Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.30.64.1
      1  1.30.64.1    martin /*	$NetBSD: rf_dagfuncs.c,v 1.30.64.1 2020/04/13 08:04:47 martin Exp $	*/
      2        1.1     oster /*
      3        1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4        1.1     oster  * All rights reserved.
      5        1.1     oster  *
      6        1.1     oster  * Author: Mark Holland, William V. Courtright II
      7        1.1     oster  *
      8        1.1     oster  * Permission to use, copy, modify and distribute this software and
      9        1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10        1.1     oster  * notice and this permission notice appear in all copies of the
     11        1.1     oster  * software, derivative works or modified versions, and any portions
     12        1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13        1.1     oster  *
     14        1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15        1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16        1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17        1.1     oster  *
     18        1.1     oster  * Carnegie Mellon requests users of this software to return to
     19        1.1     oster  *
     20        1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21        1.1     oster  *  School of Computer Science
     22        1.1     oster  *  Carnegie Mellon University
     23        1.1     oster  *  Pittsburgh PA 15213-3890
     24        1.1     oster  *
     25        1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26        1.1     oster  * rights to redistribute these changes.
     27        1.1     oster  */
     28        1.1     oster 
     29        1.1     oster /*
     30        1.1     oster  * dagfuncs.c -- DAG node execution routines
     31        1.1     oster  *
     32        1.1     oster  * Rules:
     33        1.1     oster  * 1. Every DAG execution function must eventually cause node->status to
     34        1.1     oster  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35        1.1     oster  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36        1.1     oster  *    the node execution function can do these two things directly. In
     37        1.1     oster  *    the case of nodes that have to wait for some event (a disk read to
     38        1.1     oster  *    complete, a lock to be released, etc) to occur before they can
     39        1.1     oster  *    complete, this is typically achieved by having whatever module
     40        1.1     oster  *    is doing the operation call GenericWakeupFunc upon completion.
     41        1.1     oster  * 2. DAG execution functions should check the status in the DAG header
     42        1.1     oster  *    and NOP out their operations if the status is not "enable". However,
     43        1.1     oster  *    execution functions that release resources must be sure to release
     44        1.1     oster  *    them even when they NOP out the function that would use them.
     45        1.1     oster  *    Functions that acquire resources should go ahead and acquire them
     46        1.1     oster  *    even when they NOP, so that a downstream release node will not have
     47        1.1     oster  *    to check to find out whether or not the acquire was suppressed.
     48        1.1     oster  */
     49        1.8     lukem 
     50        1.8     lukem #include <sys/cdefs.h>
     51  1.30.64.1    martin __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.30.64.1 2020/04/13 08:04:47 martin Exp $");
     52        1.1     oster 
     53        1.7       mrg #include <sys/param.h>
     54        1.1     oster #include <sys/ioctl.h>
     55        1.1     oster 
     56        1.1     oster #include "rf_archs.h"
     57        1.1     oster #include "rf_raid.h"
     58        1.1     oster #include "rf_dag.h"
     59        1.1     oster #include "rf_layout.h"
     60        1.1     oster #include "rf_etimer.h"
     61        1.1     oster #include "rf_acctrace.h"
     62        1.1     oster #include "rf_diskqueue.h"
     63        1.1     oster #include "rf_dagfuncs.h"
     64        1.1     oster #include "rf_general.h"
     65        1.1     oster #include "rf_engine.h"
     66        1.1     oster #include "rf_dagutils.h"
     67        1.1     oster 
     68        1.1     oster #include "rf_kintf.h"
     69        1.1     oster 
     70        1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
     71        1.1     oster #include "rf_paritylog.h"
     72        1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73        1.1     oster 
     74  1.30.64.1    martin void     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75  1.30.64.1    martin void     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76  1.30.64.1    martin void     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77  1.30.64.1    martin void     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78  1.30.64.1    martin void     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     79  1.30.64.1    martin void     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     80  1.30.64.1    martin void     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     81        1.1     oster 
     82       1.14     oster /*****************************************************************************
     83        1.1     oster  * main (only) configuration routine for this module
     84       1.14     oster  ****************************************************************************/
     85       1.23     perry int
     86       1.28  christos rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
     87        1.3     oster {
     88       1.23     perry 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
     89       1.14     oster 		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     90        1.3     oster 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     91        1.3     oster 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     92        1.3     oster 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     93        1.3     oster 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     94        1.3     oster 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     95        1.3     oster 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
     96        1.3     oster 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
     97        1.3     oster 	return (0);
     98        1.1     oster }
     99        1.1     oster 
