Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.11.6.3
      1  1.11.6.3     skrll /*	$NetBSD: rf_dagfuncs.c,v 1.11.6.3 2004/09/21 13:32:51 skrll Exp $	*/
      2       1.1     oster /*
      3       1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4       1.1     oster  * All rights reserved.
      5       1.1     oster  *
      6       1.1     oster  * Author: Mark Holland, William V. Courtright II
      7       1.1     oster  *
      8       1.1     oster  * Permission to use, copy, modify and distribute this software and
      9       1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10       1.1     oster  * notice and this permission notice appear in all copies of the
     11       1.1     oster  * software, derivative works or modified versions, and any portions
     12       1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13       1.1     oster  *
     14       1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15       1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16       1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17       1.1     oster  *
     18       1.1     oster  * Carnegie Mellon requests users of this software to return to
     19       1.1     oster  *
     20       1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21       1.1     oster  *  School of Computer Science
     22       1.1     oster  *  Carnegie Mellon University
     23       1.1     oster  *  Pittsburgh PA 15213-3890
     24       1.1     oster  *
     25       1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26       1.1     oster  * rights to redistribute these changes.
     27       1.1     oster  */
     28       1.1     oster 
     29       1.1     oster /*
     30       1.1     oster  * dagfuncs.c -- DAG node execution routines
     31       1.1     oster  *
     32       1.1     oster  * Rules:
     33       1.1     oster  * 1. Every DAG execution function must eventually cause node->status to
     34       1.1     oster  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35       1.1     oster  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36       1.1     oster  *    the node execution function can do these two things directly. In
     37       1.1     oster  *    the case of nodes that have to wait for some event (a disk read to
     38       1.1     oster  *    complete, a lock to be released, etc) to occur before they can
     39       1.1     oster  *    complete, this is typically achieved by having whatever module
     40       1.1     oster  *    is doing the operation call GenericWakeupFunc upon completion.
     41       1.1     oster  * 2. DAG execution functions should check the status in the DAG header
     42       1.1     oster  *    and NOP out their operations if the status is not "enable". However,
     43       1.1     oster  *    execution functions that release resources must be sure to release
     44       1.1     oster  *    them even when they NOP out the function that would use them.
     45       1.1     oster  *    Functions that acquire resources should go ahead and acquire them
     46       1.1     oster  *    even when they NOP, so that a downstream release node will not have
     47       1.1     oster  *    to check to find out whether or not the acquire was suppressed.
     48       1.1     oster  */
     49       1.8     lukem 
     50       1.8     lukem #include <sys/cdefs.h>
     51  1.11.6.3     skrll __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.11.6.3 2004/09/21 13:32:51 skrll Exp $");
     52       1.1     oster 
     53       1.7       mrg #include <sys/param.h>
     54       1.1     oster #include <sys/ioctl.h>
     55       1.1     oster 
     56       1.1     oster #include "rf_archs.h"
     57       1.1     oster #include "rf_raid.h"
     58       1.1     oster #include "rf_dag.h"
     59       1.1     oster #include "rf_layout.h"
     60       1.1     oster #include "rf_etimer.h"
     61       1.1     oster #include "rf_acctrace.h"
     62       1.1     oster #include "rf_diskqueue.h"
     63       1.1     oster #include "rf_dagfuncs.h"
     64       1.1     oster #include "rf_general.h"
     65       1.1     oster #include "rf_engine.h"
     66       1.1     oster #include "rf_dagutils.h"
     67       1.1     oster 
     68       1.1     oster #include "rf_kintf.h"
     69       1.1     oster 
     70       1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
     71       1.1     oster #include "rf_paritylog.h"
     72       1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73       1.1     oster 
     74       1.3     oster int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75       1.3     oster int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76       1.3     oster int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77       1.3     oster int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78       1.3     oster int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
     79       1.3     oster int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
     80       1.3     oster int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     81       1.3     oster int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     82       1.3     oster int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     83       1.1     oster 
     84  1.11.6.1     skrll /*****************************************************************************
     85       1.1     oster  * main (only) configuration routine for this module
     86  1.11.6.1     skrll  ****************************************************************************/
     87       1.3     oster int
     88  1.11.6.1     skrll rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
     89       1.3     oster {
     90  1.11.6.1     skrll 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
     91  1.11.6.1     skrll 		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     92       1.3     oster 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     93       1.3     oster 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     94       1.3     oster 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     95       1.3     oster 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     96       1.3     oster 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
     97       1.3     oster 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
     98       1.3     oster 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     99       1.3     oster 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
    100       1.3     oster 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
    101       1.3     oster 	return (0);
    102       1.1     oster }
    103       1.1     oster 
    104       1.1     oster 
    105       1.1     oster 
