rf_dagfuncs.c revision 1.3 1 1.3 oster /* $NetBSD: rf_dagfuncs.c,v 1.3 1999/02/05 00:06:08 oster Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland, William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * dagfuncs.c -- DAG node execution routines
31 1.1 oster *
32 1.1 oster * Rules:
33 1.1 oster * 1. Every DAG execution function must eventually cause node->status to
34 1.1 oster * get set to "good" or "bad", and "FinishNode" to be called. In the
35 1.1 oster * case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 1.1 oster * the node execution function can do these two things directly. In
37 1.1 oster * the case of nodes that have to wait for some event (a disk read to
38 1.1 oster * complete, a lock to be released, etc) to occur before they can
39 1.1 oster * complete, this is typically achieved by having whatever module
40 1.1 oster * is doing the operation call GenericWakeupFunc upon completion.
41 1.1 oster * 2. DAG execution functions should check the status in the DAG header
42 1.1 oster * and NOP out their operations if the status is not "enable". However,
43 1.1 oster * execution functions that release resources must be sure to release
44 1.1 oster * them even when they NOP out the function that would use them.
45 1.1 oster * Functions that acquire resources should go ahead and acquire them
46 1.1 oster * even when they NOP, so that a downstream release node will not have
47 1.1 oster * to check to find out whether or not the acquire was suppressed.
48 1.1 oster */
49 1.1 oster
50 1.1 oster #include <sys/ioctl.h>
51 1.1 oster #include <sys/param.h>
52 1.1 oster
53 1.1 oster #include "rf_archs.h"
54 1.1 oster #include "rf_raid.h"
55 1.1 oster #include "rf_dag.h"
56 1.1 oster #include "rf_layout.h"
57 1.1 oster #include "rf_etimer.h"
58 1.1 oster #include "rf_acctrace.h"
59 1.1 oster #include "rf_diskqueue.h"
60 1.1 oster #include "rf_dagfuncs.h"
61 1.1 oster #include "rf_general.h"
62 1.1 oster #include "rf_engine.h"
63 1.1 oster #include "rf_dagutils.h"
64 1.1 oster
65 1.1 oster #include "rf_kintf.h"
66 1.1 oster
67 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
68 1.1 oster #include "rf_paritylog.h"
69 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
70 1.1 oster
71 1.3 oster int (*rf_DiskReadFunc) (RF_DagNode_t *);
72 1.3 oster int (*rf_DiskWriteFunc) (RF_DagNode_t *);
73 1.3 oster int (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
74 1.3 oster int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
75 1.3 oster int (*rf_DiskUnlockFunc) (RF_DagNode_t *);
76 1.3 oster int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
77 1.3 oster int (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
78 1.3 oster int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
79 1.3 oster int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
80 1.1 oster
81 1.1 oster /*****************************************************************************************
82 1.1 oster * main (only) configuration routine for this module
83 1.1 oster ****************************************************************************************/
84 1.3 oster int
85 1.3 oster rf_ConfigureDAGFuncs(listp)
86 1.3 oster RF_ShutdownList_t **listp;
87 1.3 oster {
88 1.3 oster RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
89 1.3 oster rf_DiskReadFunc = rf_DiskReadFuncForThreads;
90 1.3 oster rf_DiskReadUndoFunc = rf_DiskUndoFunc;
91 1.3 oster rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
92 1.3 oster rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
93 1.3 oster rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
94 1.3 oster rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
95 1.3 oster rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
96 1.3 oster rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
97 1.3 oster rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
98 1.3 oster return (0);
99 1.1 oster }
100 1.1 oster
101 1.1 oster
102 1.1 oster
103 1.1 oster /*****************************************************************************************
104 1.1 oster * the execution function associated with a terminate node
105 1.1 oster ****************************************************************************************/
106 1.3 oster int
107 1.3 oster rf_TerminateFunc(node)
108 1.3 oster RF_DagNode_t *node;
109 1.1 oster {
110 1.3 oster RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
111 1.3 oster node->status = rf_good;
112 1.3 oster return (rf_FinishNode(node, RF_THREAD_CONTEXT));
113 1.1 oster }
114 1.1 oster
115 1.3 oster int
116 1.3 oster rf_TerminateUndoFunc(node)
117 1.3 oster RF_DagNode_t *node;
118 1.1 oster {
119 1.3 oster return (0);
120 1.1 oster }
121 1.1 oster
122 1.1 oster
123 1.1 oster /*****************************************************************************************
124 1.1 oster * execution functions associated with a mirror node
125 1.1 oster *
126 1.1 oster * parameters:
127 1.1 oster *
128 1.1 oster * 0 - physical disk addres of data
129 1.1 oster * 1 - buffer for holding read data
130 1.1 oster * 2 - parity stripe ID
131 1.1 oster * 3 - flags
132 1.1 oster * 4 - physical disk address of mirror (parity)
133 1.1 oster *
134 1.1 oster ****************************************************************************************/
135 1.1 oster
136 1.3 oster int
137 1.3 oster rf_DiskReadMirrorIdleFunc(node)
138 1.3 oster RF_DagNode_t *node;
139 1.1 oster {
140 1.3 oster /* select the mirror copy with the shortest queue and fill in node
141 1.3 oster * parameters with physical disk address */
142 1.1 oster
143 1.3 oster rf_SelectMirrorDiskIdle(node);
144 1.3 oster return (rf_DiskReadFunc(node));
145 1.1 oster }
146 1.1 oster
147 1.3 oster int
148 1.3 oster rf_DiskReadMirrorPartitionFunc(node)
149 1.3 oster RF_DagNode_t *node;
150 1.1 oster {
151 1.3 oster /* select the mirror copy with the shortest queue and fill in node
152 1.3 oster * parameters with physical disk address */
