Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.32
      1  1.32  jdolecek /*	$NetBSD: rf_dagfuncs.c,v 1.32 2020/06/19 19:29:39 jdolecek Exp $	*/
      2   1.1     oster /*
      3   1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4   1.1     oster  * All rights reserved.
      5   1.1     oster  *
      6   1.1     oster  * Author: Mark Holland, William V. Courtright II
      7   1.1     oster  *
      8   1.1     oster  * Permission to use, copy, modify and distribute this software and
      9   1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10   1.1     oster  * notice and this permission notice appear in all copies of the
     11   1.1     oster  * software, derivative works or modified versions, and any portions
     12   1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13   1.1     oster  *
     14   1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15   1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16   1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17   1.1     oster  *
     18   1.1     oster  * Carnegie Mellon requests users of this software to return to
     19   1.1     oster  *
     20   1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21   1.1     oster  *  School of Computer Science
     22   1.1     oster  *  Carnegie Mellon University
     23   1.1     oster  *  Pittsburgh PA 15213-3890
     24   1.1     oster  *
     25   1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26   1.1     oster  * rights to redistribute these changes.
     27   1.1     oster  */
     28   1.1     oster 
     29   1.1     oster /*
     30   1.1     oster  * dagfuncs.c -- DAG node execution routines
     31   1.1     oster  *
     32   1.1     oster  * Rules:
     33   1.1     oster  * 1. Every DAG execution function must eventually cause node->status to
     34   1.1     oster  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35   1.1     oster  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36   1.1     oster  *    the node execution function can do these two things directly. In
     37   1.1     oster  *    the case of nodes that have to wait for some event (a disk read to
     38   1.1     oster  *    complete, a lock to be released, etc) to occur before they can
     39   1.1     oster  *    complete, this is typically achieved by having whatever module
     40   1.1     oster  *    is doing the operation call GenericWakeupFunc upon completion.
     41   1.1     oster  * 2. DAG execution functions should check the status in the DAG header
     42   1.1     oster  *    and NOP out their operations if the status is not "enable". However,
     43   1.1     oster  *    execution functions that release resources must be sure to release
     44   1.1     oster  *    them even when they NOP out the function that would use them.
     45   1.1     oster  *    Functions that acquire resources should go ahead and acquire them
     46   1.1     oster  *    even when they NOP, so that a downstream release node will not have
     47   1.1     oster  *    to check to find out whether or not the acquire was suppressed.
     48   1.1     oster  */
     49   1.8     lukem 
     50   1.8     lukem #include <sys/cdefs.h>
     51  1.32  jdolecek __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.32 2020/06/19 19:29:39 jdolecek Exp $");
     52   1.1     oster 
     53   1.7       mrg #include <sys/param.h>
     54   1.1     oster #include <sys/ioctl.h>
     55   1.1     oster 
     56   1.1     oster #include "rf_archs.h"
     57   1.1     oster #include "rf_raid.h"
     58   1.1     oster #include "rf_dag.h"
     59   1.1     oster #include "rf_layout.h"
     60   1.1     oster #include "rf_etimer.h"
     61   1.1     oster #include "rf_acctrace.h"
     62   1.1     oster #include "rf_diskqueue.h"
     63   1.1     oster #include "rf_dagfuncs.h"
     64   1.1     oster #include "rf_general.h"
     65   1.1     oster #include "rf_engine.h"
     66   1.1     oster #include "rf_dagutils.h"
     67   1.1     oster 
     68   1.1     oster #include "rf_kintf.h"
     69   1.1     oster 
     70   1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
     71   1.1     oster #include "rf_paritylog.h"
     72   1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73   1.1     oster 
     74  1.31  christos void     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75  1.31  christos void     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76  1.31  christos void     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77  1.31  christos void     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78  1.31  christos void     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     79  1.31  christos void     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     80  1.31  christos void     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     81   1.1     oster 
     82  1.14     oster /*****************************************************************************
     83   1.1     oster  * main (only) configuration routine for this module
     84  1.14     oster  ****************************************************************************/
     85  1.23     perry int
     86  1.28  christos rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
     87   1.3     oster {
     88  1.23     perry 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
     89  1.14     oster 		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     90   1.3     oster 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     91   1.3     oster 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     92   1.3     oster 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     93   1.3     oster 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     94   1.3     oster 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     95   1.3     oster 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