    106  1.11.6.1     skrll /*****************************************************************************
    107       1.1     oster  * the execution function associated with a terminate node
    108  1.11.6.1     skrll  ****************************************************************************/
    109       1.3     oster int
    110  1.11.6.1     skrll rf_TerminateFunc(RF_DagNode_t *node)
    111       1.1     oster {
    112       1.3     oster 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    113       1.3     oster 	node->status = rf_good;
    114       1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    115       1.1     oster }
    116       1.1     oster 
    117       1.3     oster int
    118  1.11.6.1     skrll rf_TerminateUndoFunc(RF_DagNode_t *node)
    119       1.1     oster {
    120       1.3     oster 	return (0);
    121       1.1     oster }
    122       1.1     oster 
    123       1.1     oster 
    124  1.11.6.1     skrll /*****************************************************************************
    125       1.1     oster  * execution functions associated with a mirror node
    126       1.1     oster  *
    127       1.1     oster  * parameters:
    128       1.1     oster  *
    129       1.1     oster  * 0 - physical disk addres of data
    130       1.1     oster  * 1 - buffer for holding read data
    131       1.1     oster  * 2 - parity stripe ID
    132       1.1     oster  * 3 - flags
    133       1.1     oster  * 4 - physical disk address of mirror (parity)
    134       1.1     oster  *
    135  1.11.6.1     skrll  ****************************************************************************/
    136       1.1     oster 
    137       1.3     oster int
    138  1.11.6.1     skrll rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
    139       1.1     oster {
    140       1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    141       1.3     oster 	 * parameters with physical disk address */
    142       1.1     oster 
    143       1.3     oster 	rf_SelectMirrorDiskIdle(node);
    144       1.3     oster 	return (rf_DiskReadFunc(node));
    145       1.1     oster }
    146       1.1     oster 
    147      1.11     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    148       1.3     oster int
    149  1.11.6.1     skrll rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
    150       1.1     oster {
    151       1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    152       1.3     oster 	 * parameters with physical disk address */
    153       1.1     oster 
    154       1.3     oster 	rf_SelectMirrorDiskPartition(node);
    155       1.3     oster 	return (rf_DiskReadFunc(node));
    156       1.1     oster }
    157      1.11     oster #endif
    158       1.1     oster 
    159       1.3     oster int
    160  1.11.6.1     skrll rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
    161       1.1     oster {
    162       1.3     oster 	return (0);
    163       1.1     oster }
    164       1.1     oster 
    165       1.1     oster 
    166       1.1     oster 
    167       1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    168  1.11.6.1     skrll /*****************************************************************************
    169       1.1     oster  * the execution function associated with a parity log update node
    170  1.11.6.1     skrll  ****************************************************************************/
    171       1.3     oster int
    172  1.11.6.1     skrll rf_ParityLogUpdateFunc(RF_DagNode_t *node)
    173       1.3     oster {
    174       1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    175       1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    176       1.3     oster 	RF_ParityLogData_t *logData;
    177  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    178       1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    179       1.3     oster 	RF_Etimer_t timer;
    180  1.11.6.1     skrll #endif
    181       1.3     oster 
    182       1.3     oster 	if (node->dagHdr->status == rf_enable) {
    183  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    184       1.3     oster 		RF_ETIMER_START(timer);
    185  1.11.6.1     skrll #endif
    186       1.3     oster 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
    187       1.3     oster 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    188       1.3     oster 		    node->wakeFunc, (void *) node,
    189       1.3     oster 		    node->dagHdr->tracerec, timer);
    190       1.3     oster 		if (logData)
    191       1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    192       1.3     oster 		else {
    193  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    194       1.3     oster 			RF_ETIMER_STOP(timer);
    195       1.3     oster 			RF_ETIMER_EVAL(timer);
    196       1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    197  1.11.6.1     skrll #endif
    198       1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    199       1.3     oster 		}
    200       1.1     oster 	}
    201       1.3     oster 	return (0);
    202       1.1     oster }
    203       1.1     oster 
    204       1.1     oster 
    205  1.11.6.1     skrll /*****************************************************************************
    206       1.1     oster  * the execution function associated with a parity log overwrite node
    207  1.11.6.1     skrll  ****************************************************************************/
    208       1.3     oster int
    209  1.11.6.1     skrll rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
    210       1.3     oster {
    211       1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    212       1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    213       1.3     oster 	RF_ParityLogData_t *logData;
    214  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    215       1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    216       1.3     oster 	RF_Etimer_t timer;
    217  1.11.6.1     skrll #endif
    218       1.3     oster 
    219       1.3     oster 	if (node->dagHdr->status == rf_enable) {
    220  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    221       1.3     oster 		RF_ETIMER_START(timer);
    222  1.11.6.1     skrll #endif
    223  1.11.6.1     skrll 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf,
    224  1.11.6.1     skrll (RF_Raid_t *) (node->dagHdr->raidPtr),
    225       1.3     oster 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    226       1.3     oster 		if (logData)
    227       1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    228       1.3     oster 		else {
    229  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    230       1.3     oster 			RF_ETIMER_STOP(timer);
