Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.5.2.2
      1  1.5.2.2  bouyer /*	$NetBSD: rf_dagfuncs.c,v 1.5.2.2 2001/02/11 19:16:15 bouyer Exp $	*/
      2      1.1   oster /*
      3      1.1   oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4      1.1   oster  * All rights reserved.
      5      1.1   oster  *
      6      1.1   oster  * Author: Mark Holland, William V. Courtright II
      7      1.1   oster  *
      8      1.1   oster  * Permission to use, copy, modify and distribute this software and
      9      1.1   oster  * its documentation is hereby granted, provided that both the copyright
     10      1.1   oster  * notice and this permission notice appear in all copies of the
     11      1.1   oster  * software, derivative works or modified versions, and any portions
     12      1.1   oster  * thereof, and that both notices appear in supporting documentation.
     13      1.1   oster  *
     14      1.1   oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15      1.1   oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16      1.1   oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17      1.1   oster  *
     18      1.1   oster  * Carnegie Mellon requests users of this software to return to
     19      1.1   oster  *
     20      1.1   oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21      1.1   oster  *  School of Computer Science
     22      1.1   oster  *  Carnegie Mellon University
     23      1.1   oster  *  Pittsburgh PA 15213-3890
     24      1.1   oster  *
     25      1.1   oster  * any improvements or extensions that they make and grant Carnegie the
     26      1.1   oster  * rights to redistribute these changes.
     27      1.1   oster  */
     28      1.1   oster 
     29      1.1   oster /*
     30      1.1   oster  * dagfuncs.c -- DAG node execution routines
     31      1.1   oster  *
     32      1.1   oster  * Rules:
     33      1.1   oster  * 1. Every DAG execution function must eventually cause node->status to
     34      1.1   oster  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35      1.1   oster  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36      1.1   oster  *    the node execution function can do these two things directly. In
     37      1.1   oster  *    the case of nodes that have to wait for some event (a disk read to
     38      1.1   oster  *    complete, a lock to be released, etc) to occur before they can
     39      1.1   oster  *    complete, this is typically achieved by having whatever module
     40      1.1   oster  *    is doing the operation call GenericWakeupFunc upon completion.
     41      1.1   oster  * 2. DAG execution functions should check the status in the DAG header
     42      1.1   oster  *    and NOP out their operations if the status is not "enable". However,
     43      1.1   oster  *    execution functions that release resources must be sure to release
     44      1.1   oster  *    them even when they NOP out the function that would use them.
     45      1.1   oster  *    Functions that acquire resources should go ahead and acquire them
     46      1.1   oster  *    even when they NOP, so that a downstream release node will not have
     47      1.1   oster  *    to check to find out whether or not the acquire was suppressed.
     48      1.1   oster  */
     49      1.1   oster 
     50      1.1   oster #include <sys/param.h>
     51  1.5.2.2  bouyer #include <sys/ioctl.h>
     52      1.1   oster 
     53      1.1   oster #include "rf_archs.h"
     54      1.1   oster #include "rf_raid.h"
     55      1.1   oster #include "rf_dag.h"
     56      1.1   oster #include "rf_layout.h"
     57      1.1   oster #include "rf_etimer.h"
     58      1.1   oster #include "rf_acctrace.h"
     59      1.1   oster #include "rf_diskqueue.h"
     60      1.1   oster #include "rf_dagfuncs.h"
     61      1.1   oster #include "rf_general.h"
     62      1.1   oster #include "rf_engine.h"
     63      1.1   oster #include "rf_dagutils.h"
     64      1.1   oster 
     65      1.1   oster #include "rf_kintf.h"
     66      1.1   oster 
     67      1.1   oster #if RF_INCLUDE_PARITYLOGGING > 0
     68      1.1   oster #include "rf_paritylog.h"
     69      1.3   oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     70      1.1   oster 
     71      1.3   oster int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     72      1.3   oster int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     73      1.3   oster int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     74      1.3   oster int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     75      1.3   oster int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
     76      1.3   oster int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
     77      1.3   oster int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     78      1.3   oster int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     79      1.3   oster int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     80      1.1   oster 
     81      1.1   oster /*****************************************************************************************
     82      1.1   oster  * main (only) configuration routine for this module
     83      1.1   oster  ****************************************************************************************/
     84      1.3   oster int
     85      1.3   oster rf_ConfigureDAGFuncs(listp)
     86      1.3   oster 	RF_ShutdownList_t **listp;
     87      1.3   oster {
     88      1.3   oster 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     89      1.3   oster 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     90      1.3   oster 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     91      1.3   oster 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     92      1.3   oster 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     93      1.3   oster 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
     94      1.3   oster 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
     95      1.3   oster 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     96      1.3   oster 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
     97      1.3   oster 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
     98      1.3   oster 	return (0);
     99      1.1   oster }
    100      1.1   oster 
    101      1.1   oster 
    102      1.1   oster 
    103      1.1   oster /*****************************************************************************************
    104      1.1   oster  * the execution function associated with a terminate node
    105      1.1   oster  ****************************************************************************************/
    106      1.3   oster int
