Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.7.4.2
      1  1.7.4.2  jdolecek /*	$NetBSD: rf_dagfuncs.c,v 1.7.4.2 2002/10/10 18:41:46 jdolecek Exp $	*/
      2      1.1     oster /*
      3      1.1     oster  * Copyright (c) 1995 Carnegie-Mellon University.
      4      1.1     oster  * All rights reserved.
      5      1.1     oster  *
      6      1.1     oster  * Author: Mark Holland, William V. Courtright II
      7      1.1     oster  *
      8      1.1     oster  * Permission to use, copy, modify and distribute this software and
      9      1.1     oster  * its documentation is hereby granted, provided that both the copyright
     10      1.1     oster  * notice and this permission notice appear in all copies of the
     11      1.1     oster  * software, derivative works or modified versions, and any portions
     12      1.1     oster  * thereof, and that both notices appear in supporting documentation.
     13      1.1     oster  *
     14      1.1     oster  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15      1.1     oster  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16      1.1     oster  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17      1.1     oster  *
     18      1.1     oster  * Carnegie Mellon requests users of this software to return to
     19      1.1     oster  *
     20      1.1     oster  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21      1.1     oster  *  School of Computer Science
     22      1.1     oster  *  Carnegie Mellon University
     23      1.1     oster  *  Pittsburgh PA 15213-3890
     24      1.1     oster  *
     25      1.1     oster  * any improvements or extensions that they make and grant Carnegie the
     26      1.1     oster  * rights to redistribute these changes.
     27      1.1     oster  */
     28      1.1     oster 
     29      1.1     oster /*
     30      1.1     oster  * dagfuncs.c -- DAG node execution routines
     31      1.1     oster  *
     32      1.1     oster  * Rules:
     33      1.1     oster  * 1. Every DAG execution function must eventually cause node->status to
     34      1.1     oster  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35      1.1     oster  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36      1.1     oster  *    the node execution function can do these two things directly. In
     37      1.1     oster  *    the case of nodes that have to wait for some event (a disk read to
     38      1.1     oster  *    complete, a lock to be released, etc) to occur before they can
     39      1.1     oster  *    complete, this is typically achieved by having whatever module
     40      1.1     oster  *    is doing the operation call GenericWakeupFunc upon completion.
     41      1.1     oster  * 2. DAG execution functions should check the status in the DAG header
     42      1.1     oster  *    and NOP out their operations if the status is not "enable". However,
     43      1.1     oster  *    execution functions that release resources must be sure to release
     44      1.1     oster  *    them even when they NOP out the function that would use them.
     45      1.1     oster  *    Functions that acquire resources should go ahead and acquire them
     46      1.1     oster  *    even when they NOP, so that a downstream release node will not have
     47      1.1     oster  *    to check to find out whether or not the acquire was suppressed.
     48      1.1     oster  */
     49  1.7.4.1   thorpej 
     50  1.7.4.1   thorpej #include <sys/cdefs.h>
     51  1.7.4.2  jdolecek __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.7.4.2 2002/10/10 18:41:46 jdolecek Exp $");
     52      1.1     oster 
     53      1.7       mrg #include <sys/param.h>
     54      1.1     oster #include <sys/ioctl.h>
     55      1.1     oster 
     56      1.1     oster #include "rf_archs.h"
     57      1.1     oster #include "rf_raid.h"
     58      1.1     oster #include "rf_dag.h"
     59      1.1     oster #include "rf_layout.h"
     60      1.1     oster #include "rf_etimer.h"
     61      1.1     oster #include "rf_acctrace.h"
     62      1.1     oster #include "rf_diskqueue.h"
     63      1.1     oster #include "rf_dagfuncs.h"
     64      1.1     oster #include "rf_general.h"
     65      1.1     oster #include "rf_engine.h"
     66      1.1     oster #include "rf_dagutils.h"
     67      1.1     oster 
     68      1.1     oster #include "rf_kintf.h"
     69      1.1     oster 
     70      1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
     71      1.1     oster #include "rf_paritylog.h"
     72      1.3     oster #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73      1.1     oster 
     74      1.3     oster int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75      1.3     oster int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76      1.3     oster int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77      1.3     oster int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78      1.3     oster int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
     79      1.3     oster int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
     80      1.3     oster int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     81      1.3     oster int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     82      1.3     oster int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     83      1.1     oster 
     84      1.1     oster /*****************************************************************************************
     85      1.1     oster  * main (only) configuration routine for this module
     86      1.1     oster  ****************************************************************************************/
     87      1.3     oster int
     88      1.3     oster rf_ConfigureDAGFuncs(listp)
     89      1.3     oster 	RF_ShutdownList_t **listp;
     90      1.3     oster {
     91      1.3     oster 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     92      1.3     oster 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     93      1.3     oster 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     94      1.3     oster 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     95      1.3     oster 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     96      1.3     oster 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
     97      1.3     oster 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
     98      1.3     oster 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     99      1.3     oster 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
    100      1.3     oster 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
    101      1.3     oster 	return (0);
    102      1.1     oster }
    103      1.1     oster 
    104      1.1     oster 
    105      1.1     oster 