153 1.1 oster
154 1.3 oster rf_SelectMirrorDiskPartition(node);
155 1.3 oster return (rf_DiskReadFunc(node));
156 1.1 oster }
157 1.1 oster
158 1.3 oster int
159 1.3 oster rf_DiskReadMirrorUndoFunc(node)
160 1.3 oster RF_DagNode_t *node;
161 1.1 oster {
162 1.3 oster return (0);
163 1.1 oster }
164 1.1 oster
165 1.1 oster
166 1.1 oster
167 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
168 1.1 oster /*****************************************************************************************
169 1.1 oster * the execution function associated with a parity log update node
170 1.1 oster ****************************************************************************************/
171 1.3 oster int
172 1.3 oster rf_ParityLogUpdateFunc(node)
173 1.3 oster RF_DagNode_t *node;
174 1.3 oster {
175 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
176 1.3 oster caddr_t buf = (caddr_t) node->params[1].p;
177 1.3 oster RF_ParityLogData_t *logData;
178 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
179 1.3 oster RF_Etimer_t timer;
180 1.3 oster
181 1.3 oster if (node->dagHdr->status == rf_enable) {
182 1.3 oster RF_ETIMER_START(timer);
183 1.3 oster logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
184 1.3 oster (RF_Raid_t *) (node->dagHdr->raidPtr),
185 1.3 oster node->wakeFunc, (void *) node,
186 1.3 oster node->dagHdr->tracerec, timer);
187 1.3 oster if (logData)
188 1.3 oster rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
189 1.3 oster else {
190 1.3 oster RF_ETIMER_STOP(timer);
191 1.3 oster RF_ETIMER_EVAL(timer);
192 1.3 oster tracerec->plog_us += RF_ETIMER_VAL_US(timer);
193 1.3 oster (node->wakeFunc) (node, ENOMEM);
194 1.3 oster }
195 1.1 oster }
196 1.3 oster return (0);
197 1.1 oster }
198 1.1 oster
199 1.1 oster
200 1.1 oster /*****************************************************************************************
201 1.1 oster * the execution function associated with a parity log overwrite node
202 1.1 oster ****************************************************************************************/
203 1.3 oster int
204 1.3 oster rf_ParityLogOverwriteFunc(node)
205 1.3 oster RF_DagNode_t *node;
206 1.3 oster {
207 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
208 1.3 oster caddr_t buf = (caddr_t) node->params[1].p;
209 1.3 oster RF_ParityLogData_t *logData;
210 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
211 1.3 oster RF_Etimer_t timer;
212 1.3 oster
213 1.3 oster if (node->dagHdr->status == rf_enable) {
214 1.3 oster RF_ETIMER_START(timer);
215 1.3 oster logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
216 1.3 oster node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
217 1.3 oster if (logData)
218 1.3 oster rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
219 1.3 oster else {
220 1.3 oster RF_ETIMER_STOP(timer);
221 1.3 oster RF_ETIMER_EVAL(timer);
222 1.3 oster tracerec->plog_us += RF_ETIMER_VAL_US(timer);
223 1.3 oster (node->wakeFunc) (node, ENOMEM);
224 1.3 oster }
225 1.1 oster }
226 1.3 oster return (0);
227 1.1 oster }
228 1.3 oster #else /* RF_INCLUDE_PARITYLOGGING > 0 */
229 1.1 oster
230 1.3 oster int
231 1.3 oster rf_ParityLogUpdateFunc(node)
232 1.3 oster RF_DagNode_t *node;
233 1.1 oster {
234 1.3 oster return (0);
235 1.1 oster }
236 1.3 oster int
237 1.3 oster rf_ParityLogOverwriteFunc(node)
238 1.3 oster RF_DagNode_t *node;
239 1.1 oster {
240 1.3 oster return (0);
241 1.1 oster }
242 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
243 1.1 oster
244 1.3 oster int
245 1.3 oster rf_ParityLogUpdateUndoFunc(node)
246 1.3 oster RF_DagNode_t *node;
247 1.1 oster {
248 1.3 oster return (0);
249 1.1 oster }
250 1.1 oster
251 1.3 oster int
252 1.3 oster rf_ParityLogOverwriteUndoFunc(node)
253 1.3 oster RF_DagNode_t *node;
254 1.1 oster {
255 1.3 oster return (0);
256 1.1 oster }
257 1.1 oster /*****************************************************************************************
258 1.1 oster * the execution function associated with a NOP node
259 1.1 oster ****************************************************************************************/
260 1.3 oster int
261 1.3 oster rf_NullNodeFunc(node)
262 1.3 oster RF_DagNode_t *node;
263 1.1 oster {
264 1.3 oster node->status = rf_good;
265 1.3 oster return (rf_FinishNode(node, RF_THREAD_CONTEXT));
266 1.1 oster }
267 1.1 oster
268 1.3 oster int
269 1.3 oster rf_NullNodeUndoFunc(node)
270 1.3 oster RF_DagNode_t *node;
271 1.1 oster {
272 1.3 oster node->status = rf_undone;
273 1.3 oster return (rf_FinishNode(node, RF_THREAD_CONTEXT));
274 1.1 oster }
275 1.1 oster
276 1.1 oster
277 1.1 oster /*****************************************************************************************
278 1.1 oster * the execution function associated with a disk-read node
279 1.1 oster ****************************************************************************************/
280 1.3 oster int
281 1.3 oster rf_DiskReadFuncForThreads(node)
282 1.3 oster RF_DagNode_t *node;
283 1.3 oster {
284 1.3 oster RF_DiskQueueData_t *req;
285 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
286 1.3 oster caddr_t buf = (caddr_t) node->params[1].p;
287 1.3 oster RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
288 1.3 oster unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
289 1.3 oster unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
290 1.3 oster unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
291 1.3 oster unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
292 1.3 oster RF_DiskQueueDataFlags_t flags = 0;
293 1.3 oster RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
294 1.3 oster RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
295 1.3 oster void *b_proc = NULL;
296 1.1 oster #if RF_BACKWARD > 0
297 1.3 oster caddr_t undoBuf;
298 1.1 oster #endif
299 1.1 oster
300 1.3 oster if (node->dagHdr->bp)
301 1.3 oster b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
302 1.1 oster