    107      1.3   oster rf_TerminateFunc(node)
    108      1.3   oster 	RF_DagNode_t *node;
    109      1.1   oster {
    110      1.3   oster 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    111      1.3   oster 	node->status = rf_good;
    112      1.3   oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    113      1.1   oster }
    114      1.1   oster 
    115      1.3   oster int
    116      1.3   oster rf_TerminateUndoFunc(node)
    117      1.3   oster 	RF_DagNode_t *node;
    118      1.1   oster {
    119      1.3   oster 	return (0);
    120      1.1   oster }
    121      1.1   oster 
    122      1.1   oster 
    123      1.1   oster /*****************************************************************************************
    124      1.1   oster  * execution functions associated with a mirror node
    125      1.1   oster  *
    126      1.1   oster  * parameters:
    127      1.1   oster  *
    128      1.1   oster  * 0 - physical disk addres of data
    129      1.1   oster  * 1 - buffer for holding read data
    130      1.1   oster  * 2 - parity stripe ID
    131      1.1   oster  * 3 - flags
    132      1.1   oster  * 4 - physical disk address of mirror (parity)
    133      1.1   oster  *
    134      1.1   oster  ****************************************************************************************/
    135      1.1   oster 
    136      1.3   oster int
    137      1.3   oster rf_DiskReadMirrorIdleFunc(node)
    138      1.3   oster 	RF_DagNode_t *node;
    139      1.1   oster {
    140      1.3   oster 	/* select the mirror copy with the shortest queue and fill in node
    141      1.3   oster 	 * parameters with physical disk address */
    142      1.1   oster 
    143      1.3   oster 	rf_SelectMirrorDiskIdle(node);
    144      1.3   oster 	return (rf_DiskReadFunc(node));
    145      1.1   oster }
    146      1.1   oster 
    147      1.3   oster int
    148      1.3   oster rf_DiskReadMirrorPartitionFunc(node)
    149      1.3   oster 	RF_DagNode_t *node;
    150      1.1   oster {
    151      1.3   oster 	/* select the mirror copy with the shortest queue and fill in node
    152      1.3   oster 	 * parameters with physical disk address */
    153      1.1   oster 
    154      1.3   oster 	rf_SelectMirrorDiskPartition(node);
    155      1.3   oster 	return (rf_DiskReadFunc(node));
    156      1.1   oster }
    157      1.1   oster 
    158      1.3   oster int
    159      1.3   oster rf_DiskReadMirrorUndoFunc(node)
    160      1.3   oster 	RF_DagNode_t *node;
    161      1.1   oster {
    162      1.3   oster 	return (0);
    163      1.1   oster }
    164      1.1   oster 
    165      1.1   oster 
    166      1.1   oster 
    167      1.1   oster #if RF_INCLUDE_PARITYLOGGING > 0
    168      1.1   oster /*****************************************************************************************
    169      1.1   oster  * the execution function associated with a parity log update node
    170      1.1   oster  ****************************************************************************************/
    171      1.3   oster int
    172      1.3   oster rf_ParityLogUpdateFunc(node)
    173      1.3   oster 	RF_DagNode_t *node;
    174      1.3   oster {
    175      1.3   oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    176      1.3   oster 	caddr_t buf = (caddr_t) node->params[1].p;
    177      1.3   oster 	RF_ParityLogData_t *logData;
    178      1.3   oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    179      1.3   oster 	RF_Etimer_t timer;
    180      1.3   oster 
    181      1.3   oster 	if (node->dagHdr->status == rf_enable) {
    182      1.3   oster 		RF_ETIMER_START(timer);
    183      1.3   oster 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
    184      1.3   oster 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    185      1.3   oster 		    node->wakeFunc, (void *) node,
    186      1.3   oster 		    node->dagHdr->tracerec, timer);
    187      1.3   oster 		if (logData)
    188      1.3   oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    189      1.3   oster 		else {
    190      1.3   oster 			RF_ETIMER_STOP(timer);
    191      1.3   oster 			RF_ETIMER_EVAL(timer);
    192      1.3   oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    193      1.3   oster 			(node->wakeFunc) (node, ENOMEM);
    194      1.3   oster 		}
    195      1.1   oster 	}
    196      1.3   oster 	return (0);
    197      1.1   oster }
    198      1.1   oster 
    199      1.1   oster 
    200      1.1   oster /*****************************************************************************************
    201      1.1   oster  * the execution function associated with a parity log overwrite node
    202      1.1   oster  ****************************************************************************************/
    203      1.3   oster int
    204      1.3   oster rf_ParityLogOverwriteFunc(node)
    205      1.3   oster 	RF_DagNode_t *node;
    206      1.3   oster {
    207      1.3   oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    208      1.3   oster 	caddr_t buf = (caddr_t) node->params[1].p;
    209      1.3   oster 	RF_ParityLogData_t *logData;
    210      1.3   oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    211      1.3   oster 	RF_Etimer_t timer;
    212      1.3   oster 
    213      1.3   oster 	if (node->dagHdr->status == rf_enable) {
    214      1.3   oster 		RF_ETIMER_START(timer);
    215      1.3   oster 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
    216      1.3   oster 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    217      1.3   oster 		if (logData)
    218      1.3   oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    219      1.3   oster 		else {
    220      1.3   oster 			RF_ETIMER_STOP(timer);
    221      1.3   oster 			RF_ETIMER_EVAL(timer);
    222      1.3   oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    223      1.3   oster 			(node->wakeFunc) (node, ENOMEM);
    224      1.3   oster 		}
    225      1.1   oster 	}
    226      1.3   oster 	return (0);
    227      1.1   oster }
    228      1.3   oster #else				/* RF_INCLUDE_PARITYLOGGING > 0 */
    229      1.1   oster 
    230      1.3   oster int
    231      1.3   oster rf_ParityLogUpdateFunc(node)
    232      1.3   oster 	RF_DagNode_t *node;
    233      1.1   oster {
    234      1.3   oster 	return (0);
    235      1.1   oster }
    236      1.3   oster int
    237      1.3   oster rf_ParityLogOverwriteFunc(node)
    238      1.3   oster 	RF_DagNode_t *node;
    239      1.1   oster {
    240      1.3   oster 	return (0);
    241      1.1   oster }
    242      1.3   oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    243      1.1   oster 
    244      1.3   oster int
