rf_dagfuncs.c revision 1.35 1 1.35 thorpej /* $NetBSD: rf_dagfuncs.c,v 1.35 2021/08/07 16:19:15 thorpej Exp $ */
2 1.1 oster /*
3 1.1 oster * Copyright (c) 1995 Carnegie-Mellon University.
4 1.1 oster * All rights reserved.
5 1.1 oster *
6 1.1 oster * Author: Mark Holland, William V. Courtright II
7 1.1 oster *
8 1.1 oster * Permission to use, copy, modify and distribute this software and
9 1.1 oster * its documentation is hereby granted, provided that both the copyright
10 1.1 oster * notice and this permission notice appear in all copies of the
11 1.1 oster * software, derivative works or modified versions, and any portions
12 1.1 oster * thereof, and that both notices appear in supporting documentation.
13 1.1 oster *
14 1.1 oster * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 1.1 oster * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 1.1 oster * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 1.1 oster *
18 1.1 oster * Carnegie Mellon requests users of this software to return to
19 1.1 oster *
20 1.1 oster * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 1.1 oster * School of Computer Science
22 1.1 oster * Carnegie Mellon University
23 1.1 oster * Pittsburgh PA 15213-3890
24 1.1 oster *
25 1.1 oster * any improvements or extensions that they make and grant Carnegie the
26 1.1 oster * rights to redistribute these changes.
27 1.1 oster */
28 1.1 oster
29 1.1 oster /*
30 1.1 oster * dagfuncs.c -- DAG node execution routines
31 1.1 oster *
32 1.1 oster * Rules:
33 1.1 oster * 1. Every DAG execution function must eventually cause node->status to
34 1.1 oster * get set to "good" or "bad", and "FinishNode" to be called. In the
35 1.1 oster * case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 1.1 oster * the node execution function can do these two things directly. In
37 1.1 oster * the case of nodes that have to wait for some event (a disk read to
38 1.1 oster * complete, a lock to be released, etc) to occur before they can
39 1.1 oster * complete, this is typically achieved by having whatever module
40 1.1 oster * is doing the operation call GenericWakeupFunc upon completion.
41 1.1 oster * 2. DAG execution functions should check the status in the DAG header
42 1.1 oster * and NOP out their operations if the status is not "enable". However,
43 1.1 oster * execution functions that release resources must be sure to release
44 1.1 oster * them even when they NOP out the function that would use them.
45 1.1 oster * Functions that acquire resources should go ahead and acquire them
46 1.1 oster * even when they NOP, so that a downstream release node will not have
47 1.1 oster * to check to find out whether or not the acquire was suppressed.
48 1.1 oster */
49 1.8 lukem
50 1.8 lukem #include <sys/cdefs.h>
51 1.35 thorpej __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.35 2021/08/07 16:19:15 thorpej Exp $");
52 1.1 oster
53 1.7 mrg #include <sys/param.h>
54 1.1 oster #include <sys/ioctl.h>
55 1.1 oster
56 1.1 oster #include "rf_archs.h"
57 1.1 oster #include "rf_raid.h"
58 1.1 oster #include "rf_dag.h"
59 1.1 oster #include "rf_layout.h"
60 1.1 oster #include "rf_etimer.h"
61 1.1 oster #include "rf_acctrace.h"
62 1.1 oster #include "rf_diskqueue.h"
63 1.1 oster #include "rf_dagfuncs.h"
64 1.1 oster #include "rf_general.h"
65 1.1 oster #include "rf_engine.h"
66 1.1 oster #include "rf_dagutils.h"
67 1.1 oster
68 1.1 oster #include "rf_kintf.h"
69 1.1 oster
70 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
71 1.1 oster #include "rf_paritylog.h"
72 1.3 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
73 1.1 oster
74 1.31 christos void (*rf_DiskReadFunc) (RF_DagNode_t *);
75 1.31 christos void (*rf_DiskWriteFunc) (RF_DagNode_t *);
76 1.31 christos void (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77 1.31 christos void (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78 1.31 christos void (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
79 1.31 christos void (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
80 1.31 christos void (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
81 1.1 oster
82 1.14 oster /*****************************************************************************
83 1.1 oster * main (only) configuration routine for this module
84 1.14 oster ****************************************************************************/
85 1.23 perry int
86 1.28 christos rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
87 1.3 oster {
88 1.23 perry RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
89 1.14 oster ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
90 1.3 oster rf_DiskReadFunc = rf_DiskReadFuncForThreads;
91 1.3 oster rf_DiskReadUndoFunc = rf_DiskUndoFunc;
92 1.3 oster rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
93 1.3 oster rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
