Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.16
      1 /*	$NetBSD: rf_dagfuncs.c,v 1.16 2003/12/30 23:40:20 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * dagfuncs.c -- DAG node execution routines
     31  *
     32  * Rules:
     33  * 1. Every DAG execution function must eventually cause node->status to
     34  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36  *    the node execution function can do these two things directly. In
     37  *    the case of nodes that have to wait for some event (a disk read to
     38  *    complete, a lock to be released, etc) to occur before they can
     39  *    complete, this is typically achieved by having whatever module
     40  *    is doing the operation call GenericWakeupFunc upon completion.
     41  * 2. DAG execution functions should check the status in the DAG header
     42  *    and NOP out their operations if the status is not "enable". However,
     43  *    execution functions that release resources must be sure to release
     44  *    them even when they NOP out the function that would use them.
     45  *    Functions that acquire resources should go ahead and acquire them
     46  *    even when they NOP, so that a downstream release node will not have
     47  *    to check to find out whether or not the acquire was suppressed.
     48  */
     49 
     50 #include <sys/cdefs.h>
     51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.16 2003/12/30 23:40:20 oster Exp $");
     52 
     53 #include <sys/param.h>
     54 #include <sys/ioctl.h>
     55 
     56 #include "rf_archs.h"
     57 #include "rf_raid.h"
     58 #include "rf_dag.h"
     59 #include "rf_layout.h"
     60 #include "rf_etimer.h"
     61 #include "rf_acctrace.h"
     62 #include "rf_diskqueue.h"
     63 #include "rf_dagfuncs.h"
     64 #include "rf_general.h"
     65 #include "rf_engine.h"
     66 #include "rf_dagutils.h"
     67 
     68 #include "rf_kintf.h"
     69 
     70 #if RF_INCLUDE_PARITYLOGGING > 0
     71 #include "rf_paritylog.h"
     72 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73 
     74 int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75 int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76 int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77 int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78 int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
     79 int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
     80 int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     81 int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     82 int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     83 
     84 /*****************************************************************************
     85  * main (only) configuration routine for this module
     86  ****************************************************************************/
     87 int
     88 rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
     89 {
     90 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
     91 		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     92 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     93 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     94 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     95 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     96 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
     97 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
     98 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     99 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
    100 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
    101 	return (0);
    102 }
    103 
    104 
    105 
    106 /*****************************************************************************
    107  * the execution function associated with a terminate node
    108  ****************************************************************************/
    109 int
    110 rf_TerminateFunc(RF_DagNode_t *node)
    111 {
    112 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    113 	node->status = rf_good;
    114 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    115 }
    116 
    117 int
    118 rf_TerminateUndoFunc(RF_DagNode_t *node)
    119 {
    120 	return (0);
    121 }
    122 
    123 
    124 /*****************************************************************************
    125  * execution functions associated with a mirror node
    126  *
    127  * parameters:
    128  *
    129  * 0 - physical disk addres of data
    130  * 1 - buffer for holding read data
    131  * 2 - parity stripe ID
    132  * 3 - flags
    133  * 4 - physical disk address of mirror (parity)
    134  *
    135  ****************************************************************************/
    136 
    137 int
    138 rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
    139 {
    140 	/* select the mirror copy with the shortest queue and fill in node
    141 	 * parameters with physical disk address */
    142 
    143 	rf_SelectMirrorDiskIdle(node);
    144 	return (rf_DiskReadFunc(node));
    145 }
    146 
    147 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    148 int
    149 rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
    150 {
    151 	/* select the mirror copy with the shortest queue and fill in node
    152 	 * parameters with physical disk address */
    153 
    154 	rf_SelectMirrorDiskPartition(node);
    155 	return (rf_DiskReadFunc(node));
    156 }
    157 #endif
    158 
    159 int
    160 rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
    161 {
    162 	return (0);
    163 }
    164 
    165 
    166 
    167 #if RF_INCLUDE_PARITYLOGGING > 0
    168 /*****************************************************************************
    169  * the execution function associated with a parity log update node
    170  ****************************************************************************/
    171 int
    172 rf_ParityLogUpdateFunc(RF_DagNode_t *node)
    173 {
    174 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    175 	caddr_t buf = (caddr_t) node->params[1].p;
    176 	RF_ParityLogData_t *logData;
    177 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    178 	RF_Etimer_t timer;
    179 
    180 	if (node->dagHdr->status == rf_enable) {
    181 		RF_ETIMER_START(timer);
    182 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
