Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.20.10.1
      1  1.20.10.1      yamt /*	$NetBSD: rf_dagfuncs.c,v 1.20.10.1 2005/02/12 18:17:50 yamt Exp $	*/
      2        1.1     oster /*
      3        1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4        1.1     oster  * All rights reserved.
      5        1.1     oster  *
      6        1.1     oster  * Author: Mark Holland, William V. Courtright II
      7        1.1     oster  *
      8        1.1     oster  * Permission to use, copy, modify and distribute this software and
      9        1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10        1.1     oster  * notice and this permission notice appear in all copies of the
     11        1.1     oster  * software, derivative works or modified versions, and any portions
     12        1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13        1.1     oster  *
     14        1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15        1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16        1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17        1.1     oster  *
     18        1.1     oster  * Carnegie Mellon requests users of this software to return to
     19        1.1     oster  *
     20        1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21        1.1     oster  *  School of Computer Science
     22        1.1     oster  *  Carnegie Mellon University
     23        1.1     oster  *  Pittsburgh PA 15213-3890
     24        1.1     oster  *
     25        1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26        1.1     oster  * rights to redistribute these changes.
     27        1.1     oster  */
     28        1.1     oster 
     29        1.1     oster /*
     30        1.1     oster  * dagfuncs.c -- DAG node execution routines
     31        1.1     oster  *
     32        1.1     oster  * Rules:
     33        1.1     oster  * 1. Every DAG execution function must eventually cause node->status to
     34        1.1     oster  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35        1.1     oster  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36        1.1     oster  *    the node execution function can do these two things directly. In
     37        1.1     oster  *    the case of nodes that have to wait for some event (a disk read to
     38        1.1     oster  *    complete, a lock to be released, etc) to occur before they can
     39        1.1     oster  *    complete, this is typically achieved by having whatever module
     40        1.1     oster  *    is doing the operation call GenericWakeupFunc upon completion.
     41        1.1     oster  * 2. DAG execution functions should check the status in the DAG header
     42        1.1     oster  *    and NOP out their operations if the status is not "enable". However,
     43        1.1     oster  *    execution functions that release resources must be sure to release
     44        1.1     oster  *    them even when they NOP out the function that would use them.
     45        1.1     oster  *    Functions that acquire resources should go ahead and acquire them
     46        1.1     oster  *    even when they NOP, so that a downstream release node will not have
     47        1.1     oster  *    to check to find out whether or not the acquire was suppressed.
     48        1.1     oster  */
     49        1.8     lukem 
     50        1.8     lukem #include <sys/cdefs.h>
     51  1.20.10.1      yamt __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.20.10.1 2005/02/12 18:17:50 yamt Exp $");
     52        1.1     oster 
     53        1.7       mrg #include <sys/param.h>
     54        1.1     oster #include <sys/ioctl.h>
     55        1.1     oster 
     56        1.1     oster #include "rf_archs.h"
     57        1.1     oster #include "rf_raid.h"
     58        1.1     oster #include "rf_dag.h"
     59        1.1     oster #include "rf_layout.h"
     60        1.1     oster #include "rf_etimer.h"
     61        1.1     oster #include "rf_acctrace.h"
     62        1.1     oster #include "rf_diskqueue.h"
     63        1.1     oster #include "rf_dagfuncs.h"
     64        1.1     oster #include "rf_general.h"
     65        1.1     oster #include "rf_engine.h"
     66        1.1     oster #include "rf_dagutils.h"
     67        1.1     oster 
     68        1.1     oster #include "rf_kintf.h"
     69        1.1     oster 
     70        1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
     71        1.1     oster #include "rf_paritylog.h"
     72        1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73        1.1     oster 
     74        1.3     oster int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75        1.3     oster int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76        1.3     oster int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77        1.3     oster int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78        1.3     oster int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
     79        1.3     oster int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
     80        1.3     oster int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     81        1.3     oster int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     82        1.3     oster int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     83        1.1     oster 
     84       1.14     oster /*****************************************************************************
     85        1.1     oster  * main (only) configuration routine for this module
     86       1.14     oster  ****************************************************************************/
     87        1.3     oster int
     88       1.15     oster rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
     89        1.3     oster {
     90       1.14     oster 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
     91       1.14     oster 		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     92        1.3     oster 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     93        1.3     oster 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     94        1.3     oster 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     95        1.3     oster 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     96        1.3     oster 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
     97        1.3     oster 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
     98        1.3     oster 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     99        1.3     oster 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
    100        1.3     oster 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
    101        1.3     oster 	return (0);
    102        1.1     oster }
    103        1.1     oster 
    104        1.1     oster 
