Home | History | Annotate | Line # | Download | only in raidframe
rf_dagfuncs.c revision 1.18
      1 /*	$NetBSD: rf_dagfuncs.c,v 1.18 2004/01/10 17:04:44 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland, William V. Courtright II
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /*
     30  * dagfuncs.c -- DAG node execution routines
     31  *
     32  * Rules:
     33  * 1. Every DAG execution function must eventually cause node->status to
     34  *    get set to "good" or "bad", and "FinishNode" to be called. In the
     35  *    case of nodes that complete immediately (xor, NullNodeFunc, etc),
     36  *    the node execution function can do these two things directly. In
     37  *    the case of nodes that have to wait for some event (a disk read to
     38  *    complete, a lock to be released, etc) to occur before they can
     39  *    complete, this is typically achieved by having whatever module
     40  *    is doing the operation call GenericWakeupFunc upon completion.
     41  * 2. DAG execution functions should check the status in the DAG header
     42  *    and NOP out their operations if the status is not "enable". However,
     43  *    execution functions that release resources must be sure to release
     44  *    them even when they NOP out the function that would use them.
     45  *    Functions that acquire resources should go ahead and acquire them
     46  *    even when they NOP, so that a downstream release node will not have
     47  *    to check to find out whether or not the acquire was suppressed.
     48  */
     49 
     50 #include <sys/cdefs.h>
     51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.18 2004/01/10 17:04:44 oster Exp $");
     52 
     53 #include <sys/param.h>
     54 #include <sys/ioctl.h>
     55 
     56 #include "rf_archs.h"
     57 #include "rf_raid.h"
     58 #include "rf_dag.h"
     59 #include "rf_layout.h"
     60 #include "rf_etimer.h"
     61 #include "rf_acctrace.h"
     62 #include "rf_diskqueue.h"
     63 #include "rf_dagfuncs.h"
     64 #include "rf_general.h"
     65 #include "rf_engine.h"
     66 #include "rf_dagutils.h"
     67 
     68 #include "rf_kintf.h"
     69 
     70 #if RF_INCLUDE_PARITYLOGGING > 0
     71 #include "rf_paritylog.h"
     72 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
     73 
     74 int     (*rf_DiskReadFunc) (RF_DagNode_t *);
     75 int     (*rf_DiskWriteFunc) (RF_DagNode_t *);
     76 int     (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
     77 int     (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
     78 int     (*rf_DiskUnlockFunc) (RF_DagNode_t *);
     79 int     (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
     80 int     (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
     81 int     (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
     82 int     (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
     83 
     84 /*****************************************************************************
     85  * main (only) configuration routine for this module
     86  ****************************************************************************/
     87 int
     88 rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
     89 {
     90 	RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
     91 		  ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
     92 	rf_DiskReadFunc = rf_DiskReadFuncForThreads;
     93 	rf_DiskReadUndoFunc = rf_DiskUndoFunc;
     94 	rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
     95 	rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
     96 	rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
     97 	rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
     98 	rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
     99 	rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
    100 	rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
    101 	return (0);
    102 }
    103 
    104 
    105 
    106 /*****************************************************************************
    107  * the execution function associated with a terminate node
    108  ****************************************************************************/
    109 int
    110 rf_TerminateFunc(RF_DagNode_t *node)
    111 {
    112 	RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
    113 	node->status = rf_good;
    114 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    115 }
    116 
    117 int
    118 rf_TerminateUndoFunc(RF_DagNode_t *node)
    119 {
    120 	return (0);
    121 }
    122 
    123 
    124 /*****************************************************************************
    125  * execution functions associated with a mirror node
    126  *
    127  * parameters:
    128  *
    129  * 0 - physical disk addres of data
    130  * 1 - buffer for holding read data
    131  * 2 - parity stripe ID
    132  * 3 - flags