     96   1.3     oster 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
     97   1.3     oster 	return (0);
     98   1.1     oster }
     99   1.1     oster 
    100   1.1     oster 
    101   1.1     oster 
    102  1.14     oster /*****************************************************************************
    103   1.1     oster  * the execution function associated with a terminate node
    104  1.14     oster  ****************************************************************************/
    105  1.31  christos void
    106  1.15     oster rf_TerminateFunc(RF_DagNode_t *node)
    107   1.1     oster {
    108   1.3     oster 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    109   1.3     oster 	node->status = rf_good;
    110  1.31  christos 	rf_FinishNode(node, RF_THREAD_CONTEXT);
    111   1.1     oster }
    112   1.1     oster 
    113  1.31  christos void
    114  1.28  christos rf_TerminateUndoFunc(RF_DagNode_t *node)
    115   1.1     oster {
    116   1.1     oster }
    117   1.1     oster 
    118   1.1     oster 
    119  1.15     oster /*****************************************************************************
    120   1.1     oster  * execution functions associated with a mirror node
    121   1.1     oster  *
    122   1.1     oster  * parameters:
    123   1.1     oster  *
    124   1.1     oster  * 0 - physical disk addres of data
    125   1.1     oster  * 1 - buffer for holding read data
    126   1.1     oster  * 2 - parity stripe ID
    127   1.1     oster  * 3 - flags
    128   1.1     oster  * 4 - physical disk address of mirror (parity)
    129   1.1     oster  *
    130  1.15     oster  ****************************************************************************/
    131   1.1     oster 
    132  1.31  christos void
    133  1.15     oster rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
    134   1.1     oster {
    135   1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    136   1.3     oster 	 * parameters with physical disk address */
    137   1.1     oster 
    138   1.3     oster 	rf_SelectMirrorDiskIdle(node);
    139  1.31  christos 	rf_DiskReadFunc(node);
    140   1.1     oster }
    141   1.1     oster 
    142  1.11     oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    143  1.31  christos void
    144  1.15     oster rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
    145   1.1     oster {
    146   1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    147   1.3     oster 	 * parameters with physical disk address */
    148   1.1     oster 
    149   1.3     oster 	rf_SelectMirrorDiskPartition(node);
    150  1.31  christos 	rf_DiskReadFunc(node);
    151   1.1     oster }
    152  1.11     oster #endif
    153   1.1     oster 
    154  1.31  christos void
    155  1.28  christos rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
    156   1.1     oster {
    157   1.1     oster }
    158   1.1     oster 
    159   1.1     oster 
    160   1.1     oster 
    161   1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    162  1.14     oster /*****************************************************************************
    163   1.1     oster  * the execution function associated with a parity log update node
    164  1.14     oster  ****************************************************************************/
    165  1.31  christos void
    166  1.15     oster rf_ParityLogUpdateFunc(RF_DagNode_t *node)
    167   1.3     oster {
    168   1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    169  1.29  christos 	void *bf = (void *) node->params[1].p;
    170   1.3     oster 	RF_ParityLogData_t *logData;
    171  1.19     oster #if RF_ACC_TRACE > 0
    172   1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    173   1.3     oster 	RF_Etimer_t timer;
    174  1.19     oster #endif
    175   1.3     oster 
    176   1.3     oster 	if (node->dagHdr->status == rf_enable) {
    177  1.19     oster #if RF_ACC_TRACE > 0
    178   1.3     oster 		RF_ETIMER_START(timer);
    179  1.19     oster #endif
    180  1.24  christos 		logData = rf_CreateParityLogData(RF_UPDATE, pda, bf,
    181   1.3     oster 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    182  1.31  christos 		    node->wakeFunc, node,
    183   1.3     oster 		    node->dagHdr->tracerec, timer);
    184   1.3     oster 		if (logData)
    185   1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    186   1.3     oster 		else {
    187  1.19     oster #if RF_ACC_TRACE > 0
    188   1.3     oster 			RF_ETIMER_STOP(timer);
    189   1.3     oster 			RF_ETIMER_EVAL(timer);
    190   1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    191  1.19     oster #endif
    192   1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    193   1.3     oster 		}
    194   1.1     oster 	}
    195   1.1     oster }
    196   1.1     oster 
    197   1.1     oster 
    198  1.15     oster /*****************************************************************************
    199   1.1     oster  * the execution function associated with a parity log overwrite node
    200  1.15     oster  ****************************************************************************/
    201  1.31  christos void
    202  1.15     oster rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
    203   1.3     oster {
    204   1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    205  1.29  christos 	void *bf = (void *) node->params[1].p;
    206   1.3     oster 	RF_ParityLogData_t *logData;
    207  1.19     oster #if RF_ACC_TRACE > 0
    208   1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    209   1.3     oster 	RF_Etimer_t timer;
    210  1.19     oster #endif
    211   1.3     oster 
    212   1.3     oster 	if (node->dagHdr->status == rf_enable) {
    213  1.19     oster #if RF_ACC_TRACE > 0
    214   1.3     oster 		RF_ETIMER_START(timer);
    215  1.19     oster #endif
    216  1.24  christos 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf,
