Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.24.2.1
      1  1.24.2.1      yamt /*	$NetBSD: rf_dagfuncs.c,v 1.24.2.1 2006/06/21 15:06:28 yamt Exp $	*/
      2       1.1     oster /*
      3       1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4       1.1     oster  * All rights reserved.
      5       1.1     oster  *
      6       1.1     oster  * Author: Mark Holland, William V. Courtright II
      7       1.1     oster  *
      8       1.1     oster  * Permission to use, copy, modify and distribute this software and
      9       1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10       1.1     oster  * notice and this permission notice appear in all copies of the
     11       1.1     oster  * software, derivative works or modified versions, and any portions
     12       1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13       1.1     oster  *
     14       1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15       1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16       1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17       1.1     oster  *
     18       1.1     oster  * Carnegie Mellon requests users of this software to return to
     19       1.1     oster  *
     20       1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21       1.1     oster  *  School of Computer Science
     22       1.1     oster  *  Carnegie Mellon University
     23       1.1     oster  *  Pittsburgh PA 15213-3890
     24       1.1     oster  *
     25       1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26       1.1     oster  * rights to redistribute these changes.
     27       1.1     oster  */
     28       1.1     oster 
     29       1.1     oster /*
     30       1.1     oster  * dagfuncs.c -- DAG node execution routines
     31       1.1     oster  *
     32       1.1     oster  * Rules:
     33       1.1     oster  * 1. Every DAG execution function must eventually cause node->status to
     34       1.1     oster  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35       1.1     oster  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36       1.1     oster  *    the node execution function can do these two things directly. In
     37       1.1     oster  *    the case of nodes that have to wait for some event (a disk read to
     38       1.1     oster  *    complete, a lock to be released, etc) to occur before they can
     39       1.1     oster  *    complete, this is typically achieved by having whatever module
     40       1.1     oster  *    is doing the operation call GenericWakeupFunc upon completion.
     41       1.1     oster  * 2. DAG execution functions should check the status in the DAG header
     42       1.1     oster  *    and NOP out their operations if the status is not "enable". However,
     43       1.1     oster  *    execution functions that release resources must be sure to release
     44       1.1     oster  *    them even when they NOP out the function that would use them.
     45       1.1     oster  *    Functions that acquire resources should go ahead and acquire them
     46       1.1     oster  *    even when they NOP, so that a downstream release node will not have
     47       1.1     oster  *    to check to find out whether or not the acquire was suppressed.
     48       1.1     oster  */
     49       1.8     lukem 
     50       1.8     lukem #include <sys/cdefs.h>
     51  1.24.2.1      yamt __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.24.2.1 2006/06/21 15:06:28 yamt Exp $");
     52       1.1     oster 
     53       1.7       mrg #include <sys/param.h>
     54       1.1     oster #include <sys/ioctl.h>
     55       1.1     oster 
     56       1.1     oster #include "rf_archs.h"
     57       1.1     oster #include "rf_raid.h"
     58       1.1     oster #include "rf_dag.h"
     59       1.1     oster #include "rf_layout.h"
     60       1.1     oster #include "rf_etimer.h"
     61       1.1     oster #include "rf_acctrace.h"
     62       1.1     oster #include "rf_diskqueue.h"
     63       1.1     oster #include "rf_dagfuncs.h"
     64       1.1     oster #include "rf_general.h"
     65       1.1     oster #include "rf_engine.h"
     66       1.1     oster #include "rf_dagutils.h"
     67       1.1     oster 
     68       1.1     oster #include "rf_kintf.h"
     69       1.1     oster 
     70       1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
     71       1.1     oster #include "rf_paritylog.h"
     72       1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73       1.1     oster 
     74       1.3     oster int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75       1.3     oster int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76       1.3     oster int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77       1.3     oster int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78       1.3     oster int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     79       1.3     oster int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     80       1.3     oster int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     81       1.1     oster 
     82      1.14     oster /*****************************************************************************
     83       1.1     oster  * main (only) configuration routine for this module
     84      1.14     oster  ****************************************************************************/
     85      1.23     perry int
     86      1.15     oster rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
     87       1.3     oster {
     88      1.23     perry 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
     89      1.14     oster 		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     90       1.3     oster 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     91       1.3     oster 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     92       1.3     oster 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     93       1.3     oster 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     94       1.3     oster 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     95       1.3     oster 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
     96       1.3     oster 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
     97       1.3     oster 	return (0);
     98       1.1     oster }
     99       1.1     oster 
    100       1.1     oster 
    101       1.1     oster 
    102      1.14     oster /*****************************************************************************