    231       1.3     oster 			RF_ETIMER_EVAL(timer);
    232       1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    233  1.11.6.1     skrll #endif
    234       1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    235       1.3     oster 		}
    236       1.1     oster 	}
    237       1.3     oster 	return (0);
    238       1.1     oster }
    239       1.1     oster 
    240       1.3     oster int
    241  1.11.6.1     skrll rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
    242       1.1     oster {
    243       1.3     oster 	return (0);
    244       1.1     oster }
    245       1.1     oster 
    246       1.3     oster int
    247  1.11.6.1     skrll rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
    248       1.1     oster {
    249       1.3     oster 	return (0);
    250       1.1     oster }
    251      1.10     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    252      1.10     oster 
    253  1.11.6.1     skrll /*****************************************************************************
    254       1.1     oster  * the execution function associated with a NOP node
    255  1.11.6.1     skrll  ****************************************************************************/
    256       1.3     oster int
    257  1.11.6.1     skrll rf_NullNodeFunc(RF_DagNode_t *node)
    258       1.1     oster {
    259       1.3     oster 	node->status = rf_good;
    260       1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    261       1.1     oster }
    262       1.1     oster 
    263       1.3     oster int
    264  1.11.6.1     skrll rf_NullNodeUndoFunc(RF_DagNode_t *node)
    265       1.1     oster {
    266       1.3     oster 	node->status = rf_undone;
    267       1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    268       1.1     oster }
    269       1.1     oster 
    270       1.1     oster 
    271  1.11.6.1     skrll /*****************************************************************************
    272       1.1     oster  * the execution function associated with a disk-read node
    273  1.11.6.1     skrll  ****************************************************************************/
    274       1.3     oster int
    275  1.11.6.1     skrll rf_DiskReadFuncForThreads(RF_DagNode_t *node)
    276       1.3     oster {
    277       1.3     oster 	RF_DiskQueueData_t *req;
    278       1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    279       1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    280       1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    281       1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    282       1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    283       1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    284  1.11.6.1     skrll 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    285       1.3     oster 	void   *b_proc = NULL;
    286       1.1     oster 
    287       1.3     oster 	if (node->dagHdr->bp)
    288       1.3     oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    289       1.1     oster 
    290       1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    291       1.3     oster 	    buf, parityStripeID, which_ru,
    292       1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    293  1.11.6.1     skrll 	    node, NULL,
    294  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    295  1.11.6.1     skrll 	     node->dagHdr->tracerec,
    296  1.11.6.1     skrll #else
    297  1.11.6.1     skrll              NULL,
    298  1.11.6.1     skrll #endif
    299  1.11.6.1     skrll 	    (void *) (node->dagHdr->raidPtr), 0, b_proc);
    300       1.3     oster 	if (!req) {
    301       1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    302       1.3     oster 	} else {
    303       1.3     oster 		node->dagFuncData = (void *) req;
    304  1.11.6.1     skrll 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    305       1.3     oster 	}
    306       1.3     oster 	return (0);
    307       1.1     oster }
    308       1.1     oster 
    309       1.1     oster 
    310  1.11.6.1     skrll /*****************************************************************************
    311       1.1     oster  * the execution function associated with a disk-write node
    312  1.11.6.1     skrll  ****************************************************************************/
    313       1.3     oster int
    314  1.11.6.1     skrll rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
    315       1.3     oster {
    316       1.3     oster 	RF_DiskQueueData_t *req;
    317       1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    318       1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    319       1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    320       1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    321       1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    322       1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    323  1.11.6.1     skrll 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    324       1.3     oster 	void   *b_proc = NULL;
    325       1.1     oster 
    326       1.3     oster 	if (node->dagHdr->bp)
    327       1.3     oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    328       1.1     oster 
    329       1.3     oster 	/* normal processing (rollaway or forward recovery) begins here */
    330       1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    331       1.3     oster 	    buf, parityStripeID, which_ru,
    332       1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    333       1.3     oster 	    (void *) node, NULL,
    334  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    335       1.3     oster 	    node->dagHdr->tracerec,
    336  1.11.6.1     skrll #else
    337  1.11.6.1     skrll 	    NULL,
    338  1.11.6.1     skrll #endif
    339       1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    340  1.11.6.1     skrll 	    0, b_proc);
    341       1.3     oster 
    342       1.3     oster 	if (!req) {
    343       1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    344       1.3     oster 	} else {
    345       1.3     oster 		node->dagFuncData = (void *) req;
    346  1.11.6.1     skrll 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    347       1.3     oster 	}
    348       1.3     oster 
    349       1.3     oster 	return (0);
    350       1.1     oster }
    351  1.11.6.1     skrll /*****************************************************************************
    352       1.1     oster  * the undo function for disk nodes
    353       1.1     oster  * Note:  this is not a proper undo of a write node, only locks are released.
    354       1.1     oster  *        old data is not restored to disk!