    183 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    184 		    node->wakeFunc, (void *) node,
    185 		    node->dagHdr->tracerec, timer);
    186 		if (logData)
    187 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    188 		else {
    189 			RF_ETIMER_STOP(timer);
    190 			RF_ETIMER_EVAL(timer);
    191 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    192 			(node->wakeFunc) (node, ENOMEM);
    193 		}
    194 	}
    195 	return (0);
    196 }
    197 
    198 
    199 /*****************************************************************************
    200  * the execution function associated with a parity log overwrite node
    201  ****************************************************************************/
    202 int
    203 rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
    204 {
    205 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    206 	caddr_t buf = (caddr_t) node->params[1].p;
    207 	RF_ParityLogData_t *logData;
    208 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    209 	RF_Etimer_t timer;
    210 
    211 	if (node->dagHdr->status == rf_enable) {
    212 		RF_ETIMER_START(timer);
    213 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf,
    214 (RF_Raid_t *) (node->dagHdr->raidPtr),
    215 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    216 		if (logData)
    217 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    218 		else {
    219 			RF_ETIMER_STOP(timer);
    220 			RF_ETIMER_EVAL(timer);
    221 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    222 			(node->wakeFunc) (node, ENOMEM);
    223 		}
    224 	}
    225 	return (0);
    226 }
    227 
    228 int
    229 rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
    230 {
    231 	return (0);
    232 }
    233 
    234 int
    235 rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
    236 {
    237 	return (0);
    238 }
    239 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    240 
    241 /*****************************************************************************
    242  * the execution function associated with a NOP node
    243  ****************************************************************************/
    244 int
    245 rf_NullNodeFunc(RF_DagNode_t *node)
    246 {
    247 	node->status = rf_good;
    248 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    249 }
    250 
    251 int
    252 rf_NullNodeUndoFunc(RF_DagNode_t *node)
    253 {
    254 	node->status = rf_undone;
    255 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    256 }
    257 
    258 
    259 /*****************************************************************************
    260  * the execution function associated with a disk-read node
    261  ****************************************************************************/
    262 int
    263 rf_DiskReadFuncForThreads(RF_DagNode_t *node)
    264 {
    265 	RF_DiskQueueData_t *req;
    266 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    267 	caddr_t buf = (caddr_t) node->params[1].p;
    268 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    269 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    270 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    271 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    272 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    273 	RF_DiskQueueDataFlags_t flags = 0;
    274 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    275 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    276 	void   *b_proc = NULL;
    277 
    278 	if (node->dagHdr->bp)
    279 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    280 
    281 	RF_ASSERT(!(lock && unlock));
    282 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    283 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    284 
    285 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    286 	    buf, parityStripeID, which_ru,
    287 	    (int (*) (void *, int)) node->wakeFunc,
    288 	    node, NULL, node->dagHdr->tracerec,
    289 	    (void *) (node->dagHdr->raidPtr), flags, b_proc);
    290 	if (!req) {
    291 		(node->wakeFunc) (node, ENOMEM);
    292 	} else {
    293 		node->dagFuncData = (void *) req;
    294 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    295 	}
    296 	return (0);
    297 }
    298 
    299 
    300 /*****************************************************************************
    301  * the execution function associated with a disk-write node
    302  ****************************************************************************/
    303 int
    304 rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
    305 {
    306 	RF_DiskQueueData_t *req;
    307 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    308 	caddr_t buf = (caddr_t) node->params[1].p;
    309 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    310 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    311 	unsigned lock = RF_EXTRACT_LOCK_FLAG(node->params[3].v);
    312 	unsigned unlock = RF_EXTRACT_UNLOCK_FLAG(node->params[3].v);
    313 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    314 	RF_DiskQueueDataFlags_t flags = 0;
    315 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    316 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    317 	void   *b_proc = NULL;
    318 
    319 	if (node->dagHdr->bp)
    320 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    321 
    322 	/* normal processing (rollaway or forward recovery) begins here */
    323 	RF_ASSERT(!(lock && unlock));
    324 	flags |= (lock) ? RF_LOCK_DISK_QUEUE : 0;
    325 	flags |= (unlock) ? RF_UNLOCK_DISK_QUEUE : 0;
    326 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    327 	    buf, parityStripeID, which_ru,
    328 	    (int (*) (void *, int)) node->wakeFunc,
    329 	    (void *) node, NULL,
    330 	    node->dagHdr->tracerec,
    331 	    (void *) (node->dagHdr->raidPtr),
    332 	    flags, b_proc);
    333 
    334 	if (!req) {
    335 		(node->wakeFunc) (node, ENOMEM);
    336 	} else {
    337 		node->dagFuncData = (void *) req;
    338 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    339 	}
    340 
    341 	return (0);
    342 }
    343 /*****************************************************************************
    344  * the undo function for disk nodes
    345  * Note:  this is not a proper undo of a write node, only locks are released.