    133  * 4 - physical disk address of mirror (parity)
    134  *
    135  ****************************************************************************/
    136 
    137 int
    138 rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
    139 {
    140 	/* select the mirror copy with the shortest queue and fill in node
    141 	 * parameters with physical disk address */
    142 
    143 	rf_SelectMirrorDiskIdle(node);
    144 	return (rf_DiskReadFunc(node));
    145 }
    146 
    147 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
    148 int
    149 rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
    150 {
    151 	/* select the mirror copy with the shortest queue and fill in node
    152 	 * parameters with physical disk address */
    153 
    154 	rf_SelectMirrorDiskPartition(node);
    155 	return (rf_DiskReadFunc(node));
    156 }
    157 #endif
    158 
    159 int
    160 rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
    161 {
    162 	return (0);
    163 }
    164 
    165 
    166 
    167 #if RF_INCLUDE_PARITYLOGGING > 0
    168 /*****************************************************************************
    169  * the execution function associated with a parity log update node
    170  ****************************************************************************/
    171 int
    172 rf_ParityLogUpdateFunc(RF_DagNode_t *node)
    173 {
    174 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    175 	caddr_t buf = (caddr_t) node->params[1].p;
    176 	RF_ParityLogData_t *logData;
    177 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    178 	RF_Etimer_t timer;
    179 
    180 	if (node->dagHdr->status == rf_enable) {
    181 		RF_ETIMER_START(timer);
    182 		logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
    183 		    (RF_Raid_t *) (node->dagHdr->raidPtr),
    184 		    node->wakeFunc, (void *) node,
    185 		    node->dagHdr->tracerec, timer);
    186 		if (logData)
    187 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    188 		else {
    189 			RF_ETIMER_STOP(timer);
    190 			RF_ETIMER_EVAL(timer);
    191 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    192 			(node->wakeFunc) (node, ENOMEM);
    193 		}
    194 	}
    195 	return (0);
    196 }
    197 
    198 
    199 /*****************************************************************************
    200  * the execution function associated with a parity log overwrite node
    201  ****************************************************************************/
    202 int
    203 rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
    204 {
    205 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    206 	caddr_t buf = (caddr_t) node->params[1].p;
    207 	RF_ParityLogData_t *logData;
    208 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    209 	RF_Etimer_t timer;
    210 
    211 	if (node->dagHdr->status == rf_enable) {
    212 		RF_ETIMER_START(timer);
    213 		logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf,
    214 (RF_Raid_t *) (node->dagHdr->raidPtr),
    215 		    node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
    216 		if (logData)
    217 			rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
    218 		else {
    219 			RF_ETIMER_STOP(timer);
    220 			RF_ETIMER_EVAL(timer);
    221 			tracerec->plog_us += RF_ETIMER_VAL_US(timer);
    222 			(node->wakeFunc) (node, ENOMEM);
    223 		}
    224 	}
    225 	return (0);
    226 }
    227 
    228 int
    229 rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
    230 {
    231 	return (0);
    232 }
    233 
    234 int
    235 rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
    236 {
    237 	return (0);
    238 }
    239 #endif				/* RF_INCLUDE_PARITYLOGGING > 0 */
    240 
    241 /*****************************************************************************
    242  * the execution function associated with a NOP node
    243  ****************************************************************************/
    244 int
    245 rf_NullNodeFunc(RF_DagNode_t *node)
    246 {
    247 	node->status = rf_good;
    248 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    249 }
    250 
    251 int
    252 rf_NullNodeUndoFunc(RF_DagNode_t *node)
    253 {
    254 	node->status = rf_undone;
    255 	return (rf_FinishNode(node, RF_THREAD_CONTEXT));
    256 }
    257 
    258 
    259 /*****************************************************************************
    260  * the execution function associated with a disk-read node
    261  ****************************************************************************/
    262 int
    263 rf_DiskReadFuncForThreads(RF_DagNode_t *node)
    264 {
    265 	RF_DiskQueueData_t *req;
    266 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    267 	caddr_t buf = (caddr_t) node->params[1].p;
