Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.11
      1 /*	$NetBSD: rf_dagfuncs.c,v 1.11 2002/11/18 23:46:28 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * dagfuncs.c -- DAG node execution routines
     31  *
     32  * Rules:
     33  * 1. Every DAG execution function must eventually cause node->status to
     34  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36  *    the node execution function can do these two things directly. In
     37  *    the case of nodes that have to wait for some event (a disk read to
     38  *    complete, a lock to be released, etc) to occur before they can
     39  *    complete, this is typically achieved by having whatever module
     40  *    is doing the operation call GenericWakeupFunc upon completion.
     41  * 2. DAG execution functions should check the status in the DAG header
     42  *    and NOP out their operations if the status is not "enable". However,
     43  *    execution functions that release resources must be sure to release
     44  *    them even when they NOP out the function that would use them.
     45  *    Functions that acquire resources should go ahead and acquire them
     46  *    even when they NOP, so that a downstream release node will not have
     47  *    to check to find out whether or not the acquire was suppressed.
     48  */
     49 
     50 #include <sys/cdefs.h>
     51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.11 2002/11/18 23:46:28 oster Exp $");
     52 
     53 #include <sys/param.h>
     54 #include <sys/ioctl.h>
     55 
     56 #include "rf_archs.h"
     57 #include "rf_raid.h"
     58 #include "rf_dag.h"
     59 #include "rf_layout.h"
     60 #include "rf_etimer.h"
     61 #include "rf_acctrace.h"
     62 #include "rf_diskqueue.h"
     63 #include "rf_dagfuncs.h"
     64 #include "rf_general.h"
     65 #include "rf_engine.h"
     66 #include "rf_dagutils.h"
     67 
     68 #include "rf_kintf.h"
     69 
     70 #if RF_INCLUDE_PARITYLOGGING > 0
     71 #include "rf_paritylog.h"
     72 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73 
     74 int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75 int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76 int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77 int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78 int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
     79 int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
     80 int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     81 int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     82 int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     83 
     84 /*****************************************************************************************
     85  * main (only) configuration routine for this module
     86  ****************************************************************************************/
     87 int
     88 rf_ConfigureDAGFuncs(listp)
     89 	RF_ShutdownList_t **listp;
     90 {
     91 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) || ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     92 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     93 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     94 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     95 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     96 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
     97 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
     98 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     99 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
    100 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
    101 	return (0);
    102 }
    103 
    104 
    105 
    106 /*****************************************************************************************
    107  * the execution function associated with a terminate node
    108  ****************************************************************************************/
    109 int
    110 rf_TerminateFunc(node)
    111 	RF_DagNode_t *node;
    112 {
    113 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    114 	node->status = rf_good;
    115 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    116 }
    117 
    118 int
    119 rf_TerminateUndoFunc(node)
    120 	RF_DagNode_t *node;
    121 {
    122 	return (0);
    123 }
    124 
    125 
    126 /*****************************************************************************************
    127  * execution functions associated with a mirror node
    128  *
    129  * parameters:
    130  *
    131  * 0 - physical disk addres of data
    132  * 1 - buffer for holding read data
    133  * 2 - parity stripe ID
    134  * 3 - flags
    135  * 4 - physical disk address of mirror (parity)
    136  *
    137  ****************************************************************************************/
    138 
    139 int
    140 rf_DiskReadMirrorIdleFunc(node)
    141 	RF_DagNode_t *node;
    142 {
    143 	/* select the mirror copy with the shortest queue and fill in node
    144 	 * parameters with physical disk address */
    145 
    146 	rf_SelectMirrorDiskIdle(node);