    105        1.1     oster 
    106       1.14     oster /*****************************************************************************
    107        1.1     oster  * the execution function associated with a terminate node
    108       1.14     oster  ****************************************************************************/
    109        1.3     oster int
    110       1.15     oster rf_TerminateFunc(RF_DagNode_t *node)
    111        1.1     oster {
    112        1.3     oster 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    113        1.3     oster 	node->status = rf_good;
    114        1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    115        1.1     oster }
    116        1.1     oster 
    117        1.3     oster int
    118       1.15     oster rf_TerminateUndoFunc(RF_DagNode_t *node)
    119        1.1     oster {
    120        1.3     oster 	return (0);
    121        1.1     oster }
    122        1.1     oster 
    123        1.1     oster 
    124       1.15     oster /*****************************************************************************
    125        1.1     oster  * execution functions associated with a mirror node
    126        1.1     oster  *
    127        1.1     oster  * parameters:
    128        1.1     oster  *
    129        1.1     oster  * 0 - physical disk addres of data
    130        1.1     oster  * 1 - buffer for holding read data
    131        1.1     oster  * 2 - parity stripe ID
    132        1.1     oster  * 3 - flags
    133        1.1     oster  * 4 - physical disk address of mirror (parity)
    134        1.1     oster  *
    135       1.15     oster  ****************************************************************************/
    136        1.1     oster 
    137        1.3     oster int
    138       1.15     oster rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
    139        1.1     oster {
    140        1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    141        1.3     oster 	 * parameters with physical disk address */
    142        1.1     oster 
    143        1.3     oster 	rf_SelectMirrorDiskIdle(node);
    144        1.3     oster 	return (rf_DiskReadFunc(node));
    145        1.1     oster }
    146        1.1     oster 
    147       1.11     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    148        1.3     oster int
    149       1.15     oster rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
    150        1.1     oster {
    151        1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    152        1.3     oster 	 * parameters with physical disk address */
    153        1.1     oster 
    154        1.3     oster 	rf_SelectMirrorDiskPartition(node);
    155        1.3     oster 	return (rf_DiskReadFunc(node));
    156        1.1     oster }
    157       1.11     oster #endif
    158        1.1     oster 
    159        1.3     oster int
    160       1.15     oster rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
    161        1.1     oster {
    162        1.3     oster 	return (0);
    163        1.1     oster }
    164        1.1     oster 
    165        1.1     oster 
    166        1.1     oster 
    167        1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    168       1.14     oster /*****************************************************************************
    169        1.1     oster  * the execution function associated with a parity log update node
    170       1.14     oster  ****************************************************************************/
    171        1.3     oster int
    172       1.15     oster rf_ParityLogUpdateFunc(RF_DagNode_t *node)
    173        1.3     oster {
    174        1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    175        1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    176        1.3     oster 	RF_ParityLogData_t *logData;
    177       1.19     oster #if RF_ACC_TRACE > 0
    178        1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    179        1.3     oster 	RF_Etimer_t timer;
    180       1.19     oster #endif
    181        1.3     oster 
    182        1.3     oster 	if (node->dagHdr->status == rf_enable) {
    183       1.19     oster #if RF_ACC_TRACE > 0
    184        1.3     oster 		RF_ETIMER_START(timer);
    185       1.19     oster #endif
    186        1.3     oster 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
    187        1.3     oster 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    188        1.3     oster 		    node->wakeFunc, (void *) node,
    189        1.3     oster 		    node->dagHdr->tracerec, timer);
    190        1.3     oster 		if (logData)
    191        1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    192        1.3     oster 		else {
    193       1.19     oster #if RF_ACC_TRACE > 0
    194        1.3     oster 			RF_ETIMER_STOP(timer);
    195        1.3     oster 			RF_ETIMER_EVAL(timer);
    196        1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    197       1.19     oster #endif
    198        1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    199        1.3     oster 		}
    200        1.1     oster 	}
    201        1.3     oster 	return (0);
    202        1.1     oster }
    203        1.1     oster 
    204        1.1     oster 
    205       1.15     oster /*****************************************************************************
    206        1.1     oster  * the execution function associated with a parity log overwrite node
    207       1.15     oster  ****************************************************************************/
    208        1.3     oster int
    209       1.15     oster rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
    210        1.3     oster {
    211        1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    212        1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    213        1.3     oster 	RF_ParityLogData_t *logData;
    214       1.19     oster #if RF_ACC_TRACE > 0
    215        1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    216        1.3     oster 	RF_Etimer_t timer;
    217       1.19     oster #endif
    218        1.3     oster 
    219        1.3     oster 	if (node->dagHdr->status == rf_enable) {
    220       1.19     oster #if RF_ACC_TRACE > 0
    221        1.3     oster 		RF_ETIMER_START(timer);
    222       1.19     oster #endif
    223       1.14     oster 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf,
    224       1.14     oster (RF_Raid_t *) (node->dagHdr->raidPtr),
    225        1.3     oster 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    226        1.3     oster 		if (logData)
    227        1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    228        1.3     oster 		else {
    229       1.19     oster #if RF_ACC_TRACE > 0