94 1.3 oster rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
95 1.3 oster rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
96 1.3 oster rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
97 1.3 oster return (0);
98 1.1 oster }
99 1.1 oster
100 1.1 oster
101 1.1 oster
102 1.14 oster /*****************************************************************************
103 1.1 oster * the execution function associated with a terminate node
104 1.14 oster ****************************************************************************/
105 1.31 christos void
106 1.15 oster rf_TerminateFunc(RF_DagNode_t *node)
107 1.1 oster {
108 1.3 oster RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
109 1.3 oster node->status = rf_good;
110 1.31 christos rf_FinishNode(node, RF_THREAD_CONTEXT);
111 1.1 oster }
112 1.1 oster
113 1.31 christos void
114 1.28 christos rf_TerminateUndoFunc(RF_DagNode_t *node)
115 1.1 oster {
116 1.1 oster }
117 1.1 oster
118 1.1 oster
119 1.15 oster /*****************************************************************************
120 1.1 oster * execution functions associated with a mirror node
121 1.1 oster *
122 1.1 oster * parameters:
123 1.1 oster *
124 1.34 andvar * 0 - physical disk address of data
125 1.1 oster * 1 - buffer for holding read data
126 1.1 oster * 2 - parity stripe ID
127 1.1 oster * 3 - flags
128 1.1 oster * 4 - physical disk address of mirror (parity)
129 1.1 oster *
130 1.15 oster ****************************************************************************/
131 1.1 oster
132 1.31 christos void
133 1.15 oster rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
134 1.1 oster {
135 1.3 oster /* select the mirror copy with the shortest queue and fill in node
136 1.3 oster * parameters with physical disk address */
137 1.1 oster
138 1.3 oster rf_SelectMirrorDiskIdle(node);
139 1.31 christos rf_DiskReadFunc(node);
140 1.1 oster }
141 1.1 oster
142 1.11 oster #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
143 1.31 christos void
144 1.15 oster rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
145 1.1 oster {
146 1.3 oster /* select the mirror copy with the shortest queue and fill in node
147 1.3 oster * parameters with physical disk address */
148 1.1 oster
149 1.3 oster rf_SelectMirrorDiskPartition(node);
150 1.31 christos rf_DiskReadFunc(node);
151 1.1 oster }
152 1.11 oster #endif
153 1.1 oster
154 1.31 christos void
155 1.28 christos rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
156 1.1 oster {
157 1.1 oster }
158 1.1 oster
159 1.1 oster
160 1.1 oster
161 1.1 oster #if RF_INCLUDE_PARITYLOGGING > 0
162 1.14 oster /*****************************************************************************
163 1.1 oster * the execution function associated with a parity log update node
164 1.14 oster ****************************************************************************/
165 1.31 christos void
166 1.15 oster rf_ParityLogUpdateFunc(RF_DagNode_t *node)
167 1.3 oster {
168 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
169 1.29 christos void *bf = (void *) node->params[1].p;
170 1.3 oster RF_ParityLogData_t *logData;
171 1.19 oster #if RF_ACC_TRACE > 0
172 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
173 1.3 oster RF_Etimer_t timer;
174 1.19 oster #endif
175 1.3 oster
176 1.3 oster if (node->dagHdr->status == rf_enable) {
177 1.19 oster #if RF_ACC_TRACE > 0
178 1.3 oster RF_ETIMER_START(timer);
179 1.19 oster #endif
180 1.24 christos logData = rf_CreateParityLogData(RF_UPDATE, pda, bf,
181 1.3 oster (RF_Raid_t *) (node->dagHdr->raidPtr),
182 1.31 christos node->wakeFunc, node,
183 1.3 oster node->dagHdr->tracerec, timer);
184 1.3 oster if (logData)
185 1.3 oster rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
186 1.3 oster else {
187 1.19 oster #if RF_ACC_TRACE > 0
188 1.3 oster RF_ETIMER_STOP(timer);
189 1.3 oster RF_ETIMER_EVAL(timer);
190 1.3 oster tracerec->plog_us += RF_ETIMER_VAL_US(timer);
191 1.19 oster #endif
192 1.3 oster (node->wakeFunc) (node, ENOMEM);
193 1.3 oster }
194 1.1 oster }
195 1.1 oster }
196 1.1 oster
197 1.1 oster
198 1.15 oster /*****************************************************************************
199 1.1 oster * the execution function associated with a parity log overwrite node
200 1.15 oster ****************************************************************************/
201 1.31 christos void
202 1.15 oster rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
203 1.3 oster {
204 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
205 1.29 christos void *bf = (void *) node->params[1].p;
206 1.3 oster RF_ParityLogData_t *logData;
207 1.19 oster #if RF_ACC_TRACE > 0
208 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
209 1.3 oster RF_Etimer_t timer;
210 1.19 oster #endif
211 1.3 oster
212 1.3 oster if (node->dagHdr->status == rf_enable) {
213 1.19 oster #if RF_ACC_TRACE > 0