    103       1.1     oster  * the execution function associated with a terminate node
    104      1.14     oster  ****************************************************************************/
    105      1.23     perry int
    106      1.15     oster rf_TerminateFunc(RF_DagNode_t *node)
    107       1.1     oster {
    108       1.3     oster 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    109       1.3     oster 	node->status = rf_good;
    110       1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    111       1.1     oster }
    112       1.1     oster 
    113      1.23     perry int
    114      1.15     oster rf_TerminateUndoFunc(RF_DagNode_t *node)
    115       1.1     oster {
    116       1.3     oster 	return (0);
    117       1.1     oster }
    118       1.1     oster 
    119       1.1     oster 
    120      1.15     oster /*****************************************************************************
    121       1.1     oster  * execution functions associated with a mirror node
    122       1.1     oster  *
    123       1.1     oster  * parameters:
    124       1.1     oster  *
    125       1.1     oster  * 0 - physical disk addres of data
    126       1.1     oster  * 1 - buffer for holding read data
    127       1.1     oster  * 2 - parity stripe ID
    128       1.1     oster  * 3 - flags
    129       1.1     oster  * 4 - physical disk address of mirror (parity)
    130       1.1     oster  *
    131      1.15     oster  ****************************************************************************/
    132       1.1     oster 
    133      1.23     perry int
    134      1.15     oster rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
    135       1.1     oster {
    136       1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    137       1.3     oster 	 * parameters with physical disk address */
    138       1.1     oster 
    139       1.3     oster 	rf_SelectMirrorDiskIdle(node);
    140       1.3     oster 	return (rf_DiskReadFunc(node));
    141       1.1     oster }
    142       1.1     oster 
    143      1.11     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    144      1.23     perry int
    145      1.15     oster rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
    146       1.1     oster {
    147       1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    148       1.3     oster 	 * parameters with physical disk address */
    149       1.1     oster 
    150       1.3     oster 	rf_SelectMirrorDiskPartition(node);
    151       1.3     oster 	return (rf_DiskReadFunc(node));
    152       1.1     oster }
    153      1.11     oster #endif
    154       1.1     oster 
    155      1.23     perry int
    156      1.15     oster rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
    157       1.1     oster {
    158       1.3     oster 	return (0);
    159       1.1     oster }
    160       1.1     oster 
    161       1.1     oster 
    162       1.1     oster 
    163       1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    164      1.14     oster /*****************************************************************************
    165       1.1     oster  * the execution function associated with a parity log update node
    166      1.14     oster  ****************************************************************************/
    167      1.23     perry int
    168      1.15     oster rf_ParityLogUpdateFunc(RF_DagNode_t *node)
    169       1.3     oster {
    170       1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    171      1.24  christos 	caddr_t bf = (caddr_t) node->params[1].p;
    172       1.3     oster 	RF_ParityLogData_t *logData;
    173      1.19     oster #if RF_ACC_TRACE > 0
    174       1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    175       1.3     oster 	RF_Etimer_t timer;
    176      1.19     oster #endif
    177       1.3     oster 
    178       1.3     oster 	if (node->dagHdr->status == rf_enable) {
    179      1.19     oster #if RF_ACC_TRACE > 0
    180       1.3     oster 		RF_ETIMER_START(timer);
    181      1.19     oster #endif
    182      1.24  christos 		logData = rf_CreateParityLogData(RF_UPDATE, pda, bf,
    183       1.3     oster 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    184       1.3     oster 		    node->wakeFunc, (void *) node,
    185       1.3     oster 		    node->dagHdr->tracerec, timer);
    186       1.3     oster 		if (logData)
    187       1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    188       1.3     oster 		else {
    189      1.19     oster #if RF_ACC_TRACE > 0
    190       1.3     oster 			RF_ETIMER_STOP(timer);
    191       1.3     oster 			RF_ETIMER_EVAL(timer);
    192       1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    193      1.19     oster #endif
    194       1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    195       1.3     oster 		}
    196       1.1     oster 	}
    197       1.3     oster 	return (0);
    198       1.1     oster }
    199       1.1     oster 
    200       1.1     oster 
    201      1.15     oster /*****************************************************************************
    202       1.1     oster  * the execution function associated with a parity log overwrite node
    203      1.15     oster  ****************************************************************************/
    204      1.23     perry int
    205      1.15     oster rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
    206       1.3     oster {
    207       1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    208      1.24  christos 	caddr_t bf = (caddr_t) node->params[1].p;
    209       1.3     oster 	RF_ParityLogData_t *logData;
    210      1.19     oster #if RF_ACC_TRACE > 0
    211       1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    212       1.3     oster 	RF_Etimer_t timer;
    213      1.19     oster #endif
    214       1.3     oster 
    215       1.3     oster 	if (node->dagHdr->status == rf_enable) {
    216      1.19     oster #if RF_ACC_TRACE > 0
    217       1.3     oster 		RF_ETIMER_START(timer);
    218      1.19     oster #endif
    219      1.24  christos 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf,
    220      1.14     oster (RF_Raid_t *) (node->dagHdr->raidPtr),
    221       1.3     oster 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    222       1.3     oster 		if (logData)
    223       1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    224       1.3     oster 		else {
    225      1.19     oster #if RF_ACC_TRACE > 0
    226       1.3     oster 			RF_ETIMER_STOP(timer);
    227       1.3     oster 			RF_ETIMER_EVAL(timer);