    230        1.3     oster 			RF_ETIMER_STOP(timer);
    231        1.3     oster 			RF_ETIMER_EVAL(timer);
    232        1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    233       1.19     oster #endif
    234        1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    235        1.3     oster 		}
    236        1.1     oster 	}
    237        1.3     oster 	return (0);
    238        1.1     oster }
    239        1.1     oster 
    240        1.3     oster int
    241       1.15     oster rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
    242        1.1     oster {
    243        1.3     oster 	return (0);
    244        1.1     oster }
    245        1.1     oster 
    246        1.3     oster int
    247       1.15     oster rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
    248        1.1     oster {
    249        1.3     oster 	return (0);
    250        1.1     oster }
    251       1.10     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    252       1.10     oster 
    253       1.14     oster /*****************************************************************************
    254        1.1     oster  * the execution function associated with a NOP node
    255       1.14     oster  ****************************************************************************/
    256        1.3     oster int
    257       1.15     oster rf_NullNodeFunc(RF_DagNode_t *node)
    258        1.1     oster {
    259        1.3     oster 	node->status = rf_good;
    260        1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    261        1.1     oster }
    262        1.1     oster 
    263        1.3     oster int
    264       1.15     oster rf_NullNodeUndoFunc(RF_DagNode_t *node)
    265        1.1     oster {
    266        1.3     oster 	node->status = rf_undone;
    267        1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    268        1.1     oster }
    269        1.1     oster 
    270        1.1     oster 
    271       1.14     oster /*****************************************************************************
    272        1.1     oster  * the execution function associated with a disk-read node
    273       1.14     oster  ****************************************************************************/
    274        1.3     oster int
    275       1.15     oster rf_DiskReadFuncForThreads(RF_DagNode_t *node)
    276        1.3     oster {
    277        1.3     oster 	RF_DiskQueueData_t *req;
    278        1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    279        1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    280        1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    281        1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    282        1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    283        1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    284       1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    285        1.3     oster 	void   *b_proc = NULL;
    286        1.1     oster 
    287        1.3     oster 	if (node->dagHdr->bp)
    288        1.3     oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    289        1.1     oster 
    290        1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    291        1.3     oster 	    buf, parityStripeID, which_ru,
    292        1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    293  1.20.10.1      yamt 	    node,
    294       1.19     oster #if RF_ACC_TRACE > 0
    295       1.19     oster 	     node->dagHdr->tracerec,
    296       1.19     oster #else
    297       1.19     oster              NULL,
    298       1.19     oster #endif
    299  1.20.10.1      yamt 	    (void *) (node->dagHdr->raidPtr), 0, b_proc, PR_NOWAIT);
    300        1.3     oster 	if (!req) {
    301        1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    302        1.3     oster 	} else {
    303        1.3     oster 		node->dagFuncData = (void *) req;
    304       1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    305        1.3     oster 	}
    306        1.3     oster 	return (0);
    307        1.1     oster }
    308        1.1     oster 
    309        1.1     oster 
    310       1.14     oster /*****************************************************************************
    311        1.1     oster  * the execution function associated with a disk-write node
    312       1.14     oster  ****************************************************************************/
    313        1.3     oster int
    314       1.15     oster rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
    315        1.3     oster {
    316        1.3     oster 	RF_DiskQueueData_t *req;
    317        1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    318        1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    319        1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    320        1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    321        1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    322        1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    323       1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    324        1.3     oster 	void   *b_proc = NULL;
    325        1.1     oster 
    326        1.3     oster 	if (node->dagHdr->bp)
    327        1.3     oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    328        1.1     oster 
    329        1.3     oster 	/* normal processing (rollaway or forward recovery) begins here */
    330        1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    331        1.3     oster 	    buf, parityStripeID, which_ru,
    332        1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    333  1.20.10.1      yamt 	    (void *) node,
    334       1.19     oster #if RF_ACC_TRACE > 0
    335        1.3     oster 	    node->dagHdr->tracerec,
    336       1.19     oster #else
    337       1.19     oster 	    NULL,
    338       1.19     oster #endif
    339        1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    340  1.20.10.1      yamt 	    0, b_proc, PR_NOWAIT);
    341        1.3     oster 
    342        1.3     oster 	if (!req) {
    343        1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    344        1.3     oster 	} else {
    345        1.3     oster 		node->dagFuncData = (void *) req;
    346       1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    347        1.3     oster 	}
    348        1.3     oster 
    349        1.3     oster 	return (0);
    350        1.1     oster }
    351       1.14     oster /*****************************************************************************
    352        1.1     oster  * the undo function for disk nodes
    353        1.1     oster  * Note:  this is not a proper undo of a write node, only locks are released.
    354        1.1     oster  *        old data is not restored to disk!
