Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.2
      1  1.2  oster /*	$NetBSD: rf_dagfuncs.c,v 1.2 1999/01/26 02:33:53 oster Exp $	*/
      2  1.1  oster /*
      3  1.1  oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4  1.1  oster  * All rights reserved.
      5  1.1  oster  *
      6  1.1  oster  * Author: Mark Holland, William V. Courtright II
      7  1.1  oster  *
      8  1.1  oster  * Permission to use, copy, modify and distribute this software and
      9  1.1  oster  * its documentation is hereby granted, provided that both the copyright
     10  1.1  oster  * notice and this permission notice appear in all copies of the
     11  1.1  oster  * software, derivative works or modified versions, and any portions
     12  1.1  oster  * thereof, and that both notices appear in supporting documentation.
     13  1.1  oster  *
     14  1.1  oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  1.1  oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  1.1  oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  1.1  oster  *
     18  1.1  oster  * Carnegie Mellon requests users of this software to return to
     19  1.1  oster  *
     20  1.1  oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  1.1  oster  *  School of Computer Science
     22  1.1  oster  *  Carnegie Mellon University
     23  1.1  oster  *  Pittsburgh PA 15213-3890
     24  1.1  oster  *
     25  1.1  oster  * any improvements or extensions that they make and grant Carnegie the
     26  1.1  oster  * rights to redistribute these changes.
     27  1.1  oster  */
     28  1.1  oster 
     29  1.1  oster /*
     30  1.1  oster  * dagfuncs.c -- DAG node execution routines
     31  1.1  oster  *
     32  1.1  oster  * Rules:
     33  1.1  oster  * 1. Every DAG execution function must eventually cause node->status to
     34  1.1  oster  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35  1.1  oster  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36  1.1  oster  *    the node execution function can do these two things directly. In
     37  1.1  oster  *    the case of nodes that have to wait for some event (a disk read to
     38  1.1  oster  *    complete, a lock to be released, etc) to occur before they can
     39  1.1  oster  *    complete, this is typically achieved by having whatever module
     40  1.1  oster  *    is doing the operation call GenericWakeupFunc upon completion.
     41  1.1  oster  * 2. DAG execution functions should check the status in the DAG header
     42  1.1  oster  *    and NOP out their operations if the status is not "enable". However,
     43  1.1  oster  *    execution functions that release resources must be sure to release
     44  1.1  oster  *    them even when they NOP out the function that would use them.
     45  1.1  oster  *    Functions that acquire resources should go ahead and acquire them
     46  1.1  oster  *    even when they NOP, so that a downstream release node will not have
     47  1.1  oster  *    to check to find out whether or not the acquire was suppressed.
     48  1.1  oster  */
     49  1.1  oster 
     50  1.1  oster #include <sys/ioctl.h>
     51  1.1  oster #include <sys/param.h>
     52  1.1  oster 
     53  1.1  oster #include "rf_archs.h"
     54  1.1  oster #include "rf_raid.h"
     55  1.1  oster #include "rf_dag.h"
     56  1.1  oster #include "rf_layout.h"
     57  1.1  oster #include "rf_etimer.h"
     58  1.1  oster #include "rf_acctrace.h"
     59  1.1  oster #include "rf_diskqueue.h"
     60  1.1  oster #include "rf_dagfuncs.h"
     61  1.1  oster #include "rf_general.h"
     62  1.1  oster #include "rf_engine.h"
     63  1.1  oster #include "rf_dagutils.h"
     64  1.1  oster 
     65  1.1  oster #include "rf_kintf.h"
     66  1.1  oster 
     67  1.1  oster #if RF_INCLUDE_PARITYLOGGING > 0
     68  1.1  oster #include "rf_paritylog.h"
     69  1.1  oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
     70  1.1  oster 
     71  1.1  oster int (*rf_DiskReadFunc)(RF_DagNode_t *);
     72  1.1  oster int (*rf_DiskWriteFunc)(RF_DagNode_t *);
     73  1.1  oster int (*rf_DiskReadUndoFunc)(RF_DagNode_t *);
     74  1.1  oster int (*rf_DiskWriteUndoFunc)(RF_DagNode_t *);
     75  1.1  oster int (*rf_DiskUnlockFunc)(RF_DagNode_t *);
     76  1.1  oster int (*rf_DiskUnlockUndoFunc)(RF_DagNode_t *);
     77  1.1  oster int (*rf_RegularXorUndoFunc)(RF_DagNode_t *);
     78  1.1  oster int (*rf_SimpleXorUndoFunc)(RF_DagNode_t *);
     79  1.1  oster int (*rf_RecoveryXorUndoFunc)(RF_DagNode_t *);
     80  1.1  oster 
     81  1.1  oster /*****************************************************************************************
     82  1.1  oster  * main (only) configuration routine for this module
     83  1.1  oster  ****************************************************************************************/
     84  1.1  oster int rf_ConfigureDAGFuncs(listp)
     85  1.1  oster   RF_ShutdownList_t  **listp;
     86  1.1  oster {
     87  1.1  oster   RF_ASSERT( ((sizeof(long)==8) && RF_LONGSHIFT==3) || ((sizeof(long)==4)  && RF_LONGSHIFT==2) );
     88  1.1  oster   rf_DiskReadFunc  = rf_DiskReadFuncForThreads;
     89  1.1  oster   rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     90  1.1  oster   rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     91  1.1  oster   rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     92  1.1  oster   rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
     93  1.1  oster   rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
     94  1.1  oster   rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     95  1.1  oster   rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
     96  1.1  oster   rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
     97  1.1  oster   return(0);
     98  1.1  oster }
     99  1.1  oster 
    100  1.1  oster 
    101  1.1  oster 
    102  1.1  oster /*****************************************************************************************
    103  1.1  oster  * the execution function associated with a terminate node
    104  1.1  oster  ****************************************************************************************/
    105  1.1  oster int rf_TerminateFunc(node)
    106  1.1  oster   RF_DagNode_t  *node;
    107  1.1  oster {
    108  1.1  oster   RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    109  1.1  oster   node->status = rf_good;