214 1.3 oster RF_ETIMER_START(timer);
215 1.19 oster #endif
216 1.24 christos logData = rf_CreateParityLogData(RF_OVERWRITE, pda, bf,
217 1.14 oster (RF_Raid_t *) (node->dagHdr->raidPtr),
218 1.31 christos node->wakeFunc, node, node->dagHdr->tracerec, timer);
219 1.3 oster if (logData)
220 1.3 oster rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
221 1.3 oster else {
222 1.19 oster #if RF_ACC_TRACE > 0
223 1.3 oster RF_ETIMER_STOP(timer);
224 1.3 oster RF_ETIMER_EVAL(timer);
225 1.3 oster tracerec->plog_us += RF_ETIMER_VAL_US(timer);
226 1.19 oster #endif
227 1.3 oster (node->wakeFunc) (node, ENOMEM);
228 1.3 oster }
229 1.1 oster }
230 1.1 oster }
231 1.1 oster
232 1.31 christos void
233 1.28 christos rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
234 1.1 oster {
235 1.1 oster }
236 1.1 oster
237 1.31 christos void
238 1.28 christos rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
239 1.1 oster {
240 1.1 oster }
241 1.10 oster #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
242 1.10 oster
243 1.14 oster /*****************************************************************************
244 1.1 oster * the execution function associated with a NOP node
245 1.14 oster ****************************************************************************/
246 1.31 christos void
247 1.15 oster rf_NullNodeFunc(RF_DagNode_t *node)
248 1.1 oster {
249 1.3 oster node->status = rf_good;
250 1.31 christos rf_FinishNode(node, RF_THREAD_CONTEXT);
251 1.1 oster }
252 1.1 oster
253 1.31 christos void
254 1.15 oster rf_NullNodeUndoFunc(RF_DagNode_t *node)
255 1.1 oster {
256 1.3 oster node->status = rf_undone;
257 1.31 christos rf_FinishNode(node, RF_THREAD_CONTEXT);
258 1.1 oster }
259 1.1 oster
260 1.1 oster
261 1.14 oster /*****************************************************************************
262 1.1 oster * the execution function associated with a disk-read node
263 1.14 oster ****************************************************************************/
264 1.31 christos void
265 1.15 oster rf_DiskReadFuncForThreads(RF_DagNode_t *node)
266 1.3 oster {
267 1.3 oster RF_DiskQueueData_t *req;
268 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
269 1.29 christos void *bf = (void *) node->params[1].p;
270 1.3 oster RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
271 1.3 oster unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
272 1.3 oster unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
273 1.3 oster RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
274 1.13 oster RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
275 1.1 oster
276 1.3 oster req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
277 1.31 christos bf, parityStripeID, which_ru, node->wakeFunc, node,
278 1.19 oster #if RF_ACC_TRACE > 0
279 1.19 oster node->dagHdr->tracerec,
280 1.19 oster #else
281 1.19 oster NULL,
282 1.19 oster #endif
283 1.33 oster (void *) (node->dagHdr->raidPtr), 0, node->dagHdr->bp);
284 1.33 oster
285 1.33 oster node->dagFuncData = (void *) req;
286 1.33 oster rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
287 1.1 oster }
288 1.1 oster
289 1.1 oster
290 1.14 oster /*****************************************************************************
291 1.1 oster * the execution function associated with a disk-write node
292 1.14 oster ****************************************************************************/
293 1.31 christos void
294 1.15 oster rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
295 1.3 oster {
296 1.3 oster RF_DiskQueueData_t *req;
297 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
298 1.29 christos void *bf = (void *) node->params[1].p;
299 1.3 oster RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
300 1.3 oster unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
301 1.3 oster unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
302 1.3 oster RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
303 1.13 oster RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
304 1.1 oster
305 1.3 oster /* normal processing (rollaway or forward recovery) begins here */
306 1.3 oster req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
307 1.31 christos bf, parityStripeID, which_ru, node->wakeFunc, node,
308 1.19 oster #if RF_ACC_TRACE > 0
309 1.3 oster node->dagHdr->tracerec,
310 1.19 oster #else
311 1.19 oster NULL,
312 1.19 oster #endif
313 1.3 oster (void *) (node->dagHdr->raidPtr),
314 1.33 oster 0, node->dagHdr->bp);
315 1.3 oster
316 1.33 oster node->dagFuncData = (void *) req;
317 1.33 oster rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
318 1.1 oster }
319 1.14 oster /*****************************************************************************
320 1.1 oster * the undo function for disk nodes
321 1.1 oster * Note: this is not a proper undo of a write node, only locks are released.
