.1     oster 
    158   1.3     oster 	rf_SelectMirrorDiskPartition(node);
    159   1.3     oster 	return (rf_DiskReadFunc(node));
    160   1.1     oster }
    161  1.11     oster #endif
    162   1.1     oster 
    163   1.3     oster int
    164   1.3     oster rf_DiskReadMirrorUndoFunc(node)
    165   1.3     oster 	RF_DagNode_t *node;
    166   1.1     oster {
    167   1.3     oster 	return (0);
    168   1.1     oster }
    169   1.1     oster 
    170   1.1     oster 
    171   1.1     oster 
    172   1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    173   1.1     oster /*****************************************************************************************
    174   1.1     oster  * the execution function associated with a parity log update node
    175   1.1     oster  ****************************************************************************************/
    176   1.3     oster int
    177   1.3     oster rf_ParityLogUpdateFunc(node)
    178   1.3     oster 	RF_DagNode_t *node;
    179   1.3     oster {
    180   1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    181   1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    182   1.3     oster 	RF_ParityLogData_t *logData;
    183   1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    184   1.3     oster 	RF_Etimer_t timer;
    185   1.3     oster 
    186   1.3     oster 	if (node->dagHdr->status == rf_enable) {
    187   1.3     oster 		RF_ETIMER_START(timer);
    188   1.3     oster 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
    189   1.3     oster 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    190   1.3     oster 		    node->wakeFunc, (void *) node,
    191   1.3     oster 		    node->dagHdr->tracerec, timer);
    192   1.3     oster 		if (logData)
    193   1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    194   1.3     oster 		else {
    195   1.3     oster 			RF_ETIMER_STOP(timer);
    196   1.3     oster 			RF_ETIMER_EVAL(timer);
    197   1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    198   1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    199   1.3     oster 		}
    200   1.1     oster 	}
    201   1.3     oster 	return (0);
    202   1.1     oster }
    203   1.1     oster 
    204   1.1     oster 
    205   1.1     oster /*****************************************************************************************
    206   1.1     oster  * the execution function associated with a parity log overwrite node
    207   1.1     oster  ****************************************************************************************/
    208   1.3     oster int
    209   1.3     oster rf_ParityLogOverwriteFunc(node)
    210   1.3     oster 	RF_DagNode_t *node;
    211   1.3     oster {
    212   1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    213   1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    214   1.3     oster 	RF_ParityLogData_t *logData;
    215   1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    216   1.3     oster 	RF_Etimer_t timer;
    217   1.3     oster 
    218   1.3     oster 	if (node->dagHdr->status == rf_enable) {
    219   1.3     oster 		RF_ETIMER_START(timer);
    220   1.3     oster 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
    221   1.3     oster 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    222   1.3     oster 		if (logData)
    223   1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    224   1.3     oster 		else {
    225   1.3     oster 			RF_ETIMER_STOP(timer);
    226   1.3     oster 			RF_ETIMER_EVAL(timer);
    227   1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    228   1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    229   1.3     oster 		}
    230   1.1     oster 	}
    231   1.3     oster 	return (0);
    232   1.1     oster }
    233   1.1     oster 
    234   1.3     oster int
    235   1.3     oster rf_ParityLogUpdateUndoFunc(node)
    236   1.3     oster 	RF_DagNode_t *node;
    237   1.1     oster {
    238   1.3     oster 	return (0);
    239   1.1     oster }
    240   1.1     oster 
    241   1.3     oster int
    242   1.3     oster rf_ParityLogOverwriteUndoFunc(node)
    243   1.3     oster 	RF_DagNode_t *node;
    244   1.1     oster {
    245   1.3     oster 	return (0);
    246   1.1     oster }
    247  1.10     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    248  1.10     oster 
    249   1.1     oster /*****************************************************************************************
    250   1.1     oster  * the execution function associated with a NOP node
    251   1.1     oster  ****************************************************************************************/
    252   1.3     oster int
    253   1.3     oster rf_NullNodeFunc(node)
    254   1.3     oster 	RF_DagNode_t *node;
    255   1.1     oster {
    256   1.3     oster 	node->status = rf_good;
    257   1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    258   1.1     oster }
    259   1.1     oster 
    260   1.3     oster int
    261   1.3     oster rf_NullNodeUndoFunc(node)
    262   1.3     oster 	RF_DagNode_t *node;
    263   1.1     oster {
    264   1.3     oster 	node->status = rf_undone;
    265   1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    266   1.1     oster }