    100        1.1     oster 
    101        1.1     oster 
    102       1.14     oster /*****************************************************************************
    103        1.1     oster  * the execution function associated with a terminate node
    104       1.14     oster  ****************************************************************************/
    105  1.30.64.1    martin void
    106       1.15     oster rf_TerminateFunc(RF_DagNode_t *node)
    107        1.1     oster {
    108        1.3     oster 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    109        1.3     oster 	node->status = rf_good;
    110  1.30.64.1    martin 	rf_FinishNode(node, RF_THREAD_CONTEXT);
    111        1.1     oster }
    112        1.1     oster 
    113  1.30.64.1    martin void
    114       1.28  christos rf_TerminateUndoFunc(RF_DagNode_t *node)
    115        1.1     oster {
    116        1.1     oster }
    117        1.1     oster 
    118        1.1     oster 
    119       1.15     oster /*****************************************************************************
    120        1.1     oster  * execution functions associated with a mirror node
    121        1.1     oster  *
    122        1.1     oster  * parameters:
    123        1.1     oster  *
    124        1.1     oster  * 0 - physical disk addres of data
    125        1.1     oster  * 1 - buffer for holding read data
    126        1.1     oster  * 2 - parity stripe ID
    127        1.1     oster  * 3 - flags
    128        1.1     oster  * 4 - physical disk address of mirror (parity)
    129        1.1     oster  *
    130       1.15     oster  ****************************************************************************/
    131        1.1     oster 
    132  1.30.64.1    martin void
    133       1.15     oster rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
    134        1.1     oster {
    135        1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    136        1.3     oster 	 * parameters with physical disk address */
    137        1.1     oster 
    138        1.3     oster 	rf_SelectMirrorDiskIdle(node);
    139  1.30.64.1    martin 	rf_DiskReadFunc(node);
    140        1.1     oster }
    141        1.1     oster 
    142       1.11     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    143  1.30.64.1    martin void
    144       1.15     oster rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
    145        1.1     oster {
    146        1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    147        1.3     oster 	 * parameters with physical disk address */
    148        1.1     oster 
    149        1.3     oster 	rf_SelectMirrorDiskPartition(node);
    150  1.30.64.1    martin 	rf_DiskReadFunc(node);
    151        1.1     oster }
    152       1.11     oster #endif
    153        1.1     oster 
    154  1.30.64.1    martin void
    155       1.28  christos rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
    156        1.1     oster {
    157        1.1     oster }
    158        1.1     oster 
    159        1.1     oster 
    160        1.1     oster 
    161        1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    162       1.14     oster /*****************************************************************************
    163        1.1     oster  * the execution function associated with a parity log update node
    164       1.14     oster  ****************************************************************************/
    165  1.30.64.1    martin void
    166       1.15     oster rf_ParityLogUpdateFunc(RF_DagNode_t *node)
    167        1.3     oster {
    168        1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    169       1.29  christos 	void *bf = (void *) node->params[1].p;
    170        1.3     oster 	RF_ParityLogData_t *logData;
    171       1.19     oster #if RF_ACC_TRACE > 0
    172        1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    173        1.3     oster 	RF_Etimer_t timer;
    174       1.19     oster #endif
    175        1.3     oster 
    176        1.3     oster 	if (node->dagHdr->status == rf_enable) {
    177       1.19     oster #if RF_ACC_TRACE > 0
    178        1.3     oster 		RF_ETIMER_START(timer);
    179       1.19     oster #endif
    180       1.24  christos 		logData = rf_CreateParityLogData(RF_UPDATE, pda, bf,
    181        1.3     oster 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    182  1.30.64.1    martin 		    node->wakeFunc, node,
    183        1.3     oster 		    node->dagHdr->tracerec, timer);
    184        1.3     oster 		if (logData)
    185        1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    186        1.3     oster 		else {
    187       1.19     oster #if RF_ACC_TRACE > 0
    188        1.3     oster 			RF_ETIMER_STOP(timer);
    189        1.3     oster 			RF_ETIMER_EVAL(timer);
    190        1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    191       1.19     oster #endif
    192        1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    193        1.3     oster 		}
    194        1.1     oster 	}
    195        1.1     oster }
    196        1.1     oster 
    197        1.1     oster 
    198       1.15     oster /*****************************************************************************
    199        1.1     oster  * the execution function associated with a parity log overwrite node
    200       1.15     oster  ****************************************************************************/
    201  1.30.64.1    martin void
    202       1.15     oster rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
    203        1.3     oster {
    204        1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    205       1.29  christos 	void *bf = (void *) node->params[1].p;
    206        1.3     oster 	RF_ParityLogData_t *logData;
    207       1.19     oster #if RF_ACC_TRACE > 0
    208        1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    209        1.3     oster 	RF_Etimer_t timer;
    210       1.19     oster #endif
    211        1.3     oster 
    212        1.3     oster 	if (node->dagHdr->status == rf_enable) {
    213       1.19     oster #if RF_ACC_TRACE > 0
    214        1.3     oster 		RF_ETIMER_START(timer);
    215       1.19     oster #endif
    216       1.24  christos 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf,
    217       1.14     oster (RF_Raid_t *) (node->dagHdr->raidPtr),
    218  1.30.64.1    martin 		    node->wakeFunc, node, node->dagHdr->tracerec, timer);
    219        1.3     oster 		if (logData)