    106      1.1     oster /*****************************************************************************************
    107      1.1     oster  * the execution function associated with a terminate node
    108      1.1     oster  ****************************************************************************************/
    109      1.3     oster int
    110      1.3     oster rf_TerminateFunc(node)
    111      1.3     oster 	RF_DagNode_t *node;
    112      1.1     oster {
    113      1.3     oster 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    114      1.3     oster 	node->status = rf_good;
    115      1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    116      1.1     oster }
    117      1.1     oster 
    118      1.3     oster int
    119      1.3     oster rf_TerminateUndoFunc(node)
    120      1.3     oster 	RF_DagNode_t *node;
    121      1.1     oster {
    122      1.3     oster 	return (0);
    123      1.1     oster }
    124      1.1     oster 
    125      1.1     oster 
    126      1.1     oster /*****************************************************************************************
    127      1.1     oster  * execution functions associated with a mirror node
    128      1.1     oster  *
    129      1.1     oster  * parameters:
    130      1.1     oster  *
    131      1.1     oster  * 0 - physical disk addres of data
    132      1.1     oster  * 1 - buffer for holding read data
    133      1.1     oster  * 2 - parity stripe ID
    134      1.1     oster  * 3 - flags
    135      1.1     oster  * 4 - physical disk address of mirror (parity)
    136      1.1     oster  *
    137      1.1     oster  ****************************************************************************************/
    138      1.1     oster 
    139      1.3     oster int
    140      1.3     oster rf_DiskReadMirrorIdleFunc(node)
    141      1.3     oster 	RF_DagNode_t *node;
    142      1.1     oster {
    143      1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    144      1.3     oster 	 * parameters with physical disk address */
    145      1.1     oster 
    146      1.3     oster 	rf_SelectMirrorDiskIdle(node);
    147      1.3     oster 	return (rf_DiskReadFunc(node));
    148      1.1     oster }
    149      1.1     oster 
    150      1.3     oster int
    151      1.3     oster rf_DiskReadMirrorPartitionFunc(node)
    152      1.3     oster 	RF_DagNode_t *node;
    153      1.1     oster {
    154      1.3     oster 	/* select the mirror copy with the shortest queue and fill in node
    155      1.3     oster 	 * parameters with physical disk address */
    156      1.1     oster 
    157      1.3     oster 	rf_SelectMirrorDiskPartition(node);
    158      1.3     oster 	return (rf_DiskReadFunc(node));
    159      1.1     oster }
    160      1.1     oster 
    161      1.3     oster int
    162      1.3     oster rf_DiskReadMirrorUndoFunc(node)
    163      1.3     oster 	RF_DagNode_t *node;
    164      1.1     oster {
    165      1.3     oster 	return (0);
    166      1.1     oster }
    167      1.1     oster 
    168      1.1     oster 
    169      1.1     oster 
    170      1.1     oster #if RF_INCLUDE_PARITYLOGGING > 0
    171      1.1     oster /*****************************************************************************************
    172      1.1     oster  * the execution function associated with a parity log update node
    173      1.1     oster  ****************************************************************************************/
    174      1.3     oster int
    175      1.3     oster rf_ParityLogUpdateFunc(node)
    176      1.3     oster 	RF_DagNode_t *node;
    177      1.3     oster {
    178      1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    179      1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    180      1.3     oster 	RF_ParityLogData_t *logData;
    181      1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    182      1.3     oster 	RF_Etimer_t timer;
    183      1.3     oster 
    184      1.3     oster 	if (node->dagHdr->status == rf_enable) {
    185      1.3     oster 		RF_ETIMER_START(timer);
    186      1.3     oster 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
    187      1.3     oster 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    188      1.3     oster 		    node->wakeFunc, (void *) node,
    189      1.3     oster 		    node->dagHdr->tracerec, timer);
    190      1.3     oster 		if (logData)
    191      1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    192      1.3     oster 		else {
    193      1.3     oster 			RF_ETIMER_STOP(timer);
    194      1.3     oster 			RF_ETIMER_EVAL(timer);
    195      1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    196      1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    197      1.3     oster 		}
    198      1.1     oster 	}
    199      1.3     oster 	return (0);
    200      1.1     oster }
    201      1.1     oster 
    202      1.1     oster 
    203      1.1     oster /*****************************************************************************************
    204      1.1     oster  * the execution function associated with a parity log overwrite node
    205      1.1     oster  ****************************************************************************************/
    206      1.3     oster int
    207      1.3     oster rf_ParityLogOverwriteFunc(node)
    208      1.3     oster 	RF_DagNode_t *node;
    209      1.3     oster {
    210      1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    211      1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    212      1.3     oster 	RF_ParityLogData_t *logData;
    213      1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    214      1.3     oster 	RF_Etimer_t timer;
    215      1.3     oster 
    216      1.3     oster 	if (node->dagHdr->status == rf_enable) {
    217      1.3     oster 		RF_ETIMER_START(timer);
    218      1.3     oster 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
    219      1.3     oster 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    220      1.3     oster 		if (logData)
    221      1.3     oster 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    222      1.3     oster 		else {
    223      1.3     oster 			RF_ETIMER_STOP(timer);
    224      1.3     oster 			RF_ETIMER_EVAL(timer);
    225      1.3     oster 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    226      1.3     oster 			(node->wakeFunc) (node, ENOMEM);
    227      1.3     oster 		}
    228      1.1     oster 	}
    229      1.3     oster 	return (0);
    230      1.1     oster }
    231      1.1     oster 
    232      1.3     oster int
    233      1.3     oster rf_ParityLogUpdateUndoFunc(node)
    234      1.3     oster 	RF_DagNode_t *node;
    235      1.1     oster {
    236      1.3     oster 	return (0);
    237      1.1     oster }
    238      1.1     oster 
    239      1.3     oster int