    267   1.1     oster 
    268   1.1     oster 
    269   1.1     oster /*****************************************************************************************
    270   1.1     oster  * the execution function associated with a disk-read node
    271   1.1     oster  ****************************************************************************************/
    272   1.3     oster int
    273   1.3     oster rf_DiskReadFuncForThreads(node)
    274   1.3     oster 	RF_DagNode_t *node;
    275   1.3     oster {
    276   1.3     oster 	RF_DiskQueueData_t *req;
    277   1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    278   1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    279   1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    280   1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    281   1.3     oster 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    282   1.3     oster 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    283   1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    284   1.3     oster 	RF_DiskQueueDataFlags_t flags = 0;
    285   1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    286   1.3     oster 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    287   1.3     oster 	void   *b_proc = NULL;
    288   1.1     oster 
    289   1.3     oster 	if (node->dagHdr->bp)
    290   1.3     oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    291   1.1     oster 
    292   1.3     oster 	RF_ASSERT(!(lock && unlock));
    293   1.3     oster 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    294   1.3     oster 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    295   1.5     oster 
    296   1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    297   1.3     oster 	    buf, parityStripeID, which_ru,
    298   1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    299   1.3     oster 	    node, NULL, node->dagHdr->tracerec,
    300   1.3     oster 	    (void *) (node->dagHdr->raidPtr), flags, b_proc);
    301   1.3     oster 	if (!req) {
    302   1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    303   1.3     oster 	} else {
    304   1.3     oster 		node->dagFuncData = (void *) req;
    305   1.3     oster 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    306   1.3     oster 	}
    307   1.3     oster 	return (0);
    308   1.1     oster }
    309   1.1     oster 
    310   1.1     oster 
    311   1.1     oster /*****************************************************************************************
    312   1.1     oster  * the execution function associated with a disk-write node
    313   1.1     oster  ****************************************************************************************/
    314   1.3     oster int
    315   1.3     oster rf_DiskWriteFuncForThreads(node)
    316   1.3     oster 	RF_DagNode_t *node;
    317   1.3     oster {
    318   1.3     oster 	RF_DiskQueueData_t *req;
    319   1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    320   1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    321   1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    322   1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    323   1.3     oster 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    324   1.3     oster 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    325   1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    326   1.3     oster 	RF_DiskQueueDataFlags_t flags = 0;
    327   1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    328   1.3     oster 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    329   1.3     oster 	void   *b_proc = NULL;
    330   1.1     oster 
    331   1.3     oster 	if (node->dagHdr->bp)
    332   1.3     oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    333   1.1     oster 
    334   1.3     oster 	/* normal processing (rollaway or forward recovery) begins here */
    335   1.3     oster 	RF_ASSERT(!(lock && unlock));
    336   1.3     oster 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    337   1.3     oster 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    338   1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    339   1.3     oster 	    buf, parityStripeID, which_ru,
    340   1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    341   1.3     oster 	    (void *) node, NULL,
    342   1.3     oster 	    node->dagHdr->tracerec,
    343   1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    344   1.3     oster 	    flags, b_proc);
    345   1.3     oster 
    346   1.3     oster 	if (!req) {
    347   1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    348   1.3     oster 	} else {
    349   1.3     oster 		node->dagFuncData = (void *) req;
    350   1.3     oster 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    351   1.3     oster 	}
    352   1.3     oster 
    353   1.3     oster 	return (0);
    354   1.1     oster }
    355   1.1     oster /*****************************************************************************************
    356   1.1     oster  * the undo function for disk nodes
    357   1.1     oster  * Note:  this is not a proper undo of a write node, only locks are released.
    358   1.1     oster  *        old data is not restored to disk!