    355  1.11.6.1     skrll  ****************************************************************************/
    356       1.3     oster int
    357  1.11.6.1     skrll rf_DiskUndoFunc(RF_DagNode_t *node)
    358       1.3     oster {
    359       1.3     oster 	RF_DiskQueueData_t *req;
    360       1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    361  1.11.6.1     skrll 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    362       1.3     oster 
    363       1.3     oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    364       1.3     oster 	    0L, 0, NULL, 0L, 0,
    365       1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    366       1.3     oster 	    (void *) node,
    367  1.11.6.1     skrll 	    NULL,
    368  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    369  1.11.6.1     skrll 	     node->dagHdr->tracerec,
    370  1.11.6.1     skrll #else
    371  1.11.6.1     skrll 	     NULL,
    372  1.11.6.1     skrll #endif
    373       1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    374       1.3     oster 	    RF_UNLOCK_DISK_QUEUE, NULL);
    375       1.3     oster 	if (!req)
    376       1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    377       1.3     oster 	else {
    378       1.3     oster 		node->dagFuncData = (void *) req;
    379  1.11.6.1     skrll 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    380       1.3     oster 	}
    381       1.1     oster 
    382       1.3     oster 	return (0);
    383       1.1     oster }
    384  1.11.6.1     skrll /*****************************************************************************
    385       1.1     oster  * the execution function associated with an "unlock disk queue" node
    386  1.11.6.1     skrll  ****************************************************************************/
    387       1.3     oster int
    388  1.11.6.1     skrll rf_DiskUnlockFuncForThreads(RF_DagNode_t *node)
    389       1.3     oster {
    390       1.3     oster 	RF_DiskQueueData_t *req;
    391       1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    392  1.11.6.1     skrll 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    393       1.3     oster 
    394       1.3     oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    395       1.3     oster 	    0L, 0, NULL, 0L, 0,
    396       1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    397       1.3     oster 	    (void *) node,
    398  1.11.6.1     skrll 	    NULL,
    399  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    400  1.11.6.1     skrll 	    node->dagHdr->tracerec,
    401  1.11.6.1     skrll #else
    402  1.11.6.1     skrll 	    NULL,
    403  1.11.6.1     skrll #endif
    404       1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    405       1.3     oster 	    RF_UNLOCK_DISK_QUEUE, NULL);
    406       1.3     oster 	if (!req)
    407       1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    408       1.3     oster 	else {
    409       1.3     oster 		node->dagFuncData = (void *) req;
    410  1.11.6.1     skrll 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    411       1.3     oster 	}
    412       1.1     oster 
    413       1.3     oster 	return (0);
    414       1.1     oster }
    415  1.11.6.1     skrll /*****************************************************************************
    416  1.11.6.1     skrll  * Callback routine for DiskRead and DiskWrite nodes.  When the disk
    417  1.11.6.1     skrll  * op completes, the routine is called to set the node status and
    418  1.11.6.1     skrll  * inform the execution engine that the node has fired.
    419  1.11.6.1     skrll  ****************************************************************************/
    420       1.3     oster int
    421  1.11.6.1     skrll rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
    422       1.3     oster {
    423  1.11.6.1     skrll 
    424       1.3     oster 	switch (node->status) {
    425       1.3     oster 	case rf_fired:
    426       1.3     oster 		if (status)
    427       1.3     oster 			node->status = rf_bad;
    428       1.3     oster 		else
    429       1.3     oster 			node->status = rf_good;
    430       1.3     oster 		break;
    431       1.3     oster 	case rf_recover:
    432       1.3     oster 		/* probably should never reach this case */
    433       1.3     oster 		if (status)
    434       1.3     oster 			node->status = rf_panic;
    435       1.3     oster 		else
    436       1.3     oster 			node->status = rf_undone;
    437       1.3     oster 		break;
    438       1.3     oster 	default:
    439       1.4     oster 		printf("rf_GenericWakeupFunc:");
    440       1.4     oster 		printf("node->status is %d,", node->status);
    441       1.4     oster 		printf("status is %d \n", status);
    442       1.3     oster 		RF_PANIC();
    443       1.3     oster 		break;
    444       1.3     oster 	}
    445       1.3     oster 	if (node->dagFuncData)
    446       1.3     oster 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    447       1.3     oster 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    448       1.1     oster }
    449       1.1     oster 
    450       1.1     oster 
    451  1.11.6.1     skrll /*****************************************************************************
    452  1.11.6.1     skrll  * there are three distinct types of xor nodes:
    453  1.11.6.1     skrll 
    454  1.11.6.1     skrll  * A "regular xor" is used in the fault-free case where the access
    455  1.11.6.1     skrll  * spans a complete stripe unit.  It assumes that the result buffer is
    456  1.11.6.1     skrll  * one full stripe unit in size, and uses the stripe-unit-offset
    457  1.11.6.1     skrll  * values that it computes from the PDAs to determine where within the
    458  1.11.6.1     skrll  * stripe unit to XOR each argument buffer.
    459  1.11.6.1     skrll  *
    460  1.11.6.1     skrll  * A "simple xor" is used in the fault-free case where the access
    461  1.11.6.1     skrll  * touches only a portion of one (or two, in some cases) stripe
    462  1.11.6.1     skrll  * unit(s).  It assumes that all the argument buffers are of the same
    463  1.11.6.1     skrll  * size and have the same stripe unit offset.
    464  1.11.6.1     skrll  *
    465  1.11.6.1     skrll  * A "recovery xor" is used in the degraded-mode case.  It's similar
    466  1.11.6.1     skrll  * to the regular xor function except that it takes the failed PDA as
    467  1.11.6.1     skrll  * an additional parameter, and uses it to determine what portions of
    468  1.11.6.1     skrll  * the argument buffers need to be xor'd into the result buffer, and
    469  1.11.6.1     skrll  * where in the result buffer they should go.