    220        1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    221        1.3     oster 		else {
    222       1.19     oster #if RF_ACC_TRACE > 0
    223        1.3     oster 			RF_ETIMER_STOP(timer);
    224        1.3     oster 			RF_ETIMER_EVAL(timer);
    225        1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    226       1.19     oster #endif
    227        1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    228        1.3     oster 		}
    229        1.1     oster 	}
    230        1.1     oster }
    231        1.1     oster 
    232  1.30.64.1    martin void
    233       1.28  christos rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
    234        1.1     oster {
    235        1.1     oster }
    236        1.1     oster 
    237  1.30.64.1    martin void
    238       1.28  christos rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
    239        1.1     oster {
    240        1.1     oster }
    241       1.10     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    242       1.10     oster 
    243       1.14     oster /*****************************************************************************
    244        1.1     oster  * the execution function associated with a NOP node
    245       1.14     oster  ****************************************************************************/
    246  1.30.64.1    martin void
    247       1.15     oster rf_NullNodeFunc(RF_DagNode_t *node)
    248        1.1     oster {
    249        1.3     oster 	node->status = rf_good;
    250  1.30.64.1    martin 	rf_FinishNode(node, RF_THREAD_CONTEXT);
    251        1.1     oster }
    252        1.1     oster 
    253  1.30.64.1    martin void
    254       1.15     oster rf_NullNodeUndoFunc(RF_DagNode_t *node)
    255        1.1     oster {
    256        1.3     oster 	node->status = rf_undone;
    257  1.30.64.1    martin 	rf_FinishNode(node, RF_THREAD_CONTEXT);
    258        1.1     oster }
    259        1.1     oster 
    260        1.1     oster 
    261       1.14     oster /*****************************************************************************
    262        1.1     oster  * the execution function associated with a disk-read node
    263       1.14     oster  ****************************************************************************/
    264  1.30.64.1    martin void
    265       1.15     oster rf_DiskReadFuncForThreads(RF_DagNode_t *node)
    266        1.3     oster {
    267        1.3     oster 	RF_DiskQueueData_t *req;
    268        1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    269       1.29  christos 	void *bf = (void *) node->params[1].p;
    270        1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    271        1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    272        1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    273        1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    274       1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    275        1.3     oster 	void   *b_proc = NULL;
    276        1.1     oster 
    277        1.3     oster 	if (node->dagHdr->bp)
    278        1.3     oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    279        1.1     oster 
    280        1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    281  1.30.64.1    martin 	    bf, parityStripeID, which_ru, node->wakeFunc, node,
    282       1.19     oster #if RF_ACC_TRACE > 0
    283       1.19     oster 	     node->dagHdr->tracerec,
    284       1.19     oster #else
    285       1.19     oster              NULL,
    286       1.19     oster #endif
    287       1.21     oster 	    (void *) (node->dagHdr->raidPtr), 0, b_proc, PR_NOWAIT);
    288        1.3     oster 	if (!req) {
    289        1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    290        1.3     oster 	} else {
    291        1.3     oster 		node->dagFuncData = (void *) req;
    292       1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    293        1.3     oster 	}
    294        1.1     oster }
    295        1.1     oster 
    296        1.1     oster 
    297       1.14     oster /*****************************************************************************
    298        1.1     oster  * the execution function associated with a disk-write node
    299       1.14     oster  ****************************************************************************/
    300  1.30.64.1    martin void
    301       1.15     oster rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
    302        1.3     oster {
    303        1.3     oster 	RF_DiskQueueData_t *req;
    304        1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    305       1.29  christos 	void *bf = (void *) node->params[1].p;
    306        1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    307        1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    308        1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    309        1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    310       1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    311        1.3     oster 	void   *b_proc = NULL;
    312        1.1     oster 
    313        1.3     oster 	if (node->dagHdr->bp)
    314        1.3     oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    315        1.1     oster 
    316        1.3     oster 	/* normal processing (rollaway or forward recovery) begins here */
    317        1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    318  1.30.64.1    martin 	    bf, parityStripeID, which_ru, node->wakeFunc, node,
    319       1.19     oster #if RF_ACC_TRACE > 0
    320        1.3     oster 	    node->dagHdr->tracerec,
    321       1.19     oster #else
    322       1.19     oster 	    NULL,
    323       1.19     oster #endif
    324        1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    325       1.21     oster 	    0, b_proc, PR_NOWAIT);
    326        1.3     oster 
    327        1.3     oster 	if (!req) {
    328        1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    329        1.3     oster 	} else {
    330        1.3     oster 		node->dagFuncData = (void *) req;
    331       1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    332        1.3     oster 	}
    333        1.1     oster }
    334       1.14     oster /*****************************************************************************
    335        1.1     oster  * the undo function for disk nodes
    336        1.1     oster  * Note:  this is not a proper undo of a write node, only locks are released.