    240      1.3     oster rf_ParityLogOverwriteUndoFunc(node)
    241      1.3     oster 	RF_DagNode_t *node;
    242      1.1     oster {
    243      1.3     oster 	return (0);
    244      1.1     oster }
    245  1.7.4.2  jdolecek #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    246  1.7.4.2  jdolecek 
    247      1.1     oster /*****************************************************************************************
    248      1.1     oster  * the execution function associated with a NOP node
    249      1.1     oster  ****************************************************************************************/
    250      1.3     oster int
    251      1.3     oster rf_NullNodeFunc(node)
    252      1.3     oster 	RF_DagNode_t *node;
    253      1.1     oster {
    254      1.3     oster 	node->status = rf_good;
    255      1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    256      1.1     oster }
    257      1.1     oster 
    258      1.3     oster int
    259      1.3     oster rf_NullNodeUndoFunc(node)
    260      1.3     oster 	RF_DagNode_t *node;
    261      1.1     oster {
    262      1.3     oster 	node->status = rf_undone;
    263      1.3     oster 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    264      1.1     oster }
    265      1.1     oster 
    266      1.1     oster 
    267      1.1     oster /*****************************************************************************************
    268      1.1     oster  * the execution function associated with a disk-read node
    269      1.1     oster  ****************************************************************************************/
    270      1.3     oster int
    271      1.3     oster rf_DiskReadFuncForThreads(node)
    272      1.3     oster 	RF_DagNode_t *node;
    273      1.3     oster {
    274      1.3     oster 	RF_DiskQueueData_t *req;
    275      1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    276      1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    277      1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    278      1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    279      1.3     oster 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    280      1.3     oster 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    281      1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    282      1.3     oster 	RF_DiskQueueDataFlags_t flags = 0;
    283      1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    284      1.3     oster 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    285      1.3     oster 	void   *b_proc = NULL;
    286      1.1     oster 
    287      1.3     oster 	if (node->dagHdr->bp)
    288      1.3     oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    289      1.1     oster 
    290      1.3     oster 	RF_ASSERT(!(lock && unlock));
    291      1.3     oster 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    292      1.3     oster 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    293      1.5     oster 
    294      1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    295      1.3     oster 	    buf, parityStripeID, which_ru,
    296      1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    297      1.3     oster 	    node, NULL, node->dagHdr->tracerec,
    298      1.3     oster 	    (void *) (node->dagHdr->raidPtr), flags, b_proc);
    299      1.3     oster 	if (!req) {
    300      1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    301      1.3     oster 	} else {
    302      1.3     oster 		node->dagFuncData = (void *) req;
    303      1.3     oster 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    304      1.3     oster 	}
    305      1.3     oster 	return (0);
    306      1.1     oster }
    307      1.1     oster 
    308      1.1     oster 
    309      1.1     oster /*****************************************************************************************
    310      1.1     oster  * the execution function associated with a disk-write node
    311      1.1     oster  ****************************************************************************************/
    312      1.3     oster int
    313      1.3     oster rf_DiskWriteFuncForThreads(node)
    314      1.3     oster 	RF_DagNode_t *node;
    315      1.3     oster {
    316      1.3     oster 	RF_DiskQueueData_t *req;
    317      1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    318      1.3     oster 	caddr_t buf = (caddr_t) node->params[1].p;
    319      1.3     oster 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    320      1.3     oster 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    321      1.3     oster 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    322      1.3     oster 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    323      1.3     oster 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    324      1.3     oster 	RF_DiskQueueDataFlags_t flags = 0;
    325      1.3     oster 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    326      1.3     oster 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    327      1.3     oster 	void   *b_proc = NULL;
    328      1.1     oster 
    329      1.3     oster 	if (node->dagHdr->bp)
    330      1.3     oster 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    331      1.1     oster 
    332      1.3     oster 	/* normal processing (rollaway or forward recovery) begins here */
    333      1.3     oster 	RF_ASSERT(!(lock && unlock));
    334      1.3     oster 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    335      1.3     oster 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    336      1.3     oster 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    337      1.3     oster 	    buf, parityStripeID, which_ru,
    338      1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    339      1.3     oster 	    (void *) node, NULL,
    340      1.3     oster 	    node->dagHdr->tracerec,
    341      1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    342      1.3     oster 	    flags, b_proc);
    343      1.3     oster 
    344      1.3     oster 	if (!req) {
    345      1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    346      1.3     oster 	} else {
    347      1.3     oster 		node->dagFuncData = (void *) req;
    348      1.3     oster 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    349      1.3     oster 	}
    350      1.3     oster 
    351      1.3     oster 	return (0);
    352      1.1     oster }
    353      1.1     oster /*****************************************************************************************
    354      1.1     oster  * the undo function for disk nodes
    355      1.1     oster  * Note:  this is not a proper undo of a write node, only locks are released.
    356      1.1     oster  *        old data is not restored to disk!