    147 	return (rf_DiskReadFunc(node));
    148 }
    149 
    150 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    151 int
    152 rf_DiskReadMirrorPartitionFunc(node)
    153 	RF_DagNode_t *node;
    154 {
    155 	/* select the mirror copy with the shortest queue and fill in node
    156 	 * parameters with physical disk address */
    157 
    158 	rf_SelectMirrorDiskPartition(node);
    159 	return (rf_DiskReadFunc(node));
    160 }
    161 #endif
    162 
    163 int
    164 rf_DiskReadMirrorUndoFunc(node)
    165 	RF_DagNode_t *node;
    166 {
    167 	return (0);
    168 }
    169 
    170 
    171 
    172 #if RF_INCLUDE_PARITYLOGGING > 0
    173 /*****************************************************************************************
    174  * the execution function associated with a parity log update node
    175  ****************************************************************************************/
    176 int
    177 rf_ParityLogUpdateFunc(node)
    178 	RF_DagNode_t *node;
    179 {
    180 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    181 	caddr_t buf = (caddr_t) node->params[1].p;
    182 	RF_ParityLogData_t *logData;
    183 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    184 	RF_Etimer_t timer;
    185 
    186 	if (node->dagHdr->status == rf_enable) {
    187 		RF_ETIMER_START(timer);
    188 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
    189 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    190 		    node->wakeFunc, (void *) node,
    191 		    node->dagHdr->tracerec, timer);
    192 		if (logData)
    193 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    194 		else {
    195 			RF_ETIMER_STOP(timer);
    196 			RF_ETIMER_EVAL(timer);
    197 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    198 			(node->wakeFunc) (node, ENOMEM);
    199 		}
    200 	}
    201 	return (0);
    202 }
    203 
    204 
    205 /*****************************************************************************************
    206  * the execution function associated with a parity log overwrite node
    207  ****************************************************************************************/
    208 int
    209 rf_ParityLogOverwriteFunc(node)
    210 	RF_DagNode_t *node;
    211 {
    212 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    213 	caddr_t buf = (caddr_t) node->params[1].p;
    214 	RF_ParityLogData_t *logData;
    215 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    216 	RF_Etimer_t timer;
    217 
    218 	if (node->dagHdr->status == rf_enable) {
    219 		RF_ETIMER_START(timer);
    220 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf, (RF_Raid_t *) (node->dagHdr->raidPtr),
    221 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    222 		if (logData)
    223 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    224 		else {
    225 			RF_ETIMER_STOP(timer);
    226 			RF_ETIMER_EVAL(timer);
    227 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    228 			(node->wakeFunc) (node, ENOMEM);
    229 		}
    230 	}
    231 	return (0);
    232 }
    233 
    234 int
    235 rf_ParityLogUpdateUndoFunc(node)
    236 	RF_DagNode_t *node;
    237 {
    238 	return (0);
    239 }
    240 
    241 int
    242 rf_ParityLogOverwriteUndoFunc(node)
    243 	RF_DagNode_t *node;
    244 {
    245 	return (0);
    246 }
    247 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    248 
    249 /*****************************************************************************************
    250  * the execution function associated with a NOP node
    251  ****************************************************************************************/
    252 int
    253 rf_NullNodeFunc(node)
    254 	RF_DagNode_t *node;
    255 {
    256 	node->status = rf_good;
    257 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    258 }
    259 
    260 int
    261 rf_NullNodeUndoFunc(node)
    262 	RF_DagNode_t *node;
    263 {
    264 	node->status = rf_undone;
    265 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    266 }
    267 
    268 
    269 /*****************************************************************************************
    270  * the execution function associated with a disk-read node
    271  ****************************************************************************************/
    272 int
    273 rf_DiskReadFuncForThreads(node)
    274 	RF_DagNode_t *node;
    275 {
    276 	RF_DiskQueueData_t *req;
    277 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    278 	caddr_t buf = (caddr_t) node->params[1].p;
    279 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    280 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    281 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    282 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    283 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    284 	RF_DiskQueueDataFlags_t flags = 0;
    285 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    286 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    287 	void   *b_proc = NULL;
    288 
    289 	if (node->dagHdr->bp)
    290 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    291 