    337        1.1     oster  *        old data is not restored to disk!
    338       1.14     oster  ****************************************************************************/
    339  1.30.64.1    martin void
    340       1.15     oster rf_DiskUndoFunc(RF_DagNode_t *node)
    341        1.3     oster {
    342        1.3     oster 	RF_DiskQueueData_t *req;
    343        1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    344       1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    345        1.3     oster 
    346        1.3     oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    347  1.30.64.1    martin 	    0L, 0, NULL, 0L, 0, node->wakeFunc, node,
    348       1.19     oster #if RF_ACC_TRACE > 0
    349       1.19     oster 	     node->dagHdr->tracerec,
    350       1.19     oster #else
    351       1.19     oster 	     NULL,
    352       1.19     oster #endif
    353        1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    354       1.30     oster 	    0, NULL, PR_NOWAIT);
    355        1.3     oster 	if (!req)
    356        1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    357        1.3     oster 	else {
    358        1.3     oster 		node->dagFuncData = (void *) req;
    359       1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    360        1.3     oster 	}
    361        1.1     oster }
    362        1.3     oster 
    363       1.14     oster /*****************************************************************************
    364       1.14     oster  * Callback routine for DiskRead and DiskWrite nodes.  When the disk
    365       1.14     oster  * op completes, the routine is called to set the node status and
    366       1.14     oster  * inform the execution engine that the node has fired.
    367       1.14     oster  ****************************************************************************/
    368  1.30.64.1    martin void
    369  1.30.64.1    martin rf_GenericWakeupFunc(void *v, int status)
    370        1.3     oster {
    371  1.30.64.1    martin 	RF_DagNode_t *node = v;
    372       1.15     oster 
    373        1.3     oster 	switch (node->status) {
    374        1.3     oster 	case rf_fired:
    375        1.3     oster 		if (status)
    376        1.3     oster 			node->status = rf_bad;
    377        1.3     oster 		else
    378        1.3     oster 			node->status = rf_good;
    379        1.3     oster 		break;
    380        1.3     oster 	case rf_recover:
    381        1.3     oster 		/* probably should never reach this case */
    382        1.3     oster 		if (status)
    383        1.3     oster 			node->status = rf_panic;
    384        1.3     oster 		else
    385        1.3     oster 			node->status = rf_undone;
    386        1.3     oster 		break;
    387        1.3     oster 	default:
    388        1.4     oster 		printf("rf_GenericWakeupFunc:");
    389        1.4     oster 		printf("node->status is %d,", node->status);
    390        1.4     oster 		printf("status is %d \n", status);
    391        1.3     oster 		RF_PANIC();
    392        1.3     oster 		break;
    393        1.3     oster 	}
    394        1.3     oster 	if (node->dagFuncData)
    395        1.3     oster 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    396  1.30.64.1    martin 	rf_FinishNode(node, RF_INTR_CONTEXT);
    397        1.1     oster }
    398        1.1     oster 
    399        1.1     oster 
    400       1.14     oster /*****************************************************************************
    401       1.14     oster  * there are three distinct types of xor nodes:
    402       1.14     oster 
    403       1.14     oster  * A "regular xor" is used in the fault-free case where the access
    404       1.14     oster  * spans a complete stripe unit.  It assumes that the result buffer is
    405       1.14     oster  * one full stripe unit in size, and uses the stripe-unit-offset
    406       1.14     oster  * values that it computes from the PDAs to determine where within the
    407       1.14     oster  * stripe unit to XOR each argument buffer.
    408       1.14     oster  *
    409       1.14     oster  * A "simple xor" is used in the fault-free case where the access
    410       1.14     oster  * touches only a portion of one (or two, in some cases) stripe
    411       1.14     oster  * unit(s).  It assumes that all the argument buffers are of the same
    412       1.14     oster  * size and have the same stripe unit offset.
    413       1.14     oster  *
    414       1.14     oster  * A "recovery xor" is used in the degraded-mode case.  It's similar
    415       1.14     oster  * to the regular xor function except that it takes the failed PDA as
    416       1.14     oster  * an additional parameter, and uses it to determine what portions of
    417       1.14     oster  * the argument buffers need to be xor'd into the result buffer, and
    418       1.14     oster  * where in the result buffer they should go.
    419       1.14     oster  ****************************************************************************/
    420        1.1     oster 
    421        1.1     oster /* xor the params together and store the result in the result field.