    245      1.3   oster rf_ParityLogUpdateUndoFunc(node)
    246      1.3   oster 	RF_DagNode_t *node;
    247      1.1   oster {
    248      1.3   oster 	return (0);
    249      1.1   oster }
    250      1.1   oster 
    251      1.3   oster int
    252      1.3   oster rf_ParityLogOverwriteUndoFunc(node)
    253      1.3   oster 	RF_DagNode_t *node;
    254      1.1   oster {
    255      1.3   oster 	return (0);
    256      1.1   oster }
    257      1.1   oster /*****************************************************************************************
    258      1.1   oster  * the execution function associated with a NOP node
    259      1.1   oster  ****************************************************************************************/
    260      1.3   oster int
    261      1.3   oster rf_NullNodeFunc(node)
    262      1.3   oster 	RF_DagNode_t *node;
    263      1.1   oster {
    264      1.3   oster 	node->status = rf_good;
    265      1.3   oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    266      1.1   oster }
    267      1.1   oster 
    268      1.3   oster int
    269      1.3   oster rf_NullNodeUndoFunc(node)
    270      1.3   oster 	RF_DagNode_t *node;
    271      1.1   oster {
    272      1.3   oster 	node->status = rf_undone;
    273      1.3   oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    274      1.1   oster }
    275      1.1   oster 
    276      1.1   oster 
    277      1.1   oster /*****************************************************************************************
    278      1.1   oster  * the execution function associated with a disk-read node
    279      1.1   oster  ****************************************************************************************/
    280      1.3   oster int
    281      1.3   oster rf_DiskReadFuncForThreads(node)
    282      1.3   oster 	RF_DagNode_t *node;
    283      1.3   oster {
    284      1.3   oster 	RF_DiskQueueData_t *req;
    285      1.3   oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    286      1.3   oster 	caddr_t buf = (caddr_t) node->params[1].p;
    287      1.3   oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    288      1.3   oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    289      1.3   oster 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    290      1.3   oster 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    291      1.3   oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    292      1.3   oster 	RF_DiskQueueDataFlags_t flags = 0;
    293      1.3   oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    294      1.3   oster 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    295      1.3   oster 	void   *b_proc = NULL;
    296      1.1   oster 
    297      1.3   oster 	if (node->dagHdr->bp)
    298      1.3   oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    299      1.1   oster 
    300      1.3   oster 	RF_ASSERT(!(lock && unlock));
    301      1.3   oster 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    302      1.3   oster 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    303      1.5   oster 
    304      1.3   oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    305      1.3   oster 	    buf, parityStripeID, which_ru,
    306      1.3   oster 	    (int (*) (void *, int)) node->wakeFunc,
    307      1.3   oster 	    node, NULL, node->dagHdr->tracerec,
    308      1.3   oster 	    (void *) (node->dagHdr->raidPtr), flags, b_proc);
    309      1.3   oster 	if (!req) {
    310      1.3   oster 		(node->wakeFunc) (node, ENOMEM);
    311      1.3   oster 	} else {
    312      1.3   oster 		node->dagFuncData = (void *) req;
    313      1.3   oster 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    314      1.3   oster 	}
    315      1.3   oster 	return (0);
    316      1.1   oster }
    317      1.1   oster 
    318      1.1   oster 
    319      1.1   oster /*****************************************************************************************
    320      1.1   oster  * the execution function associated with a disk-write node
    321      1.1   oster  ****************************************************************************************/
    322      1.3   oster int
    323      1.3   oster rf_DiskWriteFuncForThreads(node)
    324      1.3   oster 	RF_DagNode_t *node;
    325      1.3   oster {
    326      1.3   oster 	RF_DiskQueueData_t *req;
    327      1.3   oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    328      1.3   oster 	caddr_t buf = (caddr_t) node->params[1].p;
    329      1.3   oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    330      1.3   oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    331      1.3   oster 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    332      1.3   oster 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    333      1.3   oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    334      1.3   oster 	RF_DiskQueueDataFlags_t flags = 0;
    335      1.3   oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    336      1.3   oster 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    337      1.3   oster 	void   *b_proc = NULL;
    338      1.1   oster 
    339      1.3   oster 	if (node->dagHdr->bp)
    340      1.3   oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    341      1.1   oster 
    342      1.3   oster 	/* normal processing (rollaway or forward recovery) begins here */
    343      1.3   oster 	RF_ASSERT(!(lock && unlock));
    344      1.3   oster 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    345      1.3   oster 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    346      1.3   oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    347      1.3   oster 	    buf, parityStripeID, which_ru,
    348      1.3   oster 	    (int (*) (void *, int)) node->wakeFunc,
    349      1.3   oster 	    (void *) node, NULL,
    350      1.3   oster 	    node->dagHdr->tracerec,
    351      1.3   oster 	    (void *) (node->dagHdr->raidPtr),
    352      1.3   oster 	    flags, b_proc);
    353      1.3   oster 
    354      1.3   oster 	if (!req) {
    355      1.3   oster 		(node->wakeFunc) (node, ENOMEM);
    356      1.3   oster 	} else {
    357      1.3   oster 		node->dagFuncData = (void *) req;
    358      1.3   oster 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    359      1.3   oster 	}
    360      1.3   oster 
    361      1.3   oster 	return (0);
    362      1.1   oster }
    363      1.1   oster /*****************************************************************************************
    364      1.1   oster  * the undo function for disk nodes
    365      1.1   oster  * Note:  this is not a proper undo of a write node, only locks are released.