    359   1.1     oster  ****************************************************************************************/
    360   1.3     oster int
    361   1.3     oster rf_DiskUndoFunc(node)
    362   1.3     oster 	RF_DagNode_t *node;
    363   1.3     oster {
    364   1.3     oster 	RF_DiskQueueData_t *req;
    365   1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    366   1.3     oster 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    367   1.3     oster 
    368   1.3     oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    369   1.3     oster 	    0L, 0, NULL, 0L, 0,
    370   1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    371   1.3     oster 	    (void *) node,
    372   1.3     oster 	    NULL, node->dagHdr->tracerec,
    373   1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    374   1.3     oster 	    RF_UNLOCK_DISK_QUEUE, NULL);
    375   1.3     oster 	if (!req)
    376   1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    377   1.3     oster 	else {
    378   1.3     oster 		node->dagFuncData = (void *) req;
    379   1.3     oster 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
    380   1.3     oster 	}
    381   1.1     oster 
    382   1.3     oster 	return (0);
    383   1.1     oster }
    384   1.1     oster /*****************************************************************************************
    385   1.1     oster  * the execution function associated with an "unlock disk queue" node
    386   1.1     oster  ****************************************************************************************/
    387   1.3     oster int
    388   1.3     oster rf_DiskUnlockFuncForThreads(node)
    389   1.3     oster 	RF_DagNode_t *node;
    390   1.3     oster {
    391   1.3     oster 	RF_DiskQueueData_t *req;
    392   1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    393   1.3     oster 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    394   1.3     oster 
    395   1.3     oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    396   1.3     oster 	    0L, 0, NULL, 0L, 0,
    397   1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    398   1.3     oster 	    (void *) node,
    399   1.3     oster 	    NULL, node->dagHdr->tracerec,
    400   1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    401   1.3     oster 	    RF_UNLOCK_DISK_QUEUE, NULL);
    402   1.3     oster 	if (!req)
    403   1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    404   1.3     oster 	else {
    405   1.3     oster 		node->dagFuncData = (void *) req;
    406   1.3     oster 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
    407   1.3     oster 	}
    408   1.1     oster 
    409   1.3     oster 	return (0);
    410   1.1     oster }
    411   1.1     oster /*****************************************************************************************
    412   1.1     oster  * Callback routine for DiskRead and DiskWrite nodes.  When the disk op completes,
    413   1.1     oster  * the routine is called to set the node status and inform the execution engine that
    414   1.1     oster  * the node has fired.
    415   1.1     oster  ****************************************************************************************/
    416   1.3     oster int
    417   1.3     oster rf_GenericWakeupFunc(node, status)
    418   1.3     oster 	RF_DagNode_t *node;
    419   1.3     oster 	int     status;
    420   1.3     oster {
    421   1.3     oster 	switch (node->status) {
    422   1.3     oster 	case rf_bwd1:
    423   1.3     oster 		node->status = rf_bwd2;
    424   1.3     oster 		if (node->dagFuncData)
    425   1.3     oster 			rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    426   1.3     oster 		return (rf_DiskWriteFuncForThreads(node));
    427   1.3     oster 		break;
    428   1.3     oster 	case rf_fired:
    429   1.3     oster 		if (status)
    430   1.3     oster 			node->status = rf_bad;
    431   1.3     oster 		else
    432   1.3     oster 			node->status = rf_good;
    433   1.3     oster 		break;
    434   1.3     oster 	case rf_recover:
    435   1.3     oster 		/* probably should never reach this case */
    436   1.3     oster 		if (status)
    437   1.3     oster 			node->status = rf_panic;
    438   1.3     oster 		else
    439   1.3     oster 			node->status = rf_undone;
    440   1.3     oster 		break;
    441   1.3     oster 	default:
    442   1.4     oster 		printf("rf_GenericWakeupFunc:");
    443   1.4     oster 		printf("node->status is %d,", node->status);
    444   1.4     oster 		printf("status is %d \n", status);
    445   1.3     oster 		RF_PANIC();
    446   1.3     oster 		break;
    447   1.3     oster 	}
    448   1.3     oster 	if (node->dagFuncData)
    449   1.3     oster 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    450   1.3     oster 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    451   1.1     oster }
    452   1.1     oster 
    453   1.1     oster 
    454   1.1     oster /*****************************************************************************************
    455   1.1     oster  * there are three distinct types of xor nodes
    456   1.1     oster  * A "regular xor" is used in the fault-free case where the access spans a complete
    457   1.1     oster  * stripe unit.  It assumes that the result buffer is one full stripe unit in size,
    458   1.1     oster  * and uses the stripe-unit-offset values that it computes from the PDAs to determine
    459   1.1     oster  * where within the stripe unit to XOR each argument buffer.