    357      1.1     oster  ****************************************************************************************/
    358      1.3     oster int
    359      1.3     oster rf_DiskUndoFunc(node)
    360      1.3     oster 	RF_DagNode_t *node;
    361      1.3     oster {
    362      1.3     oster 	RF_DiskQueueData_t *req;
    363      1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    364      1.3     oster 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    365      1.3     oster 
    366      1.3     oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    367      1.3     oster 	    0L, 0, NULL, 0L, 0,
    368      1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    369      1.3     oster 	    (void *) node,
    370      1.3     oster 	    NULL, node->dagHdr->tracerec,
    371      1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    372      1.3     oster 	    RF_UNLOCK_DISK_QUEUE, NULL);
    373      1.3     oster 	if (!req)
    374      1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    375      1.3     oster 	else {
    376      1.3     oster 		node->dagFuncData = (void *) req;
    377      1.3     oster 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
    378      1.3     oster 	}
    379      1.1     oster 
    380      1.3     oster 	return (0);
    381      1.1     oster }
    382      1.1     oster /*****************************************************************************************
    383      1.1     oster  * the execution function associated with an "unlock disk queue" node
    384      1.1     oster  ****************************************************************************************/
    385      1.3     oster int
    386      1.3     oster rf_DiskUnlockFuncForThreads(node)
    387      1.3     oster 	RF_DagNode_t *node;
    388      1.3     oster {
    389      1.3     oster 	RF_DiskQueueData_t *req;
    390      1.3     oster 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    391      1.3     oster 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    392      1.3     oster 
    393      1.3     oster 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    394      1.3     oster 	    0L, 0, NULL, 0L, 0,
    395      1.3     oster 	    (int (*) (void *, int)) node->wakeFunc,
    396      1.3     oster 	    (void *) node,
    397      1.3     oster 	    NULL, node->dagHdr->tracerec,
    398      1.3     oster 	    (void *) (node->dagHdr->raidPtr),
    399      1.3     oster 	    RF_UNLOCK_DISK_QUEUE, NULL);
    400      1.3     oster 	if (!req)
    401      1.3     oster 		(node->wakeFunc) (node, ENOMEM);
    402      1.3     oster 	else {
    403      1.3     oster 		node->dagFuncData = (void *) req;
    404      1.3     oster 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
    405      1.3     oster 	}
    406      1.1     oster 
    407      1.3     oster 	return (0);
    408      1.1     oster }
    409      1.1     oster /*****************************************************************************************
    410      1.1     oster  * Callback routine for DiskRead and DiskWrite nodes.  When the disk op completes,
    411      1.1     oster  * the routine is called to set the node status and inform the execution engine that
    412      1.1     oster  * the node has fired.
    413      1.1     oster  ****************************************************************************************/
    414      1.3     oster int
    415      1.3     oster rf_GenericWakeupFunc(node, status)
    416      1.3     oster 	RF_DagNode_t *node;
    417      1.3     oster 	int     status;
    418      1.3     oster {
    419      1.3     oster 	switch (node->status) {
    420      1.3     oster 	case rf_bwd1:
    421      1.3     oster 		node->status = rf_bwd2;
    422      1.3     oster 		if (node->dagFuncData)
    423      1.3     oster 			rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    424      1.3     oster 		return (rf_DiskWriteFuncForThreads(node));
    425      1.3     oster 		break;
    426      1.3     oster 	case rf_fired:
    427      1.3     oster 		if (status)
    428      1.3     oster 			node->status = rf_bad;
    429      1.3     oster 		else
    430      1.3     oster 			node->status = rf_good;
    431      1.3     oster 		break;
    432      1.3     oster 	case rf_recover:
    433      1.3     oster 		/* probably should never reach this case */
    434      1.3     oster 		if (status)
    435      1.3     oster 			node->status = rf_panic;
    436      1.3     oster 		else
    437      1.3     oster 			node->status = rf_undone;
    438      1.3     oster 		break;
    439      1.3     oster 	default:
    440      1.4     oster 		printf("rf_GenericWakeupFunc:");
    441      1.4     oster 		printf("node->status is %d,", node->status);
    442      1.4     oster 		printf("status is %d \n", status);
    443      1.3     oster 		RF_PANIC();
    444      1.3     oster 		break;
    445      1.3     oster 	}
    446      1.3     oster 	if (node->dagFuncData)
    447      1.3     oster 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    448      1.3     oster 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    449      1.1     oster }
    450      1.1     oster 
    451      1.1     oster 
    452      1.1     oster /*****************************************************************************************
    453      1.1     oster  * there are three distinct types of xor nodes
    454      1.1     oster  * A "regular xor" is used in the fault-free case where the access spans a complete
    455      1.1     oster  * stripe unit.  It assumes that the result buffer is one full stripe unit in size,
    456      1.1     oster  * and uses the stripe-unit-offset values that it computes from the PDAs to determine
    457      1.1     oster  * where within the stripe unit to XOR each argument buffer.
    458      1.1     oster  *
    459      1.1     oster  * A "simple xor" is used in the fault-free case where the access touches only a portion
    460      1.1     oster  * of one (or two, in some cases) stripe unit(s).  It assumes that all the argument
    461      1.1     oster  * buffers are of the same size and have the same stripe unit offset.