    268 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    269 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    270 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    271 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
    272 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    273 	void   *b_proc = NULL;
    274 
    275 	if (node->dagHdr->bp)
    276 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    277 
    278 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    279 	    buf, parityStripeID, which_ru,
    280 	    (int (*) (void *, int)) node->wakeFunc,
    281 	    node, NULL, node->dagHdr->tracerec,
    282 	    (void *) (node->dagHdr->raidPtr), 0, b_proc);
    283 	if (!req) {
    284 		(node->wakeFunc) (node, ENOMEM);
    285 	} else {
    286 		node->dagFuncData = (void *) req;
    287 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    288 	}
    289 	return (0);
    290 }
    291 
    292 
    293 /*****************************************************************************
    294  * the execution function associated with a disk-write node
    295  ****************************************************************************/
    296 int
    297 rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
    298 {
    299 	RF_DiskQueueData_t *req;
    300 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    301 	caddr_t buf = (caddr_t) node->params[1].p;
    302 	RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
    303 	unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
    304 	unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
    305 	RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
    306 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    307 	void   *b_proc = NULL;
    308 
    309 	if (node->dagHdr->bp)
    310 		b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
    311 
    312 	/* normal processing (rollaway or forward recovery) begins here */
    313 	req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
    314 	    buf, parityStripeID, which_ru,
    315 	    (int (*) (void *, int)) node->wakeFunc,
    316 	    (void *) node, NULL,
    317 	    node->dagHdr->tracerec,
    318 	    (void *) (node->dagHdr->raidPtr),
    319 	    0, b_proc);
    320 
    321 	if (!req) {
    322 		(node->wakeFunc) (node, ENOMEM);
    323 	} else {
    324 		node->dagFuncData = (void *) req;
    325 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
    326 	}
    327 
    328 	return (0);
    329 }
    330 /*****************************************************************************
    331  * the undo function for disk nodes
    332  * Note:  this is not a proper undo of a write node, only locks are released.
    333  *        old data is not restored to disk!
    334  ****************************************************************************/
    335 int
    336 rf_DiskUndoFunc(RF_DagNode_t *node)
    337 {
    338 	RF_DiskQueueData_t *req;
    339 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    340 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    341 
    342 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    343 	    0L, 0, NULL, 0L, 0,
    344 	    (int (*) (void *, int)) node->wakeFunc,
    345 	    (void *) node,
    346 	    NULL, node->dagHdr->tracerec,
    347 	    (void *) (node->dagHdr->raidPtr),
    348 	    RF_UNLOCK_DISK_QUEUE, NULL);
    349 	if (!req)
    350 		(node->wakeFunc) (node, ENOMEM);
    351 	else {
    352 		node->dagFuncData = (void *) req;
    353 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    354 	}
    355 
    356 	return (0);
    357 }
    358 /*****************************************************************************
    359  * the execution function associated with an "unlock disk queue" node
    360  ****************************************************************************/
    361 int
    362 rf_DiskUnlockFuncForThreads(RF_DagNode_t *node)
    363 {
    364 	RF_DiskQueueData_t *req;
    365 	RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
    366 	RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
    367 
    368 	req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
    369 	    0L, 0, NULL, 0L, 0,
    370 	    (int (*) (void *, int)) node->wakeFunc,
    371 	    (void *) node,
    372 	    NULL, node->dagHdr->tracerec,
    373 	    (void *) (node->dagHdr->raidPtr),
    374 	    RF_UNLOCK_DISK_QUEUE, NULL);
    375 	if (!req)
    376 		(node->wakeFunc) (node, ENOMEM);
    377 	else {
    378 		node->dagFuncData = (void *) req;
    379 		rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
    380 	}
    381 
    382 	return (0);
    383 }
    384 /*****************************************************************************
    385  * Callback routine for DiskRead and DiskWrite nodes.  When the disk
    386  * op completes, the routine is called to set the node status and
    387  * inform the execution engine that the node has fired.