    346  *        old data is not restored to disk!
    347  ****************************************************************************/
    348 int
    349 rf_DiskUndoFunc(RF_DagNode_t *node)
    350 {
    351 	RF_DiskQueueData_t *req;
    352 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    353 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    354 
    355 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    356 	    0L, 0, NULL, 0L, 0,
    357 	    (int (*) (void *, int)) node->wakeFunc,
    358 	    (void *) node,
    359 	    NULL, node->dagHdr->tracerec,
    360 	    (void *) (node->dagHdr->raidPtr),
    361 	    RF_UNLOCK_DISK_QUEUE, NULL);
    362 	if (!req)
    363 		(node->wakeFunc) (node, ENOMEM);
    364 	else {
    365 		node->dagFuncData = (void *) req;
    366 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    367 	}
    368 
    369 	return (0);
    370 }
    371 /*****************************************************************************
    372  * the execution function associated with an "unlock disk queue" node
    373  ****************************************************************************/
    374 int
    375 rf_DiskUnlockFuncForThreads(RF_DagNode_t *node)
    376 {
    377 	RF_DiskQueueData_t *req;
    378 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    379 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    380 
    381 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    382 	    0L, 0, NULL, 0L, 0,
    383 	    (int (*) (void *, int)) node->wakeFunc,
    384 	    (void *) node,
    385 	    NULL, node->dagHdr->tracerec,
    386 	    (void *) (node->dagHdr->raidPtr),
    387 	    RF_UNLOCK_DISK_QUEUE, NULL);
    388 	if (!req)
    389 		(node->wakeFunc) (node, ENOMEM);
    390 	else {
    391 		node->dagFuncData = (void *) req;
    392 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    393 	}
    394 
    395 	return (0);
    396 }
    397 /*****************************************************************************
    398  * Callback routine for DiskRead and DiskWrite nodes.  When the disk
    399  * op completes, the routine is called to set the node status and
    400  * inform the execution engine that the node has fired.
    401  ****************************************************************************/
    402 int
    403 rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
    404 {
    405 
    406 	switch (node->status) {
    407 	case rf_bwd1:
    408 		node->status = rf_bwd2;
    409 		if (node->dagFuncData)
    410 			rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    411 		return (rf_DiskWriteFuncForThreads(node));
    412 	case rf_fired:
    413 		if (status)
    414 			node->status = rf_bad;
    415 		else
    416 			node->status = rf_good;
    417 		break;
    418 	case rf_recover:
    419 		/* probably should never reach this case */
    420 		if (status)
    421 			node->status = rf_panic;
    422 		else
    423 			node->status = rf_undone;
    424 		break;
    425 	default:
    426 		printf("rf_GenericWakeupFunc:");
    427 		printf("node->status is %d,", node->status);
    428 		printf("status is %d \n", status);
    429 		RF_PANIC();
    430 		break;
    431 	}
    432 	if (node->dagFuncData)
    433 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    434 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    435 }
    436 
    437 
    438 /*****************************************************************************
    439  * there are three distinct types of xor nodes:
    440 
    441  * A "regular xor" is used in the fault-free case where the access
    442  * spans a complete stripe unit.  It assumes that the result buffer is
    443  * one full stripe unit in size, and uses the stripe-unit-offset
    444  * values that it computes from the PDAs to determine where within the
    445  * stripe unit to XOR each argument buffer.
    446  *
    447  * A "simple xor" is used in the fault-free case where the access
    448  * touches only a portion of one (or two, in some cases) stripe
    449  * unit(s).  It assumes that all the argument buffers are of the same
    450  * size and have the same stripe unit offset.
    451  *
    452  * A "recovery xor" is used in the degraded-mode case.  It's similar
    453  * to the regular xor function except that it takes the failed PDA as
    454  * an additional parameter, and uses it to determine what portions of
    455  * the argument buffers need to be xor'd into the result buffer, and
    456  * where in the result buffer they should go.
    457  ****************************************************************************/
    458 
    459 /* xor the params together and store the result in the result field.