    110  1.1  oster   return(rf_FinishNode(node, RF_THREAD_CONTEXT));
    111  1.1  oster }
    112  1.1  oster 
    113  1.1  oster int rf_TerminateUndoFunc(node)
    114  1.1  oster   RF_DagNode_t  *node;
    115  1.1  oster {
    116  1.1  oster   return(0);
    117  1.1  oster }
    118  1.1  oster 
    119  1.1  oster 
    120  1.1  oster /*****************************************************************************************
    121  1.1  oster  * execution functions associated with a mirror node
    122  1.1  oster  *
    123  1.1  oster  * parameters:
    124  1.1  oster  *
    125  1.1  oster  * 0 - physical disk addres of data
    126  1.1  oster  * 1 - buffer for holding read data
    127  1.1  oster  * 2 - parity stripe ID
    128  1.1  oster  * 3 - flags
    129  1.1  oster  * 4 - physical disk address of mirror (parity)
    130  1.1  oster  *
    131  1.1  oster  ****************************************************************************************/
    132  1.1  oster 
    133  1.1  oster int rf_DiskReadMirrorIdleFunc(node)
    134  1.1  oster   RF_DagNode_t  *node;
    135  1.1  oster {
    136  1.1  oster   /* select the mirror copy with the shortest queue and fill in node parameters
    137  1.1  oster      with physical disk address */
    138  1.1  oster 
    139  1.1  oster   rf_SelectMirrorDiskIdle(node);
    140  1.1  oster   return(rf_DiskReadFunc(node));
    141  1.1  oster }
    142  1.1  oster 
    143  1.1  oster int rf_DiskReadMirrorPartitionFunc(node)
    144  1.1  oster   RF_DagNode_t  *node;
    145  1.1  oster {
    146  1.1  oster   /* select the mirror copy with the shortest queue and fill in node parameters
    147  1.1  oster      with physical disk address */
    148  1.1  oster 
    149  1.1  oster   rf_SelectMirrorDiskPartition(node);
    150  1.1  oster   return(rf_DiskReadFunc(node));
    151  1.1  oster }
    152  1.1  oster 
    153  1.1  oster int rf_DiskReadMirrorUndoFunc(node)
    154  1.1  oster   RF_DagNode_t  *node;
    155  1.1  oster {
    156  1.1  oster   return(0);
    157  1.1  oster }
    158  1.1  oster 
    159  1.1  oster 
    160  1.1  oster 
    161  1.1  oster #if RF_INCLUDE_PARITYLOGGING > 0
    162  1.1  oster /*****************************************************************************************
    163  1.1  oster  * the execution function associated with a parity log update node
    164  1.1  oster  ****************************************************************************************/
    165  1.1  oster int rf_ParityLogUpdateFunc(node)
    166  1.1  oster   RF_DagNode_t  *node;
    167  1.1  oster {
    168  1.1  oster   RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    169  1.1  oster   caddr_t buf = (caddr_t) node->params[1].p;
    170  1.1  oster   RF_ParityLogData_t *logData;
    171  1.1  oster   RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    172  1.1  oster   RF_Etimer_t timer;
    173  1.1  oster 
    174  1.1  oster   if (node->dagHdr->status == rf_enable)
    175  1.1  oster     {
    176  1.1  oster       RF_ETIMER_START(timer);
    177  1.1  oster       logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
    178  1.1  oster 				       (RF_Raid_t *) (node->dagHdr->raidPtr),
    179  1.1  oster 				       node->wakeFunc, (void *) node,
    180  1.1  oster 				       node->dagHdr->tracerec, timer);
    181  1.1  oster       if (logData)
    182  1.1  oster 	rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    183  1.1  oster       else
    184  1.1  oster 	{
    185  1.1  oster 	  RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    186  1.1  oster 	  (node->wakeFunc)(node, ENOMEM);
    187  1.1  oster 	}
    188  1.1  oster     }
    189  1.1  oster     return(0);
    190  1.1  oster }
    191  1.1  oster 
    192  1.1  oster 
    193  1.1  oster /*****************************************************************************************
    194  1.1  oster  * the execution function associated with a parity log overwrite node
    195  1.1  oster  ****************************************************************************************/
    196  1.1  oster int rf_ParityLogOverwriteFunc(node)
    197  1.1  oster   RF_DagNode_t  *node;
    198  1.1  oster {
    199  1.1  oster   RF_PhysDiskAddr_t  *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    200  1.1  oster   caddr_t buf = (caddr_t) node->params[1].p;
    201  1.1  oster   RF_ParityLogData_t *logData;
    202  1.1  oster   RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    203  1.1  oster   RF_Etimer_t timer;
    204  1.1  oster 
    205  1.1  oster   if (node->dagHdr->status == rf_enable)
    206  1.1  oster     {
    207  1.1  oster       RF_ETIMER_START(timer);
    208  1.1  oster       logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
    209  1.1  oster 				    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    210  1.1  oster       if (logData)
    211  1.1  oster 	rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    212  1.1  oster       else
    213  1.1  oster 	{
    214  1.1  oster 	  RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    215  1.1  oster 	  (node->wakeFunc)(node, ENOMEM);
    216  1.1  oster 	}
    217  1.1  oster     }
    218  1.1  oster     return(0);
    219  1.1  oster }
    220  1.1  oster 
    221  1.1  oster #else /* RF_INCLUDE_PARITYLOGGING > 0 */
    222  1.1  oster 
    223  1.1  oster int rf_ParityLogUpdateFunc(node)
    224  1.1  oster   RF_DagNode_t  *node;
    225  1.1  oster {
    226  1.1  oster   return(0);
    227  1.1  oster }
    228  1.1  oster int rf_ParityLogOverwriteFunc(node)
    229  1.1  oster   RF_DagNode_t  *node;
    230  1.1  oster {
    231  1.1  oster   return(0);
    232  1.1  oster }
    233  1.1  oster 
    234  1.1  oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
    235  1.1  oster 
    236  1.1  oster int rf_ParityLogUpdateUndoFunc(node)
    237  1.1  oster   RF_DagNode_t  *node;
    238  1.1  oster {
    239  1.1  oster   return(0);
    240  1.1  oster }
    241  1.1  oster 
    242  1.1  oster int rf_ParityLogOverwriteUndoFunc(node)
    243  1.1  oster   RF_DagNode_t  *node;
    244  1.1  oster {
    245  1.1  oster   return(0);
    246  1.1  oster }
    247  1.1  oster 
    248  1.1  oster /*****************************************************************************************
    249  1.1  oster  * the execution function associated with a NOP node