    292 	RF_ASSERT(!(lock && unlock));
    293 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    294 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    295 
    296 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    297 	    buf, parityStripeID, which_ru,
    298 	    (int (*) (void *, int)) node->wakeFunc,
    299 	    node, NULL, node->dagHdr->tracerec,
    300 	    (void *) (node->dagHdr->raidPtr), flags, b_proc);
    301 	if (!req) {
    302 		(node->wakeFunc) (node, ENOMEM);
    303 	} else {
    304 		node->dagFuncData = (void *) req;
    305 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    306 	}
    307 	return (0);
    308 }
    309 
    310 
    311 /*****************************************************************************************
    312  * the execution function associated with a disk-write node
    313  ****************************************************************************************/
    314 int
    315 rf_DiskWriteFuncForThreads(node)
    316 	RF_DagNode_t *node;
    317 {
    318 	RF_DiskQueueData_t *req;
    319 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    320 	caddr_t buf = (caddr_t) node->params[1].p;
    321 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    322 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    323 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    324 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    325 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    326 	RF_DiskQueueDataFlags_t flags = 0;
    327 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    328 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    329 	void   *b_proc = NULL;
    330 
    331 	if (node->dagHdr->bp)
    332 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    333 
    334 	/* normal processing (rollaway or forward recovery) begins here */
    335 	RF_ASSERT(!(lock && unlock));
    336 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    337 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    338 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    339 	    buf, parityStripeID, which_ru,
    340 	    (int (*) (void *, int)) node->wakeFunc,
    341 	    (void *) node, NULL,
    342 	    node->dagHdr->tracerec,
    343 	    (void *) (node->dagHdr->raidPtr),
    344 	    flags, b_proc);
    345 
    346 	if (!req) {
    347 		(node->wakeFunc) (node, ENOMEM);
    348 	} else {
    349 		node->dagFuncData = (void *) req;
    350 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, priority);
    351 	}
    352 
    353 	return (0);
    354 }
    355 /*****************************************************************************************
    356  * the undo function for disk nodes
    357  * Note:  this is not a proper undo of a write node, only locks are released.
    358  *        old data is not restored to disk!
    359  ****************************************************************************************/
    360 int
    361 rf_DiskUndoFunc(node)
    362 	RF_DagNode_t *node;
    363 {
    364 	RF_DiskQueueData_t *req;
    365 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    366 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    367 
    368 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    369 	    0L, 0, NULL, 0L, 0,
    370 	    (int (*) (void *, int)) node->wakeFunc,
    371 	    (void *) node,
    372 	    NULL, node->dagHdr->tracerec,
    373 	    (void *) (node->dagHdr->raidPtr),
    374 	    RF_UNLOCK_DISK_QUEUE, NULL);
    375 	if (!req)
    376 		(node->wakeFunc) (node, ENOMEM);
    377 	else {
    378 		node->dagFuncData = (void *) req;
    379 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
    380 	}
    381 
    382 	return (0);
    383 }
    384 /*****************************************************************************************
    385  * the execution function associated with an "unlock disk queue" node
    386  ****************************************************************************************/
    387 int
    388 rf_DiskUnlockFuncForThreads(node)
    389 	RF_DagNode_t *node;
    390 {
    391 	RF_DiskQueueData_t *req;
    392 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    393 	RF_DiskQueue_t **dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    394 
    395 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    396 	    0L, 0, NULL, 0L, 0,
    397 	    (int (*) (void *, int)) node->wakeFunc,
    398 	    (void *) node,
    399 	    NULL, node->dagHdr->tracerec,
    400 	    (void *) (node->dagHdr->raidPtr),
    401 	    RF_UNLOCK_DISK_QUEUE, NULL);
    402 	if (!req)
    403 		(node->wakeFunc) (node, ENOMEM);
    404 	else {
    405 		node->dagFuncData = (void *) req;
    406 		rf_DiskIOEnqueue(&(dqs[pda->row][pda->col]), req, RF_IO_NORMAL_PRIORITY);
    407 	}
    408 
    409 	return (0);
    410 }
    411 /*****************************************************************************************
    412  * Callback routine for DiskRead and DiskWrite nodes.  When the disk op completes,
    413  * the routine is called to set the node status and inform the execution engine that
    414  * the node has fired.