322 1.1 oster * old data is not restored to disk!
323 1.14 oster ****************************************************************************/
324 1.31 christos void
325 1.15 oster rf_DiskUndoFunc(RF_DagNode_t *node)
326 1.3 oster {
327 1.3 oster RF_DiskQueueData_t *req;
328 1.3 oster RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
329 1.13 oster RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
330 1.3 oster
331 1.3 oster req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
332 1.31 christos 0L, 0, NULL, 0L, 0, node->wakeFunc, node,
333 1.19 oster #if RF_ACC_TRACE > 0
334 1.19 oster node->dagHdr->tracerec,
335 1.19 oster #else
336 1.19 oster NULL,
337 1.19 oster #endif
338 1.3 oster (void *) (node->dagHdr->raidPtr),
339 1.33 oster 0, NULL);
340 1.33 oster
341 1.33 oster node->dagFuncData = (void *) req;
342 1.33 oster rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
343 1.1 oster }
344 1.3 oster
345 1.14 oster /*****************************************************************************
346 1.14 oster * Callback routine for DiskRead and DiskWrite nodes. When the disk
347 1.14 oster * op completes, the routine is called to set the node status and
348 1.14 oster * inform the execution engine that the node has fired.
349 1.14 oster ****************************************************************************/
350 1.31 christos void
351 1.31 christos rf_GenericWakeupFunc(void *v, int status)
352 1.3 oster {
353 1.31 christos RF_DagNode_t *node = v;
354 1.15 oster
355 1.3 oster switch (node->status) {
356 1.3 oster case rf_fired:
357 1.3 oster if (status)
358 1.3 oster node->status = rf_bad;
359 1.3 oster else
360 1.3 oster node->status = rf_good;
361 1.3 oster break;
362 1.3 oster case rf_recover:
363 1.3 oster /* probably should never reach this case */
364 1.3 oster if (status)
365 1.3 oster node->status = rf_panic;
366 1.3 oster else
367 1.3 oster node->status = rf_undone;
368 1.3 oster break;
369 1.3 oster default:
370 1.4 oster printf("rf_GenericWakeupFunc:");
371 1.4 oster printf("node->status is %d,", node->status);
372 1.4 oster printf("status is %d \n", status);
373 1.3 oster RF_PANIC();
374 1.3 oster break;
375 1.3 oster }
376 1.3 oster if (node->dagFuncData)
377 1.3 oster rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
378 1.31 christos rf_FinishNode(node, RF_INTR_CONTEXT);
379 1.1 oster }
380 1.1 oster
381 1.1 oster
382 1.14 oster /*****************************************************************************
383 1.14 oster * there are three distinct types of xor nodes:
384 1.14 oster
385 1.14 oster * A "regular xor" is used in the fault-free case where the access
386 1.14 oster * spans a complete stripe unit. It assumes that the result buffer is
387 1.14 oster * one full stripe unit in size, and uses the stripe-unit-offset
388 1.14 oster * values that it computes from the PDAs to determine where within the
389 1.14 oster * stripe unit to XOR each argument buffer.
390 1.14 oster *
391 1.14 oster * A "simple xor" is used in the fault-free case where the access
392 1.14 oster * touches only a portion of one (or two, in some cases) stripe
393 1.14 oster * unit(s). It assumes that all the argument buffers are of the same
394 1.14 oster * size and have the same stripe unit offset.
395 1.14 oster *
396 1.14 oster * A "recovery xor" is used in the degraded-mode case. It's similar
397 1.14 oster * to the regular xor function except that it takes the failed PDA as
398 1.14 oster * an additional parameter, and uses it to determine what portions of
399 1.14 oster * the argument buffers need to be xor'd into the result buffer, and
400 1.14 oster * where in the result buffer they should go.
401 1.14 oster ****************************************************************************/
402 1.1 oster
403 1.1 oster /* xor the params together and store the result in the result field.