    460  * assume the result field points to a buffer that is the size of one
    461  * SU, and use the pda params to determine where within the buffer to
    462  * XOR the input buffers.  */
    463 int
    464 rf_RegularXorFunc(RF_DagNode_t *node)
    465 {
    466 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    467 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    468 	RF_Etimer_t timer;
    469 	int     i, retcode;
    470 
    471 	retcode = 0;
    472 	if (node->dagHdr->status == rf_enable) {
    473 		/* don't do the XOR if the input is the same as the output */
    474 		RF_ETIMER_START(timer);
    475 		for (i = 0; i < node->numParams - 1; i += 2)
    476 			if (node->params[i + 1].p != node->results[0]) {
    477 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    478 				    (char *) node->params[i + 1].p, (char *) node->results[0], node->dagHdr->bp);
    479 			}
    480 		RF_ETIMER_STOP(timer);
    481 		RF_ETIMER_EVAL(timer);
    482 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    483 	}
    484 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    485 							 * explicitly since no
    486 							 * I/O in this node */
    487 }
    488 /* xor the inputs into the result buffer, ignoring placement issues */
    489 int
    490 rf_SimpleXorFunc(RF_DagNode_t *node)
    491 {
    492 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    493 	int     i, retcode = 0;
    494 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    495 	RF_Etimer_t timer;
    496 
    497 	if (node->dagHdr->status == rf_enable) {
    498 		RF_ETIMER_START(timer);
    499 		/* don't do the XOR if the input is the same as the output */
    500 		for (i = 0; i < node->numParams - 1; i += 2)
    501 			if (node->params[i + 1].p != node->results[0]) {
    502 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    503 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector),
    504 				    (struct buf *) node->dagHdr->bp);
    505 			}
    506 		RF_ETIMER_STOP(timer);
    507 		RF_ETIMER_EVAL(timer);
    508 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    509 	}
    510 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    511 							 * explicitly since no
    512 							 * I/O in this node */
    513 }
    514 /* this xor is used by the degraded-mode dag functions to recover lost
    515  * data.  the second-to-last parameter is the PDA for the failed
    516  * portion of the access.  the code here looks at this PDA and assumes
    517  * that the xor target buffer is equal in size to the number of
    518  * sectors in the failed PDA.  It then uses the other PDAs in the
    519  * parameter list to determine where within the target buffer the
    520  * corresponding data should be xored.  */
    521 int
    522 rf_RecoveryXorFunc(RF_DagNode_t *node)
    523 {
    524 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    525 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    526 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    527 	int     i, retcode = 0;
    528 	RF_PhysDiskAddr_t *pda;
    529 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    530 	char   *srcbuf, *destbuf;
    531 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    532 	RF_Etimer_t timer;
    533 
    534 	if (node->dagHdr->status == rf_enable) {
    535 		RF_ETIMER_START(timer);
    536 		for (i = 0; i < node->numParams - 2; i += 2)
    537 			if (node->params[i + 1].p != node->results[0]) {
    538 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    539 				srcbuf = (char *) node->params[i + 1].p;
    540 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    541 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    542 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector), node->dagHdr->bp);
    543 			}
    544 		RF_ETIMER_STOP(timer);
    545 		RF_ETIMER_EVAL(timer);
    546 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    547 	}
    548 	return (rf_GenericWakeupFunc(node, retcode));
    549 }
    550 /*****************************************************************************
    551  * The next three functions are utilities used by the above
    552  * xor-execution functions.