    470  1.11.6.1     skrll  ****************************************************************************/
    471       1.1     oster 
    472       1.1     oster /* xor the params together and store the result in the result field.
    473  1.11.6.1     skrll  * assume the result field points to a buffer that is the size of one
    474  1.11.6.1     skrll  * SU, and use the pda params to determine where within the buffer to
    475  1.11.6.1     skrll  * XOR the input buffers.  */
    476       1.3     oster int
    477  1.11.6.1     skrll rf_RegularXorFunc(RF_DagNode_t *node)
    478       1.3     oster {
    479       1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    480  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    481       1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    482       1.3     oster 	RF_Etimer_t timer;
    483  1.11.6.1     skrll #endif
    484       1.3     oster 	int     i, retcode;
    485       1.1     oster 
    486       1.3     oster 	retcode = 0;
    487       1.3     oster 	if (node->dagHdr->status == rf_enable) {
    488       1.3     oster 		/* don't do the XOR if the input is the same as the output */
    489  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    490       1.3     oster 		RF_ETIMER_START(timer);
    491  1.11.6.1     skrll #endif
    492       1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    493       1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    494       1.3     oster 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    495  1.11.6.1     skrll 							   (char *) node->params[i + 1].p, (char *) node->results[0]);
    496       1.3     oster 			}
    497  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    498       1.3     oster 		RF_ETIMER_STOP(timer);
    499       1.3     oster 		RF_ETIMER_EVAL(timer);
    500       1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    501  1.11.6.1     skrll #endif
    502       1.3     oster 	}
    503       1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    504       1.3     oster 							 * explicitly since no
    505       1.3     oster 							 * I/O in this node */
    506       1.1     oster }
    507       1.1     oster /* xor the inputs into the result buffer, ignoring placement issues */
    508       1.3     oster int
    509  1.11.6.1     skrll rf_SimpleXorFunc(RF_DagNode_t *node)
    510       1.3     oster {
    511       1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    512       1.3     oster 	int     i, retcode = 0;
    513  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    514       1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    515       1.3     oster 	RF_Etimer_t timer;
    516  1.11.6.1     skrll #endif
    517       1.1     oster 
    518       1.3     oster 	if (node->dagHdr->status == rf_enable) {
    519  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    520       1.3     oster 		RF_ETIMER_START(timer);
    521  1.11.6.1     skrll #endif
    522       1.3     oster 		/* don't do the XOR if the input is the same as the output */
    523       1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    524       1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    525       1.3     oster 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    526  1.11.6.1     skrll 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
    527       1.3     oster 			}
    528  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    529       1.3     oster 		RF_ETIMER_STOP(timer);
    530       1.3     oster 		RF_ETIMER_EVAL(timer);
    531       1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    532  1.11.6.1     skrll #endif
    533       1.3     oster 	}
    534       1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    535       1.3     oster 							 * explicitly since no
    536       1.3     oster 							 * I/O in this node */
    537       1.1     oster }
    538  1.11.6.1     skrll /* this xor is used by the degraded-mode dag functions to recover lost
    539  1.11.6.1     skrll  * data.  the second-to-last parameter is the PDA for the failed
    540  1.11.6.1     skrll  * portion of the access.  the code here looks at this PDA and assumes
    541  1.11.6.1     skrll  * that the xor target buffer is equal in size to the number of
    542  1.11.6.1     skrll  * sectors in the failed PDA.  It then uses the other PDAs in the
    543  1.11.6.1     skrll  * parameter list to determine where within the target buffer the
    544  1.11.6.1     skrll  * corresponding data should be xored.  */
    545       1.3     oster int
    546  1.11.6.1     skrll rf_RecoveryXorFunc(RF_DagNode_t *node)
    547       1.3     oster {
    548       1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    549       1.3     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    550       1.3     oster 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    551       1.3     oster 	int     i, retcode = 0;
    552       1.3     oster 	RF_PhysDiskAddr_t *pda;
    553       1.3     oster 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    554       1.3     oster 	char   *srcbuf, *destbuf;
    555  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    556       1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    557       1.3     oster 	RF_Etimer_t timer;
    558  1.11.6.1     skrll #endif
    559       1.1     oster 
    560       1.3     oster 	if (node->dagHdr->status == rf_enable) {
    561  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    562       1.3     oster 		RF_ETIMER_START(timer);
    563  1.11.6.1     skrll #endif
    564       1.3     oster 		for (i = 0; i < node->numParams - 2; i += 2)
    565       1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    566       1.3     oster 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    567       1.3     oster 				srcbuf = (char *) node->params[i + 1].p;
    568       1.3     oster 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    569       1.3     oster 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    570  1.11.6.1     skrll 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
    571       1.3     oster 			}
    572  1.11.6.1     skrll #if RF_ACC_TRACE > 0
    573       1.3     oster 		RF_ETIMER_STOP(timer);
    574       1.3     oster 		RF_ETIMER_EVAL(timer);
    575       1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    576  1.11.6.1     skrll #endif
    577       1.3     oster 	}
    578       1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));
    579       1.1     oster }
    580  1.11.6.1     skrll /*****************************************************************************
    581  1.11.6.1     skrll  * The next three functions are utilities used by the above
    582  1.11.6.1     skrll  * xor-execution functions.