    217  1.14     oster (RF_Raid_t *) (node->dagHdr->raidPtr),
    218  1.31  christos 		    node->wakeFunc, node, node->dagHdr->tracerec, timer);
    219   1.3     oster 		if (logData)
    220   1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    221   1.3     oster 		else {
    222  1.19     oster #if RF_ACC_TRACE > 0
    223   1.3     oster 			RF_ETIMER_STOP(timer);
    224   1.3     oster 			RF_ETIMER_EVAL(timer);
    225   1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    226  1.19     oster #endif
    227   1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    228   1.3     oster 		}
    229   1.1     oster 	}
    230   1.1     oster }
    231   1.1     oster 
    232  1.31  christos void
    233  1.28  christos rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
    234   1.1     oster {
    235   1.1     oster }
    236   1.1     oster 
    237  1.31  christos void
    238  1.28  christos rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
    239   1.1     oster {
    240   1.1     oster }
    241  1.10     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    242  1.10     oster 
    243  1.14     oster /*****************************************************************************
    244   1.1     oster  * the execution function associated with a NOP node
    245  1.14     oster  ****************************************************************************/
    246  1.31  christos void
    247  1.15     oster rf_NullNodeFunc(RF_DagNode_t *node)
    248   1.1     oster {
    249   1.3     oster 	node->status = rf_good;
    250  1.31  christos 	rf_FinishNode(node, RF_THREAD_CONTEXT);
    251   1.1     oster }
    252   1.1     oster 
    253  1.31  christos void
    254  1.15     oster rf_NullNodeUndoFunc(RF_DagNode_t *node)
    255   1.1     oster {
    256   1.3     oster 	node->status = rf_undone;
    257  1.31  christos 	rf_FinishNode(node, RF_THREAD_CONTEXT);
    258   1.1     oster }
    259   1.1     oster 
    260   1.1     oster 
    261  1.14     oster /*****************************************************************************
    262   1.1     oster  * the execution function associated with a disk-read node
    263  1.14     oster  ****************************************************************************/
    264  1.31  christos void
    265  1.15     oster rf_DiskReadFuncForThreads(RF_DagNode_t *node)
    266   1.3     oster {
    267   1.3     oster 	RF_DiskQueueData_t *req;
    268   1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    269  1.29  christos 	void *bf = (void *) node->params[1].p;
    270   1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    271   1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    272   1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    273   1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    274  1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    275   1.1     oster 
    276   1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    277  1.31  christos 	    bf, parityStripeID, which_ru, node->wakeFunc, node,
    278  1.19     oster #if RF_ACC_TRACE > 0
    279  1.19     oster 	     node->dagHdr->tracerec,
    280  1.19     oster #else
    281  1.19     oster              NULL,
    282  1.19     oster #endif
    283  1.32  jdolecek 	    (void *) (node->dagHdr->raidPtr), 0, node->dagHdr->bp, PR_NOWAIT);
    284   1.3     oster 	if (!req) {
    285   1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    286   1.3     oster 	} else {
    287   1.3     oster 		node->dagFuncData = (void *) req;
    288  1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    289   1.3     oster 	}
    290   1.1     oster }
    291   1.1     oster 
    292   1.1     oster 
    293  1.14     oster /*****************************************************************************
    294   1.1     oster  * the execution function associated with a disk-write node
    295  1.14     oster  ****************************************************************************/
    296  1.31  christos void
    297  1.15     oster rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
    298   1.3     oster {
    299   1.3     oster 	RF_DiskQueueData_t *req;
    300   1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    301  1.29  christos 	void *bf = (void *) node->params[1].p;
    302   1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    303   1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    304   1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    305   1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    306  1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    307   1.1     oster 
    308   1.3     oster 	/* normal processing (rollaway or forward recovery) begins here */
    309   1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    310  1.31  christos 	    bf, parityStripeID, which_ru, node->wakeFunc, node,
    311  1.19     oster #if RF_ACC_TRACE > 0
    312   1.3     oster 	    node->dagHdr->tracerec,
    313  1.19     oster #else
    314  1.19     oster 	    NULL,
    315  1.19     oster #endif
    316   1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    317  1.32  jdolecek 	    0, node->dagHdr->bp, PR_NOWAIT);
    318   1.3     oster 
    319   1.3     oster 	if (!req) {
    320   1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    321   1.3     oster 	} else {
    322   1.3     oster 		node->dagFuncData = (void *) req;
    323  1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    324   1.3     oster 	}
    325   1.1     oster }
    326  1.14     oster /*****************************************************************************
    327   1.1     oster  * the undo function for disk nodes
    328   1.1     oster  * Note:  this is not a proper undo of a write node, only locks are released.
    329   1.1     oster  *        old data is not restored to disk!