    366      1.1   oster  *        old data is not restored to disk!
    367      1.1   oster  ****************************************************************************************/
    368      1.3   oster int
    369      1.3   oster rf_DiskUndoFunc(node)
    370      1.3   oster 	RF_DagNode_t *node;
    371      1.3   oster {
    372      1.3   oster 	RF_DiskQueueData_t *req;
    373      1.3   oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    374      1.3   oster 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    375      1.3   oster 
    376      1.3   oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    377      1.3   oster 	    0L, 0, NULL, 0L, 0,
    378      1.3   oster 	    (int (*) (void *, int)) node->wakeFunc,
    379      1.3   oster 	    (void *) node,
    380      1.3   oster 	    NULL, node->dagHdr->tracerec,
    381      1.3   oster 	    (void *) (node->dagHdr->raidPtr),
    382      1.3   oster 	    RF_UNLOCK_DISK_QUEUE, NULL);
    383      1.3   oster 	if (!req)
    384      1.3   oster 		(node->wakeFunc) (node, ENOMEM);
    385      1.3   oster 	else {
    386      1.3   oster 		node->dagFuncData = (void *) req;
    387      1.3   oster 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
    388      1.3   oster 	}
    389      1.1   oster 
    390      1.3   oster 	return (0);
    391      1.1   oster }
    392      1.1   oster /*****************************************************************************************
    393      1.1   oster  * the execution function associated with an "unlock disk queue" node
    394      1.1   oster  ****************************************************************************************/
    395      1.3   oster int
    396      1.3   oster rf_DiskUnlockFuncForThreads(node)
    397      1.3   oster 	RF_DagNode_t *node;
    398      1.3   oster {
    399      1.3   oster 	RF_DiskQueueData_t *req;
    400      1.3   oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    401      1.3   oster 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    402      1.3   oster 
    403      1.3   oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    404      1.3   oster 	    0L, 0, NULL, 0L, 0,
    405      1.3   oster 	    (int (*) (void *, int)) node->wakeFunc,
    406      1.3   oster 	    (void *) node,
    407      1.3   oster 	    NULL, node->dagHdr->tracerec,
    408      1.3   oster 	    (void *) (node->dagHdr->raidPtr),
    409      1.3   oster 	    RF_UNLOCK_DISK_QUEUE, NULL);
    410      1.3   oster 	if (!req)
    411      1.3   oster 		(node->wakeFunc) (node, ENOMEM);
    412      1.3   oster 	else {
    413      1.3   oster 		node->dagFuncData = (void *) req;
    414      1.3   oster 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
    415      1.3   oster 	}
    416      1.1   oster 
    417      1.3   oster 	return (0);
    418      1.1   oster }
    419      1.1   oster /*****************************************************************************************
    420      1.1   oster  * Callback routine for DiskRead and DiskWrite nodes.  When the disk op completes,
    421      1.1   oster  * the routine is called to set the node status and inform the execution engine that
    422      1.1   oster  * the node has fired.
    423      1.1   oster  ****************************************************************************************/
    424      1.3   oster int
    425      1.3   oster rf_GenericWakeupFunc(node, status)
    426      1.3   oster 	RF_DagNode_t *node;
    427      1.3   oster 	int     status;
    428      1.3   oster {
    429      1.3   oster 	switch (node->status) {
    430      1.3   oster 	case rf_bwd1:
    431      1.3   oster 		node->status = rf_bwd2;
    432      1.3   oster 		if (node->dagFuncData)
    433      1.3   oster 			rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    434      1.3   oster 		return (rf_DiskWriteFuncForThreads(node));
    435      1.3   oster 		break;
    436      1.3   oster 	case rf_fired:
    437      1.3   oster 		if (status)
    438      1.3   oster 			node->status = rf_bad;
    439      1.3   oster 		else
    440      1.3   oster 			node->status = rf_good;
    441      1.3   oster 		break;
    442      1.3   oster 	case rf_recover:
    443      1.3   oster 		/* probably should never reach this case */
    444      1.3   oster 		if (status)
    445      1.3   oster 			node->status = rf_panic;
    446      1.3   oster 		else
    447      1.3   oster 			node->status = rf_undone;
    448      1.3   oster 		break;
    449      1.3   oster 	default:
    450      1.4   oster 		printf("rf_GenericWakeupFunc:");
    451      1.4   oster 		printf("node->status is %d,", node->status);
    452      1.4   oster 		printf("status is %d \n", status);
    453      1.3   oster 		RF_PANIC();
    454      1.3   oster 		break;
    455      1.3   oster 	}
    456      1.3   oster 	if (node->dagFuncData)
    457      1.3   oster 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    458      1.3   oster 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    459      1.1   oster }
    460      1.1   oster 
    461      1.1   oster 
    462      1.1   oster /*****************************************************************************************
    463      1.1   oster  * there are three distinct types of xor nodes
    464      1.1   oster  * A "regular xor" is used in the fault-free case where the access spans a complete
    465      1.1   oster  * stripe unit.  It assumes that the result buffer is one full stripe unit in size,
    466      1.1   oster  * and uses the stripe-unit-offset values that it computes from the PDAs to determine
    467      1.1   oster  * where within the stripe unit to XOR each argument buffer.
    468      1.1   oster  *
    469      1.1   oster  * A "simple xor" is used in the fault-free case where the access touches only a portion
    470      1.1   oster  * of one (or two, in some cases) stripe unit(s).  It assumes that all the argument
    471      1.1   oster  * buffers are of the same size and have the same stripe unit offset.