    460   1.1     oster  *
    461   1.1     oster  * A "simple xor" is used in the fault-free case where the access touches only a portion
    462   1.1     oster  * of one (or two, in some cases) stripe unit(s).  It assumes that all the argument
    463   1.1     oster  * buffers are of the same size and have the same stripe unit offset.
    464   1.1     oster  *
    465   1.1     oster  * A "recovery xor" is used in the degraded-mode case.  It's similar to the regular
    466   1.1     oster  * xor function except that it takes the failed PDA as an additional parameter, and
    467   1.1     oster  * uses it to determine what portions of the argument buffers need to be xor'd into
    468   1.1     oster  * the result buffer, and where in the result buffer they should go.
    469   1.1     oster  ****************************************************************************************/
    470   1.1     oster 
    471   1.1     oster /* xor the params together and store the result in the result field.
    472   1.1     oster  * assume the result field points to a buffer that is the size of one SU,
    473   1.1     oster  * and use the pda params to determine where within the buffer to XOR
    474   1.1     oster  * the input buffers.
    475   1.1     oster  */
    476   1.3     oster int
    477   1.3     oster rf_RegularXorFunc(node)
    478   1.3     oster 	RF_DagNode_t *node;
    479   1.3     oster {
    480   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    481   1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    482   1.3     oster 	RF_Etimer_t timer;
    483   1.3     oster 	int     i, retcode;
    484   1.1     oster 
    485   1.3     oster 	retcode = 0;
    486   1.3     oster 	if (node->dagHdr->status == rf_enable) {
    487   1.3     oster 		/* don't do the XOR if the input is the same as the output */
    488   1.3     oster 		RF_ETIMER_START(timer);
    489   1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    490   1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    491   1.3     oster 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    492   1.3     oster 				    (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
    493   1.3     oster 			}
    494   1.3     oster 		RF_ETIMER_STOP(timer);
    495   1.3     oster 		RF_ETIMER_EVAL(timer);
    496   1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    497   1.3     oster 	}
    498   1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    499   1.3     oster 							 * explicitly since no
    500   1.3     oster 							 * I/O in this node */
    501   1.1     oster }
    502   1.1     oster /* xor the inputs into the result buffer, ignoring placement issues */
    503   1.3     oster int
    504   1.3     oster rf_SimpleXorFunc(node)
    505   1.3     oster 	RF_DagNode_t *node;
    506   1.3     oster {
    507   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    508   1.3     oster 	int     i, retcode = 0;
    509   1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    510   1.3     oster 	RF_Etimer_t timer;
    511   1.1     oster 
    512   1.3     oster 	if (node->dagHdr->status == rf_enable) {
    513   1.3     oster 		RF_ETIMER_START(timer);
    514   1.3     oster 		/* don't do the XOR if the input is the same as the output */
    515   1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    516   1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    517   1.3     oster 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    518   1.3     oster 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
    519   1.3     oster 				    (struct buf *) node->dagHdr->bp);
    520   1.3     oster 			}
    521   1.3     oster 		RF_ETIMER_STOP(timer);
    522   1.3     oster 		RF_ETIMER_EVAL(timer);
    523   1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    524   1.3     oster 	}
    525   1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    526   1.3     oster 							 * explicitly since no
    527   1.3     oster 							 * I/O in this node */
    528   1.1     oster }
    529   1.1     oster /* this xor is used by the degraded-mode dag functions to recover lost data.
    530   1.1     oster  * the second-to-last parameter is the PDA for the failed portion of the access.
    531   1.1     oster  * the code here looks at this PDA and assumes that the xor target buffer is
    532   1.1     oster  * equal in size to the number of sectors in the failed PDA.  It then uses
    533   1.1     oster  * the other PDAs in the parameter list to determine where within the target
    534   1.1     oster  * buffer the corresponding data should be xored.