    250  1.1  oster  ****************************************************************************************/
    251  1.1  oster int rf_NullNodeFunc(node)
    252  1.1  oster   RF_DagNode_t  *node;
    253  1.1  oster {
    254  1.1  oster   node->status = rf_good;
    255  1.1  oster   return(rf_FinishNode(node, RF_THREAD_CONTEXT));
    256  1.1  oster }
    257  1.1  oster 
    258  1.1  oster int rf_NullNodeUndoFunc(node)
    259  1.1  oster   RF_DagNode_t  *node;
    260  1.1  oster {
    261  1.1  oster   node->status = rf_undone;
    262  1.1  oster   return(rf_FinishNode(node, RF_THREAD_CONTEXT));
    263  1.1  oster }
    264  1.1  oster 
    265  1.1  oster 
    266  1.1  oster /*****************************************************************************************
    267  1.1  oster  * the execution function associated with a disk-read node
    268  1.1  oster  ****************************************************************************************/
    269  1.1  oster int rf_DiskReadFuncForThreads(node)
    270  1.1  oster   RF_DagNode_t  *node;
    271  1.1  oster {
    272  1.1  oster   RF_DiskQueueData_t *req;
    273  1.1  oster   RF_PhysDiskAddr_t  *pda       = (RF_PhysDiskAddr_t *)node->params[0].p;
    274  1.1  oster   caddr_t        buf            = (caddr_t)node->params[1].p;
    275  1.1  oster   RF_StripeNum_t parityStripeID = (RF_StripeNum_t)node->params[2].v;
    276  1.1  oster   unsigned       priority       = RF_EXTRACT_PRIORITY(node->params[3].v);
    277  1.1  oster   unsigned       lock           = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    278  1.1  oster   unsigned       unlock         = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    279  1.1  oster   unsigned       which_ru       = RF_EXTRACT_RU(node->params[3].v);
    280  1.1  oster   RF_DiskQueueDataFlags_t flags = 0;
    281  1.1  oster   RF_IoType_t    iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    282  1.1  oster   RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    283  1.1  oster   void *b_proc = NULL;
    284  1.1  oster #if RF_BACKWARD > 0
    285  1.1  oster   caddr_t        undoBuf;
    286  1.1  oster #endif
    287  1.1  oster 
    288  1.1  oster   if (node->dagHdr->bp) b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    289  1.1  oster 
    290  1.1  oster   RF_ASSERT( !(lock && unlock) );
    291  1.1  oster   flags |= (lock)   ? RF_LOCK_DISK_QUEUE   : 0;
    292  1.1  oster   flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    293  1.1  oster #if RF_BACKWARD > 0
    294  1.1  oster   /* allocate and zero the undo buffer.
    295  1.1  oster    * this is equivalent to copying the original buffer's contents to the undo buffer
    296  1.1  oster    * prior to performing the disk read.
    297  1.1  oster    * XXX hardcoded 512 bytes per sector!
    298  1.1  oster    */
    299  1.1  oster   if (node->dagHdr->allocList == NULL)
    300  1.1  oster     rf_MakeAllocList(node->dagHdr->allocList);
    301  1.1  oster   RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
    302  1.1  oster #endif /* RF_BACKWARD > 0 */
    303  1.1  oster   req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    304  1.1  oster 			       buf, parityStripeID, which_ru,
    305  1.1  oster 			       (int (*)(void *,int)) node->wakeFunc,
    306  1.1  oster 			       node, NULL, node->dagHdr->tracerec,
    307  1.1  oster 			    (void *)(node->dagHdr->raidPtr), flags, b_proc);
    308  1.1  oster   if (!req) {
    309  1.1  oster     (node->wakeFunc)(node, ENOMEM);
    310  1.1  oster   } else {
    311  1.1  oster     node->dagFuncData = (void *) req;
    312  1.1  oster     rf_DiskIOEnqueue( &(dqs[pda->row][pda->col]), req, priority );
    313  1.1  oster   }
    314  1.1  oster   return(0);
    315  1.1  oster }
    316  1.1  oster 
    317  1.1  oster 
    318  1.1  oster /*****************************************************************************************
    319  1.1  oster  * the execution function associated with a disk-write node
    320  1.1  oster  ****************************************************************************************/
    321  1.1  oster int rf_DiskWriteFuncForThreads(node)
    322  1.1  oster   RF_DagNode_t  *node;
    323  1.1  oster {
    324  1.1  oster   RF_DiskQueueData_t *req;
    325  1.1  oster   RF_PhysDiskAddr_t  *pda       = (RF_PhysDiskAddr_t *)node->params[0].p;
    326  1.1  oster   caddr_t        buf            = (caddr_t)node->params[1].p;
    327  1.1  oster   RF_StripeNum_t parityStripeID = (RF_StripeNum_t)node->params[2].v;
    328  1.1  oster   unsigned       priority       = RF_EXTRACT_PRIORITY(node->params[3].v);
    329  1.1  oster   unsigned       lock           = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    330  1.1  oster   unsigned       unlock         = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    331  1.1  oster   unsigned       which_ru       = RF_EXTRACT_RU(node->params[3].v);
    332  1.1  oster   RF_DiskQueueDataFlags_t flags = 0;
    333  1.1  oster   RF_IoType_t    iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    334  1.1  oster   RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    335  1.1  oster   void *b_proc = NULL;
    336  1.1  oster #if RF_BACKWARD > 0
    337  1.1  oster   caddr_t undoBuf;
    338  1.1  oster #endif
    339  1.1  oster 
    340  1.1  oster   if (node->dagHdr->bp) b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    341  1.1  oster 
    342  1.1  oster #if RF_BACKWARD > 0
    343  1.1  oster   /* This area is used only for backward error recovery experiments
    344  1.1  oster    * First, schedule allocate a buffer and schedule a pre-read of the disk
    345  1.1  oster    * After the pre-read, proceed with the normal disk write
    346  1.1  oster    */
    347  1.1  oster   if (node->status == rf_bwd2) {
    348  1.1  oster     /* just finished undo logging, now perform real function */
    349  1.1  oster     node->status = rf_fired;
    350  1.1  oster     RF_ASSERT( !(lock && unlock) );
    351  1.1  oster     flags |= (lock)   ? RF_LOCK_DISK_QUEUE   : 0;
    352  1.1  oster     flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    353  1.1  oster     req = rf_CreateDiskQueueData(iotype,
    354  1.1  oster 			      pda->startSector, pda->numSector, buf, parityStripeID, which_ru,
    355  1.1  oster 			      node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec,