    355       1.14     oster  ****************************************************************************/
    356        1.3     oster int
    357       1.15     oster rf_DiskUndoFunc(RF_DagNode_t *node)
    358        1.3     oster {
    359        1.3     oster 	RF_DiskQueueData_t *req;
    360        1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    361       1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    362        1.3     oster 
    363        1.3     oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    364        1.3     oster 	    0L, 0, NULL, 0L, 0,
    365        1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    366        1.3     oster 	    (void *) node,
    367       1.19     oster #if RF_ACC_TRACE > 0
    368       1.19     oster 	     node->dagHdr->tracerec,
    369       1.19     oster #else
    370       1.19     oster 	     NULL,
    371       1.19     oster #endif
    372        1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    373  1.20.10.1      yamt 	    RF_UNLOCK_DISK_QUEUE, NULL, PR_NOWAIT);
    374        1.3     oster 	if (!req)
    375        1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    376        1.3     oster 	else {
    377        1.3     oster 		node->dagFuncData = (void *) req;
    378       1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    379        1.3     oster 	}
    380        1.1     oster 
    381        1.3     oster 	return (0);
    382        1.1     oster }
    383       1.14     oster /*****************************************************************************
    384        1.1     oster  * the execution function associated with an "unlock disk queue" node
    385       1.14     oster  ****************************************************************************/
    386        1.3     oster int
    387       1.15     oster rf_DiskUnlockFuncForThreads(RF_DagNode_t *node)
    388        1.3     oster {
    389        1.3     oster 	RF_DiskQueueData_t *req;
    390        1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    391       1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    392        1.3     oster 
    393        1.3     oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    394        1.3     oster 	    0L, 0, NULL, 0L, 0,
    395        1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    396        1.3     oster 	    (void *) node,
    397       1.19     oster #if RF_ACC_TRACE > 0
    398       1.19     oster 	    node->dagHdr->tracerec,
    399       1.19     oster #else
    400       1.19     oster 	    NULL,
    401       1.19     oster #endif
    402        1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    403  1.20.10.1      yamt 	    RF_UNLOCK_DISK_QUEUE, NULL, PR_NOWAIT);
    404        1.3     oster 	if (!req)
    405        1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    406        1.3     oster 	else {
    407        1.3     oster 		node->dagFuncData = (void *) req;
    408       1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    409        1.3     oster 	}
    410        1.1     oster 
    411        1.3     oster 	return (0);
    412        1.1     oster }
    413       1.14     oster /*****************************************************************************
    414       1.14     oster  * Callback routine for DiskRead and DiskWrite nodes.  When the disk
    415       1.14     oster  * op completes, the routine is called to set the node status and
    416       1.14     oster  * inform the execution engine that the node has fired.
    417       1.14     oster  ****************************************************************************/
    418        1.3     oster int
    419       1.15     oster rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
    420        1.3     oster {
    421       1.15     oster 
    422        1.3     oster 	switch (node->status) {
    423        1.3     oster 	case rf_fired:
    424        1.3     oster 		if (status)
    425        1.3     oster 			node->status = rf_bad;
    426        1.3     oster 		else
    427        1.3     oster 			node->status = rf_good;
    428        1.3     oster 		break;
    429        1.3     oster 	case rf_recover:
    430        1.3     oster 		/* probably should never reach this case */
    431        1.3     oster 		if (status)
    432        1.3     oster 			node->status = rf_panic;
    433        1.3     oster 		else
    434        1.3     oster 			node->status = rf_undone;
    435        1.3     oster 		break;
    436        1.3     oster 	default:
    437        1.4     oster 		printf("rf_GenericWakeupFunc:");
    438        1.4     oster 		printf("node->status is %d,", node->status);
    439        1.4     oster 		printf("status is %d \n", status);
    440        1.3     oster 		RF_PANIC();
    441        1.3     oster 		break;
    442        1.3     oster 	}
    443        1.3     oster 	if (node->dagFuncData)
    444        1.3     oster 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    445        1.3     oster 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    446        1.1     oster }
    447        1.1     oster 
    448        1.1     oster 
    449       1.14     oster /*****************************************************************************
    450       1.14     oster  * there are three distinct types of xor nodes:
    451       1.14     oster 
    452       1.14     oster  * A "regular xor" is used in the fault-free case where the access
    453       1.14     oster  * spans a complete stripe unit.  It assumes that the result buffer is
    454       1.14     oster  * one full stripe unit in size, and uses the stripe-unit-offset
    455       1.14     oster  * values that it computes from the PDAs to determine where within the
    456       1.14     oster  * stripe unit to XOR each argument buffer.
    457       1.14     oster  *
    458       1.14     oster  * A "simple xor" is used in the fault-free case where the access
    459       1.14     oster  * touches only a portion of one (or two, in some cases) stripe
    460       1.14     oster  * unit(s).  It assumes that all the argument buffers are of the same
    461       1.14     oster  * size and have the same stripe unit offset.
    462       1.14     oster  *
    463       1.14     oster  * A "recovery xor" is used in the degraded-mode case.  It's similar
    464       1.14     oster  * to the regular xor function except that it takes the failed PDA as
    465       1.14     oster  * an additional parameter, and uses it to determine what portions of
    466       1.14     oster  * the argument buffers need to be xor'd into the result buffer, and
    467       1.14     oster  * where in the result buffer they should go.