    583  1.11.6.1     skrll  ****************************************************************************/
    584       1.1     oster 
    585       1.1     oster 
    586       1.1     oster /*
    587  1.11.6.1     skrll  * this is just a glorified buffer xor.  targbuf points to a buffer
    588  1.11.6.1     skrll  * that is one full stripe unit in size.  srcbuf points to a buffer
    589  1.11.6.1     skrll  * that may be less than 1 SU, but never more.  When the access
    590  1.11.6.1     skrll  * described by pda is one SU in size (which by implication means it's
    591  1.11.6.1     skrll  * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
    592  1.11.6.1     skrll  * When the access is less than one SU in size the XOR occurs on only
    593  1.11.6.1     skrll  * the portion of targbuf identified in the pda.  */
    594       1.1     oster 
    595       1.3     oster int
    596  1.11.6.1     skrll rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    597  1.11.6.1     skrll 		 char *srcbuf, char *targbuf)
    598       1.3     oster {
    599       1.3     oster 	char   *targptr;
    600       1.3     oster 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    601       1.3     oster 	int     SUOffset = pda->startSector % sectPerSU;
    602       1.3     oster 	int     length, retcode = 0;
    603       1.3     oster 
    604       1.3     oster 	RF_ASSERT(pda->numSector <= sectPerSU);
    605       1.3     oster 
    606       1.3     oster 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    607       1.3     oster 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    608  1.11.6.1     skrll 	retcode = rf_bxor(srcbuf, targptr, length);
    609       1.3     oster 	return (retcode);
    610       1.1     oster }
    611  1.11.6.1     skrll /* it really should be the case that the buffer pointers (returned by
    612  1.11.6.1     skrll  * malloc) are aligned to the natural word size of the machine, so
    613  1.11.6.1     skrll  * this is the only case we optimize for.  The length should always be
    614  1.11.6.1     skrll  * a multiple of the sector size, so there should be no problem with
    615  1.11.6.1     skrll  * leftover bytes at the end.  */
    616       1.3     oster int
    617  1.11.6.1     skrll rf_bxor(char *src, char *dest, int len)
    618       1.3     oster {
    619       1.3     oster 	unsigned mask = sizeof(long) - 1, retcode = 0;
    620       1.3     oster 
    621  1.11.6.1     skrll 	if (!(((unsigned long) src) & mask) &&
    622  1.11.6.1     skrll 	    !(((unsigned long) dest) & mask) && !(len & mask)) {
    623  1.11.6.1     skrll 		retcode = rf_longword_bxor((unsigned long *) src,
    624  1.11.6.1     skrll 					   (unsigned long *) dest,
    625  1.11.6.1     skrll 					   len >> RF_LONGSHIFT);
    626       1.3     oster 	} else {
    627       1.3     oster 		RF_ASSERT(0);
    628       1.3     oster 	}
    629       1.3     oster 	return (retcode);
    630       1.1     oster }
    631       1.1     oster 
    632  1.11.6.1     skrll /* When XORing in kernel mode, we need to map each user page to kernel
    633  1.11.6.1     skrll  * space before we can access it.  We don't want to assume anything
    634  1.11.6.1     skrll  * about which input buffers are in kernel/user space, nor about their
    635  1.11.6.1     skrll  * alignment, so in each loop we compute the maximum number of bytes
    636  1.11.6.1     skrll  * that we can xor without crossing any page boundaries, and do only
    637  1.11.6.1     skrll  * this many bytes before the next remap.