    356  1.1  oster 			      (void *) (node->dagHdr->raidPtr), flags, b_proc);
    357  1.1  oster 
    358  1.1  oster     if (!req) {
    359  1.1  oster       (node->wakeFunc)(node, ENOMEM);
    360  1.1  oster     } else {
    361  1.1  oster       node->dagFuncData = (void *) req;
    362  1.1  oster       rf_DiskIOEnqueue( &(dqs[pda->row][pda->col]), req, priority );
    363  1.1  oster     }
    364  1.1  oster   }
    365  1.1  oster 
    366  1.1  oster   else {
    367  1.1  oster     /* node status should be rf_fired */
    368  1.1  oster     /* schedule a disk pre-read */
    369  1.1  oster     node->status = rf_bwd1;
    370  1.1  oster     RF_ASSERT( !(lock && unlock) );
    371  1.1  oster     flags |= (lock)   ? RF_LOCK_DISK_QUEUE   : 0;
    372  1.1  oster     flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    373  1.1  oster     if (node->dagHdr->allocList == NULL)
    374  1.1  oster       rf_MakeAllocList(node->dagHdr->allocList);
    375  1.1  oster     RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
    376  1.1  oster     req = rf_CreateDiskQueueData(RF_IO_TYPE_READ,
    377  1.1  oster 			      pda->startSector, pda->numSector, undoBuf, parityStripeID, which_ru,
    378  1.1  oster 			      node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec,
    379  1.1  oster 			      (void *) (node->dagHdr->raidPtr), flags, b_proc);
    380  1.1  oster 
    381  1.1  oster     if (!req) {
    382  1.1  oster       (node->wakeFunc)(node, ENOMEM);
    383  1.1  oster     } else {
    384  1.1  oster       node->dagFuncData = (void *) req;
    385  1.1  oster       rf_DiskIOEnqueue( &(dqs[pda->row][pda->col]), req, priority );
    386  1.1  oster     }
    387  1.1  oster   }
    388  1.1  oster   return(0);
    389  1.1  oster #endif /* RF_BACKWARD > 0 */
    390  1.1  oster 
    391  1.1  oster   /* normal processing (rollaway or forward recovery) begins here */
    392  1.1  oster   RF_ASSERT( !(lock && unlock) );
    393  1.1  oster   flags |= (lock)   ? RF_LOCK_DISK_QUEUE   : 0;
    394  1.1  oster   flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    395  1.1  oster   req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    396  1.1  oster 			       buf, parityStripeID, which_ru,
    397  1.1  oster 			       (int (*)(void *,int)) node->wakeFunc,
    398  1.1  oster 			       (void *) node, NULL,
    399  1.1  oster 			       node->dagHdr->tracerec,
    400  1.1  oster 			       (void *) (node->dagHdr->raidPtr),
    401  1.1  oster 			       flags, b_proc);
    402  1.1  oster 
    403  1.1  oster   if (!req) {
    404  1.1  oster     (node->wakeFunc)(node, ENOMEM);
    405  1.1  oster   } else {
    406  1.1  oster     node->dagFuncData = (void *) req;
    407  1.1  oster     rf_DiskIOEnqueue( &(dqs[pda->row][pda->col]), req, priority );
    408  1.1  oster   }
    409  1.1  oster 
    410  1.1  oster   return(0);
    411  1.1  oster }
    412  1.1  oster 
    413  1.1  oster /*****************************************************************************************
    414  1.1  oster  * the undo function for disk nodes
    415  1.1  oster  * Note:  this is not a proper undo of a write node, only locks are released.
    416  1.1  oster  *        old data is not restored to disk!
    417  1.1  oster  ****************************************************************************************/
    418  1.1  oster int rf_DiskUndoFunc(node)
    419  1.1  oster   RF_DagNode_t  *node;
    420  1.1  oster {
    421  1.1  oster   RF_DiskQueueData_t *req;
    422  1.1  oster   RF_PhysDiskAddr_t  *pda = (RF_PhysDiskAddr_t *)node->params[0].p;
    423  1.1  oster   RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    424  1.1  oster 
    425  1.1  oster   req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    426  1.1  oster 			       0L, 0, NULL, 0L, 0,
    427  1.1  oster 			       (int (*)(void *,int)) node->wakeFunc,
    428  1.1  oster 			       (void *) node,
    429  1.1  oster 			       NULL, node->dagHdr->tracerec,
    430  1.1  oster 			       (void *) (node->dagHdr->raidPtr),
    431  1.1  oster 			       RF_UNLOCK_DISK_QUEUE, NULL);
    432  1.1  oster   if (!req)
    433  1.1  oster     (node->wakeFunc)(node, ENOMEM);
    434  1.1  oster   else {
    435  1.1  oster     node->dagFuncData = (void *) req;
    436  1.1  oster     rf_DiskIOEnqueue( &(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY );
    437  1.1  oster   }
    438  1.1  oster 
    439  1.1  oster   return(0);
    440  1.1  oster }
    441  1.1  oster 
    442  1.1  oster /*****************************************************************************************
    443  1.1  oster  * the execution function associated with an "unlock disk queue" node
    444  1.1  oster  ****************************************************************************************/
    445  1.1  oster int rf_DiskUnlockFuncForThreads(node)
    446  1.1  oster   RF_DagNode_t  *node;
    447  1.1  oster {
    448  1.1  oster   RF_DiskQueueData_t *req;
    449  1.1  oster   RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *)node->params[0].p;
    450  1.1  oster   RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    451  1.1  oster 
    452  1.1  oster   req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    453  1.1  oster 			       0L, 0, NULL, 0L, 0,
    454  1.1  oster 			       (int (*)(void *,int)) node->wakeFunc,
    455  1.1  oster 			       (void *) node,
    456  1.1  oster 			       NULL, node->dagHdr->tracerec,
    457  1.1  oster 			       (void *) (node->dagHdr->raidPtr),
    458  1.1  oster 			       RF_UNLOCK_DISK_QUEUE, NULL);
    459  1.1  oster   if (!req)
    460  1.1  oster     (node->wakeFunc)(node, ENOMEM);
    461  1.1  oster   else {
    462  1.1  oster     node->dagFuncData = (void *) req;
    463  1.1  oster     rf_DiskIOEnqueue( &(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY );
    464  1.1  oster   }
    465  1.1  oster 
    466  1.1  oster   return(0);
    467  1.1  oster }
    468  1.1  oster 
    469  1.1  oster /*****************************************************************************************
    470  1.1  oster  * Callback routine for DiskRead and DiskWrite nodes.  When the disk op completes,
    471  1.1  oster  * the routine is called to set the node status and inform the execution engine that
    472  1.1  oster  * the node has fired.