    415  ****************************************************************************************/
    416 int
    417 rf_GenericWakeupFunc(node, status)
    418 	RF_DagNode_t *node;
    419 	int     status;
    420 {
    421 	switch (node->status) {
    422 	case rf_bwd1:
    423 		node->status = rf_bwd2;
    424 		if (node->dagFuncData)
    425 			rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    426 		return (rf_DiskWriteFuncForThreads(node));
    427 		break;
    428 	case rf_fired:
    429 		if (status)
    430 			node->status = rf_bad;
    431 		else
    432 			node->status = rf_good;
    433 		break;
    434 	case rf_recover:
    435 		/* probably should never reach this case */
    436 		if (status)
    437 			node->status = rf_panic;
    438 		else
    439 			node->status = rf_undone;
    440 		break;
    441 	default:
    442 		printf("rf_GenericWakeupFunc:");
    443 		printf("node->status is %d,", node->status);
    444 		printf("status is %d \n", status);
    445 		RF_PANIC();
    446 		break;
    447 	}
    448 	if (node->dagFuncData)
    449 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    450 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    451 }
    452 
    453 
    454 /*****************************************************************************************
    455  * there are three distinct types of xor nodes
    456  * A "regular xor" is used in the fault-free case where the access spans a complete
    457  * stripe unit.  It assumes that the result buffer is one full stripe unit in size,
    458  * and uses the stripe-unit-offset values that it computes from the PDAs to determine
    459  * where within the stripe unit to XOR each argument buffer.
    460  *
    461  * A "simple xor" is used in the fault-free case where the access touches only a portion
    462  * of one (or two, in some cases) stripe unit(s).  It assumes that all the argument
    463  * buffers are of the same size and have the same stripe unit offset.
    464  *
    465  * A "recovery xor" is used in the degraded-mode case.  It's similar to the regular
    466  * xor function except that it takes the failed PDA as an additional parameter, and
    467  * uses it to determine what portions of the argument buffers need to be xor'd into
    468  * the result buffer, and where in the result buffer they should go.
    469  ****************************************************************************************/
    470 
    471 /* xor the params together and store the result in the result field.
    472  * assume the result field points to a buffer that is the size of one SU,
    473  * and use the pda params to determine where within the buffer to XOR
    474  * the input buffers.
    475  */
    476 int
    477 rf_RegularXorFunc(node)
    478 	RF_DagNode_t *node;
    479 {
    480 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    481 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    482 	RF_Etimer_t timer;
    483 	int     i, retcode;
    484 
    485 	retcode = 0;
    486 	if (node->dagHdr->status == rf_enable) {
    487 		/* don't do the XOR if the input is the same as the output */
    488 		RF_ETIMER_START(timer);
    489 		for (i = 0; i < node->numParams - 1; i += 2)
    490 			if (node->params[i + 1].p != node->results[0]) {
    491 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    492 				    (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
    493 			}
    494 		RF_ETIMER_STOP(timer);
    495 		RF_ETIMER_EVAL(timer);
    496 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    497 	}
    498 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    499 							 * explicitly since no
    500 							 * I/O in this node */
    501 }
    502 /* xor the inputs into the result buffer, ignoring placement issues */
    503 int
    504 rf_SimpleXorFunc(node)
    505 	RF_DagNode_t *node;
    506 {
    507 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    508 	int     i, retcode = 0;
    509 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    510 	RF_Etimer_t timer;
    511 
    512 	if (node->dagHdr->status == rf_enable) {
    513 		RF_ETIMER_START(timer);
    514 		/* don't do the XOR if the input is the same as the output */
    515 		for (i = 0; i < node->numParams - 1; i += 2)
    516 			if (node->params[i + 1].p != node->results[0]) {
    517 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    518 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
    519 				    (struct buf *) node->dagHdr->bp);
    520 			}
    521 		RF_ETIMER_STOP(timer);
    522 		RF_ETIMER_EVAL(timer);
    523 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    524 	}
    525 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    526 							 * explicitly since no
    527 							 * I/O in this node */
    528 }
    529 /* this xor is used by the degraded-mode dag functions to recover lost data.
    530  * the second-to-last parameter is the PDA for the failed portion of the access.
    531  * the code here looks at this PDA and assumes that the xor target buffer is
    532  * equal in size to the number of sectors in the failed PDA.  It then uses
    533  * the other PDAs in the parameter list to determine where within the target
    534  * buffer the corresponding data should be xored.