    638  1.11.6.1     skrll  *
    639  1.11.6.1     skrll  * len - is in longwords
    640       1.1     oster  */
    641       1.3     oster int
    642  1.11.6.1     skrll rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
    643       1.3     oster {
    644       1.6  augustss 	unsigned long *end = src + len;
    645       1.6  augustss 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    646  1.11.6.1     skrll 	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
    647       1.3     oster 	int     longs_this_time;/* # longwords to xor in the current iteration */
    648       1.3     oster 
    649  1.11.6.1     skrll 	pg_src = src;
    650  1.11.6.1     skrll 	pg_dest = dest;
    651       1.3     oster 	if (!pg_src || !pg_dest)
    652       1.3     oster 		return (EFAULT);
    653       1.3     oster 
    654       1.3     oster 	while (len >= 4) {
    655       1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    656       1.3     oster 		src += longs_this_time;
    657       1.3     oster 		dest += longs_this_time;
    658       1.3     oster 		len -= longs_this_time;
    659       1.3     oster 		while (longs_this_time >= 4) {
    660       1.3     oster 			d0 = pg_dest[0];
    661       1.3     oster 			d1 = pg_dest[1];
    662       1.3     oster 			d2 = pg_dest[2];
    663       1.3     oster 			d3 = pg_dest[3];
    664       1.3     oster 			s0 = pg_src[0];
    665       1.3     oster 			s1 = pg_src[1];
    666       1.3     oster 			s2 = pg_src[2];
    667       1.3     oster 			s3 = pg_src[3];
    668       1.3     oster 			pg_dest[0] = d0 ^ s0;
    669       1.3     oster 			pg_dest[1] = d1 ^ s1;
    670       1.3     oster 			pg_dest[2] = d2 ^ s2;
    671       1.3     oster 			pg_dest[3] = d3 ^ s3;
    672       1.3     oster 			pg_src += 4;
    673       1.3     oster 			pg_dest += 4;
    674       1.3     oster 			longs_this_time -= 4;
    675       1.3     oster 		}
    676       1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    677       1.3     oster 						 * boundaries here */
    678       1.3     oster 			*pg_dest++ ^= *pg_src++;
    679       1.3     oster 			longs_this_time--;
    680       1.3     oster 		}
    681       1.3     oster 
    682       1.3     oster 		/* either we're done, or we've reached a page boundary on one
    683       1.3     oster 		 * (or possibly both) of the pointers */
    684       1.3     oster 		if (len) {
    685       1.3     oster 			if (RF_PAGE_ALIGNED(src))
    686  1.11.6.1     skrll 				pg_src = src;
    687       1.3     oster 			if (RF_PAGE_ALIGNED(dest))
    688  1.11.6.1     skrll 				pg_dest = dest;
    689       1.3     oster 			if (!pg_src || !pg_dest)
    690       1.3     oster 				return (EFAULT);
    691       1.3     oster 		}
    692       1.3     oster 	}
    693       1.3     oster 	while (src < end) {
    694       1.3     oster 		*pg_dest++ ^= *pg_src++;
    695       1.3     oster 		src++;
    696       1.3     oster 		dest++;
    697       1.3     oster 		len--;
    698       1.3     oster 		if (RF_PAGE_ALIGNED(src))
    699  1.11.6.1     skrll 			pg_src = src;
    700       1.3     oster 		if (RF_PAGE_ALIGNED(dest))
    701  1.11.6.1     skrll 			pg_dest = dest;
    702       1.3     oster 	}
    703       1.3     oster 	RF_ASSERT(len == 0);
    704       1.3     oster 	return (0);
    705       1.1     oster }
    706       1.1     oster 
    707       1.9     oster #if 0
    708       1.1     oster /*
    709       1.1     oster    dst = a ^ b ^ c;
    710       1.1     oster    a may equal dst
    711       1.1     oster    see comment above longword_bxor
    712  1.11.6.1     skrll    len is length in longwords
    713       1.1     oster */
    714       1.3     oster int
    715  1.11.6.1     skrll rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
    716  1.11.6.1     skrll 		  unsigned long *c, int len, void *bp)
    717       1.3     oster {
    718       1.3     oster 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    719       1.6  augustss 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    720       1.3     oster 								 * pointers */
    721       1.3     oster 	int     longs_this_time;/* # longs to xor in the current iteration */
    722       1.3     oster 	char    dst_is_a = 0;
    723       1.3     oster 
    724  1.11.6.1     skrll 	pg_a = a;
    725  1.11.6.1     skrll 	pg_b = b;
    726  1.11.6.1     skrll 	pg_c = c;
    727       1.3     oster 	if (a == dst) {
    728       1.3     oster 		pg_dst = pg_a;
    729       1.3     oster 		dst_is_a = 1;
    730       1.3     oster 	} else {
    731  1.11.6.1     skrll 		pg_dst = dst;
    732       1.3     oster 	}
    733       1.3     oster 
    734       1.3     oster 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    735       1.3     oster 	while ((((unsigned long) pg_dst) & 0x1f)) {
    736       1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    737       1.3     oster 		dst++;
    738       1.3     oster 		a++;
    739       1.3     oster 		b++;
    740       1.3     oster 		c++;
    741       1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    742  1.11.6.1     skrll 			pg_a = a;
    743       1.3     oster 			if (!pg_a)
    744       1.3     oster 				return (EFAULT);
    745       1.3     oster 		}
    746       1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    747  1.11.6.1     skrll 			pg_b = a;
    748       1.3     oster 			if (!pg_b)
    749       1.3     oster 				return (EFAULT);
    750       1.3     oster 		}
    751       1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    752  1.11.6.1     skrll 			pg_c = a;
    753       1.3     oster 			if (!pg_c)
    754       1.3     oster 				return (EFAULT);