    462      1.1     oster  *
    463      1.1     oster  * A "recovery xor" is used in the degraded-mode case.  It's similar to the regular
    464      1.1     oster  * xor function except that it takes the failed PDA as an additional parameter, and
    465      1.1     oster  * uses it to determine what portions of the argument buffers need to be xor'd into
    466      1.1     oster  * the result buffer, and where in the result buffer they should go.
    467      1.1     oster  ****************************************************************************************/
    468      1.1     oster 
    469      1.1     oster /* xor the params together and store the result in the result field.
    470      1.1     oster  * assume the result field points to a buffer that is the size of one SU,
    471      1.1     oster  * and use the pda params to determine where within the buffer to XOR
    472      1.1     oster  * the input buffers.
    473      1.1     oster  */
    474      1.3     oster int
    475      1.3     oster rf_RegularXorFunc(node)
    476      1.3     oster 	RF_DagNode_t *node;
    477      1.3     oster {
    478      1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    479      1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    480      1.3     oster 	RF_Etimer_t timer;
    481      1.3     oster 	int     i, retcode;
    482      1.1     oster 
    483      1.3     oster 	retcode = 0;
    484      1.3     oster 	if (node->dagHdr->status == rf_enable) {
    485      1.3     oster 		/* don't do the XOR if the input is the same as the output */
    486      1.3     oster 		RF_ETIMER_START(timer);
    487      1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    488      1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    489      1.3     oster 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    490      1.3     oster 				    (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
    491      1.3     oster 			}
    492      1.3     oster 		RF_ETIMER_STOP(timer);
    493      1.3     oster 		RF_ETIMER_EVAL(timer);
    494      1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    495      1.3     oster 	}
    496      1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    497      1.3     oster 							 * explicitly since no
    498      1.3     oster 							 * I/O in this node */
    499      1.1     oster }
    500      1.1     oster /* xor the inputs into the result buffer, ignoring placement issues */
    501      1.3     oster int
    502      1.3     oster rf_SimpleXorFunc(node)
    503      1.3     oster 	RF_DagNode_t *node;
    504      1.3     oster {
    505      1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    506      1.3     oster 	int     i, retcode = 0;
    507      1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    508      1.3     oster 	RF_Etimer_t timer;
    509      1.1     oster 
    510      1.3     oster 	if (node->dagHdr->status == rf_enable) {
    511      1.3     oster 		RF_ETIMER_START(timer);
    512      1.3     oster 		/* don't do the XOR if the input is the same as the output */
    513      1.3     oster 		for (i = 0; i < node->numParams - 1; i += 2)
    514      1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    515      1.3     oster 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    516      1.3     oster 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
    517      1.3     oster 				    (struct buf *) node->dagHdr->bp);
    518      1.3     oster 			}
    519      1.3     oster 		RF_ETIMER_STOP(timer);
    520      1.3     oster 		RF_ETIMER_EVAL(timer);
    521      1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    522      1.3     oster 	}
    523      1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    524      1.3     oster 							 * explicitly since no
    525      1.3     oster 							 * I/O in this node */
    526      1.1     oster }
    527      1.1     oster /* this xor is used by the degraded-mode dag functions to recover lost data.
    528      1.1     oster  * the second-to-last parameter is the PDA for the failed portion of the access.
    529      1.1     oster  * the code here looks at this PDA and assumes that the xor target buffer is
    530      1.1     oster  * equal in size to the number of sectors in the failed PDA.  It then uses
    531      1.1     oster  * the other PDAs in the parameter list to determine where within the target
    532      1.1     oster  * buffer the corresponding data should be xored.
    533      1.1     oster  */
    534      1.3     oster int
    535      1.3     oster rf_RecoveryXorFunc(node)
    536      1.3     oster 	RF_DagNode_t *node;
    537      1.3     oster {
    538      1.3     oster 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    539      1.3     oster 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    540      1.3     oster 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    541      1.3     oster 	int     i, retcode = 0;
    542      1.3     oster 	RF_PhysDiskAddr_t *pda;
    543      1.3     oster 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    544      1.3     oster 	char   *srcbuf, *destbuf;
    545      1.3     oster 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    546      1.3     oster 	RF_Etimer_t timer;
    547      1.1     oster 
    548      1.3     oster 	if (node->dagHdr->status == rf_enable) {
    549      1.3     oster 		RF_ETIMER_START(timer);
    550      1.3     oster 		for (i = 0; i < node->numParams - 2; i += 2)
    551      1.3     oster 			if (node->params[i + 1].p != node->results[0]) {
    552      1.3     oster 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    553      1.3     oster 				srcbuf = (char *) node->params[i + 1].p;
    554      1.3     oster 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    555      1.3     oster 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    556      1.3     oster 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
    557      1.3     oster 			}
    558      1.3     oster 		RF_ETIMER_STOP(timer);
    559      1.3     oster 		RF_ETIMER_EVAL(timer);
    560      1.3     oster 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    561      1.3     oster 	}
    562      1.3     oster 	return (rf_GenericWakeupFunc(node, retcode));
    563      1.1     oster }
    564      1.1     oster /*****************************************************************************************
    565      1.1     oster  * The next three functions are utilities used by the above xor-execution functions.