    388  ****************************************************************************/
    389 int
    390 rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
    391 {
    392 
    393 	switch (node->status) {
    394 	case rf_bwd1:
    395 		node->status = rf_bwd2;
    396 		if (node->dagFuncData)
    397 			rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    398 		return (rf_DiskWriteFuncForThreads(node));
    399 	case rf_fired:
    400 		if (status)
    401 			node->status = rf_bad;
    402 		else
    403 			node->status = rf_good;
    404 		break;
    405 	case rf_recover:
    406 		/* probably should never reach this case */
    407 		if (status)
    408 			node->status = rf_panic;
    409 		else
    410 			node->status = rf_undone;
    411 		break;
    412 	default:
    413 		printf("rf_GenericWakeupFunc:");
    414 		printf("node->status is %d,", node->status);
    415 		printf("status is %d \n", status);
    416 		RF_PANIC();
    417 		break;
    418 	}
    419 	if (node->dagFuncData)
    420 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
    421 	return (rf_FinishNode(node, RF_INTR_CONTEXT));
    422 }
    423 
    424 
    425 /*****************************************************************************
    426  * there are three distinct types of xor nodes:
    427 
    428  * A "regular xor" is used in the fault-free case where the access
    429  * spans a complete stripe unit.  It assumes that the result buffer is
    430  * one full stripe unit in size, and uses the stripe-unit-offset
    431  * values that it computes from the PDAs to determine where within the
    432  * stripe unit to XOR each argument buffer.
    433  *
    434  * A "simple xor" is used in the fault-free case where the access
    435  * touches only a portion of one (or two, in some cases) stripe
    436  * unit(s).  It assumes that all the argument buffers are of the same
    437  * size and have the same stripe unit offset.
    438  *
    439  * A "recovery xor" is used in the degraded-mode case.  It's similar
    440  * to the regular xor function except that it takes the failed PDA as
    441  * an additional parameter, and uses it to determine what portions of
    442  * the argument buffers need to be xor'd into the result buffer, and
    443  * where in the result buffer they should go.
    444  ****************************************************************************/
    445 
    446 /* xor the params together and store the result in the result field.
    447  * assume the result field points to a buffer that is the size of one
    448  * SU, and use the pda params to determine where within the buffer to
    449  * XOR the input buffers.  */
    450 int
    451 rf_RegularXorFunc(RF_DagNode_t *node)
    452 {
    453 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    454 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    455 	RF_Etimer_t timer;
    456 	int     i, retcode;
    457 
    458 	retcode = 0;
    459 	if (node->dagHdr->status == rf_enable) {
    460 		/* don't do the XOR if the input is the same as the output */
    461 		RF_ETIMER_START(timer);
    462 		for (i = 0; i < node->numParams - 1; i += 2)
    463 			if (node->params[i + 1].p != node->results[0]) {
    464 				retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
    465 							   (char *) node->params[i + 1].p, (char *) node->results[0]);
    466 			}
    467 		RF_ETIMER_STOP(timer);
    468 		RF_ETIMER_EVAL(timer);
    469 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    470 	}
    471 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    472 							 * explicitly since no
    473 							 * I/O in this node */
    474 }
    475 /* xor the inputs into the result buffer, ignoring placement issues */
    476 int
    477 rf_SimpleXorFunc(RF_DagNode_t *node)
    478 {
    479 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    480 	int     i, retcode = 0;
    481 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    482 	RF_Etimer_t timer;
    483 
    484 	if (node->dagHdr->status == rf_enable) {
    485 		RF_ETIMER_START(timer);
    486 		/* don't do the XOR if the input is the same as the output */
    487 		for (i = 0; i < node->numParams - 1; i += 2)
    488 			if (node->params[i + 1].p != node->results[0]) {
    489 				retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
    490 				    rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
    491 			}
    492 		RF_ETIMER_STOP(timer);
    493 		RF_ETIMER_EVAL(timer);
    494 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    495 	}