    228       1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    229      1.19     oster #endif
    230       1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    231       1.3     oster 		}
    232       1.1     oster 	}
    233       1.3     oster 	return (0);
    234       1.1     oster }
    235       1.1     oster 
    236      1.23     perry int
    237      1.15     oster rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
    238       1.1     oster {
    239       1.3     oster 	return (0);
    240       1.1     oster }
    241       1.1     oster 
    242      1.23     perry int
    243      1.15     oster rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
    244       1.1     oster {
    245       1.3     oster 	return (0);
    246       1.1     oster }
    247      1.10     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    248      1.10     oster 
    249      1.14     oster /*****************************************************************************
    250       1.1     oster  * the execution function associated with a NOP node
    251      1.14     oster  ****************************************************************************/
    252      1.23     perry int
    253      1.15     oster rf_NullNodeFunc(RF_DagNode_t *node)
    254       1.1     oster {
    255       1.3     oster 	node->status = rf_good;
    256       1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    257       1.1     oster }
    258       1.1     oster 
    259      1.23     perry int
    260      1.15     oster rf_NullNodeUndoFunc(RF_DagNode_t *node)
    261       1.1     oster {
    262       1.3     oster 	node->status = rf_undone;
    263       1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    264       1.1     oster }
    265       1.1     oster 
    266       1.1     oster 
    267      1.14     oster /*****************************************************************************
    268       1.1     oster  * the execution function associated with a disk-read node
    269      1.14     oster  ****************************************************************************/
    270      1.23     perry int
    271      1.15     oster rf_DiskReadFuncForThreads(RF_DagNode_t *node)
    272       1.3     oster {
    273       1.3     oster 	RF_DiskQueueData_t *req;
    274       1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    275      1.24  christos 	caddr_t bf = (caddr_t) node->params[1].p;
    276       1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    277       1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    278       1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    279       1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    280      1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    281       1.3     oster 	void   *b_proc = NULL;
    282       1.1     oster 
    283       1.3     oster 	if (node->dagHdr->bp)
    284       1.3     oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    285       1.1     oster 
    286       1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    287      1.24  christos 	    bf, parityStripeID, which_ru,
    288       1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    289      1.22     oster 	    node,
    290      1.19     oster #if RF_ACC_TRACE > 0
    291      1.19     oster 	     node->dagHdr->tracerec,
    292      1.19     oster #else
    293      1.19     oster              NULL,
    294      1.19     oster #endif
    295      1.21     oster 	    (void *) (node->dagHdr->raidPtr), 0, b_proc, PR_NOWAIT);
    296       1.3     oster 	if (!req) {
    297       1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    298       1.3     oster 	} else {
    299       1.3     oster 		node->dagFuncData = (void *) req;
    300      1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    301       1.3     oster 	}
    302       1.3     oster 	return (0);
    303       1.1     oster }
    304       1.1     oster 
    305       1.1     oster 
    306      1.14     oster /*****************************************************************************
    307       1.1     oster  * the execution function associated with a disk-write node
    308      1.14     oster  ****************************************************************************/
    309      1.23     perry int
    310      1.15     oster rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
    311       1.3     oster {
    312       1.3     oster 	RF_DiskQueueData_t *req;
    313       1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    314      1.24  christos 	caddr_t bf = (caddr_t) node->params[1].p;
    315       1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    316       1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    317       1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    318       1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    319      1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    320       1.3     oster 	void   *b_proc = NULL;
    321       1.1     oster 
    322       1.3     oster 	if (node->dagHdr->bp)
    323       1.3     oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    324       1.1     oster 
    325       1.3     oster 	/* normal processing (rollaway or forward recovery) begins here */
    326       1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    327      1.24  christos 	    bf, parityStripeID, which_ru,
    328       1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    329      1.22     oster 	    (void *) node,
    330      1.19     oster #if RF_ACC_TRACE > 0
    331       1.3     oster 	    node->dagHdr->tracerec,
    332      1.19     oster #else
    333      1.19     oster 	    NULL,
    334      1.19     oster #endif
    335       1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    336      1.21     oster 	    0, b_proc, PR_NOWAIT);
    337       1.3     oster 
    338       1.3     oster 	if (!req) {
    339       1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    340       1.3     oster 	} else {
    341       1.3     oster 		node->dagFuncData = (void *) req;
    342      1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    343       1.3     oster 	}
    344       1.3     oster 
    345       1.3     oster 	return (0);
    346       1.1     oster }
    347      1.14     oster /*****************************************************************************
    348       1.1     oster  * the undo function for disk nodes
    349       1.1     oster  * Note:  this is not a proper undo of a write node, only locks are released.