    535   1.1     oster  */
    536   1.3     oster int
    537   1.3     oster rf_RecoveryXorFunc(node)
    538   1.3     oster 	RF_DagNode_t *node;
    539   1.3     oster {
    540   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    541   1.3     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    542   1.3     oster 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    543   1.3     oster 	int     i, retcode = 0;
    544   1.3     oster 	RF_PhysDiskAddr_t *pda;
    545   1.3     oster 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    546   1.3     oster 	char   *srcbuf, *destbuf;
    547   1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    548   1.3     oster 	RF_Etimer_t timer;
    549   1.1     oster 
    550   1.3     oster 	if (node->dagHdr->status == rf_enable) {
    551   1.3     oster 		RF_ETIMER_START(timer);
    552   1.3     oster 		for (i = 0; i < node->numParams - 2; i += 2)
    553   1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    554   1.3     oster 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    555   1.3     oster 				srcbuf = (char *) node->params[i + 1].p;
    556   1.3     oster 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    557   1.3     oster 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    558   1.3     oster 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
    559   1.3     oster 			}
    560   1.3     oster 		RF_ETIMER_STOP(timer);
    561   1.3     oster 		RF_ETIMER_EVAL(timer);
    562   1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    563   1.3     oster 	}
    564   1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));
    565   1.1     oster }
    566   1.1     oster /*****************************************************************************************
    567   1.1     oster  * The next three functions are utilities used by the above xor-execution functions.
    568   1.1     oster  ****************************************************************************************/
    569   1.1     oster 
    570   1.1     oster 
    571   1.1     oster /*
    572   1.1     oster  * this is just a glorified buffer xor.  targbuf points to a buffer that is one full stripe unit
    573   1.1     oster  * in size.  srcbuf points to a buffer that may be less than 1 SU, but never more.  When the
    574   1.1     oster  * access described by pda is one SU in size (which by implication means it's SU-aligned),
    575   1.1     oster  * all that happens is (targbuf) <- (srcbuf ^ targbuf).  When the access is less than one
    576   1.1     oster  * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
    577   1.1     oster  */
    578   1.1     oster 
    579   1.3     oster int
    580   1.3     oster rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
    581   1.3     oster 	RF_Raid_t *raidPtr;
    582   1.3     oster 	RF_PhysDiskAddr_t *pda;
    583   1.3     oster 	char   *srcbuf;
    584   1.3     oster 	char   *targbuf;
    585   1.3     oster 	void   *bp;
    586   1.3     oster {
    587   1.3     oster 	char   *targptr;
    588   1.3     oster 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    589   1.3     oster 	int     SUOffset = pda->startSector % sectPerSU;
    590   1.3     oster 	int     length, retcode = 0;
    591   1.3     oster 
    592   1.3     oster 	RF_ASSERT(pda->numSector <= sectPerSU);
    593   1.3     oster 
    594   1.3     oster 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    595   1.3     oster 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    596   1.3     oster 	retcode = rf_bxor(srcbuf, targptr, length, bp);
    597   1.3     oster 	return (retcode);
    598   1.1     oster }
    599   1.1     oster /* it really should be the case that the buffer pointers (returned by malloc)
    600   1.1     oster  * are aligned to the natural word size of the machine, so this is the only
    601   1.1     oster  * case we optimize for.  The length should always be a multiple of the sector
    602   1.1     oster  * size, so there should be no problem with leftover bytes at the end.
    603   1.1     oster  */
    604   1.3     oster int
    605   1.3     oster rf_bxor(src, dest, len, bp)
    606   1.3     oster 	char   *src;
    607   1.3     oster 	char   *dest;
    608   1.3     oster 	int     len;
    609   1.3     oster 	void   *bp;
    610   1.3     oster {
    611   1.3     oster 	unsigned mask = sizeof(long) - 1, retcode = 0;
    612   1.3     oster 
    613   1.3     oster 	if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
    614   1.3     oster 		retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
    615   1.3     oster 	} else {
    616   1.3     oster 		RF_ASSERT(0);
    617   1.3     oster 	}
    618   1.3     oster 	return (retcode);
    619   1.1     oster }
    620   1.1     oster /* map a user buffer into kernel space, if necessary */
    621   1.1     oster #define REMAP_VA(_bp,x,y) (y) = (x)
    622   1.1     oster 
    623   1.1     oster /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
    624   1.1     oster  * We don't want to assume anything about which input buffers are in kernel/user
    625   1.1     oster  * space, nor about their alignment, so in each loop we compute the maximum number
    626   1.1     oster  * of bytes that we can xor without crossing any page boundaries, and do only this many
    627   1.1     oster  * bytes before the next remap.