    566      1.1     oster  ****************************************************************************************/
    567      1.1     oster 
    568      1.1     oster 
    569      1.1     oster /*
    570      1.1     oster  * this is just a glorified buffer xor.  targbuf points to a buffer that is one full stripe unit
    571      1.1     oster  * in size.  srcbuf points to a buffer that may be less than 1 SU, but never more.  When the
    572      1.1     oster  * access described by pda is one SU in size (which by implication means it's SU-aligned),
    573      1.1     oster  * all that happens is (targbuf) <- (srcbuf ^ targbuf).  When the access is less than one
    574      1.1     oster  * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
    575      1.1     oster  */
    576      1.1     oster 
    577      1.3     oster int
    578      1.3     oster rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
    579      1.3     oster 	RF_Raid_t *raidPtr;
    580      1.3     oster 	RF_PhysDiskAddr_t *pda;
    581      1.3     oster 	char   *srcbuf;
    582      1.3     oster 	char   *targbuf;
    583      1.3     oster 	void   *bp;
    584      1.3     oster {
    585      1.3     oster 	char   *targptr;
    586      1.3     oster 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    587      1.3     oster 	int     SUOffset = pda->startSector % sectPerSU;
    588      1.3     oster 	int     length, retcode = 0;
    589      1.3     oster 
    590      1.3     oster 	RF_ASSERT(pda->numSector <= sectPerSU);
    591      1.3     oster 
    592      1.3     oster 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    593      1.3     oster 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    594      1.3     oster 	retcode = rf_bxor(srcbuf, targptr, length, bp);
    595      1.3     oster 	return (retcode);
    596      1.1     oster }
    597      1.1     oster /* it really should be the case that the buffer pointers (returned by malloc)
    598      1.1     oster  * are aligned to the natural word size of the machine, so this is the only
    599      1.1     oster  * case we optimize for.  The length should always be a multiple of the sector
    600      1.1     oster  * size, so there should be no problem with leftover bytes at the end.
    601      1.1     oster  */
    602      1.3     oster int
    603      1.3     oster rf_bxor(src, dest, len, bp)
    604      1.3     oster 	char   *src;
    605      1.3     oster 	char   *dest;
    606      1.3     oster 	int     len;
    607      1.3     oster 	void   *bp;
    608      1.3     oster {
    609      1.3     oster 	unsigned mask = sizeof(long) - 1, retcode = 0;
    610      1.3     oster 
    611      1.3     oster 	if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
    612      1.3     oster 		retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
    613      1.3     oster 	} else {
    614      1.3     oster 		RF_ASSERT(0);
    615      1.3     oster 	}
    616      1.3     oster 	return (retcode);
    617      1.1     oster }
    618      1.1     oster /* map a user buffer into kernel space, if necessary */
    619      1.1     oster #define REMAP_VA(_bp,x,y) (y) = (x)
    620      1.1     oster 
    621      1.1     oster /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
    622      1.1     oster  * We don't want to assume anything about which input buffers are in kernel/user
    623      1.1     oster  * space, nor about their alignment, so in each loop we compute the maximum number
    624      1.1     oster  * of bytes that we can xor without crossing any page boundaries, and do only this many
    625      1.1     oster  * bytes before the next remap.
    626      1.1     oster  */
    627      1.3     oster int
    628      1.3     oster rf_longword_bxor(src, dest, len, bp)
    629      1.6  augustss 	unsigned long *src;
    630      1.6  augustss 	unsigned long *dest;
    631      1.3     oster 	int     len;		/* longwords */
    632      1.3     oster 	void   *bp;
    633      1.3     oster {
    634      1.6  augustss 	unsigned long *end = src + len;
    635      1.6  augustss 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    636      1.6  augustss 	unsigned long *pg_src, *pg_dest;	/* per-page source/dest
    637      1.3     oster 							 * pointers */
    638      1.3     oster 	int     longs_this_time;/* # longwords to xor in the current iteration */
    639      1.3     oster 
    640      1.3     oster 	REMAP_VA(bp, src, pg_src);
    641      1.3     oster 	REMAP_VA(bp, dest, pg_dest);
    642      1.3     oster 	if (!pg_src || !pg_dest)
    643      1.3     oster 		return (EFAULT);
    644      1.3     oster 
    645      1.3     oster 	while (len >= 4) {
    646      1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    647      1.3     oster 		src += longs_this_time;
    648      1.3     oster 		dest += longs_this_time;
    649      1.3     oster 		len -= longs_this_time;
    650      1.3     oster 		while (longs_this_time >= 4) {
    651      1.3     oster 			d0 = pg_dest[0];
    652      1.3     oster 			d1 = pg_dest[1];
    653      1.3     oster 			d2 = pg_dest[2];
    654      1.3     oster 			d3 = pg_dest[3];