    468       1.14     oster  ****************************************************************************/
    469        1.1     oster 
    470        1.1     oster /* xor the params together and store the result in the result field.
    471       1.14     oster  * assume the result field points to a buffer that is the size of one
    472       1.14     oster  * SU, and use the pda params to determine where within the buffer to
    473       1.14     oster  * XOR the input buffers.  */
    474        1.3     oster int
    475       1.15     oster rf_RegularXorFunc(RF_DagNode_t *node)
    476        1.3     oster {
    477        1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    478       1.19     oster #if RF_ACC_TRACE > 0
    479        1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    480        1.3     oster 	RF_Etimer_t timer;
    481       1.19     oster #endif
    482        1.3     oster 	int     i, retcode;
    483        1.1     oster 
    484        1.3     oster 	retcode = 0;
    485        1.3     oster 	if (node->dagHdr->status == rf_enable) {
    486        1.3     oster 		/* don't do the XOR if the input is the same as the output */
    487       1.19     oster #if RF_ACC_TRACE > 0
    488        1.3     oster 		RF_ETIMER_START(timer);
    489       1.19     oster #endif
    490        1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    491        1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    492        1.3     oster 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    493       1.17     oster 							   (char *) node->params[i + 1].p, (char *) node->results[0]);
    494        1.3     oster 			}
    495       1.19     oster #if RF_ACC_TRACE > 0
    496        1.3     oster 		RF_ETIMER_STOP(timer);
    497        1.3     oster 		RF_ETIMER_EVAL(timer);
    498        1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    499       1.19     oster #endif
    500        1.3     oster 	}
    501        1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    502        1.3     oster 							 * explicitly since no
    503        1.3     oster 							 * I/O in this node */
    504        1.1     oster }
    505        1.1     oster /* xor the inputs into the result buffer, ignoring placement issues */
    506        1.3     oster int
    507       1.15     oster rf_SimpleXorFunc(RF_DagNode_t *node)
    508        1.3     oster {
    509        1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    510        1.3     oster 	int     i, retcode = 0;
    511       1.19     oster #if RF_ACC_TRACE > 0
    512        1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    513        1.3     oster 	RF_Etimer_t timer;
    514       1.19     oster #endif
    515        1.1     oster 
    516        1.3     oster 	if (node->dagHdr->status == rf_enable) {
    517       1.19     oster #if RF_ACC_TRACE > 0
    518        1.3     oster 		RF_ETIMER_START(timer);
    519       1.19     oster #endif
    520        1.3     oster 		/* don't do the XOR if the input is the same as the output */
    521        1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    522        1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    523        1.3     oster 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    524       1.17     oster 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
    525        1.3     oster 			}
    526       1.19     oster #if RF_ACC_TRACE > 0
    527        1.3     oster 		RF_ETIMER_STOP(timer);
    528        1.3     oster 		RF_ETIMER_EVAL(timer);
    529        1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    530       1.19     oster #endif
    531        1.3     oster 	}
    532        1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    533        1.3     oster 							 * explicitly since no
    534        1.3     oster 							 * I/O in this node */
    535        1.1     oster }
    536       1.14     oster /* this xor is used by the degraded-mode dag functions to recover lost
    537       1.14     oster  * data.  the second-to-last parameter is the PDA for the failed
    538       1.14     oster  * portion of the access.  the code here looks at this PDA and assumes
    539       1.14     oster  * that the xor target buffer is equal in size to the number of
    540       1.14     oster  * sectors in the failed PDA.  It then uses the other PDAs in the
    541       1.14     oster  * parameter list to determine where within the target buffer the
    542       1.14     oster  * corresponding data should be xored.  */
    543        1.3     oster int
    544       1.15     oster rf_RecoveryXorFunc(RF_DagNode_t *node)
    545        1.3     oster {
    546        1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    547        1.3     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    548        1.3     oster 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    549        1.3     oster 	int     i, retcode = 0;
    550        1.3     oster 	RF_PhysDiskAddr_t *pda;
    551        1.3     oster 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    552        1.3     oster 	char   *srcbuf, *destbuf;
    553       1.19     oster #if RF_ACC_TRACE > 0
    554        1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    555        1.3     oster 	RF_Etimer_t timer;
    556       1.19     oster #endif
    557        1.1     oster 
    558        1.3     oster 	if (node->dagHdr->status == rf_enable) {
    559       1.19     oster #if RF_ACC_TRACE > 0
    560        1.3     oster 		RF_ETIMER_START(timer);
    561       1.19     oster #endif
    562        1.3     oster 		for (i = 0; i < node->numParams - 2; i += 2)
    563        1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    564        1.3     oster 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    565        1.3     oster 				srcbuf = (char *) node->params[i + 1].p;
    566        1.3     oster 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    567        1.3     oster 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    568       1.17     oster 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
    569        1.3     oster 			}
    570       1.19     oster #if RF_ACC_TRACE > 0
    571        1.3     oster 		RF_ETIMER_STOP(timer);
    572        1.3     oster 		RF_ETIMER_EVAL(timer);
    573        1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    574       1.19     oster #endif
    575        1.3     oster 	}
    576        1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));
    577        1.1     oster }
    578       1.14     oster /*****************************************************************************
    579       1.14     oster  * The next three functions are utilities used by the above
    580       1.14     oster  * xor-execution functions.