    628   1.1     oster  */
    629   1.3     oster int
    630   1.3     oster rf_longword_bxor(src, dest, len, bp)
    631   1.6  augustss 	unsigned long *src;
    632   1.6  augustss 	unsigned long *dest;
    633   1.3     oster 	int     len;		/* longwords */
    634   1.3     oster 	void   *bp;
    635   1.3     oster {
    636   1.6  augustss 	unsigned long *end = src + len;
    637   1.6  augustss 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    638   1.6  augustss 	unsigned long *pg_src, *pg_dest;	/* per-page source/dest
    639   1.3     oster 							 * pointers */
    640   1.3     oster 	int     longs_this_time;/* # longwords to xor in the current iteration */
    641   1.3     oster 
    642   1.3     oster 	REMAP_VA(bp, src, pg_src);
    643   1.3     oster 	REMAP_VA(bp, dest, pg_dest);
    644   1.3     oster 	if (!pg_src || !pg_dest)
    645   1.3     oster 		return (EFAULT);
    646   1.3     oster 
    647   1.3     oster 	while (len >= 4) {
    648   1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    649   1.3     oster 		src += longs_this_time;
    650   1.3     oster 		dest += longs_this_time;
    651   1.3     oster 		len -= longs_this_time;
    652   1.3     oster 		while (longs_this_time >= 4) {
    653   1.3     oster 			d0 = pg_dest[0];
    654   1.3     oster 			d1 = pg_dest[1];
    655   1.3     oster 			d2 = pg_dest[2];
    656   1.3     oster 			d3 = pg_dest[3];
    657   1.3     oster 			s0 = pg_src[0];
    658   1.3     oster 			s1 = pg_src[1];
    659   1.3     oster 			s2 = pg_src[2];
    660   1.3     oster 			s3 = pg_src[3];
    661   1.3     oster 			pg_dest[0] = d0 ^ s0;
    662   1.3     oster 			pg_dest[1] = d1 ^ s1;
    663   1.3     oster 			pg_dest[2] = d2 ^ s2;
    664   1.3     oster 			pg_dest[3] = d3 ^ s3;
    665   1.3     oster 			pg_src += 4;
    666   1.3     oster 			pg_dest += 4;
    667   1.3     oster 			longs_this_time -= 4;
    668   1.3     oster 		}
    669   1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    670   1.3     oster 						 * boundaries here */
    671   1.3     oster 			*pg_dest++ ^= *pg_src++;
    672   1.3     oster 			longs_this_time--;
    673   1.3     oster 		}
    674   1.3     oster 
    675   1.3     oster 		/* either we're done, or we've reached a page boundary on one
    676   1.3     oster 		 * (or possibly both) of the pointers */
    677   1.3     oster 		if (len) {
    678   1.3     oster 			if (RF_PAGE_ALIGNED(src))
    679   1.3     oster 				REMAP_VA(bp, src, pg_src);
    680   1.3     oster 			if (RF_PAGE_ALIGNED(dest))
    681   1.3     oster 				REMAP_VA(bp, dest, pg_dest);
    682   1.3     oster 			if (!pg_src || !pg_dest)
    683   1.3     oster 				return (EFAULT);
    684   1.3     oster 		}
    685   1.3     oster 	}
    686   1.3     oster 	while (src < end) {
    687   1.3     oster 		*pg_dest++ ^= *pg_src++;
    688   1.3     oster 		src++;
    689   1.3     oster 		dest++;
    690   1.3     oster 		len--;
    691   1.3     oster 		if (RF_PAGE_ALIGNED(src))
    692   1.3     oster 			REMAP_VA(bp, src, pg_src);
    693   1.3     oster 		if (RF_PAGE_ALIGNED(dest))
    694   1.3     oster 			REMAP_VA(bp, dest, pg_dest);
    695   1.3     oster 	}
    696   1.3     oster 	RF_ASSERT(len == 0);
    697   1.3     oster 	return (0);
    698   1.1     oster }
    699   1.1     oster 
    700   1.9     oster #if 0
    701   1.1     oster /*
    702   1.1     oster    dst = a ^ b ^ c;
    703   1.1     oster    a may equal dst
    704   1.1     oster    see comment above longword_bxor
    705   1.1     oster */
    706   1.3     oster int
    707   1.3     oster rf_longword_bxor3(dst, a, b, c, len, bp)
    708   1.6  augustss 	unsigned long *dst;