    350       1.1     oster  *        old data is not restored to disk!
    351      1.14     oster  ****************************************************************************/
    352      1.23     perry int
    353      1.15     oster rf_DiskUndoFunc(RF_DagNode_t *node)
    354       1.3     oster {
    355       1.3     oster 	RF_DiskQueueData_t *req;
    356       1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    357      1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    358       1.3     oster 
    359       1.3     oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    360       1.3     oster 	    0L, 0, NULL, 0L, 0,
    361       1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    362       1.3     oster 	    (void *) node,
    363      1.19     oster #if RF_ACC_TRACE > 0
    364      1.19     oster 	     node->dagHdr->tracerec,
    365      1.19     oster #else
    366      1.19     oster 	     NULL,
    367      1.19     oster #endif
    368       1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    369      1.21     oster 	    RF_UNLOCK_DISK_QUEUE, NULL, PR_NOWAIT);
    370       1.3     oster 	if (!req)
    371       1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    372       1.3     oster 	else {
    373       1.3     oster 		node->dagFuncData = (void *) req;
    374      1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    375       1.3     oster 	}
    376       1.1     oster 
    377       1.3     oster 	return (0);
    378       1.1     oster }
    379       1.3     oster 
    380      1.14     oster /*****************************************************************************
    381      1.14     oster  * Callback routine for DiskRead and DiskWrite nodes.  When the disk
    382      1.14     oster  * op completes, the routine is called to set the node status and
    383      1.14     oster  * inform the execution engine that the node has fired.
    384      1.14     oster  ****************************************************************************/
    385      1.23     perry int
    386      1.15     oster rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
    387       1.3     oster {
    388      1.15     oster 
    389       1.3     oster 	switch (node->status) {
    390       1.3     oster 	case rf_fired:
    391       1.3     oster 		if (status)
    392       1.3     oster 			node->status = rf_bad;
    393       1.3     oster 		else
    394       1.3     oster 			node->status = rf_good;
    395       1.3     oster 		break;
    396       1.3     oster 	case rf_recover:
    397       1.3     oster 		/* probably should never reach this case */
    398       1.3     oster 		if (status)
    399       1.3     oster 			node->status = rf_panic;
    400       1.3     oster 		else
    401       1.3     oster 			node->status = rf_undone;
    402       1.3     oster 		break;
    403       1.3     oster 	default:
    404       1.4     oster 		printf("rf_GenericWakeupFunc:");
    405       1.4     oster 		printf("node->status is %d,", node->status);
    406       1.4     oster 		printf("status is %d \n", status);
    407       1.3     oster 		RF_PANIC();
    408       1.3     oster 		break;
    409       1.3     oster 	}
    410       1.3     oster 	if (node->dagFuncData)
    411       1.3     oster 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    412       1.3     oster 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    413       1.1     oster }
    414       1.1     oster 
    415       1.1     oster 
    416      1.14     oster /*****************************************************************************
    417      1.14     oster  * there are three distinct types of xor nodes:
    418      1.14     oster 
    419      1.14     oster  * A "regular xor" is used in the fault-free case where the access
    420      1.14     oster  * spans a complete stripe unit.  It assumes that the result buffer is
    421      1.14     oster  * one full stripe unit in size, and uses the stripe-unit-offset
    422      1.14     oster  * values that it computes from the PDAs to determine where within the
    423      1.14     oster  * stripe unit to XOR each argument buffer.
    424      1.14     oster  *
    425      1.14     oster  * A "simple xor" is used in the fault-free case where the access
    426      1.14     oster  * touches only a portion of one (or two, in some cases) stripe
    427      1.14     oster  * unit(s).  It assumes that all the argument buffers are of the same
    428      1.14     oster  * size and have the same stripe unit offset.
    429      1.14     oster  *
    430      1.14     oster  * A "recovery xor" is used in the degraded-mode case.  It's similar
    431      1.14     oster  * to the regular xor function except that it takes the failed PDA as
    432      1.14     oster  * an additional parameter, and uses it to determine what portions of
    433      1.14     oster  * the argument buffers need to be xor'd into the result buffer, and
    434      1.14     oster  * where in the result buffer they should go.
    435      1.14     oster  ****************************************************************************/
    436       1.1     oster 
    437       1.1     oster /* xor the params together and store the result in the result field.