    472      1.1   oster  *
    473      1.1   oster  * A "recovery xor" is used in the degraded-mode case.  It's similar to the regular
    474      1.1   oster  * xor function except that it takes the failed PDA as an additional parameter, and
    475      1.1   oster  * uses it to determine what portions of the argument buffers need to be xor'd into
    476      1.1   oster  * the result buffer, and where in the result buffer they should go.
    477      1.1   oster  ****************************************************************************************/
    478      1.1   oster 
    479      1.1   oster /* xor the params together and store the result in the result field.
    480      1.1   oster  * assume the result field points to a buffer that is the size of one SU,
    481      1.1   oster  * and use the pda params to determine where within the buffer to XOR
    482      1.1   oster  * the input buffers.
    483      1.1   oster  */
    484      1.3   oster int
    485      1.3   oster rf_RegularXorFunc(node)
    486      1.3   oster 	RF_DagNode_t *node;
    487      1.3   oster {
    488      1.3   oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    489      1.3   oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    490      1.3   oster 	RF_Etimer_t timer;
    491      1.3   oster 	int     i, retcode;
    492      1.1   oster 
    493      1.3   oster 	retcode = 0;
    494      1.3   oster 	if (node->dagHdr->status == rf_enable) {
    495      1.3   oster 		/* don't do the XOR if the input is the same as the output */
    496      1.3   oster 		RF_ETIMER_START(timer);
    497      1.3   oster 		for (i = 0; i < node->numParams - 1; i += 2)
    498      1.3   oster 			if (node->params[i + 1].p != node->results[0]) {
    499      1.3   oster 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    500      1.3   oster 				    (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
    501      1.3   oster 			}
    502      1.3   oster 		RF_ETIMER_STOP(timer);
    503      1.3   oster 		RF_ETIMER_EVAL(timer);
    504      1.3   oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    505      1.3   oster 	}
    506      1.3   oster 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    507      1.3   oster 							 * explicitly since no
    508      1.3   oster 							 * I/O in this node */
    509      1.1   oster }
    510      1.1   oster /* xor the inputs into the result buffer, ignoring placement issues */
    511      1.3   oster int
    512      1.3   oster rf_SimpleXorFunc(node)
    513      1.3   oster 	RF_DagNode_t *node;
    514      1.3   oster {
    515      1.3   oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    516      1.3   oster 	int     i, retcode = 0;
    517      1.3   oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    518      1.3   oster 	RF_Etimer_t timer;
    519      1.1   oster 
    520      1.3   oster 	if (node->dagHdr->status == rf_enable) {
    521      1.3   oster 		RF_ETIMER_START(timer);
    522      1.3   oster 		/* don't do the XOR if the input is the same as the output */
    523      1.3   oster 		for (i = 0; i < node->numParams - 1; i += 2)
    524      1.3   oster 			if (node->params[i + 1].p != node->results[0]) {
    525      1.3   oster 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    526      1.3   oster 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
    527      1.3   oster 				    (struct buf *) node->dagHdr->bp);
    528      1.3   oster 			}
    529      1.3   oster 		RF_ETIMER_STOP(timer);
    530      1.3   oster 		RF_ETIMER_EVAL(timer);
    531      1.3   oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    532      1.3   oster 	}
    533      1.3   oster 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    534      1.3   oster 							 * explicitly since no
    535      1.3   oster 							 * I/O in this node */
    536      1.1   oster }
    537      1.1   oster /* this xor is used by the degraded-mode dag functions to recover lost data.
    538      1.1   oster  * the second-to-last parameter is the PDA for the failed portion of the access.
    539      1.1   oster  * the code here looks at this PDA and assumes that the xor target buffer is
    540      1.1   oster  * equal in size to the number of sectors in the failed PDA.  It then uses
    541      1.1   oster  * the other PDAs in the parameter list to determine where within the target
    542      1.1   oster  * buffer the corresponding data should be xored.
    543      1.1   oster  */
    544      1.3   oster int
    545      1.3   oster rf_RecoveryXorFunc(node)
    546      1.3   oster 	RF_DagNode_t *node;
    547      1.3   oster {
    548      1.3   oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    549      1.3   oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    550      1.3   oster 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    551      1.3   oster 	int     i, retcode = 0;
    552      1.3   oster 	RF_PhysDiskAddr_t *pda;
    553      1.3   oster 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    554      1.3   oster 	char   *srcbuf, *destbuf;
    555      1.3   oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    556      1.3   oster 	RF_Etimer_t timer;
    557      1.1   oster 
    558      1.3   oster 	if (node->dagHdr->status == rf_enable) {
    559      1.3   oster 		RF_ETIMER_START(timer);
    560      1.3   oster 		for (i = 0; i < node->numParams - 2; i += 2)
    561      1.3   oster 			if (node->params[i + 1].p != node->results[0]) {
    562      1.3   oster 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    563      1.3   oster 				srcbuf = (char *) node->params[i + 1].p;
    564      1.3   oster 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    565      1.3   oster 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    566      1.3   oster 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
    567      1.3   oster 			}
    568      1.3   oster 		RF_ETIMER_STOP(timer);
    569      1.3   oster 		RF_ETIMER_EVAL(timer);
    570      1.3   oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    571      1.3   oster 	}
    572      1.3   oster 	return (rf_GenericWakeupFunc(node, retcode));
    573      1.1   oster }
    574      1.1   oster /*****************************************************************************************
    575      1.1   oster  * The next three functions are utilities used by the above xor-execution functions.