    709   1.6  augustss 	unsigned long *a;
    710   1.6  augustss 	unsigned long *b;
    711   1.6  augustss 	unsigned long *c;
    712   1.3     oster 	int     len;		/* length in longwords */
    713   1.3     oster 	void   *bp;
    714   1.3     oster {
    715   1.3     oster 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    716   1.6  augustss 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    717   1.3     oster 								 * pointers */
    718   1.3     oster 	int     longs_this_time;/* # longs to xor in the current iteration */
    719   1.3     oster 	char    dst_is_a = 0;
    720   1.3     oster 
    721   1.3     oster 	REMAP_VA(bp, a, pg_a);
    722   1.3     oster 	REMAP_VA(bp, b, pg_b);
    723   1.3     oster 	REMAP_VA(bp, c, pg_c);
    724   1.3     oster 	if (a == dst) {
    725   1.3     oster 		pg_dst = pg_a;
    726   1.3     oster 		dst_is_a = 1;
    727   1.3     oster 	} else {
    728   1.3     oster 		REMAP_VA(bp, dst, pg_dst);
    729   1.3     oster 	}
    730   1.3     oster 
    731   1.3     oster 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    732   1.3     oster 	while ((((unsigned long) pg_dst) & 0x1f)) {
    733   1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    734   1.3     oster 		dst++;
    735   1.3     oster 		a++;
    736   1.3     oster 		b++;
    737   1.3     oster 		c++;
    738   1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    739   1.3     oster 			REMAP_VA(bp, a, pg_a);
    740   1.3     oster 			if (!pg_a)
    741   1.3     oster 				return (EFAULT);
    742   1.3     oster 		}
    743   1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    744   1.3     oster 			REMAP_VA(bp, a, pg_b);
    745   1.3     oster 			if (!pg_b)
    746   1.3     oster 				return (EFAULT);
    747   1.3     oster 		}
    748   1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    749   1.3     oster 			REMAP_VA(bp, a, pg_c);
    750   1.3     oster 			if (!pg_c)
    751   1.3     oster 				return (EFAULT);
    752   1.3     oster 		}
    753   1.3     oster 		len--;
    754   1.3     oster 	}
    755   1.3     oster 
    756   1.3     oster 	while (len > 4) {
    757   1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    758   1.3     oster 		a += longs_this_time;
    759   1.3     oster 		b += longs_this_time;
    760   1.3     oster 		c += longs_this_time;
    761   1.3     oster 		dst += longs_this_time;
    762   1.3     oster 		len -= longs_this_time;
    763   1.3     oster 		while (longs_this_time >= 4) {
    764   1.3     oster 			a0 = pg_a[0];
    765   1.3     oster 			longs_this_time -= 4;
    766   1.3     oster 
    767   1.3     oster 			a1 = pg_a[1];
    768   1.3     oster 			a2 = pg_a[2];
    769   1.3     oster 
    770   1.3     oster 			a3 = pg_a[3];
    771   1.3     oster 			pg_a += 4;
    772   1.3     oster 
    773   1.3     oster 			b0 = pg_b[0];
    774   1.3     oster 			b1 = pg_b[1];
    775   1.3     oster 
    776   1.3     oster 			b2 = pg_b[2];
    777   1.3     oster 			b3 = pg_b[3];
    778   1.3     oster 			/* start dual issue */
    779   1.3     oster 			a0 ^= b0;
    780   1.3     oster 			b0 = pg_c[0];
    781   1.3     oster 
    782   1.3     oster 			pg_b += 4;
    783   1.3     oster 			a1 ^= b1;
    784   1.3     oster 
    785   1.3     oster 			a2 ^= b2;
    786   1.3     oster 			a3 ^= b3;
    787   1.3     oster 
    788   1.3     oster 			b1 = pg_c[1];
    789   1.3     oster 			a0 ^= b0;
    790   1.3     oster 
    791   1.3     oster 			b2 = pg_c[2];
    792   1.3     oster 			a1 ^= b1;
    793   1.3     oster 
    794   1.3     oster 			b3 = pg_c[3];
    795   1.3     oster 			a2 ^= b2;
    796   1.3     oster 
    797   1.3     oster 			pg_dst[0] = a0;