    438      1.14     oster  * assume the result field points to a buffer that is the size of one
    439      1.14     oster  * SU, and use the pda params to determine where within the buffer to
    440      1.14     oster  * XOR the input buffers.  */
    441      1.23     perry int
    442      1.15     oster rf_RegularXorFunc(RF_DagNode_t *node)
    443       1.3     oster {
    444       1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    445      1.19     oster #if RF_ACC_TRACE > 0
    446       1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    447       1.3     oster 	RF_Etimer_t timer;
    448      1.19     oster #endif
    449       1.3     oster 	int     i, retcode;
    450       1.1     oster 
    451       1.3     oster 	retcode = 0;
    452       1.3     oster 	if (node->dagHdr->status == rf_enable) {
    453       1.3     oster 		/* don't do the XOR if the input is the same as the output */
    454      1.19     oster #if RF_ACC_TRACE > 0
    455       1.3     oster 		RF_ETIMER_START(timer);
    456      1.19     oster #endif
    457       1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    458       1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    459       1.3     oster 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    460      1.17     oster 							   (char *) node->params[i + 1].p, (char *) node->results[0]);
    461       1.3     oster 			}
    462      1.19     oster #if RF_ACC_TRACE > 0
    463       1.3     oster 		RF_ETIMER_STOP(timer);
    464       1.3     oster 		RF_ETIMER_EVAL(timer);
    465       1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    466      1.19     oster #endif
    467       1.3     oster 	}
    468       1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    469       1.3     oster 							 * explicitly since no
    470       1.3     oster 							 * I/O in this node */
    471       1.1     oster }
    472       1.1     oster /* xor the inputs into the result buffer, ignoring placement issues */
    473      1.23     perry int
    474      1.15     oster rf_SimpleXorFunc(RF_DagNode_t *node)
    475       1.3     oster {
    476       1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    477       1.3     oster 	int     i, retcode = 0;
    478      1.19     oster #if RF_ACC_TRACE > 0
    479       1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    480       1.3     oster 	RF_Etimer_t timer;
    481      1.19     oster #endif
    482       1.1     oster 
    483       1.3     oster 	if (node->dagHdr->status == rf_enable) {
    484      1.19     oster #if RF_ACC_TRACE > 0
    485       1.3     oster 		RF_ETIMER_START(timer);
    486      1.19     oster #endif
    487       1.3     oster 		/* don't do the XOR if the input is the same as the output */
    488       1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    489       1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    490       1.3     oster 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    491      1.17     oster 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
    492       1.3     oster 			}
    493      1.19     oster #if RF_ACC_TRACE > 0
    494       1.3     oster 		RF_ETIMER_STOP(timer);
    495       1.3     oster 		RF_ETIMER_EVAL(timer);
    496       1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    497      1.19     oster #endif
    498       1.3     oster 	}
    499       1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    500       1.3     oster 							 * explicitly since no
    501       1.3     oster 							 * I/O in this node */
    502       1.1     oster }
    503      1.14     oster /* this xor is used by the degraded-mode dag functions to recover lost
    504      1.14     oster  * data.  the second-to-last parameter is the PDA for the failed
    505      1.14     oster  * portion of the access.  the code here looks at this PDA and assumes
    506      1.14     oster  * that the xor target buffer is equal in size to the number of
    507      1.14     oster  * sectors in the failed PDA.  It then uses the other PDAs in the
    508      1.14     oster  * parameter list to determine where within the target buffer the
    509      1.14     oster  * corresponding data should be xored.  */
    510      1.23     perry int
    511      1.15     oster rf_RecoveryXorFunc(RF_DagNode_t *node)
    512       1.3     oster {
    513       1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    514       1.3     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    515       1.3     oster 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    516       1.3     oster 	int     i, retcode = 0;
    517       1.3     oster 	RF_PhysDiskAddr_t *pda;
    518       1.3     oster 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    519       1.3     oster 	char   *srcbuf, *destbuf;
    520      1.19     oster #if RF_ACC_TRACE > 0
    521       1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    522       1.3     oster 	RF_Etimer_t timer;
    523      1.19     oster #endif
    524       1.1     oster 
    525       1.3     oster 	if (node->dagHdr->status == rf_enable) {
    526      1.19     oster #if RF_ACC_TRACE > 0
    527       1.3     oster 		RF_ETIMER_START(timer);
    528      1.19     oster #endif
    529       1.3     oster 		for (i = 0; i < node->numParams - 2; i += 2)
    530       1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    531       1.3     oster 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    532       1.3     oster 				srcbuf = (char *) node->params[i + 1].p;
    533       1.3     oster 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    534       1.3     oster 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    535      1.17     oster 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
    536       1.3     oster 			}
    537      1.19     oster #if RF_ACC_TRACE > 0
    538       1.3     oster 		RF_ETIMER_STOP(timer);
    539       1.3     oster 		RF_ETIMER_EVAL(timer);
    540       1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    541      1.19     oster #endif
    542       1.3     oster 	}
    543       1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));
    544       1.1     oster }
    545      1.14     oster /*****************************************************************************
    546      1.14     oster  * The next three functions are utilities used by the above
    547      1.14     oster  * xor-execution functions.