303 1.3 oster RF_ASSERT(!(lock && unlock));
304 1.3 oster flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
305 1.3 oster flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
306 1.1 oster #if RF_BACKWARD > 0
307 1.3 oster /* allocate and zero the undo buffer. this is equivalent to copying
308 1.3 oster * the original buffer's contents to the undo buffer prior to
309 1.3 oster * performing the disk read. XXX hardcoded 512 bytes per sector! */
310 1.3 oster if (node->dagHdr->allocList == NULL)
311 1.3 oster rf_MakeAllocList(node->dagHdr->allocList);
312 1.3 oster RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
313 1.3 oster #endif /* RF_BACKWARD > 0 */
314 1.3 oster req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
315 1.3 oster buf, parityStripeID, which_ru,
316 1.3 oster (int (*) (void *, int)) node->wakeFunc,
317 1.3 oster node, NULL, node->dagHdr->tracerec,
318 1.3 oster (void *) (node->dagHdr->raidPtr), flags, b_proc);
319 1.3 oster if (!req) {
320 1.3 oster (node->wakeFunc) (node, ENOMEM);
321 1.3 oster } else {
322 1.3 oster node->dagFuncData = (void *) req;
323 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
324 1.3 oster }
325 1.3 oster return (0);
326 1.1 oster }
327 1.1 oster
328 1.1 oster
329 1.1 oster /*****************************************************************************************
330 1.1 oster * the execution function associated with a disk-write node
331 1.1 oster ****************************************************************************************/
332 1.3 oster int
333 1.3 oster rf_DiskWriteFuncForThreads(node)
334 1.3 oster RF_DagNode_t *node;
335 1.3 oster {
336 1.3 oster RF_DiskQueueData_t *req;
337 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
338 1.3 oster caddr_t buf = (caddr_t) node->params[1].p;
339 1.3 oster RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
340 1.3 oster unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
341 1.3 oster unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
342 1.3 oster unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
343 1.3 oster unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
344 1.3 oster RF_DiskQueueDataFlags_t flags = 0;
345 1.3 oster RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
346 1.3 oster RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
347 1.3 oster void *b_proc = NULL;
348 1.1 oster #if RF_BACKWARD > 0
349 1.3 oster caddr_t undoBuf;
350 1.1 oster #endif
351 1.1 oster
352 1.3 oster if (node->dagHdr->bp)
353 1.3 oster b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
354 1.1 oster
355 1.1 oster #if RF_BACKWARD > 0
356 1.3 oster /* This area is used only for backward error recovery experiments
357 1.3 oster * First, schedule allocate a buffer and schedule a pre-read of the
358 1.3 oster * disk After the pre-read, proceed with the normal disk write */
359 1.3 oster if (node->status == rf_bwd2) {
360 1.3 oster /* just finished undo logging, now perform real function */
361 1.3 oster node->status = rf_fired;
362 1.3 oster RF_ASSERT(!(lock && unlock));
363 1.3 oster flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
364 1.3 oster flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
365 1.3 oster req = rf_CreateDiskQueueData(iotype,
366 1.3 oster pda->startSector, pda->numSector, buf, parityStripeID, which_ru,
367 1.3 oster node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec,
368 1.3 oster (void *) (node->dagHdr->raidPtr), flags, b_proc);
369 1.3 oster
370 1.3 oster if (!req) {
371 1.3 oster (node->wakeFunc) (node, ENOMEM);
372 1.3 oster } else {
373 1.3 oster node->dagFuncData = (void *) req;
374 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
375 1.3 oster }
376 1.3 oster } else {
377 1.3 oster /* node status should be rf_fired */
378 1.3 oster /* schedule a disk pre-read */
379 1.3 oster node->status = rf_bwd1;
380 1.3 oster RF_ASSERT(!(lock && unlock));
381 1.3 oster flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
382 1.3 oster flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
383 1.3 oster if (node->dagHdr->allocList == NULL)
384 1.3 oster rf_MakeAllocList(node->dagHdr->allocList);
385 1.3 oster RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
386 1.3 oster req = rf_CreateDiskQueueData(RF_IO_TYPE_READ,
387 1.3 oster pda->startSector, pda->numSector, undoBuf, parityStripeID, which_ru,
388 1.3 oster node->wakeFunc, (void *) node, NULL, node->dagHdr->tracerec,
389 1.3 oster (void *) (node->dagHdr->raidPtr), flags, b_proc);
390 1.3 oster
391 1.3 oster if (!req) {
392 1.3 oster (node->wakeFunc) (node, ENOMEM);
393 1.3 oster } else {
394 1.3 oster node->dagFuncData = (void *) req;
395 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
396 1.3 oster }
397 1.3 oster }
398 1.3 oster return (0);
399 1.3 oster #endif /* RF_BACKWARD > 0 */
400 1.1 oster
401 1.3 oster /* normal processing (rollaway or forward recovery) begins here */
402 1.3 oster RF_ASSERT(!(lock && unlock));
403 1.3 oster flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
404 1.3 oster flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
405 1.3 oster req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
406 1.3 oster buf, parityStripeID, which_ru,
407 1.3 oster (int (*) (void *, int)) node->wakeFunc,
408 1.3 oster (void *) node, NULL,
409 1.3 oster node->dagHdr->tracerec,
410 1.3 oster (void *) (node->dagHdr->raidPtr),
411 1.3 oster flags, b_proc);
412 1.3 oster
413 1.3 oster if (!req) {
414 1.3 oster (node->wakeFunc) (node, ENOMEM);
415 1.3 oster } else {
416 1.3 oster node->dagFuncData = (void *) req;
417 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
418 1.3 oster }
419 1.3 oster
420 1.3 oster return (0);
421 1.1 oster }
422 1.1 oster /*****************************************************************************************
423 1.1 oster * the undo function for disk nodes
424 1.1 oster * Note: this is not a proper undo of a write node, only locks are released.