    581       1.14     oster  ****************************************************************************/
    582        1.1     oster 
    583        1.1     oster 
    584        1.1     oster /*
    585       1.14     oster  * this is just a glorified buffer xor.  targbuf points to a buffer
    586       1.14     oster  * that is one full stripe unit in size.  srcbuf points to a buffer
    587       1.14     oster  * that may be less than 1 SU, but never more.  When the access
    588       1.14     oster  * described by pda is one SU in size (which by implication means it's
    589       1.14     oster  * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
    590       1.14     oster  * When the access is less than one SU in size the XOR occurs on only
    591       1.14     oster  * the portion of targbuf identified in the pda.  */
    592        1.1     oster 
    593        1.3     oster int
    594       1.15     oster rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    595       1.17     oster 		 char *srcbuf, char *targbuf)
    596        1.3     oster {
    597        1.3     oster 	char   *targptr;
    598        1.3     oster 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    599        1.3     oster 	int     SUOffset = pda->startSector % sectPerSU;
    600        1.3     oster 	int     length, retcode = 0;
    601        1.3     oster 
    602        1.3     oster 	RF_ASSERT(pda->numSector <= sectPerSU);
    603        1.3     oster 
    604        1.3     oster 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    605        1.3     oster 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    606       1.17     oster 	retcode = rf_bxor(srcbuf, targptr, length);
    607        1.3     oster 	return (retcode);
    608        1.1     oster }
    609       1.14     oster /* it really should be the case that the buffer pointers (returned by
    610       1.14     oster  * malloc) are aligned to the natural word size of the machine, so
    611       1.14     oster  * this is the only case we optimize for.  The length should always be
    612       1.14     oster  * a multiple of the sector size, so there should be no problem with
    613       1.14     oster  * leftover bytes at the end.  */
    614        1.3     oster int
    615       1.17     oster rf_bxor(char *src, char *dest, int len)
    616        1.3     oster {
    617        1.3     oster 	unsigned mask = sizeof(long) - 1, retcode = 0;
    618        1.3     oster 
    619       1.14     oster 	if (!(((unsigned long) src) & mask) &&
    620       1.14     oster 	    !(((unsigned long) dest) & mask) && !(len & mask)) {
    621       1.14     oster 		retcode = rf_longword_bxor((unsigned long *) src,
    622       1.14     oster 					   (unsigned long *) dest,
    623       1.17     oster 					   len >> RF_LONGSHIFT);
    624        1.3     oster 	} else {
    625        1.3     oster 		RF_ASSERT(0);
    626        1.3     oster 	}
    627        1.3     oster 	return (retcode);
    628        1.1     oster }
    629        1.1     oster 
    630       1.14     oster /* When XORing in kernel mode, we need to map each user page to kernel
    631       1.14     oster  * space before we can access it.  We don't want to assume anything
    632       1.14     oster  * about which input buffers are in kernel/user space, nor about their
    633       1.14     oster  * alignment, so in each loop we compute the maximum number of bytes
    634       1.14     oster  * that we can xor without crossing any page boundaries, and do only
    635       1.15     oster  * this many bytes before the next remap.