    548      1.14     oster  ****************************************************************************/
    549       1.1     oster 
    550       1.1     oster 
    551       1.1     oster /*
    552      1.14     oster  * this is just a glorified buffer xor.  targbuf points to a buffer
    553      1.14     oster  * that is one full stripe unit in size.  srcbuf points to a buffer
    554      1.14     oster  * that may be less than 1 SU, but never more.  When the access
    555      1.14     oster  * described by pda is one SU in size (which by implication means it's
    556      1.14     oster  * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
    557      1.14     oster  * When the access is less than one SU in size the XOR occurs on only
    558      1.14     oster  * the portion of targbuf identified in the pda.  */
    559       1.1     oster 
    560      1.23     perry int
    561      1.15     oster rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    562      1.17     oster 		 char *srcbuf, char *targbuf)
    563       1.3     oster {
    564       1.3     oster 	char   *targptr;
    565       1.3     oster 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    566       1.3     oster 	int     SUOffset = pda->startSector % sectPerSU;
    567       1.3     oster 	int     length, retcode = 0;
    568       1.3     oster 
    569       1.3     oster 	RF_ASSERT(pda->numSector <= sectPerSU);
    570       1.3     oster 
    571       1.3     oster 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    572       1.3     oster 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    573      1.17     oster 	retcode = rf_bxor(srcbuf, targptr, length);
    574       1.3     oster 	return (retcode);
    575       1.1     oster }
    576      1.14     oster /* it really should be the case that the buffer pointers (returned by
    577      1.14     oster  * malloc) are aligned to the natural word size of the machine, so
    578      1.14     oster  * this is the only case we optimize for.  The length should always be
    579      1.14     oster  * a multiple of the sector size, so there should be no problem with
    580      1.14     oster  * leftover bytes at the end.  */
    581      1.23     perry int
    582      1.17     oster rf_bxor(char *src, char *dest, int len)
    583       1.3     oster {
    584       1.3     oster 	unsigned mask = sizeof(long) - 1, retcode = 0;
    585       1.3     oster 
    586      1.23     perry 	if (!(((unsigned long) src) & mask) &&
    587      1.14     oster 	    !(((unsigned long) dest) & mask) && !(len & mask)) {
    588      1.23     perry 		retcode = rf_longword_bxor((unsigned long *) src,
    589      1.23     perry 					   (unsigned long *) dest,
    590      1.17     oster 					   len >> RF_LONGSHIFT);
    591       1.3     oster 	} else {
    592       1.3     oster 		RF_ASSERT(0);
    593       1.3     oster 	}
    594       1.3     oster 	return (retcode);
    595       1.1     oster }
    596       1.1     oster 
    597      1.14     oster /* When XORing in kernel mode, we need to map each user page to kernel
    598      1.14     oster  * space before we can access it.  We don't want to assume anything
    599      1.14     oster  * about which input buffers are in kernel/user space, nor about their
    600      1.14     oster  * alignment, so in each loop we compute the maximum number of bytes
    601      1.14     oster  * that we can xor without crossing any page boundaries, and do only
    602      1.23     perry  * this many bytes before the next remap.
    603      1.23     perry  *
    604      1.23     perry  * len - is in longwords
    605      1.15     oster  */
    606      1.23     perry int
    607      1.17     oster rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
    608       1.3     oster {
    609       1.6  augustss 	unsigned long *end = src + len;
    610       1.6  augustss 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    611      1.14     oster 	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
    612       1.3     oster 	int     longs_this_time;/* # longwords to xor in the current iteration */
    613       1.3     oster 
    614      1.16     oster 	pg_src = src;
    615      1.16     oster 	pg_dest = dest;
    616       1.3     oster 	if (!pg_src || !pg_dest)
    617       1.3     oster 		return (EFAULT);
    618       1.3     oster 
    619       1.3     oster 	while (len >= 4) {
    620       1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    621       1.3     oster 		src += longs_this_time;
    622       1.3     oster 		dest += longs_this_time;
    623       1.3     oster 		len -= longs_this_time;
    624       1.3     oster 		while (longs_this_time >= 4) {
    625       1.3     oster 			d0 = pg_dest[0];
    626       1.3     oster 			d1 = pg_dest[1];
    627       1.3     oster 			d2 = pg_dest[2];
    628       1.3     oster 			d3 = pg_dest[3];
    629       1.3     oster 			s0 = pg_src[0];
    630       1.3     oster 			s1 = pg_src[1];