    330  1.14     oster  ****************************************************************************/
    331  1.31  christos void
    332  1.15     oster rf_DiskUndoFunc(RF_DagNode_t *node)
    333   1.3     oster {
    334   1.3     oster 	RF_DiskQueueData_t *req;
    335   1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    336  1.13     oster 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    337   1.3     oster 
    338   1.3     oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    339  1.31  christos 	    0L, 0, NULL, 0L, 0, node->wakeFunc, node,
    340  1.19     oster #if RF_ACC_TRACE > 0
    341  1.19     oster 	     node->dagHdr->tracerec,
    342  1.19     oster #else
    343  1.19     oster 	     NULL,
    344  1.19     oster #endif
    345   1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    346  1.30     oster 	    0, NULL, PR_NOWAIT);
    347   1.3     oster 	if (!req)
    348   1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    349   1.3     oster 	else {
    350   1.3     oster 		node->dagFuncData = (void *) req;
    351  1.13     oster 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    352   1.3     oster 	}
    353   1.1     oster }
    354   1.3     oster 
    355  1.14     oster /*****************************************************************************
    356  1.14     oster  * Callback routine for DiskRead and DiskWrite nodes.  When the disk
    357  1.14     oster  * op completes, the routine is called to set the node status and
    358  1.14     oster  * inform the execution engine that the node has fired.
    359  1.14     oster  ****************************************************************************/
    360  1.31  christos void
    361  1.31  christos rf_GenericWakeupFunc(void *v, int status)
    362   1.3     oster {
    363  1.31  christos 	RF_DagNode_t *node = v;
    364  1.15     oster 
    365   1.3     oster 	switch (node->status) {
    366   1.3     oster 	case rf_fired:
    367   1.3     oster 		if (status)
    368   1.3     oster 			node->status = rf_bad;
    369   1.3     oster 		else
    370   1.3     oster 			node->status = rf_good;
    371   1.3     oster 		break;
    372   1.3     oster 	case rf_recover:
    373   1.3     oster 		/* probably should never reach this case */
    374   1.3     oster 		if (status)
    375   1.3     oster 			node->status = rf_panic;
    376   1.3     oster 		else
    377   1.3     oster 			node->status = rf_undone;
    378   1.3     oster 		break;
    379   1.3     oster 	default:
    380   1.4     oster 		printf("rf_GenericWakeupFunc:");
    381   1.4     oster 		printf("node->status is %d,", node->status);
    382   1.4     oster 		printf("status is %d \n", status);
    383   1.3     oster 		RF_PANIC();
    384   1.3     oster 		break;
    385   1.3     oster 	}
    386   1.3     oster 	if (node->dagFuncData)
    387   1.3     oster 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    388  1.31  christos 	rf_FinishNode(node, RF_INTR_CONTEXT);
    389   1.1     oster }
    390   1.1     oster 
    391   1.1     oster 
    392  1.14     oster /*****************************************************************************
    393  1.14     oster  * there are three distinct types of xor nodes:
    394  1.14     oster 
    395  1.14     oster  * A "regular xor" is used in the fault-free case where the access
    396  1.14     oster  * spans a complete stripe unit.  It assumes that the result buffer is
    397  1.14     oster  * one full stripe unit in size, and uses the stripe-unit-offset
    398  1.14     oster  * values that it computes from the PDAs to determine where within the
    399  1.14     oster  * stripe unit to XOR each argument buffer.
    400  1.14     oster  *
    401  1.14     oster  * A "simple xor" is used in the fault-free case where the access
    402  1.14     oster  * touches only a portion of one (or two, in some cases) stripe
    403  1.14     oster  * unit(s).  It assumes that all the argument buffers are of the same
    404  1.14     oster  * size and have the same stripe unit offset.
    405  1.14     oster  *
    406  1.14     oster  * A "recovery xor" is used in the degraded-mode case.  It's similar
    407  1.14     oster  * to the regular xor function except that it takes the failed PDA as
    408  1.14     oster  * an additional parameter, and uses it to determine what portions of
    409  1.14     oster  * the argument buffers need to be xor'd into the result buffer, and
    410  1.14     oster  * where in the result buffer they should go.
    411  1.14     oster  ****************************************************************************/
    412   1.1     oster 
    413   1.1     oster /* xor the params together and store the result in the result field.