    422       1.14     oster  * assume the result field points to a buffer that is the size of one
    423       1.14     oster  * SU, and use the pda params to determine where within the buffer to
    424       1.14     oster  * XOR the input buffers.  */
    425  1.30.64.1    martin void
    426       1.15     oster rf_RegularXorFunc(RF_DagNode_t *node)
    427        1.3     oster {
    428        1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    429       1.19     oster #if RF_ACC_TRACE > 0
    430        1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    431        1.3     oster 	RF_Etimer_t timer;
    432       1.19     oster #endif
    433        1.3     oster 	int     i, retcode;
    434        1.1     oster 
    435        1.3     oster 	retcode = 0;
    436        1.3     oster 	if (node->dagHdr->status == rf_enable) {
    437        1.3     oster 		/* don't do the XOR if the input is the same as the output */
    438       1.19     oster #if RF_ACC_TRACE > 0
    439        1.3     oster 		RF_ETIMER_START(timer);
    440       1.19     oster #endif
    441        1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    442        1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    443        1.3     oster 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    444       1.17     oster 							   (char *) node->params[i + 1].p, (char *) node->results[0]);
    445        1.3     oster 			}
    446       1.19     oster #if RF_ACC_TRACE > 0
    447        1.3     oster 		RF_ETIMER_STOP(timer);
    448        1.3     oster 		RF_ETIMER_EVAL(timer);
    449        1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    450       1.19     oster #endif
    451        1.3     oster 	}
    452  1.30.64.1    martin 	rf_GenericWakeupFunc(node, retcode);	/* call wake func
    453  1.30.64.1    martin 						 * explicitly since no
    454  1.30.64.1    martin 						 * I/O in this node */
    455        1.1     oster }
    456        1.1     oster /* xor the inputs into the result buffer, ignoring placement issues */
    457  1.30.64.1    martin void
    458       1.15     oster rf_SimpleXorFunc(RF_DagNode_t *node)
    459        1.3     oster {
    460        1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    461        1.3     oster 	int     i, retcode = 0;
    462       1.19     oster #if RF_ACC_TRACE > 0
    463        1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    464        1.3     oster 	RF_Etimer_t timer;
    465       1.19     oster #endif
    466        1.1     oster 
    467        1.3     oster 	if (node->dagHdr->status == rf_enable) {
    468       1.19     oster #if RF_ACC_TRACE > 0
    469        1.3     oster 		RF_ETIMER_START(timer);
    470       1.19     oster #endif
    471        1.3     oster 		/* don't do the XOR if the input is the same as the output */
    472        1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    473        1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    474        1.3     oster 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    475       1.17     oster 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
    476        1.3     oster 			}
    477       1.19     oster #if RF_ACC_TRACE > 0
    478        1.3     oster 		RF_ETIMER_STOP(timer);
    479        1.3     oster 		RF_ETIMER_EVAL(timer);
    480        1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    481       1.19     oster #endif
    482        1.3     oster 	}
    483  1.30.64.1    martin 	rf_GenericWakeupFunc(node, retcode);	/* call wake func
    484  1.30.64.1    martin 						 * explicitly since no
    485  1.30.64.1    martin 						 * I/O in this node */
    486        1.1     oster }
    487       1.14     oster /* this xor is used by the degraded-mode dag functions to recover lost
    488       1.14     oster  * data.  the second-to-last parameter is the PDA for the failed
    489       1.14     oster  * portion of the access.  the code here looks at this PDA and assumes
    490       1.14     oster  * that the xor target buffer is equal in size to the number of
    491       1.14     oster  * sectors in the failed PDA.  It then uses the other PDAs in the
    492       1.14     oster  * parameter list to determine where within the target buffer the
    493       1.14     oster  * corresponding data should be xored.  */
    494  1.30.64.1    martin void
    495       1.15     oster rf_RecoveryXorFunc(RF_DagNode_t *node)
    496        1.3     oster {
    497        1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    498        1.3     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    499        1.3     oster 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    500        1.3     oster 	int     i, retcode = 0;
    501        1.3     oster 	RF_PhysDiskAddr_t *pda;
    502        1.3     oster 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    503        1.3     oster 	char   *srcbuf, *destbuf;
    504       1.19     oster #if RF_ACC_TRACE > 0
    505        1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    506        1.3     oster 	RF_Etimer_t timer;
    507       1.19     oster #endif
    508        1.1     oster 
    509        1.3     oster 	if (node->dagHdr->status == rf_enable) {
    510       1.19     oster #if RF_ACC_TRACE > 0
    511        1.3     oster 		RF_ETIMER_START(timer);
    512       1.19     oster #endif
    513        1.3     oster 		for (i = 0; i < node->numParams - 2; i += 2)
    514        1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    515        1.3     oster 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    516        1.3     oster 				srcbuf = (char *) node->params[i + 1].p;
    517        1.3     oster 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    518        1.3     oster 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    519       1.17     oster 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
    520        1.3     oster 			}
    521       1.19     oster #if RF_ACC_TRACE > 0
    522        1.3     oster 		RF_ETIMER_STOP(timer);
    523        1.3     oster 		RF_ETIMER_EVAL(timer);
    524        1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    525       1.19     oster #endif
    526        1.3     oster 	}
    527  1.30.64.1    martin 	rf_GenericWakeupFunc(node, retcode);
    528        1.1     oster }
    529       1.14     oster /*****************************************************************************
    530       1.14     oster  * The next three functions are utilities used by the above
    531       1.14     oster  * xor-execution functions.