    473  1.1  oster  ****************************************************************************************/
    474  1.1  oster int rf_GenericWakeupFunc(node, status)
    475  1.1  oster   RF_DagNode_t  *node;
    476  1.1  oster   int            status;
    477  1.1  oster {
    478  1.1  oster   switch (node->status) {
    479  1.1  oster   case rf_bwd1 :
    480  1.1  oster     node->status = rf_bwd2;
    481  1.1  oster     if (node->dagFuncData)
    482  1.1  oster       rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    483  1.1  oster     return(rf_DiskWriteFuncForThreads(node));
    484  1.1  oster     break;
    485  1.1  oster   case rf_fired :
    486  1.1  oster     if (status) node->status = rf_bad;
    487  1.1  oster     else node->status = rf_good;
    488  1.1  oster     break;
    489  1.1  oster   case rf_recover :
    490  1.1  oster     /* probably should never reach this case */
    491  1.1  oster     if (status) node->status = rf_panic;
    492  1.1  oster     else node->status = rf_undone;
    493  1.1  oster     break;
    494  1.1  oster   default :
    495  1.1  oster     RF_PANIC();
    496  1.1  oster     break;
    497  1.1  oster   }
    498  1.1  oster   if (node->dagFuncData)
    499  1.1  oster     rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    500  1.1  oster   return(rf_FinishNode(node, RF_INTR_CONTEXT));
    501  1.1  oster }
    502  1.1  oster 
    503  1.1  oster 
    504  1.1  oster /*****************************************************************************************
    505  1.1  oster  * there are three distinct types of xor nodes
    506  1.1  oster  * A "regular xor" is used in the fault-free case where the access spans a complete
    507  1.1  oster  * stripe unit.  It assumes that the result buffer is one full stripe unit in size,
    508  1.1  oster  * and uses the stripe-unit-offset values that it computes from the PDAs to determine
    509  1.1  oster  * where within the stripe unit to XOR each argument buffer.
    510  1.1  oster  *
    511  1.1  oster  * A "simple xor" is used in the fault-free case where the access touches only a portion
    512  1.1  oster  * of one (or two, in some cases) stripe unit(s).  It assumes that all the argument
    513  1.1  oster  * buffers are of the same size and have the same stripe unit offset.
    514  1.1  oster  *
    515  1.1  oster  * A "recovery xor" is used in the degraded-mode case.  It's similar to the regular
    516  1.1  oster  * xor function except that it takes the failed PDA as an additional parameter, and
    517  1.1  oster  * uses it to determine what portions of the argument buffers need to be xor'd into
    518  1.1  oster  * the result buffer, and where in the result buffer they should go.
    519  1.1  oster  ****************************************************************************************/
    520  1.1  oster 
    521  1.1  oster /* xor the params together and store the result in the result field.
    522  1.1  oster  * assume the result field points to a buffer that is the size of one SU,
    523  1.1  oster  * and use the pda params to determine where within the buffer to XOR
    524  1.1  oster  * the input buffers.
    525  1.1  oster  */
    526  1.1  oster int rf_RegularXorFunc(node)
    527  1.1  oster   RF_DagNode_t  *node;
    528  1.1  oster {
    529  1.1  oster   RF_Raid_t *raidPtr = (RF_Raid_t *)node->params[node->numParams-1].p;
    530  1.1  oster   RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    531  1.1  oster   RF_Etimer_t timer;
    532  1.1  oster   int i, retcode;
    533  1.1  oster #if RF_BACKWARD > 0
    534  1.1  oster   RF_PhysDiskAddr_t *pda;
    535  1.1  oster   caddr_t undoBuf;
    536  1.1  oster #endif
    537  1.1  oster 
    538  1.1  oster   retcode = 0;
    539  1.1  oster   if (node->dagHdr->status == rf_enable) {
    540  1.1  oster     /* don't do the XOR if the input is the same as the output */
    541  1.1  oster     RF_ETIMER_START(timer);
    542  1.1  oster     for (i=0; i<node->numParams-1; i+=2) if (node->params[i+1].p != node->results[0]) {
    543  1.1  oster #if RF_BACKWARD > 0
    544  1.1  oster       /* This section mimics undo logging for backward error recovery experiments b
    545  1.1  oster        * allocating and initializing a buffer
    546  1.1  oster        * XXX 512 byte sector size is hard coded!
    547  1.1  oster        */
    548  1.1  oster       pda = node->params[i].p;
    549  1.1  oster       if (node->dagHdr->allocList == NULL)
    550  1.1  oster 	rf_MakeAllocList(node->dagHdr->allocList);
    551  1.1  oster       RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
    552  1.1  oster #endif /* RF_BACKWARD > 0 */
    553  1.1  oster       retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    554  1.1  oster 			      (char *)node->params[i+1].p, (char *) node->results[0], node->dagHdr->bp);
    555  1.1  oster     }
    556  1.1  oster     RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    557  1.1  oster   }
    558  1.1  oster   return(rf_GenericWakeupFunc(node, retcode));     /* call wake func explicitly since no I/O in this node */
    559  1.1  oster }
    560  1.1  oster 
    561  1.1  oster /* xor the inputs into the result buffer, ignoring placement issues */
    562  1.1  oster int rf_SimpleXorFunc(node)
    563  1.1  oster   RF_DagNode_t  *node;
    564  1.1  oster {
    565  1.1  oster   RF_Raid_t *raidPtr = (RF_Raid_t *)node->params[node->numParams-1].p;
    566  1.1  oster   int i, retcode = 0;
    567  1.1  oster   RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    568  1.1  oster   RF_Etimer_t timer;
    569  1.1  oster #if RF_BACKWARD > 0
    570  1.1  oster   RF_PhysDiskAddr_t *pda;
    571  1.1  oster   caddr_t undoBuf;
    572  1.1  oster #endif
    573  1.1  oster 
    574  1.1  oster   if (node->dagHdr->status == rf_enable) {
    575  1.1  oster     RF_ETIMER_START(timer);
    576  1.1  oster     /* don't do the XOR if the input is the same as the output */
    577  1.1  oster     for (i=0; i<node->numParams-1; i+=2) if (node->params[i+1].p != node->results[0]) {
    578  1.1  oster #if RF_BACKWARD > 0
    579  1.1  oster       /* This section mimics undo logging for backward error recovery experiments b
    580  1.1  oster        * allocating and initializing a buffer
    581  1.1  oster        * XXX 512 byte sector size is hard coded!