425 1.1 oster * old data is not restored to disk!
426 1.1 oster ****************************************************************************************/
427 1.3 oster int
428 1.3 oster rf_DiskUndoFunc(node)
429 1.3 oster RF_DagNode_t *node;
430 1.3 oster {
431 1.3 oster RF_DiskQueueData_t *req;
432 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
433 1.3 oster RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
434 1.3 oster
435 1.3 oster req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
436 1.3 oster 0L, 0, NULL, 0L, 0,
437 1.3 oster (int (*) (void *, int)) node->wakeFunc,
438 1.3 oster (void *) node,
439 1.3 oster NULL, node->dagHdr->tracerec,
440 1.3 oster (void *) (node->dagHdr->raidPtr),
441 1.3 oster RF_UNLOCK_DISK_QUEUE, NULL);
442 1.3 oster if (!req)
443 1.3 oster (node->wakeFunc) (node, ENOMEM);
444 1.3 oster else {
445 1.3 oster node->dagFuncData = (void *) req;
446 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
447 1.3 oster }
448 1.1 oster
449 1.3 oster return (0);
450 1.1 oster }
451 1.1 oster /*****************************************************************************************
452 1.1 oster * the execution function associated with an "unlock disk queue" node
453 1.1 oster ****************************************************************************************/
454 1.3 oster int
455 1.3 oster rf_DiskUnlockFuncForThreads(node)
456 1.3 oster RF_DagNode_t *node;
457 1.3 oster {
458 1.3 oster RF_DiskQueueData_t *req;
459 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
460 1.3 oster RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
461 1.3 oster
462 1.3 oster req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
463 1.3 oster 0L, 0, NULL, 0L, 0,
464 1.3 oster (int (*) (void *, int)) node->wakeFunc,
465 1.3 oster (void *) node,
466 1.3 oster NULL, node->dagHdr->tracerec,
467 1.3 oster (void *) (node->dagHdr->raidPtr),
468 1.3 oster RF_UNLOCK_DISK_QUEUE, NULL);
469 1.3 oster if (!req)
470 1.3 oster (node->wakeFunc) (node, ENOMEM);
471 1.3 oster else {
472 1.3 oster node->dagFuncData = (void *) req;
473 1.3 oster rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
474 1.3 oster }
475 1.1 oster
476 1.3 oster return (0);
477 1.1 oster }
478 1.1 oster /*****************************************************************************************
479 1.1 oster * Callback routine for DiskRead and DiskWrite nodes. When the disk op completes,
480 1.1 oster * the routine is called to set the node status and inform the execution engine that
481 1.1 oster * the node has fired.
482 1.1 oster ****************************************************************************************/
483 1.3 oster int
484 1.3 oster rf_GenericWakeupFunc(node, status)
485 1.3 oster RF_DagNode_t *node;
486 1.3 oster int status;
487 1.3 oster {
488 1.3 oster switch (node->status) {
489 1.3 oster case rf_bwd1:
490 1.3 oster node->status = rf_bwd2;
491 1.3 oster if (node->dagFuncData)
492 1.3 oster rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
493 1.3 oster return (rf_DiskWriteFuncForThreads(node));
494 1.3 oster break;
495 1.3 oster case rf_fired:
496 1.3 oster if (status)
497 1.3 oster node->status = rf_bad;
498 1.3 oster else
499 1.3 oster node->status = rf_good;
500 1.3 oster break;
501 1.3 oster case rf_recover:
502 1.3 oster /* probably should never reach this case */
503 1.3 oster if (status)
504 1.3 oster node->status = rf_panic;
505 1.3 oster else
506 1.3 oster node->status = rf_undone;
507 1.3 oster break;
508 1.3 oster default:
509 1.3 oster RF_PANIC();
510 1.3 oster break;
511 1.3 oster }
512 1.3 oster if (node->dagFuncData)
513 1.3 oster rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
514 1.3 oster return (rf_FinishNode(node, RF_INTR_CONTEXT));
515 1.1 oster }
516 1.1 oster
517 1.1 oster
518 1.1 oster /*****************************************************************************************
519 1.1 oster * there are three distinct types of xor nodes
520 1.1 oster * A "regular xor" is used in the fault-free case where the access spans a complete
521 1.1 oster * stripe unit. It assumes that the result buffer is one full stripe unit in size,
522 1.1 oster * and uses the stripe-unit-offset values that it computes from the PDAs to determine
523 1.1 oster * where within the stripe unit to XOR each argument buffer.