    535  */
    536 int
    537 rf_RecoveryXorFunc(node)
    538 	RF_DagNode_t *node;
    539 {
    540 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    541 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    542 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    543 	int     i, retcode = 0;
    544 	RF_PhysDiskAddr_t *pda;
    545 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    546 	char   *srcbuf, *destbuf;
    547 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    548 	RF_Etimer_t timer;
    549 
    550 	if (node->dagHdr->status == rf_enable) {
    551 		RF_ETIMER_START(timer);
    552 		for (i = 0; i < node->numParams - 2; i += 2)
    553 			if (node->params[i + 1].p != node->results[0]) {
    554 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    555 				srcbuf = (char *) node->params[i + 1].p;
    556 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    557 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    558 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
    559 			}
    560 		RF_ETIMER_STOP(timer);
    561 		RF_ETIMER_EVAL(timer);
    562 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    563 	}
    564 	return (rf_GenericWakeupFunc(node, retcode));
    565 }
    566 /*****************************************************************************************
    567  * The next three functions are utilities used by the above xor-execution functions.
    568  ****************************************************************************************/
    569 
    570 
    571 /*
    572  * this is just a glorified buffer xor.  targbuf points to a buffer that is one full stripe unit
    573  * in size.  srcbuf points to a buffer that may be less than 1 SU, but never more.  When the
    574  * access described by pda is one SU in size (which by implication means it's SU-aligned),
    575  * all that happens is (targbuf) <- (srcbuf ^ targbuf).  When the access is less than one
    576  * SU in size the XOR occurs on only the portion of targbuf identified in the pda.
    577  */
    578 
    579 int
    580 rf_XorIntoBuffer(raidPtr, pda, srcbuf, targbuf, bp)
    581 	RF_Raid_t *raidPtr;
    582 	RF_PhysDiskAddr_t *pda;
    583 	char   *srcbuf;
    584 	char   *targbuf;
    585 	void   *bp;
    586 {
    587 	char   *targptr;
    588 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    589 	int     SUOffset = pda->startSector % sectPerSU;
    590 	int     length, retcode = 0;
    591 
    592 	RF_ASSERT(pda->numSector <= sectPerSU);
    593 
    594 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    595 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    596 	retcode = rf_bxor(srcbuf, targptr, length, bp);
    597 	return (retcode);
    598 }
    599 /* it really should be the case that the buffer pointers (returned by malloc)
    600  * are aligned to the natural word size of the machine, so this is the only
    601  * case we optimize for.  The length should always be a multiple of the sector
    602  * size, so there should be no problem with leftover bytes at the end.
    603  */
    604 int
    605 rf_bxor(src, dest, len, bp)
    606 	char   *src;
    607 	char   *dest;
    608 	int     len;
    609 	void   *bp;
    610 {
    611 	unsigned mask = sizeof(long) - 1, retcode = 0;
    612 
    613 	if (!(((unsigned long) src) & mask) && !(((unsigned long) dest) & mask) && !(len & mask)) {
    614 		retcode = rf_longword_bxor((unsigned long *) src, (unsigned long *) dest, len >> RF_LONGSHIFT, bp);
    615 	} else {
    616 		RF_ASSERT(0);
    617 	}
    618 	return (retcode);
    619 }
    620 /* map a user buffer into kernel space, if necessary */
    621 #define REMAP_VA(_bp,x,y) (y) = (x)
    622 
    623 /* When XORing in kernel mode, we need to map each user page to kernel space before we can access it.
    624  * We don't want to assume anything about which input buffers are in kernel/user
    625  * space, nor about their alignment, so in each loop we compute the maximum number
    626  * of bytes that we can xor without crossing any page boundaries, and do only this many
    627  * bytes before the next remap.