    582  1.1  oster        */
    583  1.1  oster       pda = node->params[i].p;
    584  1.1  oster       if (node->dagHdr->allocList == NULL)
    585  1.1  oster 	rf_MakeAllocList(node->dagHdr->allocList);
    586  1.1  oster       RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
    587  1.1  oster #endif /* RF_BACKWARD > 0 */
    588  1.1  oster       retcode = rf_bxor((char *)node->params[i+1].p, (char *) node->results[0],
    589  1.1  oster 		     rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *)node->params[i].p)->numSector),
    590  1.1  oster 		     (struct buf *) node->dagHdr->bp);
    591  1.1  oster     }
    592  1.1  oster     RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    593  1.1  oster   }
    594  1.1  oster 
    595  1.1  oster   return(rf_GenericWakeupFunc(node, retcode));     /* call wake func explicitly since no I/O in this node */
    596  1.1  oster }
    597  1.1  oster 
    598  1.1  oster /* this xor is used by the degraded-mode dag functions to recover lost data.
    599  1.1  oster  * the second-to-last parameter is the PDA for the failed portion of the access.
    600  1.1  oster  * the code here looks at this PDA and assumes that the xor target buffer is
    601  1.1  oster  * equal in size to the number of sectors in the failed PDA.  It then uses
    602  1.1  oster  * the other PDAs in the parameter list to determine where within the target
    603  1.1  oster  * buffer the corresponding data should be xored.
    604  1.1  oster  */
    605  1.1  oster int rf_RecoveryXorFunc(node)
    606  1.1  oster   RF_DagNode_t  *node;
    607  1.1  oster {
    608  1.1  oster   RF_Raid_t *raidPtr = (RF_Raid_t *)node->params[node->numParams-1].p;
    609  1.1  oster   RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) &raidPtr->Layout;
    610  1.1  oster   RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *)node->params[node->numParams-2].p;
    611  1.1  oster   int i, retcode = 0;
    612  1.1  oster   RF_PhysDiskAddr_t *pda;
    613  1.1  oster   int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr,failedPDA->startSector);
    614  1.1  oster   char *srcbuf, *destbuf;
    615  1.1  oster   RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    616  1.1  oster   RF_Etimer_t timer;
    617  1.1  oster #if RF_BACKWARD > 0
    618  1.1  oster   caddr_t undoBuf;
    619  1.1  oster #endif
    620  1.1  oster 
    621  1.1  oster   if (node->dagHdr->status == rf_enable) {
    622  1.1  oster     RF_ETIMER_START(timer);
    623  1.1  oster     for (i=0; i<node->numParams-2; i+=2) if (node->params[i+1].p != node->results[0]) {
    624  1.1  oster       pda = (RF_PhysDiskAddr_t *)node->params[i].p;
    625  1.1  oster #if RF_BACKWARD > 0
    626  1.1  oster       /* This section mimics undo logging for backward error recovery experiments b
    627  1.1  oster        * allocating and initializing a buffer
    628  1.1  oster        * XXX 512 byte sector size is hard coded!
    629  1.1  oster        */
    630  1.1  oster       if (node->dagHdr->allocList == NULL)
    631  1.1  oster 	rf_MakeAllocList(node->dagHdr->allocList);
    632  1.1  oster       RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
    633  1.1  oster #endif /* RF_BACKWARD > 0 */
    634  1.1  oster       srcbuf = (char *)node->params[i+1].p;
    635  1.1  oster       suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    636  1.1  oster       destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr,suoffset-failedSUOffset);
    637  1.1  oster       retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
    638  1.1  oster     }
    639  1.1  oster     RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    640  1.1  oster   }
    641  1.1  oster   return (rf_GenericWakeupFunc(node, retcode));
    642  1.1  oster }
    643  1.1  oster 
    644  1.1  oster /*****************************************************************************************
    645  1.1  oster  * The next three functions are utilities used by the above xor-execution functions.
    646  1.1  oster  ****************************************************************************************/
    647  1.1  oster 
    648  1.1  oster 
    649  1.1  oster /*
    650  1.1  oster  * this is just a glorified buffer xor.  targbuf points to a buffer that is one full stripe unit
    651  1.1  oster  * in size.  srcbuf points to a buffer that may be less than 1 SU, but never more.  When the
    652  1.1  oster  * access described by pda is one SU in size (which by implication means it's SU-aligned),
    653  1.1  oster  * all that happens is (targbuf) <- (srcbuf ^ targbuf).  When the access is less than one
    654  1.1  oster  * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
    655  1.1  oster  */
    656  1.1  oster 
    657  1.1  oster int rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
    658  1.1  oster   RF_Raid_t          *raidPtr;
    659  1.1  oster   RF_PhysDiskAddr_t  *pda;
    660  1.1  oster   char               *srcbuf;
    661  1.1  oster   char               *targbuf;
    662  1.1  oster   void               *bp;
    663  1.1  oster {
    664  1.1  oster   char *targptr;
    665  1.1  oster   int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    666  1.1  oster   int SUOffset = pda->startSector % sectPerSU;
    667  1.1  oster   int length, retcode = 0;
    668  1.1  oster 
    669  1.1  oster   RF_ASSERT(pda->numSector <= sectPerSU);
    670  1.1  oster 
    671  1.1  oster   targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    672  1.1  oster   length  = rf_RaidAddressToByte(raidPtr, pda->numSector);
    673  1.1  oster   retcode = rf_bxor(srcbuf, targptr, length, bp);
    674  1.1  oster   return(retcode);
    675  1.1  oster }
    676  1.1  oster 
    677  1.1  oster /* it really should be the case that the buffer pointers (returned by malloc)
    678  1.1  oster  * are aligned to the natural word size of the machine, so this is the only
    679  1.1  oster  * case we optimize for.  The length should always be a multiple of the sector
    680  1.1  oster  * size, so there should be no problem with leftover bytes at the end.