    576      1.1   oster  ****************************************************************************************/
    577      1.1   oster 
    578      1.1   oster 
    579      1.1   oster /*
    580      1.1   oster  * this is just a glorified buffer xor.  targbuf points to a buffer that is one full stripe unit
    581      1.1   oster  * in size.  srcbuf points to a buffer that may be less than 1 SU, but never more.  When the
    582      1.1   oster  * access described by pda is one SU in size (which by implication means it's SU-aligned),
    583      1.1   oster  * all that happens is (targbuf) <- (srcbuf ^ targbuf).  When the access is less than one
    584      1.1   oster  * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
    585      1.1   oster  */
    586      1.1   oster 
    587      1.3   oster int
    588      1.3   oster rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
    589      1.3   oster 	RF_Raid_t *raidPtr;
    590      1.3   oster 	RF_PhysDiskAddr_t *pda;
    591      1.3   oster 	char   *srcbuf;
    592      1.3   oster 	char   *targbuf;
    593      1.3   oster 	void   *bp;
    594      1.3   oster {
    595      1.3   oster 	char   *targptr;
    596      1.3   oster 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    597      1.3   oster 	int     SUOffset = pda->startSector % sectPerSU;
    598      1.3   oster 	int     length, retcode = 0;
    599      1.3   oster 
    600      1.3   oster 	RF_ASSERT(pda->numSector <= sectPerSU);
    601      1.3   oster 
    602      1.3   oster 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    603      1.3   oster 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    604      1.3   oster 	retcode = rf_bxor(srcbuf, targptr, length, bp);
    605      1.3   oster 	return (retcode);
    606      1.1   oster }
    607      1.1   oster /* it really should be the case that the buffer pointers (returned by malloc)
    608      1.1   oster  * are aligned to the natural word size of the machine, so this is the only
    609      1.1   oster  * case we optimize for.  The length should always be a multiple of the sector
    610      1.1   oster  * size, so there should be no problem with leftover bytes at the end.
    611      1.1   oster  */
    612      1.3   oster int
    613      1.3   oster rf_bxor(src, dest, len, bp)
    614      1.3   oster 	char   *src;
    615      1.3   oster 	char   *dest;
    616      1.3   oster 	int     len;
    617      1.3   oster 	void   *bp;
    618      1.3   oster {
    619      1.3   oster 	unsigned mask = sizeof(long) - 1, retcode = 0;
    620      1.3   oster 
    621      1.3   oster 	if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
    622      1.3   oster 		retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
    623      1.3   oster 	} else {
    624      1.3   oster 		RF_ASSERT(0);
    625      1.3   oster 	}
    626      1.3   oster 	return (retcode);
    627      1.1   oster }
    628      1.1   oster /* map a user buffer into kernel space, if necessary */
    629      1.1   oster #define REMAP_VA(_bp,x,y) (y) = (x)
    630      1.1   oster 
    631      1.1   oster /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
    632      1.1   oster  * We don't want to assume anything about which input buffers are in kernel/user
    633      1.1   oster  * space, nor about their alignment, so in each loop we compute the maximum number
    634      1.1   oster  * of bytes that we can xor without crossing any page boundaries, and do only this many
    635      1.1   oster  * bytes before the next remap.
    636      1.1   oster  */
    637      1.3   oster int
    638      1.3   oster rf_longword_bxor(src, dest, len, bp)
    639  1.5.2.1  bouyer 	unsigned long *src;
    640  1.5.2.1  bouyer 	unsigned long *dest;
    641      1.3   oster 	int     len;		/* longwords */
    642      1.3   oster 	void   *bp;
    643      1.3   oster {
    644  1.5.2.1  bouyer 	unsigned long *end = src + len;
    645  1.5.2.1  bouyer 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    646  1.5.2.1  bouyer 	unsigned long *pg_src, *pg_dest;	/* per-page source/dest
    647      1.3   oster 							 * pointers */
    648      1.3   oster 	int     longs_this_time;/* # longwords to xor in the current iteration */
    649      1.3   oster 
    650      1.3   oster 	REMAP_VA(bp, src, pg_src);
    651      1.3   oster 	REMAP_VA(bp, dest, pg_dest);
    652      1.3   oster 	if (!pg_src || !pg_dest)
    653      1.3   oster 		return (EFAULT);
    654      1.3   oster 
    655      1.3   oster 	while (len >= 4) {
    656      1.3   oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    657      1.3   oster 		src += longs_this_time;
    658      1.3   oster 		dest += longs_this_time;
    659      1.3   oster 		len -= longs_this_time;
    660      1.3   oster 		while (longs_this_time >= 4) {
    661      1.3   oster 			d0 = pg_dest[0];
    662      1.3   oster 			d1 = pg_dest[1];
    663      1.3   oster 			d2 = pg_dest[2];