404 1.14 oster * assume the result field points to a buffer that is the size of one
405 1.14 oster * SU, and use the pda params to determine where within the buffer to
406 1.14 oster * XOR the input buffers. */
407 1.31 christos void
408 1.15 oster rf_RegularXorFunc(RF_DagNode_t *node)
409 1.3 oster {
410 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
411 1.19 oster #if RF_ACC_TRACE > 0
412 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
413 1.3 oster RF_Etimer_t timer;
414 1.19 oster #endif
415 1.3 oster int i, retcode;
416 1.1 oster
417 1.3 oster retcode = 0;
418 1.3 oster if (node->dagHdr->status == rf_enable) {
419 1.3 oster /* don't do the XOR if the input is the same as the output */
420 1.19 oster #if RF_ACC_TRACE > 0
421 1.3 oster RF_ETIMER_START(timer);
422 1.19 oster #endif
423 1.3 oster for (i = 0; i < node->numParams - 1; i += 2)
424 1.3 oster if (node->params[i + 1].p != node->results[0]) {
425 1.3 oster retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
426 1.17 oster (char *) node->params[i + 1].p, (char *) node->results[0]);
427 1.3 oster }
428 1.19 oster #if RF_ACC_TRACE > 0
429 1.3 oster RF_ETIMER_STOP(timer);
430 1.3 oster RF_ETIMER_EVAL(timer);
431 1.3 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
432 1.19 oster #endif
433 1.3 oster }
434 1.31 christos rf_GenericWakeupFunc(node, retcode); /* call wake func
435 1.31 christos * explicitly since no
436 1.31 christos * I/O in this node */
437 1.1 oster }
438 1.1 oster /* xor the inputs into the result buffer, ignoring placement issues */
439 1.31 christos void
440 1.15 oster rf_SimpleXorFunc(RF_DagNode_t *node)
441 1.3 oster {
442 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
443 1.3 oster int i, retcode = 0;
444 1.19 oster #if RF_ACC_TRACE > 0
445 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
446 1.3 oster RF_Etimer_t timer;
447 1.19 oster #endif
448 1.1 oster
449 1.3 oster if (node->dagHdr->status == rf_enable) {
450 1.19 oster #if RF_ACC_TRACE > 0
451 1.3 oster RF_ETIMER_START(timer);
452 1.19 oster #endif
453 1.3 oster /* don't do the XOR if the input is the same as the output */
454 1.3 oster for (i = 0; i < node->numParams - 1; i += 2)
455 1.3 oster if (node->params[i + 1].p != node->results[0]) {
456 1.3 oster retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
457 1.17 oster rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
458 1.3 oster }
459 1.19 oster #if RF_ACC_TRACE > 0
460 1.3 oster RF_ETIMER_STOP(timer);
461 1.3 oster RF_ETIMER_EVAL(timer);
462 1.3 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
463 1.19 oster #endif
464 1.3 oster }
465 1.31 christos rf_GenericWakeupFunc(node, retcode); /* call wake func
466 1.31 christos * explicitly since no
467 1.31 christos * I/O in this node */
468 1.1 oster }
469 1.14 oster /* this xor is used by the degraded-mode dag functions to recover lost
470 1.14 oster * data. the second-to-last parameter is the PDA for the failed
471 1.14 oster * portion of the access. the code here looks at this PDA and assumes
472 1.14 oster * that the xor target buffer is equal in size to the number of
473 1.14 oster * sectors in the failed PDA. It then uses the other PDAs in the
474 1.14 oster * parameter list to determine where within the target buffer the
475 1.14 oster * corresponding data should be xored. */
476 1.31 christos void
477 1.15 oster rf_RecoveryXorFunc(RF_DagNode_t *node)
478 1.3 oster {
479 1.3 oster RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
480 1.3 oster RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
481 1.3 oster RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
482 1.3 oster int i, retcode = 0;
483 1.3 oster RF_PhysDiskAddr_t *pda;
484 1.3 oster int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
485 1.3 oster char *srcbuf, *destbuf;
486 1.19 oster #if RF_ACC_TRACE > 0
487 1.3 oster RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
488 1.3 oster RF_Etimer_t timer;
489 1.19 oster #endif
490 1.1 oster
491 1.3 oster if (node->dagHdr->status == rf_enable) {
492 1.19 oster #if RF_ACC_TRACE > 0
493 1.3 oster RF_ETIMER_START(timer);
494 1.19 oster #endif
495 1.3 oster for (i = 0; i < node->numParams - 2; i += 2)
496 1.3 oster if (node->params[i + 1].p != node->results[0]) {
497 1.3 oster pda = (RF_PhysDiskAddr_t *) node->params[i].p;
498 1.3 oster srcbuf = (char *) node->params[i + 1].p;
499 1.3 oster suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
500 1.3 oster destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
501 1.17 oster retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
502 1.3 oster }
503 1.19 oster #if RF_ACC_TRACE > 0
504 1.3 oster RF_ETIMER_STOP(timer);
505 1.3 oster RF_ETIMER_EVAL(timer);
506 1.3 oster tracerec->xor_us += RF_ETIMER_VAL_US(timer);
507 1.19 oster #endif
508 1.3 oster }
509 1.31 christos rf_GenericWakeupFunc(node, retcode);
510 1.1 oster }
511 1.14 oster /*****************************************************************************
512 1.14 oster * The next three functions are utilities used by the above
513 1.14 oster * xor-execution functions.