    414  1.14     oster  * assume the result field points to a buffer that is the size of one
    415  1.14     oster  * SU, and use the pda params to determine where within the buffer to
    416  1.14     oster  * XOR the input buffers.  */
    417  1.31  christos void
    418  1.15     oster rf_RegularXorFunc(RF_DagNode_t *node)
    419   1.3     oster {
    420   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    421  1.19     oster #if RF_ACC_TRACE > 0
    422   1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    423   1.3     oster 	RF_Etimer_t timer;
    424  1.19     oster #endif
    425   1.3     oster 	int     i, retcode;
    426   1.1     oster 
    427   1.3     oster 	retcode = 0;
    428   1.3     oster 	if (node->dagHdr->status == rf_enable) {
    429   1.3     oster 		/* don't do the XOR if the input is the same as the output */
    430  1.19     oster #if RF_ACC_TRACE > 0
    431   1.3     oster 		RF_ETIMER_START(timer);
    432  1.19     oster #endif
    433   1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    434   1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    435   1.3     oster 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    436  1.17     oster 							   (char *) node->params[i + 1].p, (char *) node->results[0]);
    437   1.3     oster 			}
    438  1.19     oster #if RF_ACC_TRACE > 0
    439   1.3     oster 		RF_ETIMER_STOP(timer);
    440   1.3     oster 		RF_ETIMER_EVAL(timer);
    441   1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    442  1.19     oster #endif
    443   1.3     oster 	}
    444  1.31  christos 	rf_GenericWakeupFunc(node, retcode);	/* call wake func
    445  1.31  christos 						 * explicitly since no
    446  1.31  christos 						 * I/O in this node */
    447   1.1     oster }
    448   1.1     oster /* xor the inputs into the result buffer, ignoring placement issues */
    449  1.31  christos void
    450  1.15     oster rf_SimpleXorFunc(RF_DagNode_t *node)
    451   1.3     oster {
    452   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    453   1.3     oster 	int     i, retcode = 0;
    454  1.19     oster #if RF_ACC_TRACE > 0
    455   1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    456   1.3     oster 	RF_Etimer_t timer;
    457  1.19     oster #endif
    458   1.1     oster 
    459   1.3     oster 	if (node->dagHdr->status == rf_enable) {
    460  1.19     oster #if RF_ACC_TRACE > 0
    461   1.3     oster 		RF_ETIMER_START(timer);
    462  1.19     oster #endif
    463   1.3     oster 		/* don't do the XOR if the input is the same as the output */
    464   1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    465   1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    466   1.3     oster 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    467  1.17     oster 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
    468   1.3     oster 			}
    469  1.19     oster #if RF_ACC_TRACE > 0
    470   1.3     oster 		RF_ETIMER_STOP(timer);
    471   1.3     oster 		RF_ETIMER_EVAL(timer);
    472   1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    473  1.19     oster #endif
    474   1.3     oster 	}
    475  1.31  christos 	rf_GenericWakeupFunc(node, retcode);	/* call wake func
    476  1.31  christos 						 * explicitly since no
    477  1.31  christos 						 * I/O in this node */
    478   1.1     oster }
    479  1.14     oster /* this xor is used by the degraded-mode dag functions to recover lost
    480  1.14     oster  * data.  the second-to-last parameter is the PDA for the failed
    481  1.14     oster  * portion of the access.  the code here looks at this PDA and assumes
    482  1.14     oster  * that the xor target buffer is equal in size to the number of
    483  1.14     oster  * sectors in the failed PDA.  It then uses the other PDAs in the
    484  1.14     oster  * parameter list to determine where within the target buffer the
    485  1.14     oster  * corresponding data should be xored.  */
    486  1.31  christos void
    487  1.15     oster rf_RecoveryXorFunc(RF_DagNode_t *node)
    488   1.3     oster {
    489   1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    490   1.3     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    491   1.3     oster 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    492   1.3     oster 	int     i, retcode = 0;
    493   1.3     oster 	RF_PhysDiskAddr_t *pda;
    494   1.3     oster 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    495   1.3     oster 	char   *srcbuf, *destbuf;
    496  1.19     oster #if RF_ACC_TRACE > 0
    497   1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    498   1.3     oster 	RF_Etimer_t timer;
    499  1.19     oster #endif
    500   1.1     oster 
    501   1.3     oster 	if (node->dagHdr->status == rf_enable) {
    502  1.19     oster #if RF_ACC_TRACE > 0
    503   1.3     oster 		RF_ETIMER_START(timer);
    504  1.19     oster #endif
    505   1.3     oster 		for (i = 0; i < node->numParams - 2; i += 2)
    506   1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    507   1.3     oster 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    508   1.3     oster 				srcbuf = (char *) node->params[i + 1].p;
    509   1.3     oster 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    510   1.3     oster 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    511  1.17     oster 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
    512   1.3     oster 			}
    513  1.19     oster #if RF_ACC_TRACE > 0
    514   1.3     oster 		RF_ETIMER_STOP(timer);
    515   1.3     oster 		RF_ETIMER_EVAL(timer);
    516   1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    517  1.19     oster #endif
    518   1.3     oster 	}
    519  1.31  christos 	rf_GenericWakeupFunc(node, retcode);
    520   1.1     oster }
    521  1.14     oster /*****************************************************************************
    522  1.14     oster  * The next three functions are utilities used by the above
    523  1.14     oster  * xor-execution functions.