    496 	return (rf_GenericWakeupFunc(node, retcode));	/* call wake func
    497 							 * explicitly since no
    498 							 * I/O in this node */
    499 }
    500 /* this xor is used by the degraded-mode dag functions to recover lost
    501  * data.  the second-to-last parameter is the PDA for the failed
    502  * portion of the access.  the code here looks at this PDA and assumes
    503  * that the xor target buffer is equal in size to the number of
    504  * sectors in the failed PDA.  It then uses the other PDAs in the
    505  * parameter list to determine where within the target buffer the
    506  * corresponding data should be xored.  */
    507 int
    508 rf_RecoveryXorFunc(RF_DagNode_t *node)
    509 {
    510 	RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
    511 	RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
    512 	RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
    513 	int     i, retcode = 0;
    514 	RF_PhysDiskAddr_t *pda;
    515 	int     suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
    516 	char   *srcbuf, *destbuf;
    517 	RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
    518 	RF_Etimer_t timer;
    519 
    520 	if (node->dagHdr->status == rf_enable) {
    521 		RF_ETIMER_START(timer);
    522 		for (i = 0; i < node->numParams - 2; i += 2)
    523 			if (node->params[i + 1].p != node->results[0]) {
    524 				pda = (RF_PhysDiskAddr_t *) node->params[i].p;
    525 				srcbuf = (char *) node->params[i + 1].p;
    526 				suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
    527 				destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
    528 				retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
    529 			}
    530 		RF_ETIMER_STOP(timer);
    531 		RF_ETIMER_EVAL(timer);
    532 		tracerec->xor_us += RF_ETIMER_VAL_US(timer);
    533 	}
    534 	return (rf_GenericWakeupFunc(node, retcode));
    535 }
    536 /*****************************************************************************
    537  * The next three functions are utilities used by the above
    538  * xor-execution functions.
    539  ****************************************************************************/
    540 
    541 
    542 /*
    543  * this is just a glorified buffer xor.  targbuf points to a buffer
    544  * that is one full stripe unit in size.  srcbuf points to a buffer
    545  * that may be less than 1 SU, but never more.  When the access
    546  * described by pda is one SU in size (which by implication means it's
    547  * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
    548  * When the access is less than one SU in size the XOR occurs on only
    549  * the portion of targbuf identified in the pda.  */
    550 
    551 int
    552 rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
    553 		 char *srcbuf, char *targbuf)
    554 {
    555 	char   *targptr;
    556 	int     sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
    557 	int     SUOffset = pda->startSector % sectPerSU;
    558 	int     length, retcode = 0;
    559 
    560 	RF_ASSERT(pda->numSector <= sectPerSU);
    561 
    562 	targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
    563 	length = rf_RaidAddressToByte(raidPtr, pda->numSector);
    564 	retcode = rf_bxor(srcbuf, targptr, length);
    565 	return (retcode);
    566 }
    567 /* it really should be the case that the buffer pointers (returned by
    568  * malloc) are aligned to the natural word size of the machine, so
    569  * this is the only case we optimize for.  The length should always be
    570  * a multiple of the sector size, so there should be no problem with
    571  * leftover bytes at the end.  */
    572 int
    573 rf_bxor(char *src, char *dest, int len)
    574 {
    575 	unsigned mask = sizeof(long) - 1, retcode = 0;
    576 
    577 	if (!(((unsigned long) src) & mask) &&
    578 	    !(((unsigned long) dest) & mask) && !(len & mask)) {
    579 		retcode = rf_longword_bxor((unsigned long *) src,
    580 					   (unsigned long *) dest,
    581 					   len >> RF_LONGSHIFT);
    582 	} else {
    583 		RF_ASSERT(0);
    584 	}
    585 	return (retcode);
    586 }
    587 
    588 /* When XORing in kernel mode, we need to map each user page to kernel
    589  * space before we can access it.  We don't want to assume anything
    590  * about which input buffers are in kernel/user space, nor about their
    591  * alignment, so in each loop we compute the maximum number of bytes
    592  * that we can xor without crossing any page boundaries, and do only
    593  * this many bytes before the next remap.