524 1.1 oster *
525 1.1 oster * A "simple xor" is used in the fault-free case where the access touches only a portion
526 1.1 oster * of one (or two, in some cases) stripe unit(s). It assumes that all the argument
527 1.1 oster * buffers are of the same size and have the same stripe unit offset.
528 1.1 oster *
529 1.1 oster * A "recovery xor" is used in the degraded-mode case. It's similar to the regular
530 1.1 oster * xor function except that it takes the failed PDA as an additional parameter, and
531 1.1 oster * uses it to determine what portions of the argument buffers need to be xor'd into
532 1.1 oster * the result buffer, and where in the result buffer they should go.
533 1.1 oster ****************************************************************************************/
534 1.1 oster
535 1.1 oster /* xor the params together and store the result in the result field.
536 1.1 oster * assume the result field points to a buffer that is the size of one SU,
537 1.1 oster * and use the pda params to determine where within the buffer to XOR
538 1.1 oster * the input buffers.
539 1.1 oster */
540 1.3 oster int
541 1.3 oster rf_RegularXorFunc(node)
542 1.3 oster RF_DagNode_t *node;
543 1.3 oster {
544 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
545 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
546 1.3 oster RF_Etimer_t timer;
547 1.3 oster int i, retcode;
548 1.1 oster #if RF_BACKWARD > 0
549 1.3 oster RF_PhysDiskAddr_t *pda;
550 1.3 oster caddr_t undoBuf;
551 1.1 oster #endif
552 1.1 oster
553 1.3 oster retcode = 0;
554 1.3 oster if (node->dagHdr->status == rf_enable) {
555 1.3 oster /* don't do the XOR if the input is the same as the output */
556 1.3 oster RF_ETIMER_START(timer);
557 1.3 oster for (i = 0; i < node->numParams - 1; i += 2)
558 1.3 oster if (node->params[i + 1].p != node->results[0]) {
559 1.1 oster #if RF_BACKWARD > 0
560 1.3 oster /* This section mimics undo logging for
561 1.3 oster * backward error recovery experiments b
562 1.3 oster * allocating and initializing a buffer XXX
563 1.3 oster * 512 byte sector size is hard coded! */
564 1.3 oster pda = node->params[i].p;
565 1.3 oster if (node->dagHdr->allocList == NULL)
566 1.3 oster rf_MakeAllocList(node->dagHdr->allocList);
567 1.3 oster RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
568 1.3 oster #endif /* RF_BACKWARD > 0 */
569 1.3 oster retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
570 1.3 oster (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
571 1.3 oster }
572 1.3 oster RF_ETIMER_STOP(timer);
573 1.3 oster RF_ETIMER_EVAL(timer);
574 1.3 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
575 1.3 oster }
576 1.3 oster return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
577 1.3 oster * explicitly since no
578 1.3 oster * I/O in this node */
579 1.1 oster }
580 1.1 oster /* xor the inputs into the result buffer, ignoring placement issues */
581 1.3 oster int
582 1.3 oster rf_SimpleXorFunc(node)
583 1.3 oster RF_DagNode_t *node;
584 1.3 oster {
585 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
586 1.3 oster int i, retcode = 0;
587 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
588 1.3 oster RF_Etimer_t timer;
589 1.1 oster #if RF_BACKWARD > 0
590 1.3 oster RF_PhysDiskAddr_t *pda;
591 1.3 oster caddr_t undoBuf;
592 1.1 oster #endif
593 1.1 oster
594 1.3 oster if (node->dagHdr->status == rf_enable) {
595 1.3 oster RF_ETIMER_START(timer);
596 1.3 oster /* don't do the XOR if the input is the same as the output */
597 1.3 oster for (i = 0; i < node->numParams - 1; i += 2)
598 1.3 oster if (node->params[i + 1].p != node->results[0]) {
599 1.1 oster #if RF_BACKWARD > 0
600 1.3 oster /* This section mimics undo logging for
601 1.3 oster * backward error recovery experiments b
602 1.3 oster * allocating and initializing a buffer XXX
603 1.3 oster * 512 byte sector size is hard coded! */
604 1.3 oster pda = node->params[i].p;
605 1.3 oster if (node->dagHdr->allocList == NULL)
606 1.3 oster rf_MakeAllocList(node->dagHdr->allocList);
607 1.3 oster RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
608 1.3 oster #endif /* RF_BACKWARD > 0 */
609 1.3 oster retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
610 1.3 oster rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
611 1.3 oster (struct buf *) node->dagHdr->bp);
612 1.3 oster }
613 1.3 oster RF_ETIMER_STOP(timer);
614 1.3 oster RF_ETIMER_EVAL(timer);
615 1.3 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
616 1.3 oster }
617 1.3 oster return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
618 1.3 oster * explicitly since no
619 1.3 oster * I/O in this node */
620 1.1 oster }
621 1.1 oster /* this xor is used by the degraded-mode dag functions to recover lost data.
622 1.1 oster * the second-to-last parameter is the PDA for the failed portion of the access.
623 1.1 oster * the code here looks at this PDA and assumes that the xor target buffer is
624 1.1 oster * equal in size to the number of sectors in the failed PDA. It then uses
625 1.1 oster * the other PDAs in the parameter list to determine where within the target
626 1.1 oster * buffer the corresponding data should be xored.