514 1.14 oster ****************************************************************************/
515 1.1 oster
516 1.1 oster
517 1.1 oster /*
518 1.14 oster * this is just a glorified buffer xor. targbuf points to a buffer
519 1.14 oster * that is one full stripe unit in size. srcbuf points to a buffer
520 1.14 oster * that may be less than 1 SU, but never more. When the access
521 1.14 oster * described by pda is one SU in size (which by implication means it's
522 1.14 oster * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
523 1.14 oster * When the access is less than one SU in size the XOR occurs on only
524 1.14 oster * the portion of targbuf identified in the pda. */
525 1.1 oster
526 1.23 perry int
527 1.15 oster rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
528 1.17 oster char *srcbuf, char *targbuf)
529 1.3 oster {
530 1.3 oster char *targptr;
531 1.3 oster int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
532 1.3 oster int SUOffset = pda->startSector % sectPerSU;
533 1.3 oster int length, retcode = 0;
534 1.3 oster
535 1.3 oster RF_ASSERT(pda->numSector <= sectPerSU);
536 1.3 oster
537 1.3 oster targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
538 1.3 oster length = rf_RaidAddressToByte(raidPtr, pda->numSector);
539 1.17 oster retcode = rf_bxor(srcbuf, targptr, length);
540 1.3 oster return (retcode);
541 1.1 oster }
542 1.14 oster /* it really should be the case that the buffer pointers (returned by
543 1.14 oster * malloc) are aligned to the natural word size of the machine, so
544 1.14 oster * this is the only case we optimize for. The length should always be
545 1.14 oster * a multiple of the sector size, so there should be no problem with
546 1.14 oster * leftover bytes at the end. */
547 1.23 perry int
548 1.17 oster rf_bxor(char *src, char *dest, int len)
549 1.3 oster {
550 1.3 oster unsigned mask = sizeof(long) - 1, retcode = 0;
551 1.3 oster
552 1.23 perry if (!(((unsigned long) src) & mask) &&
553 1.14 oster !(((unsigned long) dest) & mask) && !(len & mask)) {
554 1.23 perry retcode = rf_longword_bxor((unsigned long *) src,
555 1.23 perry (unsigned long *) dest,
556 1.17 oster len >> RF_LONGSHIFT);
557 1.3 oster } else {
558 1.3 oster RF_ASSERT(0);
559 1.3 oster }
560 1.3 oster return (retcode);
561 1.1 oster }
562 1.1 oster
563 1.14 oster /* When XORing in kernel mode, we need to map each user page to kernel
564 1.14 oster * space before we can access it. We don't want to assume anything
565 1.14 oster * about which input buffers are in kernel/user space, nor about their
566 1.14 oster * alignment, so in each loop we compute the maximum number of bytes
567 1.14 oster * that we can xor without crossing any page boundaries, and do only
568 1.23 perry * this many bytes before the next remap.