    532       1.14     oster  ****************************************************************************/
    533        1.1     oster 
    534        1.1     oster 
    535        1.1     oster /*
    536       1.14     oster  * this is just a glorified buffer xor.  targbuf points to a buffer
    537       1.14     oster  * that is one full stripe unit in size.  srcbuf points to a buffer
    538       1.14     oster  * that may be less than 1 SU, but never more.  When the access
    539       1.14     oster  * described by pda is one SU in size (which by implication means it's
    540       1.14     oster  * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
    541       1.14     oster  * When the access is less than one SU in size the XOR occurs on only
    542       1.14     oster  * the portion of targbuf identified in the pda.  */
    543        1.1     oster 
    544       1.23     perry int
    545       1.15     oster rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    546       1.17     oster 		 char *srcbuf, char *targbuf)
    547        1.3     oster {
    548        1.3     oster 	char   *targptr;
    549        1.3     oster 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    550        1.3     oster 	int     SUOffset = pda->startSector % sectPerSU;
    551        1.3     oster 	int     length, retcode = 0;
    552        1.3     oster 
    553        1.3     oster 	RF_ASSERT(pda->numSector <= sectPerSU);
    554        1.3     oster 
    555        1.3     oster 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    556        1.3     oster 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    557       1.17     oster 	retcode = rf_bxor(srcbuf, targptr, length);
    558        1.3     oster 	return (retcode);
    559        1.1     oster }
    560       1.14     oster /* it really should be the case that the buffer pointers (returned by
    561       1.14     oster  * malloc) are aligned to the natural word size of the machine, so
    562       1.14     oster  * this is the only case we optimize for.  The length should always be
    563       1.14     oster  * a multiple of the sector size, so there should be no problem with
    564       1.14     oster  * leftover bytes at the end.  */
    565       1.23     perry int
    566       1.17     oster rf_bxor(char *src, char *dest, int len)
    567        1.3     oster {
    568        1.3     oster 	unsigned mask = sizeof(long) - 1, retcode = 0;
    569        1.3     oster 
    570       1.23     perry 	if (!(((unsigned long) src) & mask) &&
    571       1.14     oster 	    !(((unsigned long) dest) & mask) && !(len & mask)) {
    572       1.23     perry 		retcode = rf_longword_bxor((unsigned long *) src,
    573       1.23     perry 					   (unsigned long *) dest,
    574       1.17     oster 					   len >> RF_LONGSHIFT);
    575        1.3     oster 	} else {
    576        1.3     oster 		RF_ASSERT(0);
    577        1.3     oster 	}
    578        1.3     oster 	return (retcode);
    579        1.1     oster }
    580        1.1     oster 
    581       1.14     oster /* When XORing in kernel mode, we need to map each user page to kernel
    582       1.14     oster  * space before we can access it.  We don't want to assume anything
    583       1.14     oster  * about which input buffers are in kernel/user space, nor about their
    584       1.14     oster  * alignment, so in each loop we compute the maximum number of bytes
    585       1.14     oster  * that we can xor without crossing any page boundaries, and do only
    586       1.23     perry  * this many bytes before the next remap.
    587       1.23     perry  *
    588       1.23     perry  * len - is in longwords
    589       1.15     oster  */
    590       1.23     perry int
    591       1.17     oster rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
    592        1.3     oster {
    593        1.6  augustss 	unsigned long *end = src + len;
    594        1.6  augustss 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    595       1.14     oster 	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
    596        1.3     oster 	int     longs_this_time;/* # longwords to xor in the current iteration */
    597        1.3     oster 
    598       1.16     oster 	pg_src = src;
    599       1.16     oster 	pg_dest = dest;
    600        1.3     oster 	if (!pg_src || !pg_dest)
    601        1.3     oster 		return (EFAULT);
    602        1.3     oster 
    603        1.3     oster 	while (len >= 4) {
    604        1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    605        1.3     oster 		src += longs_this_time;
    606        1.3     oster 		dest += longs_this_time;
    607        1.3     oster 		len -= longs_this_time;
    608        1.3     oster 		while (longs_this_time >= 4) {
    609        1.3     oster 			d0 = pg_dest[0];
    610        1.3     oster 			d1 = pg_dest[1];
    611        1.3     oster 			d2 = pg_dest[2];
    612        1.3     oster 			d3 = pg_dest[3];
    613        1.3     oster 			s0 = pg_src[0];
    614        1.3     oster 			s1 = pg_src[1];