    655      1.3     oster 			s0 = pg_src[0];
    656      1.3     oster 			s1 = pg_src[1];
    657      1.3     oster 			s2 = pg_src[2];
    658      1.3     oster 			s3 = pg_src[3];
    659      1.3     oster 			pg_dest[0] = d0 ^ s0;
    660      1.3     oster 			pg_dest[1] = d1 ^ s1;
    661      1.3     oster 			pg_dest[2] = d2 ^ s2;
    662      1.3     oster 			pg_dest[3] = d3 ^ s3;
    663      1.3     oster 			pg_src += 4;
    664      1.3     oster 			pg_dest += 4;
    665      1.3     oster 			longs_this_time -= 4;
    666      1.3     oster 		}
    667      1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    668      1.3     oster 						 * boundaries here */
    669      1.3     oster 			*pg_dest++ ^= *pg_src++;
    670      1.3     oster 			longs_this_time--;
    671      1.3     oster 		}
    672      1.3     oster 
    673      1.3     oster 		/* either we're done, or we've reached a page boundary on one
    674      1.3     oster 		 * (or possibly both) of the pointers */
    675      1.3     oster 		if (len) {
    676      1.3     oster 			if (RF_PAGE_ALIGNED(src))
    677      1.3     oster 				REMAP_VA(bp, src, pg_src);
    678      1.3     oster 			if (RF_PAGE_ALIGNED(dest))
    679      1.3     oster 				REMAP_VA(bp, dest, pg_dest);
    680      1.3     oster 			if (!pg_src || !pg_dest)
    681      1.3     oster 				return (EFAULT);
    682      1.3     oster 		}
    683      1.3     oster 	}
    684      1.3     oster 	while (src < end) {
    685      1.3     oster 		*pg_dest++ ^= *pg_src++;
    686      1.3     oster 		src++;
    687      1.3     oster 		dest++;
    688      1.3     oster 		len--;
    689      1.3     oster 		if (RF_PAGE_ALIGNED(src))
    690      1.3     oster 			REMAP_VA(bp, src, pg_src);
    691      1.3     oster 		if (RF_PAGE_ALIGNED(dest))
    692      1.3     oster 			REMAP_VA(bp, dest, pg_dest);
    693      1.3     oster 	}
    694      1.3     oster 	RF_ASSERT(len == 0);
    695      1.3     oster 	return (0);
    696      1.1     oster }
    697      1.1     oster 
    698  1.7.4.2  jdolecek #if 0
    699      1.1     oster /*
    700      1.1     oster    dst = a ^ b ^ c;
    701      1.1     oster    a may equal dst
    702      1.1     oster    see comment above longword_bxor
    703      1.1     oster */
    704      1.3     oster int
    705      1.3     oster rf_longword_bxor3(dst, a, b, c, len, bp)
    706      1.6  augustss 	unsigned long *dst;
    707      1.6  augustss 	unsigned long *a;
    708      1.6  augustss 	unsigned long *b;
    709      1.6  augustss 	unsigned long *c;
    710      1.3     oster 	int     len;		/* length in longwords */
    711      1.3     oster 	void   *bp;
    712      1.3     oster {
    713      1.3     oster 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    714      1.6  augustss 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    715      1.3     oster 								 * pointers */
    716      1.3     oster 	int     longs_this_time;/* # longs to xor in the current iteration */
    717      1.3     oster 	char    dst_is_a = 0;
    718      1.3     oster 
    719      1.3     oster 	REMAP_VA(bp, a, pg_a);
    720      1.3     oster 	REMAP_VA(bp, b, pg_b);
    721      1.3     oster 	REMAP_VA(bp, c, pg_c);
    722      1.3     oster 	if (a == dst) {
    723      1.3     oster 		pg_dst = pg_a;
    724      1.3     oster 		dst_is_a = 1;
    725      1.3     oster 	} else {
    726      1.3     oster 		REMAP_VA(bp, dst, pg_dst);
    727      1.3     oster 	}
    728      1.3     oster 
    729      1.3     oster 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    730      1.3     oster 	while ((((unsigned long) pg_dst) & 0x1f)) {
    731      1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    732      1.3     oster 		dst++;
    733      1.3     oster 		a++;
    734      1.3     oster 		b++;
    735      1.3     oster 		c++;
    736      1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    737      1.3     oster 			REMAP_VA(bp, a, pg_a);
    738      1.3     oster 			if (!pg_a)
    739      1.3     oster 				return (EFAULT);
    740      1.3     oster 		}
    741      1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    742      1.3     oster 			REMAP_VA(bp, a, pg_b);
    743      1.3     oster 			if (!pg_b)
    744      1.3     oster 				return (EFAULT);
    745      1.3     oster 		}
    746      1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    747      1.3     oster 			REMAP_VA(bp, a, pg_c);
    748      1.3     oster 			if (!pg_c)
    749      1.3     oster 				return (EFAULT);
    750      1.3     oster 		}
    751      1.3     oster 		len--;
    752      1.3     oster 	}
    753      1.3     oster 
    754      1.3     oster 	while (len > 4) {
    755      1.3     oster 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    756      1.3     oster 		a += longs_this_time;
    757      1.3     oster 		b += longs_this_time;
    758      1.3     oster 		c += longs_this_time;
    759      1.3     oster 		dst += longs_this_time;
    760      1.3     oster 		len -= longs_this_time;
    761      1.3     oster 		while (longs_this_time >= 4) {
    762      1.3     oster 			a0 = pg_a[0];
    763      1.3     oster 			longs_this_time -= 4;