    594  *
    595  * len - is in longwords
    596  */
    597 int
    598 rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
    599 {
    600 	unsigned long *end = src + len;
    601 	unsigned long d0, d1, d2, d3, s0, s1, s2, s3;	/* temps */
    602 	unsigned long *pg_src, *pg_dest;   /* per-page source/dest pointers */
    603 	int     longs_this_time;/* # longwords to xor in the current iteration */
    604 
    605 	pg_src = src;
    606 	pg_dest = dest;
    607 	if (!pg_src || !pg_dest)
    608 		return (EFAULT);
    609 
    610 	while (len >= 4) {
    611 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT);	/* note len in longwords */
    612 		src += longs_this_time;
    613 		dest += longs_this_time;
    614 		len -= longs_this_time;
    615 		while (longs_this_time >= 4) {
    616 			d0 = pg_dest[0];
    617 			d1 = pg_dest[1];
    618 			d2 = pg_dest[2];
    619 			d3 = pg_dest[3];
    620 			s0 = pg_src[0];
    621 			s1 = pg_src[1];
    622 			s2 = pg_src[2];
    623 			s3 = pg_src[3];
    624 			pg_dest[0] = d0 ^ s0;
    625 			pg_dest[1] = d1 ^ s1;
    626 			pg_dest[2] = d2 ^ s2;
    627 			pg_dest[3] = d3 ^ s3;
    628 			pg_src += 4;
    629 			pg_dest += 4;
    630 			longs_this_time -= 4;
    631 		}
    632 		while (longs_this_time > 0) {	/* cannot cross any page
    633 						 * boundaries here */
    634 			*pg_dest++ ^= *pg_src++;
    635 			longs_this_time--;
    636 		}
    637 
    638 		/* either we're done, or we've reached a page boundary on one
    639 		 * (or possibly both) of the pointers */
    640 		if (len) {
    641 			if (RF_PAGE_ALIGNED(src))
    642 				pg_src = src;
    643 			if (RF_PAGE_ALIGNED(dest))
    644 				pg_dest = dest;
    645 			if (!pg_src || !pg_dest)
    646 				return (EFAULT);
    647 		}
    648 	}
    649 	while (src < end) {
    650 		*pg_dest++ ^= *pg_src++;
    651 		src++;
    652 		dest++;
    653 		len--;
    654 		if (RF_PAGE_ALIGNED(src))
    655 			pg_src = src;
    656 		if (RF_PAGE_ALIGNED(dest))
    657 			pg_dest = dest;
    658 	}
    659 	RF_ASSERT(len == 0);
    660 	return (0);
    661 }
    662 
    663 #if 0
    664 /*
    665    dst = a ^ b ^ c;
    666    a may equal dst
    667    see comment above longword_bxor
    668    len is length in longwords
    669 */
    670 int
    671 rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
    672 		  unsigned long *c, int len, void *bp)
    673 {
    674 	unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
    675 	unsigned long *pg_a, *pg_b, *pg_c, *pg_dst;	/* per-page source/dest
    676 								 * pointers */
    677 	int     longs_this_time;/* # longs to xor in the current iteration */
    678 	char    dst_is_a = 0;
    679 
    680 	pg_a = a;
    681 	pg_b = b;
    682 	pg_c = c;
    683 	if (a == dst) {
    684 		pg_dst = pg_a;
    685 		dst_is_a = 1;
    686 	} else {
    687 		pg_dst = dst;
    688 	}
    689 
    690 	/* align dest to cache line.  Can't cross a pg boundary on dst here. */
    691 	while ((((unsigned long) pg_dst) & 0x1f)) {
    692 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    693 		dst++;
    694 		a++;
    695 		b++;
    696 		c++;
    697 		if (RF_PAGE_ALIGNED(a)) {
    698 			pg_a = a;
    699 			if (!pg_a)
    700 				return (EFAULT);
    701 		}
    702 		if (RF_PAGE_ALIGNED(b)) {
    703 			pg_b = a;
    704 			if (!pg_b)