    615        1.3     oster 			s2 = pg_src[2];
    616        1.3     oster 			s3 = pg_src[3];
    617        1.3     oster 			pg_dest[0] = d0 ^ s0;
    618        1.3     oster 			pg_dest[1] = d1 ^ s1;
    619        1.3     oster 			pg_dest[2] = d2 ^ s2;
    620        1.3     oster 			pg_dest[3] = d3 ^ s3;
    621        1.3     oster 			pg_src += 4;
    622        1.3     oster 			pg_dest += 4;
    623        1.3     oster 			longs_this_time -= 4;
    624        1.3     oster 		}
    625        1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    626        1.3     oster 						 * boundaries here */
    627        1.3     oster 			*pg_dest++ ^= *pg_src++;
    628        1.3     oster 			longs_this_time--;
    629        1.3     oster 		}
    630        1.3     oster 
    631        1.3     oster 		/* either we're done, or we've reached a page boundary on one
    632        1.3     oster 		 * (or possibly both) of the pointers */
    633        1.3     oster 		if (len) {
    634        1.3     oster 			if (RF_PAGE_ALIGNED(src))
    635       1.16     oster 				pg_src = src;
    636        1.3     oster 			if (RF_PAGE_ALIGNED(dest))
    637       1.16     oster 				pg_dest = dest;
    638        1.3     oster 			if (!pg_src || !pg_dest)
    639        1.3     oster 				return (EFAULT);
    640        1.3     oster 		}
    641        1.3     oster 	}
    642        1.3     oster 	while (src < end) {
    643        1.3     oster 		*pg_dest++ ^= *pg_src++;
    644        1.3     oster 		src++;
    645        1.3     oster 		dest++;
    646        1.3     oster 		len--;
    647        1.3     oster 		if (RF_PAGE_ALIGNED(src))
    648       1.16     oster 			pg_src = src;
    649        1.3     oster 		if (RF_PAGE_ALIGNED(dest))
    650       1.16     oster 			pg_dest = dest;
    651        1.3     oster 	}
    652        1.3     oster 	RF_ASSERT(len == 0);
    653        1.3     oster 	return (0);
    654        1.1     oster }
    655        1.1     oster 
    656        1.9     oster #if 0
    657        1.1     oster /*
    658        1.1     oster    dst = a ^ b ^ c;
    659        1.1     oster    a may equal dst
    660        1.1     oster    see comment above longword_bxor
    661       1.15     oster    len is length in longwords
    662        1.1     oster */
    663       1.23     perry int
    664       1.15     oster rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
    665       1.15     oster 		  unsigned long *c, int len, void *bp)
    666        1.3     oster {
    667        1.3     oster 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    668        1.6  augustss 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    669        1.3     oster 								 * pointers */
    670        1.3     oster 	int     longs_this_time;/* # longs to xor in the current iteration */
    671        1.3     oster 	char    dst_is_a = 0;
    672        1.3     oster 
    673       1.16     oster 	pg_a = a;
    674       1.16     oster 	pg_b = b;
    675       1.16     oster 	pg_c = c;
    676        1.3     oster 	if (a == dst) {
    677        1.3     oster 		pg_dst = pg_a;
    678        1.3     oster 		dst_is_a = 1;
    679        1.3     oster 	} else {
    680       1.16     oster 		pg_dst = dst;
    681        1.3     oster 	}
    682        1.3     oster 
    683        1.3     oster 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    684        1.3     oster 	while ((((unsigned long) pg_dst) & 0x1f)) {
    685        1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    686        1.3     oster 		dst++;
    687        1.3     oster 		a++;
    688        1.3     oster 		b++;
    689        1.3     oster 		c++;
    690        1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    691       1.16     oster 			pg_a = a;
    692        1.3     oster 			if (!pg_a)
    693        1.3     oster 				return (EFAULT);
    694        1.3     oster 		}
    695        1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    696       1.16     oster 			pg_b = a;
    697        1.3     oster 			if (!pg_b)
    698        1.3     oster 				return (EFAULT);
    699        1.3     oster 		}
    700        1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    701       1.16     oster 			pg_c = a;
    702        1.3     oster 			if (!pg_c)
    703        1.3     oster 				return (EFAULT);
    704        1.3     oster 		}
    705        1.3     oster 		len--;
    706        1.3     oster 	}
    707        1.3     oster 
    708        1.3     oster 	while (len > 4) {
    709        1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    710        1.3     oster 		a += longs_this_time;
    711        1.3     oster 		b += longs_this_time;
    712        1.3     oster 		c += longs_this_time;
    713        1.3     oster 		dst += longs_this_time;
    714        1.3     oster 		len -= longs_this_time;
    715        1.3     oster 		while (longs_this_time >= 4) {
    716        1.3     oster 			a0 = pg_a[0];
    717        1.3     oster 			longs_this_time -= 4;
    718        1.3     oster 
    719        1.3     oster 			a1 = pg_a[1];