    764      1.3     oster 
    765      1.3     oster 			a1 = pg_a[1];
    766      1.3     oster 			a2 = pg_a[2];
    767      1.3     oster 
    768      1.3     oster 			a3 = pg_a[3];
    769      1.3     oster 			pg_a += 4;
    770      1.3     oster 
    771      1.3     oster 			b0 = pg_b[0];
    772      1.3     oster 			b1 = pg_b[1];
    773      1.3     oster 
    774      1.3     oster 			b2 = pg_b[2];
    775      1.3     oster 			b3 = pg_b[3];
    776      1.3     oster 			/* start dual issue */
    777      1.3     oster 			a0 ^= b0;
    778      1.3     oster 			b0 = pg_c[0];
    779      1.3     oster 
    780      1.3     oster 			pg_b += 4;
    781      1.3     oster 			a1 ^= b1;
    782      1.3     oster 
    783      1.3     oster 			a2 ^= b2;
    784      1.3     oster 			a3 ^= b3;
    785      1.3     oster 
    786      1.3     oster 			b1 = pg_c[1];
    787      1.3     oster 			a0 ^= b0;
    788      1.3     oster 
    789      1.3     oster 			b2 = pg_c[2];
    790      1.3     oster 			a1 ^= b1;
    791      1.3     oster 
    792      1.3     oster 			b3 = pg_c[3];
    793      1.3     oster 			a2 ^= b2;
    794      1.3     oster 
    795      1.3     oster 			pg_dst[0] = a0;
    796      1.3     oster 			a3 ^= b3;
    797      1.3     oster 			pg_dst[1] = a1;
    798      1.3     oster 			pg_c += 4;
    799      1.3     oster 			pg_dst[2] = a2;
    800      1.3     oster 			pg_dst[3] = a3;
    801      1.3     oster 			pg_dst += 4;
    802      1.3     oster 		}
    803      1.3     oster 		while (longs_this_time > 0) {	/* cannot cross any page
    804      1.3     oster 						 * boundaries here */
    805      1.3     oster 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    806      1.3     oster 			longs_this_time--;
    807      1.3     oster 		}
    808      1.3     oster 
    809      1.3     oster 		if (len) {
    810      1.3     oster 			if (RF_PAGE_ALIGNED(a)) {
    811      1.3     oster 				REMAP_VA(bp, a, pg_a);
    812      1.3     oster 				if (!pg_a)
    813      1.3     oster 					return (EFAULT);
    814      1.3     oster 				if (dst_is_a)
    815      1.3     oster 					pg_dst = pg_a;
    816      1.3     oster 			}
    817      1.3     oster 			if (RF_PAGE_ALIGNED(b)) {
    818      1.3     oster 				REMAP_VA(bp, b, pg_b);
    819      1.3     oster 				if (!pg_b)
    820      1.3     oster 					return (EFAULT);
    821      1.3     oster 			}
    822      1.3     oster 			if (RF_PAGE_ALIGNED(c)) {
    823      1.3     oster 				REMAP_VA(bp, c, pg_c);
    824      1.3     oster 				if (!pg_c)
    825      1.3     oster 					return (EFAULT);
    826      1.3     oster 			}
    827      1.3     oster 			if (!dst_is_a)
    828      1.3     oster 				if (RF_PAGE_ALIGNED(dst)) {
    829      1.3     oster 					REMAP_VA(bp, dst, pg_dst);
    830      1.3     oster 					if (!pg_dst)
    831      1.3     oster 						return (EFAULT);
    832      1.3     oster 				}
    833      1.3     oster 		}
    834      1.3     oster 	}
    835      1.3     oster 	while (len) {
    836      1.3     oster 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    837      1.3     oster 		dst++;
    838      1.3     oster 		a++;
    839      1.3     oster 		b++;
    840      1.3     oster 		c++;
    841      1.3     oster 		if (RF_PAGE_ALIGNED(a)) {
    842      1.3     oster 			REMAP_VA(bp, a, pg_a);
    843      1.3     oster 			if (!pg_a)
    844      1.3     oster 				return (EFAULT);
    845      1.3     oster 			if (dst_is_a)
    846      1.3     oster 				pg_dst = pg_a;
    847      1.3     oster 		}
    848      1.3     oster 		if (RF_PAGE_ALIGNED(b)) {
    849      1.3     oster 			REMAP_VA(bp, b, pg_b);
    850      1.3     oster 			if (!pg_b)
    851      1.3     oster 				return (EFAULT);
    852      1.3     oster 		}
    853      1.3     oster 		if (RF_PAGE_ALIGNED(c)) {
    854      1.3     oster 			REMAP_VA(bp, c, pg_c);
    855      1.3     oster 			if (!pg_c)
    856      1.3     oster 				return (EFAULT);
    857      1.3     oster 		}
    858      1.3     oster 		if (!dst_is_a)
    859      1.3     oster 			if (RF_PAGE_ALIGNED(dst)) {
    860      1.3     oster 				REMAP_VA(bp, dst, pg_dst);
    861      1.3     oster 				if (!pg_dst)
    862      1.3     oster 					return (EFAULT);
    863      1.3     oster 			}
    864      1.3     oster 		len--;
    865      1.3     oster 	}
    866      1.3     oster 	return (0);
    867      1.3     oster }
    868      1.3     oster 
    869      1.3     oster int
    870      1.3     oster rf_bxor3(dst, a, b, c, len, bp)
    871      1.6  augustss 	unsigned char *dst;
    872      1.6  augustss 	unsigned char *a;
    873      1.6  augustss 	unsigned char *b;
    874      1.6  augustss 	unsigned char *c;
    875      1.3     oster 	unsigned long len;
    876      1.3     oster 	void   *bp;
    877      1.1     oster {
    878      1.3     oster 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    879      1.1     oster 
    880      1.3     oster 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    881      1.3     oster 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    882      1.1     oster }
    883  1.7.4.2  jdolecek #endif
    884