    705 				return (EFAULT);
    706 		}
    707 		if (RF_PAGE_ALIGNED(c)) {
    708 			pg_c = a;
    709 			if (!pg_c)
    710 				return (EFAULT);
    711 		}
    712 		len--;
    713 	}
    714 
    715 	while (len > 4) {
    716 		longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
    717 		a += longs_this_time;
    718 		b += longs_this_time;
    719 		c += longs_this_time;
    720 		dst += longs_this_time;
    721 		len -= longs_this_time;
    722 		while (longs_this_time >= 4) {
    723 			a0 = pg_a[0];
    724 			longs_this_time -= 4;
    725 
    726 			a1 = pg_a[1];
    727 			a2 = pg_a[2];
    728 
    729 			a3 = pg_a[3];
    730 			pg_a += 4;
    731 
    732 			b0 = pg_b[0];
    733 			b1 = pg_b[1];
    734 
    735 			b2 = pg_b[2];
    736 			b3 = pg_b[3];
    737 			/* start dual issue */
    738 			a0 ^= b0;
    739 			b0 = pg_c[0];
    740 
    741 			pg_b += 4;
    742 			a1 ^= b1;
    743 
    744 			a2 ^= b2;
    745 			a3 ^= b3;
    746 
    747 			b1 = pg_c[1];
    748 			a0 ^= b0;
    749 
    750 			b2 = pg_c[2];
    751 			a1 ^= b1;
    752 
    753 			b3 = pg_c[3];
    754 			a2 ^= b2;
    755 
    756 			pg_dst[0] = a0;
    757 			a3 ^= b3;
    758 			pg_dst[1] = a1;
    759 			pg_c += 4;
    760 			pg_dst[2] = a2;
    761 			pg_dst[3] = a3;
    762 			pg_dst += 4;
    763 		}
    764 		while (longs_this_time > 0) {	/* cannot cross any page
    765 						 * boundaries here */
    766 			*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    767 			longs_this_time--;
    768 		}
    769 
    770 		if (len) {
    771 			if (RF_PAGE_ALIGNED(a)) {
    772 				pg_a = a;
    773 				if (!pg_a)
    774 					return (EFAULT);
    775 				if (dst_is_a)
    776 					pg_dst = pg_a;
    777 			}
    778 			if (RF_PAGE_ALIGNED(b)) {
    779 				pg_b = b;
    780 				if (!pg_b)
    781 					return (EFAULT);
    782 			}
    783 			if (RF_PAGE_ALIGNED(c)) {
    784 				pg_c = c;
    785 				if (!pg_c)
    786 					return (EFAULT);
    787 			}
    788 			if (!dst_is_a)
    789 				if (RF_PAGE_ALIGNED(dst)) {
    790 					pg_dst = dst;
    791 					if (!pg_dst)
    792 						return (EFAULT);
    793 				}
    794 		}
    795 	}
    796 	while (len) {
    797 		*pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
    798 		dst++;
    799 		a++;
    800 		b++;
    801 		c++;
    802 		if (RF_PAGE_ALIGNED(a)) {
    803 			pg_a = a;
    804 			if (!pg_a)
    805 				return (EFAULT);
    806 			if (dst_is_a)
    807 				pg_dst = pg_a;
    808 		}
    809 		if (RF_PAGE_ALIGNED(b)) {
    810 			pg_b = b;
    811 			if (!pg_b)
    812 				return (EFAULT);
    813 		}
    814 		if (RF_PAGE_ALIGNED(c)) {
    815 			pg_c = c;
    816 			if (!pg_c)
    817 				return (EFAULT);
    818 		}
    819 		if (!dst_is_a)
    820 			if (RF_PAGE_ALIGNED(dst)) {
    821 				pg_dst = dst;
    822 				if (!pg_dst)
    823 					return (EFAULT);
    824 			}
    825 		len--;
    826 	}
    827 	return (0);
    828 }
    829 
    830 int
    831 rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
    832 	 unsigned char *c, unsigned long len, void *bp)
    833 {
    834 	RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
    835 
    836 	return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
    837 		(unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
    838 }
    839 #endif
    840