    798   1.3     oster 			a3 ^= b3;
    799   1.3     oster 			pg_dst[1] = a1;
    800   1.3     oster 			pg_c += 4;
    801   1.3     oster 			pg_dst[2] = a2;
    802   1.3     oster 			pg_dst[3] = a3;
    803   1.3     oster 			pg_dst += 4;
    804   1.3     oster 		}
    805   1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    806   1.3     oster 						 * boundaries here */
    807   1.3     oster 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    808   1.3     oster 			longs_this_time--;
    809   1.3     oster 		}
    810   1.3     oster 
    811   1.3     oster 		if (len) {
    812   1.3     oster 			if (RF_PAGE_ALIGNED(a)) {
    813   1.3     oster 				REMAP_VA(bp, a, pg_a);
    814   1.3     oster 				if (!pg_a)
    815   1.3     oster 					return (EFAULT);
    816   1.3     oster 				if (dst_is_a)
    817   1.3     oster 					pg_dst = pg_a;
    818   1.3     oster 			}
    819   1.3     oster 			if (RF_PAGE_ALIGNED(b)) {
    820   1.3     oster 				REMAP_VA(bp, b, pg_b);
    821   1.3     oster 				if (!pg_b)
    822   1.3     oster 					return (EFAULT);
    823   1.3     oster 			}
    824   1.3     oster 			if (RF_PAGE_ALIGNED(c)) {
    825   1.3     oster 				REMAP_VA(bp, c, pg_c);
    826   1.3     oster 				if (!pg_c)
    827   1.3     oster 					return (EFAULT);
    828   1.3     oster 			}
    829   1.3     oster 			if (!dst_is_a)
    830   1.3     oster 				if (RF_PAGE_ALIGNED(dst)) {
    831   1.3     oster 					REMAP_VA(bp, dst, pg_dst);
    832   1.3     oster 					if (!pg_dst)
    833   1.3     oster 						return (EFAULT);
    834   1.3     oster 				}
    835   1.3     oster 		}
    836   1.3     oster 	}
    837   1.3     oster 	while (len) {
    838   1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    839   1.3     oster 		dst++;
    840   1.3     oster 		a++;
    841   1.3     oster 		b++;
    842   1.3     oster 		c++;
    843   1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    844   1.3     oster 			REMAP_VA(bp, a, pg_a);
    845   1.3     oster 			if (!pg_a)
    846   1.3     oster 				return (EFAULT);
    847   1.3     oster 			if (dst_is_a)
    848   1.3     oster 				pg_dst = pg_a;
    849   1.3     oster 		}
    850   1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    851   1.3     oster 			REMAP_VA(bp, b, pg_b);
    852   1.3     oster 			if (!pg_b)
    853   1.3     oster 				return (EFAULT);
    854   1.3     oster 		}
    855   1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    856   1.3     oster 			REMAP_VA(bp, c, pg_c);
    857   1.3     oster 			if (!pg_c)
    858   1.3     oster 				return (EFAULT);
    859   1.3     oster 		}
    860   1.3     oster 		if (!dst_is_a)
    861   1.3     oster 			if (RF_PAGE_ALIGNED(dst)) {
    862   1.3     oster 				REMAP_VA(bp, dst, pg_dst);
    863   1.3     oster 				if (!pg_dst)
    864   1.3     oster 					return (EFAULT);
    865   1.3     oster 			}
    866   1.3     oster 		len--;
    867   1.3     oster 	}
    868   1.3     oster 	return (0);
    869   1.3     oster }
    870   1.3     oster 
    871   1.3     oster int
    872   1.3     oster rf_bxor3(dst, a, b, c, len, bp)
    873   1.6  augustss 	unsigned char *dst;
    874   1.6  augustss 	unsigned char *a;
    875   1.6  augustss 	unsigned char *b;
    876   1.6  augustss 	unsigned char *c;
    877   1.3     oster 	unsigned long len;
    878   1.3     oster 	void   *bp;
    879   1.1     oster {
    880   1.3     oster 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    881   1.1     oster 
    882   1.3     oster 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    883   1.3     oster 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    884   1.1     oster }
    885   1.9     oster #endif
    886