    631       1.3     oster 			s2 = pg_src[2];
    632       1.3     oster 			s3 = pg_src[3];
    633       1.3     oster 			pg_dest[0] = d0 ^ s0;
    634       1.3     oster 			pg_dest[1] = d1 ^ s1;
    635       1.3     oster 			pg_dest[2] = d2 ^ s2;
    636       1.3     oster 			pg_dest[3] = d3 ^ s3;
    637       1.3     oster 			pg_src += 4;
    638       1.3     oster 			pg_dest += 4;
    639       1.3     oster 			longs_this_time -= 4;
    640       1.3     oster 		}
    641       1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    642       1.3     oster 						 * boundaries here */
    643       1.3     oster 			*pg_dest++ ^= *pg_src++;
    644       1.3     oster 			longs_this_time--;
    645       1.3     oster 		}
    646       1.3     oster 
    647       1.3     oster 		/* either we're done, or we've reached a page boundary on one
    648       1.3     oster 		 * (or possibly both) of the pointers */
    649       1.3     oster 		if (len) {
    650       1.3     oster 			if (RF_PAGE_ALIGNED(src))
    651      1.16     oster 				pg_src = src;
    652       1.3     oster 			if (RF_PAGE_ALIGNED(dest))
    653      1.16     oster 				pg_dest = dest;
    654       1.3     oster 			if (!pg_src || !pg_dest)
    655       1.3     oster 				return (EFAULT);
    656       1.3     oster 		}
    657       1.3     oster 	}
    658       1.3     oster 	while (src < end) {
    659       1.3     oster 		*pg_dest++ ^= *pg_src++;
    660       1.3     oster 		src++;
    661       1.3     oster 		dest++;
    662       1.3     oster 		len--;
    663       1.3     oster 		if (RF_PAGE_ALIGNED(src))
    664      1.16     oster 			pg_src = src;
    665       1.3     oster 		if (RF_PAGE_ALIGNED(dest))
    666      1.16     oster 			pg_dest = dest;
    667       1.3     oster 	}
    668       1.3     oster 	RF_ASSERT(len == 0);
    669       1.3     oster 	return (0);
    670       1.1     oster }
    671       1.1     oster 
    672       1.9     oster #if 0
    673       1.1     oster /*
    674       1.1     oster    dst = a ^ b ^ c;
    675       1.1     oster    a may equal dst
    676       1.1     oster    see comment above longword_bxor
    677      1.15     oster    len is length in longwords
    678       1.1     oster */
    679      1.23     perry int
    680      1.15     oster rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
    681      1.15     oster 		  unsigned long *c, int len, void *bp)
    682       1.3     oster {
    683       1.3     oster 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    684       1.6  augustss 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    685       1.3     oster 								 * pointers */
    686       1.3     oster 	int     longs_this_time;/* # longs to xor in the current iteration */
    687       1.3     oster 	char    dst_is_a = 0;
    688       1.3     oster 
    689      1.16     oster 	pg_a = a;
    690      1.16     oster 	pg_b = b;
    691      1.16     oster 	pg_c = c;
    692       1.3     oster 	if (a == dst) {
    693       1.3     oster 		pg_dst = pg_a;
    694       1.3     oster 		dst_is_a = 1;
    695       1.3     oster 	} else {
    696      1.16     oster 		pg_dst = dst;
    697       1.3     oster 	}
    698       1.3     oster 
    699       1.3     oster 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    700       1.3     oster 	while ((((unsigned long) pg_dst) & 0x1f)) {
    701       1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    702       1.3     oster 		dst++;
    703       1.3     oster 		a++;
    704       1.3     oster 		b++;
    705       1.3     oster 		c++;
    706       1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    707      1.16     oster 			pg_a = a;
    708       1.3     oster 			if (!pg_a)
    709       1.3     oster 				return (EFAULT);
    710       1.3     oster 		}
    711       1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    712      1.16     oster 			pg_b = a;
    713       1.3     oster 			if (!pg_b)
    714       1.3     oster 				return (EFAULT);
    715       1.3     oster 		}
    716       1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    717      1.16     oster 			pg_c = a;
    718       1.3     oster 			if (!pg_c)
    719       1.3     oster 				return (EFAULT);
    720       1.3     oster 		}
    721       1.3     oster 		len--;
    722       1.3     oster 	}
    723       1.3     oster 
    724       1.3     oster 	while (len > 4) {
    725       1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    726       1.3     oster 		a += longs_this_time;
    727       1.3     oster 		b += longs_this_time;
    728       1.3     oster 		c += longs_this_time;
    729       1.3     oster 		dst += longs_this_time;
    730       1.3     oster 		len -= longs_this_time;
    731       1.3     oster 		while (longs_this_time >= 4) {
    732       1.3     oster 			a0 = pg_a[0];
    733       1.3     oster 			longs_this_time -= 4;
    734       1.3     oster 