    681  1.1  oster  */
    682  1.1  oster int rf_bxor(src, dest, len, bp)
    683  1.1  oster   char  *src;
    684  1.1  oster   char  *dest;
    685  1.1  oster   int    len;
    686  1.1  oster   void  *bp;
    687  1.1  oster {
    688  1.1  oster   unsigned mask = sizeof(long) -1, retcode = 0;
    689  1.1  oster 
    690  1.1  oster   if ( !(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len&mask) ) {
    691  1.1  oster     retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len>>RF_LONGSHIFT, bp);
    692  1.1  oster   } else {
    693  1.1  oster     RF_ASSERT(0);
    694  1.1  oster   }
    695  1.1  oster   return(retcode);
    696  1.1  oster }
    697  1.1  oster 
    698  1.1  oster /* map a user buffer into kernel space, if necessary */
    699  1.1  oster #define REMAP_VA(_bp,x,y) (y) = (x)
    700  1.1  oster 
    701  1.1  oster /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
    702  1.1  oster  * We don't want to assume anything about which input buffers are in kernel/user
    703  1.1  oster  * space, nor about their alignment, so in each loop we compute the maximum number
    704  1.1  oster  * of bytes that we can xor without crossing any page boundaries, and do only this many
    705  1.1  oster  * bytes before the next remap.
    706  1.1  oster  */
    707  1.1  oster int rf_longword_bxor(src, dest, len, bp)
    708  1.1  oster   register unsigned long  *src;
    709  1.1  oster   register unsigned long  *dest;
    710  1.1  oster   int                      len; /* longwords */
    711  1.1  oster   void                    *bp;
    712  1.1  oster {
    713  1.1  oster   register unsigned long *end = src+len;
    714  1.1  oster   register unsigned long d0, d1, d2, d3, s0, s1, s2, s3;   /* temps */
    715  1.1  oster   register unsigned long *pg_src, *pg_dest;                /* per-page source/dest pointers */
    716  1.1  oster   int longs_this_time;                                     /* # longwords to xor in the current iteration */
    717  1.1  oster 
    718  1.1  oster   REMAP_VA(bp, src, pg_src);
    719  1.1  oster   REMAP_VA(bp, dest, pg_dest);
    720  1.1  oster   if (!pg_src || !pg_dest) return(EFAULT);
    721  1.1  oster 
    722  1.1  oster   while (len >= 4 ) {
    723  1.1  oster     longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);  /* note len in longwords */
    724  1.1  oster     src += longs_this_time; dest+= longs_this_time; len -= longs_this_time;
    725  1.1  oster     while (longs_this_time >= 4) {
    726  1.1  oster       d0 = pg_dest[0];
    727  1.1  oster       d1 = pg_dest[1];
    728  1.1  oster       d2 = pg_dest[2];
    729  1.1  oster       d3 = pg_dest[3];
    730  1.1  oster       s0 = pg_src[0];
    731  1.1  oster       s1 = pg_src[1];
    732  1.1  oster       s2 = pg_src[2];
    733  1.1  oster       s3 = pg_src[3];
    734  1.1  oster       pg_dest[0] = d0 ^ s0;
    735  1.1  oster       pg_dest[1] = d1 ^ s1;
    736  1.1  oster       pg_dest[2] = d2 ^ s2;
    737  1.1  oster       pg_dest[3] = d3 ^ s3;
    738  1.1  oster       pg_src += 4;
    739  1.1  oster       pg_dest += 4;
    740  1.1  oster       longs_this_time -= 4;
    741  1.1  oster     }
    742  1.1  oster     while (longs_this_time > 0) {   /* cannot cross any page boundaries here */
    743  1.1  oster       *pg_dest++ ^= *pg_src++;
    744  1.1  oster       longs_this_time--;
    745  1.1  oster     }
    746  1.1  oster 
    747  1.1  oster     /* either we're done, or we've reached a page boundary on one (or possibly both) of the pointers */
    748  1.1  oster     if (len) {
    749  1.1  oster       if (RF_PAGE_ALIGNED(src))  REMAP_VA(bp, src, pg_src);
    750  1.1  oster       if (RF_PAGE_ALIGNED(dest)) REMAP_VA(bp, dest, pg_dest);
    751  1.1  oster       if (!pg_src || !pg_dest) return(EFAULT);
    752  1.1  oster     }
    753  1.1  oster   }
    754  1.1  oster   while (src < end) {
    755  1.1  oster     *pg_dest++ ^=  *pg_src++;
    756  1.1  oster     src++; dest++; len--;
    757  1.1  oster     if (RF_PAGE_ALIGNED(src)) REMAP_VA(bp, src, pg_src);
    758  1.1  oster     if (RF_PAGE_ALIGNED(dest)) REMAP_VA(bp, dest, pg_dest);
    759  1.1  oster   }
    760  1.1  oster   RF_ASSERT(len == 0);
    761  1.1  oster   return(0);
    762  1.1  oster }
    763  1.1  oster 
    764  1.1  oster 
    765  1.1  oster /*
    766  1.1  oster    dst = a ^ b ^ c;
    767  1.1  oster    a may equal dst
    768  1.1  oster    see comment above longword_bxor
    769  1.1  oster */
    770  1.1  oster int rf_longword_bxor3(dst,a,b,c,len, bp)
    771  1.1  oster   register unsigned long  *dst;
    772  1.1  oster   register unsigned long  *a;
    773  1.1  oster   register unsigned long  *b;
    774  1.1  oster   register unsigned long  *c;
    775  1.1  oster   int                      len; /* length in longwords */
    776  1.1  oster   void                    *bp;
    777  1.1  oster {