    524  1.14     oster  ****************************************************************************/
    525   1.1     oster 
    526   1.1     oster 
    527   1.1     oster /*
    528  1.14     oster  * this is just a glorified buffer xor.  targbuf points to a buffer
    529  1.14     oster  * that is one full stripe unit in size.  srcbuf points to a buffer
    530  1.14     oster  * that may be less than 1 SU, but never more.  When the access
    531  1.14     oster  * described by pda is one SU in size (which by implication means it's
    532  1.14     oster  * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
    533  1.14     oster  * When the access is less than one SU in size the XOR occurs on only
    534  1.14     oster  * the portion of targbuf identified in the pda.  */
    535   1.1     oster 
    536  1.23     perry int
    537  1.15     oster rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    538  1.17     oster 		 char *srcbuf, char *targbuf)
    539   1.3     oster {
    540   1.3     oster 	char   *targptr;
    541   1.3     oster 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    542   1.3     oster 	int     SUOffset = pda->startSector % sectPerSU;
    543   1.3     oster 	int     length, retcode = 0;
    544   1.3     oster 
    545   1.3     oster 	RF_ASSERT(pda->numSector <= sectPerSU);
    546   1.3     oster 
    547   1.3     oster 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    548   1.3     oster 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    549  1.17     oster 	retcode = rf_bxor(srcbuf, targptr, length);
    550   1.3     oster 	return (retcode);
    551   1.1     oster }
    552  1.14     oster /* it really should be the case that the buffer pointers (returned by
    553  1.14     oster  * malloc) are aligned to the natural word size of the machine, so
    554  1.14     oster  * this is the only case we optimize for.  The length should always be
    555  1.14     oster  * a multiple of the sector size, so there should be no problem with
    556  1.14     oster  * leftover bytes at the end.  */
    557  1.23     perry int
    558  1.17     oster rf_bxor(char *src, char *dest, int len)
    559   1.3     oster {
    560   1.3     oster 	unsigned mask = sizeof(long) - 1, retcode = 0;
    561   1.3     oster 
    562  1.23     perry 	if (!(((unsigned long) src) & mask) &&
    563  1.14     oster 	    !(((unsigned long) dest) & mask) && !(len & mask)) {
    564  1.23     perry 		retcode = rf_longword_bxor((unsigned long *) src,
    565  1.23     perry 					   (unsigned long *) dest,
    566  1.17     oster 					   len >> RF_LONGSHIFT);
    567   1.3     oster 	} else {
    568   1.3     oster 		RF_ASSERT(0);
    569   1.3     oster 	}
    570   1.3     oster 	return (retcode);
    571   1.1     oster }
    572   1.1     oster 
    573  1.14     oster /* When XORing in kernel mode, we need to map each user page to kernel
    574  1.14     oster  * space before we can access it.  We don't want to assume anything
    575  1.14     oster  * about which input buffers are in kernel/user space, nor about their
    576  1.14     oster  * alignment, so in each loop we compute the maximum number of bytes
    577  1.14     oster  * that we can xor without crossing any page boundaries, and do only
    578  1.23     perry  * this many bytes before the next remap.
    579  1.23     perry  *
    580  1.23     perry  * len - is in longwords
    581  1.15     oster  */
    582  1.23     perry int
    583  1.17     oster rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
    584   1.3     oster {
    585   1.6  augustss 	unsigned long *end = src + len;
    586   1.6  augustss 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    587  1.14     oster 	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
    588   1.3     oster 	int     longs_this_time;/* # longwords to xor in the current iteration */
    589   1.3     oster 
    590  1.16     oster 	pg_src = src;
    591  1.16     oster 	pg_dest = dest;
    592   1.3     oster 	if (!pg_src || !pg_dest)
    593   1.3     oster 		return (EFAULT);
    594   1.3     oster 
    595   1.3     oster 	while (len >= 4) {
    596   1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    597   1.3     oster 		src += longs_this_time;
    598   1.3     oster 		dest += longs_this_time;
    599   1.3     oster 		len -= longs_this_time;
    600   1.3     oster 		while (longs_this_time >= 4) {
    601   1.3     oster 			d0 = pg_dest[0];
    602   1.3     oster 			d1 = pg_dest[1];
    603   1.3     oster 			d2 = pg_dest[2];
    604   1.3     oster 			d3 = pg_dest[3];