569 1.23 perry *
570 1.23 perry * len - is in longwords
571 1.15 oster */
572 1.23 perry int
573 1.17 oster rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
574 1.3 oster {
575 1.6 augustss unsigned long *end = src + len;
576 1.6 augustss unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
577 1.14 oster unsigned long *pg_src, *pg_dest; /* per-page source/dest pointers */
578 1.3 oster int longs_this_time;/* # longwords to xor in the current iteration */
579 1.3 oster
580 1.16 oster pg_src = src;
581 1.16 oster pg_dest = dest;
582 1.3 oster if (!pg_src || !pg_dest)
583 1.3 oster return (EFAULT);
584 1.3 oster
585 1.3 oster while (len >= 4) {
586 1.3 oster longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */
587 1.3 oster src += longs_this_time;
588 1.3 oster dest += longs_this_time;
589 1.3 oster len -= longs_this_time;
590 1.3 oster while (longs_this_time >= 4) {
591 1.3 oster d0 = pg_dest[0];
592 1.3 oster d1 = pg_dest[1];
593 1.3 oster d2 = pg_dest[2];
594 1.3 oster d3 = pg_dest[3];
595 1.3 oster s0 = pg_src[0];
596 1.3 oster s1 = pg_src[1];
597 1.3 oster s2 = pg_src[2];
598 1.3 oster s3 = pg_src[3];
599 1.3 oster pg_dest[0] = d0 ^ s0;
600 1.3 oster pg_dest[1] = d1 ^ s1;
601 1.3 oster pg_dest[2] = d2 ^ s2;
602 1.3 oster pg_dest[3] = d3 ^ s3;
603 1.3 oster pg_src += 4;
604 1.3 oster pg_dest += 4;
605 1.3 oster longs_this_time -= 4;
606 1.3 oster }
607 1.3 oster while (longs_this_time > 0) { /* cannot cross any page
608 1.3 oster * boundaries here */
609 1.3 oster *pg_dest++ ^= *pg_src++;
610 1.3 oster longs_this_time--;
611 1.3 oster }
612 1.3 oster
613 1.3 oster /* either we're done, or we've reached a page boundary on one
614 1.3 oster * (or possibly both) of the pointers */
615 1.3 oster if (len) {
616 1.3 oster if (RF_PAGE_ALIGNED(src))
617 1.16 oster pg_src = src;
618 1.3 oster if (RF_PAGE_ALIGNED(dest))
619 1.16 oster pg_dest = dest;
620 1.3 oster if (!pg_src || !pg_dest)
621 1.3 oster return (EFAULT);
622 1.3 oster }
623 1.3 oster }
624 1.3 oster while (src < end) {
625 1.3 oster *pg_dest++ ^= *pg_src++;
626 1.3 oster src++;
627 1.3 oster dest++;
628 1.3 oster len--;
629 1.3 oster if (RF_PAGE_ALIGNED(src))
630 1.16 oster pg_src = src;
631 1.3 oster if (RF_PAGE_ALIGNED(dest))
632 1.16 oster pg_dest = dest;
633 1.3 oster }
634 1.3 oster RF_ASSERT(len == 0);
635 1.3 oster return (0);
636 1.1 oster }
637 1.1 oster
638 1.9 oster #if 0
639 1.1 oster /*
640 1.1 oster dst = a ^ b ^ c;
641 1.1 oster a may equal dst
642 1.1 oster see comment above longword_bxor
643 1.15 oster len is length in longwords
644 1.1 oster */
645 1.23 perry int
646 1.15 oster rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
647 1.15 oster unsigned long *c, int len, void *bp)
648 1.3 oster {
649 1.3 oster unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
650 1.6 augustss unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest
651 1.3 oster * pointers */
652 1.3 oster int longs_this_time;/* # longs to xor in the current iteration */
653 1.3 oster char dst_is_a = 0;
654 1.3 oster
655 1.16 oster pg_a = a;
656 1.16 oster pg_b = b;
657 1.16 oster pg_c = c;
658 1.3 oster if (a == dst) {
659 1.3 oster pg_dst = pg_a;
660 1.3 oster dst_is_a = 1;
661 1.3 oster } else {
662 1.16 oster pg_dst = dst;
663 1.3 oster }
664 1.3 oster
665 1.3 oster /* align dest to cache line. Can't cross a pg boundary on dst here. */
666 1.3 oster while ((((unsigned long) pg_dst) & 0x1f)) {
667 1.3 oster *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
668 1.3 oster dst++;
669 1.3 oster a++;
670 1.3 oster b++;
671 1.3 oster c++;
672 1.3 oster if (RF_PAGE_ALIGNED(a)) {
673 1.16 oster pg_a = a;
674 1.3 oster if (!pg_a)
675 1.3 oster return (EFAULT);
676 1.3 oster }
677 1.3 oster if (RF_PAGE_ALIGNED(b)) {
678 1.16 oster pg_b = a;
679 1.3 oster if (!pg_b)