    778  1.1  oster   unsigned long a0,a1,a2,a3, b0,b1,b2,b3;
    779  1.1  oster   register unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;    /* per-page source/dest pointers */
    780  1.1  oster   int longs_this_time;                                     /* # longs to xor in the current iteration */
    781  1.1  oster   char dst_is_a = 0;
    782  1.1  oster 
    783  1.1  oster   REMAP_VA(bp, a, pg_a);
    784  1.1  oster   REMAP_VA(bp, b, pg_b);
    785  1.1  oster   REMAP_VA(bp, c, pg_c);
    786  1.1  oster   if (a == dst) {pg_dst = pg_a; dst_is_a = 1;} else { REMAP_VA(bp, dst, pg_dst); }
    787  1.1  oster 
    788  1.1  oster   /* align dest to cache line.  Can't cross a pg boundary on dst here. */
    789  1.1  oster   while ((((unsigned long) pg_dst) & 0x1f)) {
    790  1.1  oster     *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    791  1.1  oster     dst++; a++; b++; c++;
    792  1.1  oster     if (RF_PAGE_ALIGNED(a)) {REMAP_VA(bp, a, pg_a); if (!pg_a) return(EFAULT);}
    793  1.1  oster     if (RF_PAGE_ALIGNED(b)) {REMAP_VA(bp, a, pg_b); if (!pg_b) return(EFAULT);}
    794  1.1  oster     if (RF_PAGE_ALIGNED(c)) {REMAP_VA(bp, a, pg_c); if (!pg_c) return(EFAULT);}
    795  1.1  oster     len--;
    796  1.1  oster   }
    797  1.1  oster 
    798  1.1  oster   while (len > 4 ) {
    799  1.1  oster     longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    800  1.1  oster     a+= longs_this_time; b+= longs_this_time; c+= longs_this_time; dst+=longs_this_time; len-=longs_this_time;
    801  1.1  oster     while (longs_this_time >= 4) {
    802  1.1  oster       a0 = pg_a[0]; longs_this_time -= 4;
    803  1.1  oster 
    804  1.1  oster       a1 = pg_a[1];
    805  1.1  oster       a2 = pg_a[2];
    806  1.1  oster 
    807  1.1  oster       a3 = pg_a[3];  pg_a += 4;
    808  1.1  oster 
    809  1.1  oster       b0 = pg_b[0];
    810  1.1  oster       b1 = pg_b[1];
    811  1.1  oster 
    812  1.1  oster       b2 = pg_b[2];
    813  1.1  oster       b3 = pg_b[3];
    814  1.1  oster       /* start dual issue */
    815  1.1  oster       a0 ^= b0; b0 =  pg_c[0];
    816  1.1  oster 
    817  1.1  oster       pg_b += 4;  a1 ^= b1;
    818  1.1  oster 
    819  1.1  oster       a2 ^= b2; a3 ^= b3;
    820  1.1  oster 
    821  1.1  oster       b1 =  pg_c[1]; a0 ^= b0;
    822  1.1  oster 
    823  1.1  oster       b2 =  pg_c[2]; a1 ^= b1;
    824  1.1  oster 
    825  1.1  oster       b3 =  pg_c[3]; a2 ^= b2;
    826  1.1  oster 
    827  1.1  oster       pg_dst[0] = a0; a3 ^= b3;
    828  1.1  oster       pg_dst[1] = a1; pg_c += 4;
    829  1.1  oster       pg_dst[2] = a2;
    830  1.1  oster       pg_dst[3] = a3; pg_dst += 4;
    831  1.1  oster     }
    832  1.1  oster     while (longs_this_time > 0) {   /* cannot cross any page boundaries here */
    833  1.1  oster       *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    834  1.1  oster       longs_this_time--;
    835  1.1  oster     }
    836  1.1  oster 
    837  1.1  oster     if (len) {
    838  1.1  oster       if (RF_PAGE_ALIGNED(a)) {REMAP_VA(bp, a, pg_a); if (!pg_a) return(EFAULT); if (dst_is_a) pg_dst = pg_a;}
    839  1.1  oster       if (RF_PAGE_ALIGNED(b)) {REMAP_VA(bp, b, pg_b); if (!pg_b) return(EFAULT);}
    840  1.1  oster       if (RF_PAGE_ALIGNED(c)) {REMAP_VA(bp, c, pg_c); if (!pg_c) return(EFAULT);}
    841  1.1  oster       if (!dst_is_a) if (RF_PAGE_ALIGNED(dst)) {REMAP_VA(bp, dst, pg_dst); if (!pg_dst) return(EFAULT);}
    842  1.1  oster     }
    843  1.1  oster   }
    844  1.1  oster   while (len) {
    845  1.1  oster     *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    846  1.1  oster     dst++; a++; b++; c++;
    847  1.1  oster     if (RF_PAGE_ALIGNED(a)) {REMAP_VA(bp, a, pg_a); if (!pg_a) return(EFAULT); if (dst_is_a) pg_dst = pg_a;}
    848  1.1  oster     if (RF_PAGE_ALIGNED(b)) {REMAP_VA(bp, b, pg_b); if (!pg_b) return(EFAULT);}
    849  1.1  oster     if (RF_PAGE_ALIGNED(c)) {REMAP_VA(bp, c, pg_c); if (!pg_c) return(EFAULT);}
    850  1.1  oster     if (!dst_is_a) if (RF_PAGE_ALIGNED(dst)) {REMAP_VA(bp, dst, pg_dst); if (!pg_dst) return(EFAULT);}
    851  1.1  oster     len--;
    852  1.1  oster   }
    853  1.1  oster   return(0);
    854  1.1  oster }
    855  1.1  oster 
    856  1.1  oster int rf_bxor3(dst,a,b,c,len, bp)
    857  1.1  oster   register unsigned char  *dst;
    858  1.1  oster   register unsigned char  *a;
    859  1.1  oster   register unsigned char  *b;
    860  1.1  oster   register unsigned char  *c;
    861  1.1  oster   unsigned long            len;
    862  1.1  oster   void                    *bp;
    863  1.1  oster {
    864  1.1  oster 	RF_ASSERT(((RF_UL(dst)|RF_UL(a)|RF_UL(b)|RF_UL(c)|len) & 0x7) == 0);
    865  1.1  oster 
    866  1.1  oster 	return(rf_longword_bxor3((unsigned long *)dst, (unsigned long *)a,
    867  1.1  oster 		(unsigned long *)b, (unsigned long *)c, len>>RF_LONGSHIFT, bp));
    868  1.1  oster }
    869