    720        1.3     oster 			a2 = pg_a[2];
    721        1.3     oster 
    722        1.3     oster 			a3 = pg_a[3];
    723        1.3     oster 			pg_a += 4;
    724        1.3     oster 
    725        1.3     oster 			b0 = pg_b[0];
    726        1.3     oster 			b1 = pg_b[1];
    727        1.3     oster 
    728        1.3     oster 			b2 = pg_b[2];
    729        1.3     oster 			b3 = pg_b[3];
    730        1.3     oster 			/* start dual issue */
    731        1.3     oster 			a0 ^= b0;
    732        1.3     oster 			b0 = pg_c[0];
    733        1.3     oster 
    734        1.3     oster 			pg_b += 4;
    735        1.3     oster 			a1 ^= b1;
    736        1.3     oster 
    737        1.3     oster 			a2 ^= b2;
    738        1.3     oster 			a3 ^= b3;
    739        1.3     oster 
    740        1.3     oster 			b1 = pg_c[1];
    741        1.3     oster 			a0 ^= b0;
    742        1.3     oster 
    743        1.3     oster 			b2 = pg_c[2];
    744        1.3     oster 			a1 ^= b1;
    745        1.3     oster 
    746        1.3     oster 			b3 = pg_c[3];
    747        1.3     oster 			a2 ^= b2;
    748        1.3     oster 
    749        1.3     oster 			pg_dst[0] = a0;
    750        1.3     oster 			a3 ^= b3;
    751        1.3     oster 			pg_dst[1] = a1;
    752        1.3     oster 			pg_c += 4;
    753        1.3     oster 			pg_dst[2] = a2;
    754        1.3     oster 			pg_dst[3] = a3;
    755        1.3     oster 			pg_dst += 4;
    756        1.3     oster 		}
    757        1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    758        1.3     oster 						 * boundaries here */
    759        1.3     oster 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    760        1.3     oster 			longs_this_time--;
    761        1.3     oster 		}
    762        1.3     oster 
    763        1.3     oster 		if (len) {
    764        1.3     oster 			if (RF_PAGE_ALIGNED(a)) {
    765       1.16     oster 				pg_a = a;
    766        1.3     oster 				if (!pg_a)
    767        1.3     oster 					return (EFAULT);
    768        1.3     oster 				if (dst_is_a)
    769        1.3     oster 					pg_dst = pg_a;
    770        1.3     oster 			}
    771        1.3     oster 			if (RF_PAGE_ALIGNED(b)) {
    772       1.16     oster 				pg_b = b;
    773        1.3     oster 				if (!pg_b)
    774        1.3     oster 					return (EFAULT);
    775        1.3     oster 			}
    776        1.3     oster 			if (RF_PAGE_ALIGNED(c)) {
    777       1.16     oster 				pg_c = c;
    778        1.3     oster 				if (!pg_c)
    779        1.3     oster 					return (EFAULT);
    780        1.3     oster 			}
    781        1.3     oster 			if (!dst_is_a)
    782        1.3     oster 				if (RF_PAGE_ALIGNED(dst)) {
    783       1.16     oster 					pg_dst = dst;
    784        1.3     oster 					if (!pg_dst)
    785        1.3     oster 						return (EFAULT);
    786        1.3     oster 				}
    787        1.3     oster 		}
    788        1.3     oster 	}
    789        1.3     oster 	while (len) {
    790        1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    791        1.3     oster 		dst++;
    792        1.3     oster 		a++;
    793        1.3     oster 		b++;
    794        1.3     oster 		c++;
    795        1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    796       1.16     oster 			pg_a = a;
    797        1.3     oster 			if (!pg_a)
    798        1.3     oster 				return (EFAULT);
    799        1.3     oster 			if (dst_is_a)
    800        1.3     oster 				pg_dst = pg_a;
    801        1.3     oster 		}
    802        1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    803       1.16     oster 			pg_b = b;
    804        1.3     oster 			if (!pg_b)
    805        1.3     oster 				return (EFAULT);
    806        1.3     oster 		}
    807        1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    808       1.16     oster 			pg_c = c;
    809        1.3     oster 			if (!pg_c)
    810        1.3     oster 				return (EFAULT);
    811        1.3     oster 		}
    812        1.3     oster 		if (!dst_is_a)
    813        1.3     oster 			if (RF_PAGE_ALIGNED(dst)) {
    814       1.16     oster 				pg_dst = dst;
    815        1.3     oster 				if (!pg_dst)
    816        1.3     oster 					return (EFAULT);
    817        1.3     oster 			}
    818        1.3     oster 		len--;
    819        1.3     oster 	}
    820        1.3     oster 	return (0);
    821        1.3     oster }
    822        1.3     oster 
    823       1.23     perry int
    824       1.23     perry rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
    825       1.15     oster 	 unsigned char *c, unsigned long len, void *bp)
    826        1.1     oster {
    827        1.3     oster 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    828        1.1     oster 
    829        1.3     oster 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    830        1.3     oster 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    831        1.1     oster }
    832        1.9     oster #endif
    833