    664      1.3   oster 			d3 = pg_dest[3];
    665      1.3   oster 			s0 = pg_src[0];
    666      1.3   oster 			s1 = pg_src[1];
    667      1.3   oster 			s2 = pg_src[2];
    668      1.3   oster 			s3 = pg_src[3];
    669      1.3   oster 			pg_dest[0] = d0 ^ s0;
    670      1.3   oster 			pg_dest[1] = d1 ^ s1;
    671      1.3   oster 			pg_dest[2] = d2 ^ s2;
    672      1.3   oster 			pg_dest[3] = d3 ^ s3;
    673      1.3   oster 			pg_src += 4;
    674      1.3   oster 			pg_dest += 4;
    675      1.3   oster 			longs_this_time -= 4;
    676      1.3   oster 		}
    677      1.3   oster 		while (longs_this_time > 0) {	/* cannot cross any page
    678      1.3   oster 						 * boundaries here */
    679      1.3   oster 			*pg_dest++ ^= *pg_src++;
    680      1.3   oster 			longs_this_time--;
    681      1.3   oster 		}
    682      1.3   oster 
    683      1.3   oster 		/* either we're done, or we've reached a page boundary on one
    684      1.3   oster 		 * (or possibly both) of the pointers */
    685      1.3   oster 		if (len) {
    686      1.3   oster 			if (RF_PAGE_ALIGNED(src))
    687      1.3   oster 				REMAP_VA(bp, src, pg_src);
    688      1.3   oster 			if (RF_PAGE_ALIGNED(dest))
    689      1.3   oster 				REMAP_VA(bp, dest, pg_dest);
    690      1.3   oster 			if (!pg_src || !pg_dest)
    691      1.3   oster 				return (EFAULT);
    692      1.3   oster 		}
    693      1.3   oster 	}
    694      1.3   oster 	while (src < end) {
    695      1.3   oster 		*pg_dest++ ^= *pg_src++;
    696      1.3   oster 		src++;
    697      1.3   oster 		dest++;
    698      1.3   oster 		len--;
    699      1.3   oster 		if (RF_PAGE_ALIGNED(src))
    700      1.3   oster 			REMAP_VA(bp, src, pg_src);
    701      1.3   oster 		if (RF_PAGE_ALIGNED(dest))
    702      1.3   oster 			REMAP_VA(bp, dest, pg_dest);
    703      1.3   oster 	}
    704      1.3   oster 	RF_ASSERT(len == 0);
    705      1.3   oster 	return (0);
    706      1.1   oster }
    707      1.1   oster 
    708      1.1   oster 
    709      1.1   oster /*
    710      1.1   oster    dst = a ^ b ^ c;
    711      1.1   oster    a may equal dst
    712      1.1   oster    see comment above longword_bxor
    713      1.1   oster */
    714      1.3   oster int
    715      1.3   oster rf_longword_bxor3(dst, a, b, c, len, bp)
    716  1.5.2.1  bouyer 	unsigned long *dst;
    717  1.5.2.1  bouyer 	unsigned long *a;
    718  1.5.2.1  bouyer 	unsigned long *b;
    719  1.5.2.1  bouyer 	unsigned long *c;
    720      1.3   oster 	int     len;		/* length in longwords */
    721      1.3   oster 	void   *bp;
    722      1.3   oster {
    723      1.3   oster 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    724  1.5.2.1  bouyer 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    725      1.3   oster 								 * pointers */
    726      1.3   oster 	int     longs_this_time;/* # longs to xor in the current iteration */
    727      1.3   oster 	char    dst_is_a = 0;
    728      1.3   oster 
    729      1.3   oster 	REMAP_VA(bp, a, pg_a);
    730      1.3   oster 	REMAP_VA(bp, b, pg_b);
    731      1.3   oster 	REMAP_VA(bp, c, pg_c);
    732      1.3   oster 	if (a == dst) {
    733      1.3   oster 		pg_dst = pg_a;
    734      1.3   oster 		dst_is_a = 1;
    735      1.3   oster 	} else {
    736      1.3   oster 		REMAP_VA(bp, dst, pg_dst);
    737      1.3   oster 	}
    738      1.3   oster 
    739      1.3   oster 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    740      1.3   oster 	while ((((unsigned long) pg_dst) & 0x1f)) {
    741      1.3   oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    742      1.3   oster 		dst++;
    743      1.3   oster 		a++;
    744      1.3   oster 		b++;
    745      1.3   oster 		c++;
    746      1.3   oster 		if (RF_PAGE_ALIGNED(a)) {
    747      1.3   oster 			REMAP_VA(bp, a, pg_a);
    748      1.3   oster 			if (!pg_a)
    749      1.3   oster 				return (EFAULT);
    750      1.3   oster 		}
    751      1.3   oster 		if (RF_PAGE_ALIGNED(b)) {
    752      1.3   oster 			REMAP_VA(bp, a, pg_b);
    753      1.3   oster 			if (!pg_b)
    754      1.3   oster 				return (EFAULT);
    755      1.3   oster 		}
    756      1.3   oster 		if (RF_PAGE_ALIGNED(c)) {
    757      1.3   oster 			REMAP_VA(bp, a, pg_c);
    758      1.3   oster 			if (!pg_c)
    759      1.3   oster 				return (EFAULT);
    760      1.3   oster 		}
    761      1.3   oster 		len--;
    762      1.3   oster 	}
    763      1.3   oster 
    764      1.3   oster 	while (len > 4) {
    765      1.3   oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    766      1.3   oster 		a += longs_this_time;
    767      1.3   oster 		b += longs_this_time;
    768      1.3   oster 		c += longs_this_time;
    769      1.3   oster 		dst += longs_this_time;
    770      1.3   oster 		len -= longs_this_time;
    771      1.3   oster 		while (longs_this_time >= 4) {
    772      1.3   oster 			a0 = pg_a[0];