    605   1.3     oster 			s0 = pg_src[0];
    606   1.3     oster 			s1 = pg_src[1];
    607   1.3     oster 			s2 = pg_src[2];
    608   1.3     oster 			s3 = pg_src[3];
    609   1.3     oster 			pg_dest[0] = d0 ^ s0;
    610   1.3     oster 			pg_dest[1] = d1 ^ s1;
    611   1.3     oster 			pg_dest[2] = d2 ^ s2;
    612   1.3     oster 			pg_dest[3] = d3 ^ s3;
    613   1.3     oster 			pg_src += 4;
    614   1.3     oster 			pg_dest += 4;
    615   1.3     oster 			longs_this_time -= 4;
    616   1.3     oster 		}
    617   1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    618   1.3     oster 						 * boundaries here */
    619   1.3     oster 			*pg_dest++ ^= *pg_src++;
    620   1.3     oster 			longs_this_time--;
    621   1.3     oster 		}
    622   1.3     oster 
    623   1.3     oster 		/* either we're done, or we've reached a page boundary on one
    624   1.3     oster 		 * (or possibly both) of the pointers */
    625   1.3     oster 		if (len) {
    626   1.3     oster 			if (RF_PAGE_ALIGNED(src))
    627  1.16     oster 				pg_src = src;
    628   1.3     oster 			if (RF_PAGE_ALIGNED(dest))
    629  1.16     oster 				pg_dest = dest;
    630   1.3     oster 			if (!pg_src || !pg_dest)
    631   1.3     oster 				return (EFAULT);
    632   1.3     oster 		}
    633   1.3     oster 	}
    634   1.3     oster 	while (src < end) {
    635   1.3     oster 		*pg_dest++ ^= *pg_src++;
    636   1.3     oster 		src++;
    637   1.3     oster 		dest++;
    638   1.3     oster 		len--;
    639   1.3     oster 		if (RF_PAGE_ALIGNED(src))
    640  1.16     oster 			pg_src = src;
    641   1.3     oster 		if (RF_PAGE_ALIGNED(dest))
    642  1.16     oster 			pg_dest = dest;
    643   1.3     oster 	}
    644   1.3     oster 	RF_ASSERT(len == 0);
    645   1.3     oster 	return (0);
    646   1.1     oster }
    647   1.1     oster 
    648   1.9     oster #if 0
    649   1.1     oster /*
    650   1.1     oster    dst = a ^ b ^ c;
    651   1.1     oster    a may equal dst
    652   1.1     oster    see comment above longword_bxor
    653  1.15     oster    len is length in longwords
    654   1.1     oster */
    655  1.23     perry int
    656  1.15     oster rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
    657  1.15     oster 		  unsigned long *c, int len, void *bp)
    658   1.3     oster {
    659   1.3     oster 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    660   1.6  augustss 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    661   1.3     oster 								 * pointers */
    662   1.3     oster 	int     longs_this_time;/* # longs to xor in the current iteration */
    663   1.3     oster 	char    dst_is_a = 0;
    664   1.3     oster 
    665  1.16     oster 	pg_a = a;
    666  1.16     oster 	pg_b = b;
    667  1.16     oster 	pg_c = c;
    668   1.3     oster 	if (a == dst) {
    669   1.3     oster 		pg_dst = pg_a;
    670   1.3     oster 		dst_is_a = 1;
    671   1.3     oster 	} else {
    672  1.16     oster 		pg_dst = dst;
    673   1.3     oster 	}
    674   1.3     oster 
    675   1.3     oster 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    676   1.3     oster 	while ((((unsigned long) pg_dst) & 0x1f)) {
    677   1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    678   1.3     oster 		dst++;
    679   1.3     oster 		a++;
    680   1.3     oster 		b++;
    681   1.3     oster 		c++;
    682   1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    683  1.16     oster 			pg_a = a;
    684   1.3     oster 			if (!pg_a)
    685   1.3     oster 				return (EFAULT);
    686   1.3     oster 		}
    687   1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    688  1.16     oster 			pg_b = a;
    689   1.3     oster 			if (!pg_b)
    690   1.3     oster 				return (EFAULT);
    691   1.3     oster 		}
    692   1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    693  1.16     oster 			pg_c = a;
    694   1.3     oster 			if (!pg_c)
    695   1.3     oster 				return (EFAULT);
    696   1.3     oster 		}
    697   1.3     oster 		len--;
    698   1.3     oster 	}
    699   1.3     oster 
    700   1.3     oster 	while (len > 4) {
    701   1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    702   1.3     oster 		a += longs_this_time;
    703   1.3     oster 		b += longs_this_time;
    704   1.3     oster 		c += longs_this_time;
    705   1.3     oster 		dst += longs_this_time;
    706   1.3     oster 		len -= longs_this_time;
    707   1.3     oster 		while (longs_this_time >= 4) {
    708   1.3     oster 			a0 = pg_a[0];
    709   1.3     oster 			longs_this_time -= 4;