    553  ****************************************************************************/
    554 
    555 
    556 /*
    557  * this is just a glorified buffer xor.  targbuf points to a buffer
    558  * that is one full stripe unit in size.  srcbuf points to a buffer
    559  * that may be less than 1 SU, but never more.  When the access
    560  * described by pda is one SU in size (which by implication means it's
    561  * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
    562  * When the access is less than one SU in size the XOR occurs on only
    563  * the portion of targbuf identified in the pda.  */
    564 
    565 int
    566 rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    567 		 char *srcbuf, char *targbuf, void *bp)
    568 {
    569 	char   *targptr;
    570 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    571 	int     SUOffset = pda->startSector % sectPerSU;
    572 	int     length, retcode = 0;
    573 
    574 	RF_ASSERT(pda->numSector <= sectPerSU);
    575 
    576 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    577 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    578 	retcode = rf_bxor(srcbuf, targptr, length, bp);
    579 	return (retcode);
    580 }
    581 /* it really should be the case that the buffer pointers (returned by
    582  * malloc) are aligned to the natural word size of the machine, so
    583  * this is the only case we optimize for.  The length should always be
    584  * a multiple of the sector size, so there should be no problem with
    585  * leftover bytes at the end.  */
    586 int
    587 rf_bxor(char *src, char *dest, int len, void *bp)
    588 {
    589 	unsigned mask = sizeof(long) - 1, retcode = 0;
    590 
    591 	if (!(((unsigned long) src) & mask) &&
    592 	    !(((unsigned long) dest) & mask) && !(len & mask)) {
    593 		retcode = rf_longword_bxor((unsigned long *) src,
    594 					   (unsigned long *) dest,
    595 					   len >> RF_LONGSHIFT, bp);
    596 	} else {
    597 		RF_ASSERT(0);
    598 	}
    599 	return (retcode);
    600 }
    601 
    602 /* When XORing in kernel mode, we need to map each user page to kernel
    603  * space before we can access it.  We don't want to assume anything
    604  * about which input buffers are in kernel/user space, nor about their
    605  * alignment, so in each loop we compute the maximum number of bytes
    606  * that we can xor without crossing any page boundaries, and do only
    607  * this many bytes before the next remap.
    608  *
    609  * len - is in longwords
    610  */
    611 int
    612 rf_longword_bxor(unsigned long *src, unsigned long *dest, int len, void *bp)
    613 {
    614 	unsigned long *end = src + len;
    615 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    616 	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
    617 	int     longs_this_time;/* # longwords to xor in the current iteration */
    618 
    619 	pg_src = src;
    620 	pg_dest = dest;
    621 	if (!pg_src || !pg_dest)
    622 		return (EFAULT);
    623 
    624 	while (len >= 4) {
    625 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    626 		src += longs_this_time;
    627 		dest += longs_this_time;
    628 		len -= longs_this_time;
    629 		while (longs_this_time >= 4) {
    630 			d0 = pg_dest[0];
    631 			d1 = pg_dest[1];
    632 			d2 = pg_dest[2];
    633 			d3 = pg_dest[3];
    634 			s0 = pg_src[0];
    635 			s1 = pg_src[1];
    636 			s2 = pg_src[2];
    637 			s3 = pg_src[3];
    638 			pg_dest[0] = d0 ^ s0;
    639 			pg_dest[1] = d1 ^ s1;
    640 			pg_dest[2] = d2 ^ s2;
    641 			pg_dest[3] = d3 ^ s3;
    642 			pg_src += 4;
    643 			pg_dest += 4;
    644 			longs_this_time -= 4;
    645 		}
    646 		while (longs_this_time > 0) {	/* cannot cross any page
    647 						 * boundaries here */
    648 			*pg_dest++ ^= *pg_src++;
    649 			longs_this_time--;
    650 		}
    651 
    652 		/* either we're done, or we've reached a page boundary on one
    653 		 * (or possibly both) of the pointers */
    654 		if (len) {
    655 			if (RF_PAGE_ALIGNED(src))
    656 				pg_src = src;
    657 			if (RF_PAGE_ALIGNED(dest))
    658 				pg_dest = dest;
    659 			if (!pg_src || !pg_dest)
    660 				return (EFAULT);
    661 		}
    662 	}
    663 	while (src < end) {
    664 		*pg_dest++ ^= *pg_src++;
    665 		src++;
    666 		dest++;
    667 		len--;
    668 		if (RF_PAGE_ALIGNED(src))
    669 			pg_src = src;
    670 		if (RF_PAGE_ALIGNED(dest))
    671 			pg_dest = dest;
    672 	}
    673 	RF_ASSERT(len == 0);