    773      1.3   oster 			longs_this_time -= 4;
    774      1.3   oster 
    775      1.3   oster 			a1 = pg_a[1];
    776      1.3   oster 			a2 = pg_a[2];
    777      1.3   oster 
    778      1.3   oster 			a3 = pg_a[3];
    779      1.3   oster 			pg_a += 4;
    780      1.3   oster 
    781      1.3   oster 			b0 = pg_b[0];
    782      1.3   oster 			b1 = pg_b[1];
    783      1.3   oster 
    784      1.3   oster 			b2 = pg_b[2];
    785      1.3   oster 			b3 = pg_b[3];
    786      1.3   oster 			/* start dual issue */
    787      1.3   oster 			a0 ^= b0;
    788      1.3   oster 			b0 = pg_c[0];
    789      1.3   oster 
    790      1.3   oster 			pg_b += 4;
    791      1.3   oster 			a1 ^= b1;
    792      1.3   oster 
    793      1.3   oster 			a2 ^= b2;
    794      1.3   oster 			a3 ^= b3;
    795      1.3   oster 
    796      1.3   oster 			b1 = pg_c[1];
    797      1.3   oster 			a0 ^= b0;
    798      1.3   oster 
    799      1.3   oster 			b2 = pg_c[2];
    800      1.3   oster 			a1 ^= b1;
    801      1.3   oster 
    802      1.3   oster 			b3 = pg_c[3];
    803      1.3   oster 			a2 ^= b2;
    804      1.3   oster 
    805      1.3   oster 			pg_dst[0] = a0;
    806      1.3   oster 			a3 ^= b3;
    807      1.3   oster 			pg_dst[1] = a1;
    808      1.3   oster 			pg_c += 4;
    809      1.3   oster 			pg_dst[2] = a2;
    810      1.3   oster 			pg_dst[3] = a3;
    811      1.3   oster 			pg_dst += 4;
    812      1.3   oster 		}
    813      1.3   oster 		while (longs_this_time > 0) {	/* cannot cross any page
    814      1.3   oster 						 * boundaries here */
    815      1.3   oster 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    816      1.3   oster 			longs_this_time--;
    817      1.3   oster 		}
    818      1.3   oster 
    819      1.3   oster 		if (len) {
    820      1.3   oster 			if (RF_PAGE_ALIGNED(a)) {
    821      1.3   oster 				REMAP_VA(bp, a, pg_a);
    822      1.3   oster 				if (!pg_a)
    823      1.3   oster 					return (EFAULT);
    824      1.3   oster 				if (dst_is_a)
    825      1.3   oster 					pg_dst = pg_a;
    826      1.3   oster 			}
    827      1.3   oster 			if (RF_PAGE_ALIGNED(b)) {
    828      1.3   oster 				REMAP_VA(bp, b, pg_b);
    829      1.3   oster 				if (!pg_b)
    830      1.3   oster 					return (EFAULT);
    831      1.3   oster 			}
    832      1.3   oster 			if (RF_PAGE_ALIGNED(c)) {
    833      1.3   oster 				REMAP_VA(bp, c, pg_c);
    834      1.3   oster 				if (!pg_c)
    835      1.3   oster 					return (EFAULT);
    836      1.3   oster 			}
    837      1.3   oster 			if (!dst_is_a)
    838      1.3   oster 				if (RF_PAGE_ALIGNED(dst)) {
    839      1.3   oster 					REMAP_VA(bp, dst, pg_dst);
    840      1.3   oster 					if (!pg_dst)
    841      1.3   oster 						return (EFAULT);
    842      1.3   oster 				}
    843      1.3   oster 		}
    844      1.3   oster 	}
    845      1.3   oster 	while (len) {
    846      1.3   oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    847      1.3   oster 		dst++;
    848      1.3   oster 		a++;
    849      1.3   oster 		b++;
    850      1.3   oster 		c++;
    851      1.3   oster 		if (RF_PAGE_ALIGNED(a)) {
    852      1.3   oster 			REMAP_VA(bp, a, pg_a);
    853      1.3   oster 			if (!pg_a)
    854      1.3   oster 				return (EFAULT);
    855      1.3   oster 			if (dst_is_a)
    856      1.3   oster 				pg_dst = pg_a;
    857      1.3   oster 		}
    858      1.3   oster 		if (RF_PAGE_ALIGNED(b)) {
    859      1.3   oster 			REMAP_VA(bp, b, pg_b);
    860      1.3   oster 			if (!pg_b)
    861      1.3   oster 				return (EFAULT);
    862      1.3   oster 		}
    863      1.3   oster 		if (RF_PAGE_ALIGNED(c)) {
    864      1.3   oster 			REMAP_VA(bp, c, pg_c);
    865      1.3   oster 			if (!pg_c)
    866      1.3   oster 				return (EFAULT);
    867      1.3   oster 		}
    868      1.3   oster 		if (!dst_is_a)
    869      1.3   oster 			if (RF_PAGE_ALIGNED(dst)) {
    870      1.3   oster 				REMAP_VA(bp, dst, pg_dst);
    871      1.3   oster 				if (!pg_dst)
    872      1.3   oster 					return (EFAULT);
    873      1.3   oster 			}
    874      1.3   oster 		len--;
    875      1.3   oster 	}
    876      1.3   oster 	return (0);
    877      1.3   oster }
    878      1.3   oster 
    879      1.3   oster int
    880      1.3   oster rf_bxor3(dst, a, b, c, len, bp)
    881  1.5.2.1  bouyer 	unsigned char *dst;
    882  1.5.2.1  bouyer 	unsigned char *a;
    883  1.5.2.1  bouyer 	unsigned char *b;
    884  1.5.2.1  bouyer 	unsigned char *c;
    885      1.3   oster 	unsigned long len;
    886      1.3   oster 	void   *bp;
    887      1.1   oster {
    888      1.3   oster 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    889      1.1   oster 
    890      1.3   oster 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    891      1.3   oster 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    892      1.1   oster }
    893