627 1.1 oster */
628 1.3 oster int
629 1.3 oster rf_RecoveryXorFunc(node)
630 1.3 oster RF_DagNode_t *node;
631 1.3 oster {
632 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
633 1.3 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
634 1.3 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
635 1.3 oster int i, retcode = 0;
636 1.3 oster RF_PhysDiskAddr_t *pda;
637 1.3 oster int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
638 1.3 oster char *srcbuf, *destbuf;
639 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
640 1.3 oster RF_Etimer_t timer;
641 1.1 oster #if RF_BACKWARD > 0
642 1.3 oster caddr_t undoBuf;
643 1.1 oster #endif
644 1.1 oster
645 1.3 oster if (node->dagHdr->status == rf_enable) {
646 1.3 oster RF_ETIMER_START(timer);
647 1.3 oster for (i = 0; i < node->numParams - 2; i += 2)
648 1.3 oster if (node->params[i + 1].p != node->results[0]) {
649 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
650 1.1 oster #if RF_BACKWARD > 0
651 1.3 oster /* This section mimics undo logging for
652 1.3 oster * backward error recovery experiments b
653 1.3 oster * allocating and initializing a buffer XXX
654 1.3 oster * 512 byte sector size is hard coded! */
655 1.3 oster if (node->dagHdr->allocList == NULL)
656 1.3 oster rf_MakeAllocList(node->dagHdr->allocList);
657 1.3 oster RF_CallocAndAdd(undoBuf, 1, 512 * pda->numSector, (caddr_t), node->dagHdr->allocList);
658 1.3 oster #endif /* RF_BACKWARD > 0 */
659 1.3 oster srcbuf = (char *) node->params[i + 1].p;
660 1.3 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
661 1.3 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
662 1.3 oster retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
663 1.3 oster }
664 1.3 oster RF_ETIMER_STOP(timer);
665 1.3 oster RF_ETIMER_EVAL(timer);
666 1.3 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
667 1.3 oster }
668 1.3 oster return (rf_GenericWakeupFunc(node, retcode));
669 1.1 oster }
670 1.1 oster /*****************************************************************************************
671 1.1 oster * The next three functions are utilities used by the above xor-execution functions.
672 1.1 oster ****************************************************************************************/
673 1.1 oster
674 1.1 oster
675 1.1 oster /*
676 1.1 oster * this is just a glorified buffer xor. targbuf points to a buffer that is one full stripe unit
677 1.1 oster * in size. srcbuf points to a buffer that may be less than 1 SU, but never more. When the
678 1.1 oster * access described by pda is one SU in size (which by implication means it's SU-aligned),
679 1.1 oster * all that happens is (targbuf) <- (srcbuf ^ targbuf). When the access is less than one
680 1.1 oster * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
681 1.1 oster */
682 1.1 oster
683 1.3 oster int
684 1.3 oster rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
685 1.3 oster RF_Raid_t *raidPtr;
686 1.3 oster RF_PhysDiskAddr_t *pda;
687 1.3 oster char *srcbuf;
688 1.3 oster char *targbuf;
689 1.3 oster void *bp;
690 1.3 oster {
691 1.3 oster char *targptr;
692 1.3 oster int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
693 1.3 oster int SUOffset = pda->startSector % sectPerSU;
694 1.3 oster int length, retcode = 0;
695 1.3 oster
696 1.3 oster RF_ASSERT(pda->numSector <= sectPerSU);
697 1.3 oster
698 1.3 oster targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
699 1.3 oster length = rf_RaidAddressToByte(raidPtr, pda->numSector);
700 1.3 oster retcode = rf_bxor(srcbuf, targptr, length, bp);
701 1.3 oster return (retcode);
702 1.1 oster }
703 1.1 oster /* it really should be the case that the buffer pointers (returned by malloc)
704 1.1 oster * are aligned to the natural word size of the machine, so this is the only
705 1.1 oster * case we optimize for. The length should always be a multiple of the sector
706 1.1 oster * size, so there should be no problem with leftover bytes at the end.
707 1.1 oster */
708 1.3 oster int
709 1.3 oster rf_bxor(src, dest, len, bp)
710 1.3 oster char *src;
711 1.3 oster char *dest;
712 1.3 oster int len;
713 1.3 oster void *bp;
714 1.3 oster {
715 1.3 oster unsigned mask = sizeof(long) - 1, retcode = 0;
716 1.3 oster
717 1.3 oster if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
718 1.3 oster retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
719 1.3 oster } else {
720 1.3 oster RF_ASSERT(0);
721 1.3 oster }
722 1.3 oster return (retcode);
723 1.1 oster }
724 1.1 oster /* map a user buffer into kernel space, if necessary */
725 1.1 oster #define REMAP_VA(_bp,x,y) (y) = (x)
726 1.1 oster
727 1.1 oster /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
728 1.1 oster * We don't want to assume anything about which input buffers are in kernel/user
729 1.1 oster * space, nor about their alignment, so in each loop we compute the maximum number
730 1.1 oster * of bytes that we can xor without crossing any page boundaries, and do only this many
731 1.1 oster * bytes before the next remap.