    735       1.3     oster 			a1 = pg_a[1];
    736       1.3     oster 			a2 = pg_a[2];
    737       1.3     oster 
    738       1.3     oster 			a3 = pg_a[3];
    739       1.3     oster 			pg_a += 4;
    740       1.3     oster 
    741       1.3     oster 			b0 = pg_b[0];
    742       1.3     oster 			b1 = pg_b[1];
    743       1.3     oster 
    744       1.3     oster 			b2 = pg_b[2];
    745       1.3     oster 			b3 = pg_b[3];
    746       1.3     oster 			/* start dual issue */
    747       1.3     oster 			a0 ^= b0;
    748       1.3     oster 			b0 = pg_c[0];
    749       1.3     oster 
    750       1.3     oster 			pg_b += 4;
    751       1.3     oster 			a1 ^= b1;
    752       1.3     oster 
    753       1.3     oster 			a2 ^= b2;
    754       1.3     oster 			a3 ^= b3;
    755       1.3     oster 
    756       1.3     oster 			b1 = pg_c[1];
    757       1.3     oster 			a0 ^= b0;
    758       1.3     oster 
    759       1.3     oster 			b2 = pg_c[2];
    760       1.3     oster 			a1 ^= b1;
    761       1.3     oster 
    762       1.3     oster 			b3 = pg_c[3];
    763       1.3     oster 			a2 ^= b2;
    764       1.3     oster 
    765       1.3     oster 			pg_dst[0] = a0;
    766       1.3     oster 			a3 ^= b3;
    767       1.3     oster 			pg_dst[1] = a1;
    768       1.3     oster 			pg_c += 4;
    769       1.3     oster 			pg_dst[2] = a2;
    770       1.3     oster 			pg_dst[3] = a3;
    771       1.3     oster 			pg_dst += 4;
    772       1.3     oster 		}
    773       1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    774       1.3     oster 						 * boundaries here */
    775       1.3     oster 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    776       1.3     oster 			longs_this_time--;
    777       1.3     oster 		}
    778       1.3     oster 
    779       1.3     oster 		if (len) {
    780       1.3     oster 			if (RF_PAGE_ALIGNED(a)) {
    781      1.16     oster 				pg_a = a;
    782       1.3     oster 				if (!pg_a)
    783       1.3     oster 					return (EFAULT);
    784       1.3     oster 				if (dst_is_a)
    785       1.3     oster 					pg_dst = pg_a;
    786       1.3     oster 			}
    787       1.3     oster 			if (RF_PAGE_ALIGNED(b)) {
    788      1.16     oster 				pg_b = b;
    789       1.3     oster 				if (!pg_b)
    790       1.3     oster 					return (EFAULT);
    791       1.3     oster 			}
    792       1.3     oster 			if (RF_PAGE_ALIGNED(c)) {
    793      1.16     oster 				pg_c = c;
    794       1.3     oster 				if (!pg_c)
    795       1.3     oster 					return (EFAULT);
    796       1.3     oster 			}
    797       1.3     oster 			if (!dst_is_a)
    798       1.3     oster 				if (RF_PAGE_ALIGNED(dst)) {
    799      1.16     oster 					pg_dst = dst;
    800       1.3     oster 					if (!pg_dst)
    801       1.3     oster 						return (EFAULT);
    802       1.3     oster 				}
    803       1.3     oster 		}
    804       1.3     oster 	}
    805       1.3     oster 	while (len) {
    806       1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    807       1.3     oster 		dst++;
    808       1.3     oster 		a++;
    809       1.3     oster 		b++;
    810       1.3     oster 		c++;
    811       1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    812      1.16     oster 			pg_a = a;
    813       1.3     oster 			if (!pg_a)
    814       1.3     oster 				return (EFAULT);
    815       1.3     oster 			if (dst_is_a)
    816       1.3     oster 				pg_dst = pg_a;
    817       1.3     oster 		}
    818       1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    819      1.16     oster 			pg_b = b;
    820       1.3     oster 			if (!pg_b)
    821       1.3     oster 				return (EFAULT);
    822       1.3     oster 		}
    823       1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    824      1.16     oster 			pg_c = c;
    825       1.3     oster 			if (!pg_c)
    826       1.3     oster 				return (EFAULT);
    827       1.3     oster 		}
    828       1.3     oster 		if (!dst_is_a)
    829       1.3     oster 			if (RF_PAGE_ALIGNED(dst)) {
    830      1.16     oster 				pg_dst = dst;
    831       1.3     oster 				if (!pg_dst)
    832       1.3     oster 					return (EFAULT);
    833       1.3     oster 			}
    834       1.3     oster 		len--;
    835       1.3     oster 	}
    836       1.3     oster 	return (0);
    837       1.3     oster }
    838       1.3     oster 
    839      1.23     perry int
    840      1.23     perry rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
    841      1.15     oster 	 unsigned char *c, unsigned long len, void *bp)
    842       1.1     oster {
    843       1.3     oster 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    844       1.1     oster 
    845       1.3     oster 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    846       1.3     oster 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    847       1.1     oster }
    848       1.9     oster #endif
    849