    636       1.15     oster  *
    637       1.15     oster  * len - is in longwords
    638       1.15     oster  */
    639        1.3     oster int
    640       1.17     oster rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
    641        1.3     oster {
    642        1.6  augustss 	unsigned long *end = src + len;
    643        1.6  augustss 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    644       1.14     oster 	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
    645        1.3     oster 	int     longs_this_time;/* # longwords to xor in the current iteration */
    646        1.3     oster 
    647       1.16     oster 	pg_src = src;
    648       1.16     oster 	pg_dest = dest;
    649        1.3     oster 	if (!pg_src || !pg_dest)
    650        1.3     oster 		return (EFAULT);
    651        1.3     oster 
    652        1.3     oster 	while (len >= 4) {
    653        1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    654        1.3     oster 		src += longs_this_time;
    655        1.3     oster 		dest += longs_this_time;
    656        1.3     oster 		len -= longs_this_time;
    657        1.3     oster 		while (longs_this_time >= 4) {
    658        1.3     oster 			d0 = pg_dest[0];
    659        1.3     oster 			d1 = pg_dest[1];
    660        1.3     oster 			d2 = pg_dest[2];
    661        1.3     oster 			d3 = pg_dest[3];
    662        1.3     oster 			s0 = pg_src[0];
    663        1.3     oster 			s1 = pg_src[1];
    664        1.3     oster 			s2 = pg_src[2];
    665        1.3     oster 			s3 = pg_src[3];
    666        1.3     oster 			pg_dest[0] = d0 ^ s0;
    667        1.3     oster 			pg_dest[1] = d1 ^ s1;
    668        1.3     oster 			pg_dest[2] = d2 ^ s2;
    669        1.3     oster 			pg_dest[3] = d3 ^ s3;
    670        1.3     oster 			pg_src += 4;
    671        1.3     oster 			pg_dest += 4;
    672        1.3     oster 			longs_this_time -= 4;
    673        1.3     oster 		}
    674        1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    675        1.3     oster 						 * boundaries here */
    676        1.3     oster 			*pg_dest++ ^= *pg_src++;
    677        1.3     oster 			longs_this_time--;
    678        1.3     oster 		}
    679        1.3     oster 
    680        1.3     oster 		/* either we're done, or we've reached a page boundary on one
    681        1.3     oster 		 * (or possibly both) of the pointers */
    682        1.3     oster 		if (len) {
    683        1.3     oster 			if (RF_PAGE_ALIGNED(src))
    684       1.16     oster 				pg_src = src;
    685        1.3     oster 			if (RF_PAGE_ALIGNED(dest))
    686       1.16     oster 				pg_dest = dest;
    687        1.3     oster 			if (!pg_src || !pg_dest)
    688        1.3     oster 				return (EFAULT);
    689        1.3     oster 		}
    690        1.3     oster 	}
    691        1.3     oster 	while (src < end) {
    692        1.3     oster 		*pg_dest++ ^= *pg_src++;
    693        1.3     oster 		src++;
    694        1.3     oster 		dest++;
    695        1.3     oster 		len--;
    696        1.3     oster 		if (RF_PAGE_ALIGNED(src))
    697       1.16     oster 			pg_src = src;
    698        1.3     oster 		if (RF_PAGE_ALIGNED(dest))
    699       1.16     oster 			pg_dest = dest;
    700        1.3     oster 	}
    701        1.3     oster 	RF_ASSERT(len == 0);
    702        1.3     oster 	return (0);
    703        1.1     oster }
    704        1.1     oster 
    705        1.9     oster #if 0
    706        1.1     oster /*
    707        1.1     oster    dst = a ^ b ^ c;
    708        1.1     oster    a may equal dst
    709        1.1     oster    see comment above longword_bxor
    710       1.15     oster    len is length in longwords
    711        1.1     oster */
    712        1.3     oster int
    713       1.15     oster rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
    714       1.15     oster 		  unsigned long *c, int len, void *bp)
    715        1.3     oster {
    716        1.3     oster 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    717        1.6  augustss 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    718        1.3     oster 								 * pointers */
    719        1.3     oster 	int     longs_this_time;/* # longs to xor in the current iteration */
    720        1.3     oster 	char    dst_is_a = 0;
    721        1.3     oster 
    722       1.16     oster 	pg_a = a;
    723       1.16     oster 	pg_b = b;
    724       1.16     oster 	pg_c = c;
    725        1.3     oster 	if (a == dst) {
    726        1.3     oster 		pg_dst = pg_a;
    727        1.3     oster 		dst_is_a = 1;
    728        1.3     oster 	} else {
    729       1.16     oster 		pg_dst = dst;
    730        1.3     oster 	}
    731        1.3     oster 
    732        1.3     oster 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    733        1.3     oster 	while ((((unsigned long) pg_dst) & 0x1f)) {
    734        1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    735        1.3     oster 		dst++;
    736        1.3     oster 		a++;
    737        1.3     oster 		b++;
    738        1.3     oster 		c++;
    739        1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    740       1.16     oster 			pg_a = a;
    741        1.3     oster 			if (!pg_a)
    742        1.3     oster 				return (EFAULT);
    743        1.3     oster 		}
    744        1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    745       1.16     oster 			pg_b = a;
    746        1.3     oster 			if (!pg_b)
    747        1.3     oster 				return (EFAULT);
    748        1.3     oster 		}
    749        1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    750       1.16     oster 			pg_c = a;
    751        1.3     oster 			if (!pg_c)
    752        1.3     oster 				return (EFAULT);