    755       1.3     oster 		}
    756       1.3     oster 		len--;
    757       1.3     oster 	}
    758       1.3     oster 
    759       1.3     oster 	while (len > 4) {
    760       1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    761       1.3     oster 		a += longs_this_time;
    762       1.3     oster 		b += longs_this_time;
    763       1.3     oster 		c += longs_this_time;
    764       1.3     oster 		dst += longs_this_time;
    765       1.3     oster 		len -= longs_this_time;
    766       1.3     oster 		while (longs_this_time >= 4) {
    767       1.3     oster 			a0 = pg_a[0];
    768       1.3     oster 			longs_this_time -= 4;
    769       1.3     oster 
    770       1.3     oster 			a1 = pg_a[1];
    771       1.3     oster 			a2 = pg_a[2];
    772       1.3     oster 
    773       1.3     oster 			a3 = pg_a[3];
    774       1.3     oster 			pg_a += 4;
    775       1.3     oster 
    776       1.3     oster 			b0 = pg_b[0];
    777       1.3     oster 			b1 = pg_b[1];
    778       1.3     oster 
    779       1.3     oster 			b2 = pg_b[2];
    780       1.3     oster 			b3 = pg_b[3];
    781       1.3     oster 			/* start dual issue */
    782       1.3     oster 			a0 ^= b0;
    783       1.3     oster 			b0 = pg_c[0];
    784       1.3     oster 
    785       1.3     oster 			pg_b += 4;
    786       1.3     oster 			a1 ^= b1;
    787       1.3     oster 
    788       1.3     oster 			a2 ^= b2;
    789       1.3     oster 			a3 ^= b3;
    790       1.3     oster 
    791       1.3     oster 			b1 = pg_c[1];
    792       1.3     oster 			a0 ^= b0;
    793       1.3     oster 
    794       1.3     oster 			b2 = pg_c[2];
    795       1.3     oster 			a1 ^= b1;
    796       1.3     oster 
    797       1.3     oster 			b3 = pg_c[3];
    798       1.3     oster 			a2 ^= b2;
    799       1.3     oster 
    800       1.3     oster 			pg_dst[0] = a0;
    801       1.3     oster 			a3 ^= b3;
    802       1.3     oster 			pg_dst[1] = a1;
    803       1.3     oster 			pg_c += 4;
    804       1.3     oster 			pg_dst[2] = a2;
    805       1.3     oster 			pg_dst[3] = a3;
    806       1.3     oster 			pg_dst += 4;
    807       1.3     oster 		}
    808       1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    809       1.3     oster 						 * boundaries here */
    810       1.3     oster 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    811       1.3     oster 			longs_this_time--;
    812       1.3     oster 		}
    813       1.3     oster 
    814       1.3     oster 		if (len) {
    815       1.3     oster 			if (RF_PAGE_ALIGNED(a)) {
    816  1.11.6.1     skrll 				pg_a = a;
    817       1.3     oster 				if (!pg_a)
    818       1.3     oster 					return (EFAULT);
    819       1.3     oster 				if (dst_is_a)
    820       1.3     oster 					pg_dst = pg_a;
    821       1.3     oster 			}
    822       1.3     oster 			if (RF_PAGE_ALIGNED(b)) {
    823  1.11.6.1     skrll 				pg_b = b;
    824       1.3     oster 				if (!pg_b)
    825       1.3     oster 					return (EFAULT);
    826       1.3     oster 			}
    827       1.3     oster 			if (RF_PAGE_ALIGNED(c)) {
    828  1.11.6.1     skrll 				pg_c = c;
    829       1.3     oster 				if (!pg_c)
    830       1.3     oster 					return (EFAULT);
    831       1.3     oster 			}
    832       1.3     oster 			if (!dst_is_a)
    833       1.3     oster 				if (RF_PAGE_ALIGNED(dst)) {
    834  1.11.6.1     skrll 					pg_dst = dst;
    835       1.3     oster 					if (!pg_dst)
    836       1.3     oster 						return (EFAULT);
    837       1.3     oster 				}
    838       1.3     oster 		}
    839       1.3     oster 	}
    840       1.3     oster 	while (len) {
    841       1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    842       1.3     oster 		dst++;
    843       1.3     oster 		a++;
    844       1.3     oster 		b++;
    845       1.3     oster 		c++;
    846       1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    847  1.11.6.1     skrll 			pg_a = a;
    848       1.3     oster 			if (!pg_a)
    849       1.3     oster 				return (EFAULT);
    850       1.3     oster 			if (dst_is_a)
    851       1.3     oster 				pg_dst = pg_a;
    852       1.3     oster 		}
    853       1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    854  1.11.6.1     skrll 			pg_b = b;
    855       1.3     oster 			if (!pg_b)
    856       1.3     oster 				return (EFAULT);
    857       1.3     oster 		}
    858       1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    859  1.11.6.1     skrll 			pg_c = c;
    860       1.3     oster 			if (!pg_c)
    861       1.3     oster 				return (EFAULT);
    862       1.3     oster 		}
    863       1.3     oster 		if (!dst_is_a)
    864       1.3     oster 			if (RF_PAGE_ALIGNED(dst)) {
    865  1.11.6.1     skrll 				pg_dst = dst;
    866       1.3     oster 				if (!pg_dst)
    867       1.3     oster 					return (EFAULT);
    868       1.3     oster 			}
    869       1.3     oster 		len--;
    870       1.3     oster 	}
    871       1.3     oster 	return (0);
    872       1.3     oster }
    873       1.3     oster 
    874       1.3     oster int
    875  1.11.6.1     skrll rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
    876  1.11.6.1     skrll 	 unsigned char *c, unsigned long len, void *bp)
    877       1.1     oster {
    878       1.3     oster 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    879       1.1     oster 
    880       1.3     oster 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    881       1.3     oster 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    882       1.1     oster }
    883       1.9     oster #endif
    884