680 1.3 oster return (EFAULT);
681 1.3 oster }
682 1.3 oster if (RF_PAGE_ALIGNED(c)) {
683 1.16 oster pg_c = a;
684 1.3 oster if (!pg_c)
685 1.3 oster return (EFAULT);
686 1.3 oster }
687 1.3 oster len--;
688 1.3 oster }
689 1.3 oster
690 1.3 oster while (len > 4) {
691 1.3 oster longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
692 1.3 oster a += longs_this_time;
693 1.3 oster b += longs_this_time;
694 1.3 oster c += longs_this_time;
695 1.3 oster dst += longs_this_time;
696 1.3 oster len -= longs_this_time;
697 1.3 oster while (longs_this_time >= 4) {
698 1.3 oster a0 = pg_a[0];
699 1.3 oster longs_this_time -= 4;
700 1.3 oster
701 1.3 oster a1 = pg_a[1];
702 1.3 oster a2 = pg_a[2];
703 1.3 oster
704 1.3 oster a3 = pg_a[3];
705 1.3 oster pg_a += 4;
706 1.3 oster
707 1.3 oster b0 = pg_b[0];
708 1.3 oster b1 = pg_b[1];
709 1.3 oster
710 1.3 oster b2 = pg_b[2];
711 1.3 oster b3 = pg_b[3];
712 1.3 oster /* start dual issue */
713 1.3 oster a0 ^= b0;
714 1.3 oster b0 = pg_c[0];
715 1.3 oster
716 1.3 oster pg_b += 4;
717 1.3 oster a1 ^= b1;
718 1.3 oster
719 1.3 oster a2 ^= b2;
720 1.3 oster a3 ^= b3;
721 1.3 oster
722 1.3 oster b1 = pg_c[1];
723 1.3 oster a0 ^= b0;
724 1.3 oster
725 1.3 oster b2 = pg_c[2];
726 1.3 oster a1 ^= b1;
727 1.3 oster
728 1.3 oster b3 = pg_c[3];
729 1.3 oster a2 ^= b2;
730 1.3 oster
731 1.3 oster pg_dst[0] = a0;
732 1.3 oster a3 ^= b3;
733 1.3 oster pg_dst[1] = a1;
734 1.3 oster pg_c += 4;
735 1.3 oster pg_dst[2] = a2;
736 1.3 oster pg_dst[3] = a3;
737 1.3 oster pg_dst += 4;
738 1.3 oster }
739 1.3 oster while (longs_this_time > 0) { /* cannot cross any page
740 1.3 oster * boundaries here */
741 1.3 oster *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
742 1.3 oster longs_this_time--;
743 1.3 oster }
744 1.3 oster
745 1.3 oster if (len) {
746 1.3 oster if (RF_PAGE_ALIGNED(a)) {
747 1.16 oster pg_a = a;
748 1.3 oster if (!pg_a)
749 1.3 oster return (EFAULT);
750 1.3 oster if (dst_is_a)
751 1.3 oster pg_dst = pg_a;
752 1.3 oster }
753 1.3 oster if (RF_PAGE_ALIGNED(b)) {
754 1.16 oster pg_b = b;
755 1.3 oster if (!pg_b)
756 1.3 oster return (EFAULT);
757 1.3 oster }
758 1.3 oster if (RF_PAGE_ALIGNED(c)) {
759 1.16 oster pg_c = c;
760 1.3 oster if (!pg_c)
761 1.3 oster return (EFAULT);
762 1.3 oster }
763 1.3 oster if (!dst_is_a)
764 1.3 oster if (RF_PAGE_ALIGNED(dst)) {
765 1.16 oster pg_dst = dst;
766 1.3 oster if (!pg_dst)
767 1.3 oster return (EFAULT);
768 1.3 oster }
769 1.3 oster }
770 1.3 oster }
771 1.3 oster while (len) {
772 1.3 oster *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
773 1.3 oster dst++;
774 1.3 oster a++;
775 1.3 oster b++;
776 1.3 oster c++;
777 1.3 oster if (RF_PAGE_ALIGNED(a)) {
778 1.16 oster pg_a = a;
779 1.3 oster if (!pg_a)
780 1.3 oster return (EFAULT);
781 1.3 oster if (dst_is_a)
782 1.3 oster pg_dst = pg_a;
783 1.3 oster }
784 1.3 oster if (RF_PAGE_ALIGNED(b)) {
785 1.16 oster pg_b = b;
786 1.3 oster if (!pg_b)
787 1.3 oster return (EFAULT);
788 1.3 oster }
789 1.3 oster if (RF_PAGE_ALIGNED(c)) {
790 1.16 oster pg_c = c;
791 1.3 oster if (!pg_c)
792 1.3 oster return (EFAULT);
793 1.3 oster }
794 1.3 oster if (!dst_is_a)
795 1.3 oster if (RF_PAGE_ALIGNED(dst)) {
796 1.16 oster pg_dst = dst;
797 1.3 oster if (!pg_dst)
798 1.3 oster return (EFAULT);
799 1.3 oster }
800 1.3 oster len--;
801 1.3 oster }
802 1.3 oster return (0);
803 1.3 oster }
804 1.3 oster
805 1.23 perry int
806 1.23 perry rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
807 1.15 oster unsigned char *c, unsigned long len, void *bp)
808 1.1 oster {
809 1.3 oster RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
810 1.1 oster
811 1.3 oster return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
812 1.3 oster (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
813 1.1 oster }
814 1.9 oster #endif
815