    753        1.3     oster 		}
    754        1.3     oster 		len--;
    755        1.3     oster 	}
    756        1.3     oster 
    757        1.3     oster 	while (len > 4) {
    758        1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    759        1.3     oster 		a += longs_this_time;
    760        1.3     oster 		b += longs_this_time;
    761        1.3     oster 		c += longs_this_time;
    762        1.3     oster 		dst += longs_this_time;
    763        1.3     oster 		len -= longs_this_time;
    764        1.3     oster 		while (longs_this_time >= 4) {
    765        1.3     oster 			a0 = pg_a[0];
    766        1.3     oster 			longs_this_time -= 4;
    767        1.3     oster 
    768        1.3     oster 			a1 = pg_a[1];
    769        1.3     oster 			a2 = pg_a[2];
    770        1.3     oster 
    771        1.3     oster 			a3 = pg_a[3];
    772        1.3     oster 			pg_a += 4;
    773        1.3     oster 
    774        1.3     oster 			b0 = pg_b[0];
    775        1.3     oster 			b1 = pg_b[1];
    776        1.3     oster 
    777        1.3     oster 			b2 = pg_b[2];
    778        1.3     oster 			b3 = pg_b[3];
    779        1.3     oster 			/* start dual issue */
    780        1.3     oster 			a0 ^= b0;
    781        1.3     oster 			b0 = pg_c[0];
    782        1.3     oster 
    783        1.3     oster 			pg_b += 4;
    784        1.3     oster 			a1 ^= b1;
    785        1.3     oster 
    786        1.3     oster 			a2 ^= b2;
    787        1.3     oster 			a3 ^= b3;
    788        1.3     oster 
    789        1.3     oster 			b1 = pg_c[1];
    790        1.3     oster 			a0 ^= b0;
    791        1.3     oster 
    792        1.3     oster 			b2 = pg_c[2];
    793        1.3     oster 			a1 ^= b1;
    794        1.3     oster 
    795        1.3     oster 			b3 = pg_c[3];
    796        1.3     oster 			a2 ^= b2;
    797        1.3     oster 
    798        1.3     oster 			pg_dst[0] = a0;
    799        1.3     oster 			a3 ^= b3;
    800        1.3     oster 			pg_dst[1] = a1;
    801        1.3     oster 			pg_c += 4;
    802        1.3     oster 			pg_dst[2] = a2;
    803        1.3     oster 			pg_dst[3] = a3;
    804        1.3     oster 			pg_dst += 4;
    805        1.3     oster 		}
    806        1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    807        1.3     oster 						 * boundaries here */
    808        1.3     oster 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    809        1.3     oster 			longs_this_time--;
    810        1.3     oster 		}
    811        1.3     oster 
    812        1.3     oster 		if (len) {
    813        1.3     oster 			if (RF_PAGE_ALIGNED(a)) {
    814       1.16     oster 				pg_a = a;
    815        1.3     oster 				if (!pg_a)
    816        1.3     oster 					return (EFAULT);
    817        1.3     oster 				if (dst_is_a)
    818        1.3     oster 					pg_dst = pg_a;
    819        1.3     oster 			}
    820        1.3     oster 			if (RF_PAGE_ALIGNED(b)) {
    821       1.16     oster 				pg_b = b;
    822        1.3     oster 				if (!pg_b)
    823        1.3     oster 					return (EFAULT);
    824        1.3     oster 			}
    825        1.3     oster 			if (RF_PAGE_ALIGNED(c)) {
    826       1.16     oster 				pg_c = c;
    827        1.3     oster 				if (!pg_c)
    828        1.3     oster 					return (EFAULT);
    829        1.3     oster 			}
    830        1.3     oster 			if (!dst_is_a)
    831        1.3     oster 				if (RF_PAGE_ALIGNED(dst)) {
    832       1.16     oster 					pg_dst = dst;
    833        1.3     oster 					if (!pg_dst)
    834        1.3     oster 						return (EFAULT);
    835        1.3     oster 				}
    836        1.3     oster 		}
    837        1.3     oster 	}
    838        1.3     oster 	while (len) {
    839        1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    840        1.3     oster 		dst++;
    841        1.3     oster 		a++;
    842        1.3     oster 		b++;
    843        1.3     oster 		c++;
    844        1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    845       1.16     oster 			pg_a = a;
    846        1.3     oster 			if (!pg_a)
    847        1.3     oster 				return (EFAULT);
    848        1.3     oster 			if (dst_is_a)
    849        1.3     oster 				pg_dst = pg_a;
    850        1.3     oster 		}
    851        1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    852       1.16     oster 			pg_b = b;
    853        1.3     oster 			if (!pg_b)
    854        1.3     oster 				return (EFAULT);
    855        1.3     oster 		}
    856        1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    857       1.16     oster 			pg_c = c;
    858        1.3     oster 			if (!pg_c)
    859        1.3     oster 				return (EFAULT);
    860        1.3     oster 		}
    861        1.3     oster 		if (!dst_is_a)
    862        1.3     oster 			if (RF_PAGE_ALIGNED(dst)) {
    863       1.16     oster 				pg_dst = dst;
    864        1.3     oster 				if (!pg_dst)
    865        1.3     oster 					return (EFAULT);
    866        1.3     oster 			}
    867        1.3     oster 		len--;
    868        1.3     oster 	}
    869        1.3     oster 	return (0);
    870        1.3     oster }
    871        1.3     oster 
    872        1.3     oster int
    873       1.15     oster rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
    874       1.15     oster 	 unsigned char *c, unsigned long len, void *bp)
    875        1.1     oster {
    876        1.3     oster 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    877        1.1     oster 
    878        1.3     oster 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    879        1.3     oster 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    880        1.1     oster }
    881        1.9     oster #endif
    882