    674 	return (0);
    675 }
    676 
    677 #if 0
    678 /*
    679    dst = a ^ b ^ c;
    680    a may equal dst
    681    see comment above longword_bxor
    682    len is length in longwords
    683 */
    684 int
    685 rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
    686 		  unsigned long *c, int len, void *bp)
    687 {
    688 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    689 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    690 								 * pointers */
    691 	int     longs_this_time;/* # longs to xor in the current iteration */
    692 	char    dst_is_a = 0;
    693 
    694 	pg_a = a;
    695 	pg_b = b;
    696 	pg_c = c;
    697 	if (a == dst) {
    698 		pg_dst = pg_a;
    699 		dst_is_a = 1;
    700 	} else {
    701 		pg_dst = dst;
    702 	}
    703 
    704 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    705 	while ((((unsigned long) pg_dst) & 0x1f)) {
    706 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    707 		dst++;
    708 		a++;
    709 		b++;
    710 		c++;
    711 		if (RF_PAGE_ALIGNED(a)) {
    712 			pg_a = a;
    713 			if (!pg_a)
    714 				return (EFAULT);
    715 		}
    716 		if (RF_PAGE_ALIGNED(b)) {
    717 			pg_b = a;
    718 			if (!pg_b)
    719 				return (EFAULT);
    720 		}
    721 		if (RF_PAGE_ALIGNED(c)) {
    722 			pg_c = a;
    723 			if (!pg_c)
    724 				return (EFAULT);
    725 		}
    726 		len--;
    727 	}
    728 
    729 	while (len > 4) {
    730 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    731 		a += longs_this_time;
    732 		b += longs_this_time;
    733 		c += longs_this_time;
    734 		dst += longs_this_time;
    735 		len -= longs_this_time;
    736 		while (longs_this_time >= 4) {
    737 			a0 = pg_a[0];
    738 			longs_this_time -= 4;
    739 
    740 			a1 = pg_a[1];
    741 			a2 = pg_a[2];
    742 
    743 			a3 = pg_a[3];
    744 			pg_a += 4;
    745 
    746 			b0 = pg_b[0];
    747 			b1 = pg_b[1];
    748 
    749 			b2 = pg_b[2];
    750 			b3 = pg_b[3];
    751 			/* start dual issue */
    752 			a0 ^= b0;
    753 			b0 = pg_c[0];
    754 
    755 			pg_b += 4;
    756 			a1 ^= b1;
    757 
    758 			a2 ^= b2;
    759 			a3 ^= b3;
    760 
    761 			b1 = pg_c[1];
    762 			a0 ^= b0;
    763 
    764 			b2 = pg_c[2];
    765 			a1 ^= b1;
    766 
    767 			b3 = pg_c[3];
    768 			a2 ^= b2;
    769 
    770 			pg_dst[0] = a0;
    771 			a3 ^= b3;
    772 			pg_dst[1] = a1;
    773 			pg_c += 4;
    774 			pg_dst[2] = a2;
    775 			pg_dst[3] = a3;
    776 			pg_dst += 4;
    777 		}
    778 		while (longs_this_time > 0) {	/* cannot cross any page
    779 						 * boundaries here */
    780 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    781 			longs_this_time--;
    782 		}
    783 
    784 		if (len) {
    785 			if (RF_PAGE_ALIGNED(a)) {
    786 				pg_a = a;
    787 				if (!pg_a)
    788 					return (EFAULT);
    789 				if (dst_is_a)
    790 					pg_dst = pg_a;
    791 			}
    792 			if (RF_PAGE_ALIGNED(b)) {
    793 				pg_b = b;
    794 				if (!pg_b)
    795 					return (EFAULT);
    796 			}
    797 			if (RF_PAGE_ALIGNED(c)) {
    798 				pg_c = c;
    799 				if (!pg_c)
    800 					return (EFAULT);
    801 			}
    802 			if (!dst_is_a)
    803 				if (RF_PAGE_ALIGNED(dst)) {
    804 					pg_dst = dst;
    805 					if (!pg_dst)
    806 						return (EFAULT);
    807 				}
    808 		}
    809 	}
    810 	while (len) {
    811 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    812 		dst++;
    813 		a++;
    814 		b++;
    815 		c++;
    816 		if (RF_PAGE_ALIGNED(a)) {
    817 			pg_a = a;
    818 			if (!pg_a)
    819 				return (EFAULT);
    820 			if (dst_is_a)
    821 				pg_dst = pg_a;
    822 		}
    823 		if (RF_PAGE_ALIGNED(b)) {
    824 			pg_b = b;
    825 			if (!pg_b)
    826 				return (EFAULT);
    827 		}
    828 		if (RF_PAGE_ALIGNED(c)) {
    829 			pg_c = c;
    830 			if (!pg_c)
    831 				return (EFAULT);
    832 		}
    833 		if (!dst_is_a)
    834 			if (RF_PAGE_ALIGNED(dst)) {
    835 				pg_dst = dst;
    836 				if (!pg_dst)
    837 					return (EFAULT);
    838 			}
    839 		len--;
    840 	}
    841 	return (0);
    842 }
    843 
    844 int
    845 rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
    846 	 unsigned char *c, unsigned long len, void *bp)
    847 {
    848 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    849 
    850 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    851 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    852 }
    853 #endif
    854