    628  */
    629 int
    630 rf_longword_bxor(src, dest, len, bp)
    631 	unsigned long *src;
    632 	unsigned long *dest;
    633 	int     len;		/* longwords */
    634 	void   *bp;
    635 {
    636 	unsigned long *end = src + len;
    637 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    638 	unsigned long *pg_src, *pg_dest;	/* per-page source/dest
    639 							 * pointers */
    640 	int     longs_this_time;/* # longwords to xor in the current iteration */
    641 
    642 	REMAP_VA(bp, src, pg_src);
    643 	REMAP_VA(bp, dest, pg_dest);
    644 	if (!pg_src || !pg_dest)
    645 		return (EFAULT);
    646 
    647 	while (len >= 4) {
    648 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    649 		src += longs_this_time;
    650 		dest += longs_this_time;
    651 		len -= longs_this_time;
    652 		while (longs_this_time >= 4) {
    653 			d0 = pg_dest[0];
    654 			d1 = pg_dest[1];
    655 			d2 = pg_dest[2];
    656 			d3 = pg_dest[3];
    657 			s0 = pg_src[0];
    658 			s1 = pg_src[1];
    659 			s2 = pg_src[2];
    660 			s3 = pg_src[3];
    661 			pg_dest[0] = d0 ^ s0;
    662 			pg_dest[1] = d1 ^ s1;
    663 			pg_dest[2] = d2 ^ s2;
    664 			pg_dest[3] = d3 ^ s3;
    665 			pg_src += 4;
    666 			pg_dest += 4;
    667 			longs_this_time -= 4;
    668 		}
    669 		while (longs_this_time > 0) {	/* cannot cross any page
    670 						 * boundaries here */
    671 			*pg_dest++ ^= *pg_src++;
    672 			longs_this_time--;
    673 		}
    674 
    675 		/* either we're done, or we've reached a page boundary on one
    676 		 * (or possibly both) of the pointers */
    677 		if (len) {
    678 			if (RF_PAGE_ALIGNED(src))
    679 				REMAP_VA(bp, src, pg_src);
    680 			if (RF_PAGE_ALIGNED(dest))
    681 				REMAP_VA(bp, dest, pg_dest);
    682 			if (!pg_src || !pg_dest)
    683 				return (EFAULT);
    684 		}
    685 	}
    686 	while (src < end) {
    687 		*pg_dest++ ^= *pg_src++;
    688 		src++;
    689 		dest++;
    690 		len--;
    691 		if (RF_PAGE_ALIGNED(src))
    692 			REMAP_VA(bp, src, pg_src);
    693 		if (RF_PAGE_ALIGNED(dest))
    694 			REMAP_VA(bp, dest, pg_dest);
    695 	}
    696 	RF_ASSERT(len == 0);
    697 	return (0);
    698 }
    699 
    700 #if 0
    701 /*
    702    dst = a ^ b ^ c;
    703    a may equal dst
    704    see comment above longword_bxor
    705 */
    706 int
    707 rf_longword_bxor3(dst, a, b, c, len, bp)
    708 	unsigned long *dst;
    709 	unsigned long *a;
    710 	unsigned long *b;
    711 	unsigned long *c;
    712 	int     len;		/* length in longwords */
    713 	void   *bp;
    714 {
    715 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    716 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    717 								 * pointers */
    718 	int     longs_this_time;/* # longs to xor in the current iteration */
    719 	char    dst_is_a = 0;
    720 
    721 	REMAP_VA(bp, a, pg_a);
    722 	REMAP_VA(bp, b, pg_b);
    723 	REMAP_VA(bp, c, pg_c);
    724 	if (a == dst) {
    725 		pg_dst = pg_a;
    726 		dst_is_a = 1;
    727 	} else {
    728 		REMAP_VA(bp, dst, pg_dst);
    729 	}
    730 
    731 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    732 	while ((((unsigned long) pg_dst) & 0x1f)) {
    733 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    734 		dst++;
    735 		a++;
    736 		b++;
    737 		c++;
    738 		if (RF_PAGE_ALIGNED(a)) {
    739 			REMAP_VA(bp, a, pg_a);
    740 			if (!pg_a)
    741 				return (EFAULT);
    742 		}
    743 		if (RF_PAGE_ALIGNED(b)) {
    744 			REMAP_VA(bp, a, pg_b);