732 1.1 oster */
733 1.3 oster int
734 1.3 oster rf_longword_bxor(src, dest, len, bp)
735 1.3 oster register unsigned long *src;
736 1.3 oster register unsigned long *dest;
737 1.3 oster int len; /* longwords */
738 1.3 oster void *bp;
739 1.3 oster {
740 1.3 oster register unsigned long *end = src + len;
741 1.3 oster register unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
742 1.3 oster register unsigned long *pg_src, *pg_dest; /* per-page source/dest
743 1.3 oster * pointers */
744 1.3 oster int longs_this_time;/* # longwords to xor in the current iteration */
745 1.3 oster
746 1.3 oster REMAP_VA(bp, src, pg_src);
747 1.3 oster REMAP_VA(bp, dest, pg_dest);
748 1.3 oster if (!pg_src || !pg_dest)
749 1.3 oster return (EFAULT);
750 1.3 oster
751 1.3 oster while (len >= 4) {
752 1.3 oster longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */
753 1.3 oster src += longs_this_time;
754 1.3 oster dest += longs_this_time;
755 1.3 oster len -= longs_this_time;
756 1.3 oster while (longs_this_time >= 4) {
757 1.3 oster d0 = pg_dest[0];
758 1.3 oster d1 = pg_dest[1];
759 1.3 oster d2 = pg_dest[2];
760 1.3 oster d3 = pg_dest[3];
761 1.3 oster s0 = pg_src[0];
762 1.3 oster s1 = pg_src[1];
763 1.3 oster s2 = pg_src[2];
764 1.3 oster s3 = pg_src[3];
765 1.3 oster pg_dest[0] = d0 ^ s0;
766 1.3 oster pg_dest[1] = d1 ^ s1;
767 1.3 oster pg_dest[2] = d2 ^ s2;
768 1.3 oster pg_dest[3] = d3 ^ s3;
769 1.3 oster pg_src += 4;
770 1.3 oster pg_dest += 4;
771 1.3 oster longs_this_time -= 4;
772 1.3 oster }
773 1.3 oster while (longs_this_time > 0) { /* cannot cross any page
774 1.3 oster * boundaries here */
775 1.3 oster *pg_dest++ ^= *pg_src++;
776 1.3 oster longs_this_time--;
777 1.3 oster }
778 1.3 oster
779 1.3 oster /* either we're done, or we've reached a page boundary on one
780 1.3 oster * (or possibly both) of the pointers */
781 1.3 oster if (len) {
782 1.3 oster if (RF_PAGE_ALIGNED(src))
783 1.3 oster REMAP_VA(bp, src, pg_src);
784 1.3 oster if (RF_PAGE_ALIGNED(dest))
785 1.3 oster REMAP_VA(bp, dest, pg_dest);
786 1.3 oster if (!pg_src || !pg_dest)
787 1.3 oster return (EFAULT);
788 1.3 oster }
789 1.3 oster }
790 1.3 oster while (src < end) {
791 1.3 oster *pg_dest++ ^= *pg_src++;
792 1.3 oster src++;
793 1.3 oster dest++;
794 1.3 oster len--;
795 1.3 oster if (RF_PAGE_ALIGNED(src))
796 1.3 oster REMAP_VA(bp, src, pg_src);
797 1.3 oster if (RF_PAGE_ALIGNED(dest))
798 1.3 oster REMAP_VA(bp, dest, pg_dest);
799 1.3 oster }
800 1.3 oster RF_ASSERT(len == 0);
801 1.3 oster return (0);
802 1.1 oster }
803 1.1 oster
804 1.1 oster
805 1.1 oster /*
806 1.1 oster dst = a ^ b ^ c;
807 1.1 oster a may equal dst
808 1.1 oster see comment above longword_bxor
809 1.1 oster */
810 1.3 oster int
811 1.3 oster rf_longword_bxor3(dst, a, b, c, len, bp)
812 1.3 oster register unsigned long *dst;
813 1.3 oster register unsigned long *a;
814 1.3 oster register unsigned long *b;
815 1.3 oster register unsigned long *c;
816 1.3 oster int len; /* length in longwords */
817 1.3 oster void *bp;
818 1.3 oster {
819 1.3 oster unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
820 1.3 oster register unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest
821 1.3 oster * pointers */
822 1.3 oster int longs_this_time;/* # longs to xor in the current iteration */
823 1.3 oster char dst_is_a = 0;
824 1.3 oster
825 1.3 oster REMAP_VA(bp, a, pg_a);
826 1.3 oster REMAP_VA(bp, b, pg_b);
827 1.3 oster REMAP_VA(bp, c, pg_c);
828 1.3 oster if (a == dst) {
829 1.3 oster pg_dst = pg_a;
830 1.3 oster dst_is_a = 1;
831 1.3 oster } else {
832 1.3 oster REMAP_VA(bp, dst, pg_dst);
833 1.3 oster }
834 1.3 oster
835 1.3 oster /* align dest to cache line. Can't cross a pg boundary on dst here. */
836 1.3 oster while ((((unsigned long) pg_dst) & 0x1f)) {
837 1.3 oster *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
838 1.3 oster dst++;
839 1.3 oster a++;
840 1.3 oster b++;
841 1.3 oster c++;
842 1.3 oster if (RF_PAGE_ALIGNED(a)) {
843 1.3 oster REMAP_VA(bp, a, pg_a);
844 1.3 oster if (!pg_a)
845 1.3 oster return (EFAULT);
846 1.3 oster }
847 1.3 oster if (RF_PAGE_ALIGNED(b)) {