    710   1.3     oster 
    711   1.3     oster 			a1 = pg_a[1];
    712   1.3     oster 			a2 = pg_a[2];
    713   1.3     oster 
    714   1.3     oster 			a3 = pg_a[3];
    715   1.3     oster 			pg_a += 4;
    716   1.3     oster 
    717   1.3     oster 			b0 = pg_b[0];
    718   1.3     oster 			b1 = pg_b[1];
    719   1.3     oster 
    720   1.3     oster 			b2 = pg_b[2];
    721   1.3     oster 			b3 = pg_b[3];
    722   1.3     oster 			/* start dual issue */
    723   1.3     oster 			a0 ^= b0;
    724   1.3     oster 			b0 = pg_c[0];
    725   1.3     oster 
    726   1.3     oster 			pg_b += 4;
    727   1.3     oster 			a1 ^= b1;
    728   1.3     oster 
    729   1.3     oster 			a2 ^= b2;
    730   1.3     oster 			a3 ^= b3;
    731   1.3     oster 
    732   1.3     oster 			b1 = pg_c[1];
    733   1.3     oster 			a0 ^= b0;
    734   1.3     oster 
    735   1.3     oster 			b2 = pg_c[2];
    736   1.3     oster 			a1 ^= b1;
    737   1.3     oster 
    738   1.3     oster 			b3 = pg_c[3];
    739   1.3     oster 			a2 ^= b2;
    740   1.3     oster 
    741   1.3     oster 			pg_dst[0] = a0;
    742   1.3     oster 			a3 ^= b3;
    743   1.3     oster 			pg_dst[1] = a1;
    744   1.3     oster 			pg_c += 4;
    745   1.3     oster 			pg_dst[2] = a2;
    746   1.3     oster 			pg_dst[3] = a3;
    747   1.3     oster 			pg_dst += 4;
    748   1.3     oster 		}
    749   1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    750   1.3     oster 						 * boundaries here */
    751   1.3     oster 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    752   1.3     oster 			longs_this_time--;
    753   1.3     oster 		}
    754   1.3     oster 
    755   1.3     oster 		if (len) {
    756   1.3     oster 			if (RF_PAGE_ALIGNED(a)) {
    757  1.16     oster 				pg_a = a;
    758   1.3     oster 				if (!pg_a)
    759   1.3     oster 					return (EFAULT);
    760   1.3     oster 				if (dst_is_a)
    761   1.3     oster 					pg_dst = pg_a;
    762   1.3     oster 			}
    763   1.3     oster 			if (RF_PAGE_ALIGNED(b)) {
    764  1.16     oster 				pg_b = b;
    765   1.3     oster 				if (!pg_b)
    766   1.3     oster 					return (EFAULT);
    767   1.3     oster 			}
    768   1.3     oster 			if (RF_PAGE_ALIGNED(c)) {
    769  1.16     oster 				pg_c = c;
    770   1.3     oster 				if (!pg_c)
    771   1.3     oster 					return (EFAULT);
    772   1.3     oster 			}
    773   1.3     oster 			if (!dst_is_a)
    774   1.3     oster 				if (RF_PAGE_ALIGNED(dst)) {
    775  1.16     oster 					pg_dst = dst;
    776   1.3     oster 					if (!pg_dst)
    777   1.3     oster 						return (EFAULT);
    778   1.3     oster 				}
    779   1.3     oster 		}
    780   1.3     oster 	}
    781   1.3     oster 	while (len) {
    782   1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    783   1.3     oster 		dst++;
    784   1.3     oster 		a++;
    785   1.3     oster 		b++;
    786   1.3     oster 		c++;
    787   1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    788  1.16     oster 			pg_a = a;
    789   1.3     oster 			if (!pg_a)
    790   1.3     oster 				return (EFAULT);
    791   1.3     oster 			if (dst_is_a)
    792   1.3     oster 				pg_dst = pg_a;
    793   1.3     oster 		}
    794   1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    795  1.16     oster 			pg_b = b;
    796   1.3     oster 			if (!pg_b)
    797   1.3     oster 				return (EFAULT);
    798   1.3     oster 		}
    799   1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    800  1.16     oster 			pg_c = c;
    801   1.3     oster 			if (!pg_c)
    802   1.3     oster 				return (EFAULT);
    803   1.3     oster 		}
    804   1.3     oster 		if (!dst_is_a)
    805   1.3     oster 			if (RF_PAGE_ALIGNED(dst)) {
    806  1.16     oster 				pg_dst = dst;
    807   1.3     oster 				if (!pg_dst)
    808   1.3     oster 					return (EFAULT);
    809   1.3     oster 			}
    810   1.3     oster 		len--;
    811   1.3     oster 	}
    812   1.3     oster 	return (0);
    813   1.3     oster }
    814   1.3     oster 
    815  1.23     perry int
    816  1.23     perry rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
    817  1.15     oster 	 unsigned char *c, unsigned long len, void *bp)
    818   1.1     oster {
    819   1.3     oster 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    820   1.1     oster 
    821   1.3     oster 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    822   1.3     oster 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    823   1.1     oster }
    824   1.9     oster #endif
    825