    745 			if (!pg_b)
    746 				return (EFAULT);
    747 		}
    748 		if (RF_PAGE_ALIGNED(c)) {
    749 			REMAP_VA(bp, a, pg_c);
    750 			if (!pg_c)
    751 				return (EFAULT);
    752 		}
    753 		len--;
    754 	}
    755 
    756 	while (len > 4) {
    757 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    758 		a += longs_this_time;
    759 		b += longs_this_time;
    760 		c += longs_this_time;
    761 		dst += longs_this_time;
    762 		len -= longs_this_time;
    763 		while (longs_this_time >= 4) {
    764 			a0 = pg_a[0];
    765 			longs_this_time -= 4;
    766 
    767 			a1 = pg_a[1];
    768 			a2 = pg_a[2];
    769 
    770 			a3 = pg_a[3];
    771 			pg_a += 4;
    772 
    773 			b0 = pg_b[0];
    774 			b1 = pg_b[1];
    775 
    776 			b2 = pg_b[2];
    777 			b3 = pg_b[3];
    778 			/* start dual issue */
    779 			a0 ^= b0;
    780 			b0 = pg_c[0];
    781 
    782 			pg_b += 4;
    783 			a1 ^= b1;
    784 
    785 			a2 ^= b2;
    786 			a3 ^= b3;
    787 
    788 			b1 = pg_c[1];
    789 			a0 ^= b0;
    790 
    791 			b2 = pg_c[2];
    792 			a1 ^= b1;
    793 
    794 			b3 = pg_c[3];
    795 			a2 ^= b2;
    796 
    797 			pg_dst[0] = a0;
    798 			a3 ^= b3;
    799 			pg_dst[1] = a1;
    800 			pg_c += 4;
    801 			pg_dst[2] = a2;
    802 			pg_dst[3] = a3;
    803 			pg_dst += 4;
    804 		}
    805 		while (longs_this_time > 0) {	/* cannot cross any page
    806 						 * boundaries here */
    807 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    808 			longs_this_time--;
    809 		}
    810 
    811 		if (len) {
    812 			if (RF_PAGE_ALIGNED(a)) {
    813 				REMAP_VA(bp, a, pg_a);
    814 				if (!pg_a)
    815 					return (EFAULT);
    816 				if (dst_is_a)
    817 					pg_dst = pg_a;
    818 			}
    819 			if (RF_PAGE_ALIGNED(b)) {
    820 				REMAP_VA(bp, b, pg_b);
    821 				if (!pg_b)
    822 					return (EFAULT);
    823 			}
    824 			if (RF_PAGE_ALIGNED(c)) {
    825 				REMAP_VA(bp, c, pg_c);
    826 				if (!pg_c)
    827 					return (EFAULT);
    828 			}
    829 			if (!dst_is_a)
    830 				if (RF_PAGE_ALIGNED(dst)) {
    831 					REMAP_VA(bp, dst, pg_dst);
    832 					if (!pg_dst)
    833 						return (EFAULT);
    834 				}
    835 		}
    836 	}
    837 	while (len) {
    838 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    839 		dst++;
    840 		a++;
    841 		b++;
    842 		c++;
    843 		if (RF_PAGE_ALIGNED(a)) {
    844 			REMAP_VA(bp, a, pg_a);
    845 			if (!pg_a)
    846 				return (EFAULT);
    847 			if (dst_is_a)
    848 				pg_dst = pg_a;
    849 		}
    850 		if (RF_PAGE_ALIGNED(b)) {
    851 			REMAP_VA(bp, b, pg_b);
    852 			if (!pg_b)
    853 				return (EFAULT);
    854 		}
    855 		if (RF_PAGE_ALIGNED(c)) {
    856 			REMAP_VA(bp, c, pg_c);
    857 			if (!pg_c)
    858 				return (EFAULT);
    859 		}
    860 		if (!dst_is_a)
    861 			if (RF_PAGE_ALIGNED(dst)) {
    862 				REMAP_VA(bp, dst, pg_dst);
    863 				if (!pg_dst)
    864 					return (EFAULT);
    865 			}
    866 		len--;
    867 	}
    868 	return (0);
    869 }
    870 
    871 int
    872 rf_bxor3(dst, a, b, c, len, bp)
    873 	unsigned char *dst;
    874 	unsigned char *a;
    875 	unsigned char *b;
    876 	unsigned char *c;
    877 	unsigned long len;
    878 	void   *bp;
    879 {
    880 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    881 
    882 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    883 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    884 }
    885 #endif
    886