848 1.3 oster REMAP_VA(bp, a, pg_b);
849 1.3 oster if (!pg_b)
850 1.3 oster return (EFAULT);
851 1.3 oster }
852 1.3 oster if (RF_PAGE_ALIGNED(c)) {
853 1.3 oster REMAP_VA(bp, a, pg_c);
854 1.3 oster if (!pg_c)
855 1.3 oster return (EFAULT);
856 1.3 oster }
857 1.3 oster len--;
858 1.3 oster }
859 1.3 oster
860 1.3 oster while (len > 4) {
861 1.3 oster longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
862 1.3 oster a += longs_this_time;
863 1.3 oster b += longs_this_time;
864 1.3 oster c += longs_this_time;
865 1.3 oster dst += longs_this_time;
866 1.3 oster len -= longs_this_time;
867 1.3 oster while (longs_this_time >= 4) {
868 1.3 oster a0 = pg_a[0];
869 1.3 oster longs_this_time -= 4;
870 1.3 oster
871 1.3 oster a1 = pg_a[1];
872 1.3 oster a2 = pg_a[2];
873 1.3 oster
874 1.3 oster a3 = pg_a[3];
875 1.3 oster pg_a += 4;
876 1.3 oster
877 1.3 oster b0 = pg_b[0];
878 1.3 oster b1 = pg_b[1];
879 1.3 oster
880 1.3 oster b2 = pg_b[2];
881 1.3 oster b3 = pg_b[3];
882 1.3 oster /* start dual issue */
883 1.3 oster a0 ^= b0;
884 1.3 oster b0 = pg_c[0];
885 1.3 oster
886 1.3 oster pg_b += 4;
887 1.3 oster a1 ^= b1;
888 1.3 oster
889 1.3 oster a2 ^= b2;
890 1.3 oster a3 ^= b3;
891 1.3 oster
892 1.3 oster b1 = pg_c[1];
893 1.3 oster a0 ^= b0;
894 1.3 oster
895 1.3 oster b2 = pg_c[2];
896 1.3 oster a1 ^= b1;
897 1.3 oster
898 1.3 oster b3 = pg_c[3];
899 1.3 oster a2 ^= b2;
900 1.3 oster
901 1.3 oster pg_dst[0] = a0;
902 1.3 oster a3 ^= b3;
903 1.3 oster pg_dst[1] = a1;
904 1.3 oster pg_c += 4;
905 1.3 oster pg_dst[2] = a2;
906 1.3 oster pg_dst[3] = a3;
907 1.3 oster pg_dst += 4;
908 1.3 oster }
909 1.3 oster while (longs_this_time > 0) { /* cannot cross any page
910 1.3 oster * boundaries here */
911 1.3 oster *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
912 1.3 oster longs_this_time--;
913 1.3 oster }
914 1.3 oster
915 1.3 oster if (len) {
916 1.3 oster if (RF_PAGE_ALIGNED(a)) {
917 1.3 oster REMAP_VA(bp, a, pg_a);
918 1.3 oster if (!pg_a)
919 1.3 oster return (EFAULT);
920 1.3 oster if (dst_is_a)
921 1.3 oster pg_dst = pg_a;
922 1.3 oster }
923 1.3 oster if (RF_PAGE_ALIGNED(b)) {
924 1.3 oster REMAP_VA(bp, b, pg_b);
925 1.3 oster if (!pg_b)
926 1.3 oster return (EFAULT);
927 1.3 oster }
928 1.3 oster if (RF_PAGE_ALIGNED(c)) {
929 1.3 oster REMAP_VA(bp, c, pg_c);
930 1.3 oster if (!pg_c)
931 1.3 oster return (EFAULT);
932 1.3 oster }
933 1.3 oster if (!dst_is_a)
934 1.3 oster if (RF_PAGE_ALIGNED(dst)) {
935 1.3 oster REMAP_VA(bp, dst, pg_dst);
936 1.3 oster if (!pg_dst)
937 1.3 oster return (EFAULT);
938 1.3 oster }
939 1.3 oster }
940 1.3 oster }
941 1.3 oster while (len) {
942 1.3 oster *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
943 1.3 oster dst++;
944 1.3 oster a++;
945 1.3 oster b++;
946 1.3 oster c++;
947 1.3 oster if (RF_PAGE_ALIGNED(a)) {
948 1.3 oster REMAP_VA(bp, a, pg_a);
949 1.3 oster if (!pg_a)
950 1.3 oster return (EFAULT);
951 1.3 oster if (dst_is_a)
952 1.3 oster pg_dst = pg_a;
953 1.3 oster }
954 1.3 oster if (RF_PAGE_ALIGNED(b)) {
955 1.3 oster REMAP_VA(bp, b, pg_b);
956 1.3 oster if (!pg_b)
957 1.3 oster return (EFAULT);
958 1.3 oster }
959 1.3 oster if (RF_PAGE_ALIGNED(c)) {
960 1.3 oster REMAP_VA(bp, c, pg_c);
961 1.3 oster if (!pg_c)
962 1.3 oster return (EFAULT);
963 1.3 oster }
964 1.3 oster if (!dst_is_a)
965 1.3 oster if (RF_PAGE_ALIGNED(dst)) {
966 1.3 oster REMAP_VA(bp, dst, pg_dst);
967 1.3 oster if (!pg_dst)
968 1.3 oster return (EFAULT);
969 1.3 oster }
970 1.3 oster len--;
971 1.3 oster }
972 1.3 oster return (0);
973 1.3 oster }
974 1.3 oster
975 1.3 oster int
976 1.3 oster rf_bxor3(dst, a, b, c, len, bp)
977 1.3 oster register unsigned char *dst;
978 1.3 oster register unsigned char *a;
979 1.3 oster register unsigned char *b;
980 1.3 oster register unsigned char *c;
981 1.3 oster unsigned long len;
982 1.3 oster void *bp;
983 1.1 oster {
984 1.3 oster RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
985 1.1 oster
986 1.3 oster return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
987 1.3 oster (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
988 1.1 oster }
989