rf_dagfuncs.c revision 1.18 1 /* $NetBSD: rf_dagfuncs.c,v 1.18 2004/01/10 17:04:44 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /*
30 * dagfuncs.c -- DAG node execution routines
31 *
32 * Rules:
33 * 1. Every DAG execution function must eventually cause node->status to
34 * get set to "good" or "bad", and "FinishNode" to be called. In the
35 * case of nodes that complete immediately (xor, NullNodeFunc, etc),
36 * the node execution function can do these two things directly. In
37 * the case of nodes that have to wait for some event (a disk read to
38 * complete, a lock to be released, etc) to occur before they can
39 * complete, this is typically achieved by having whatever module
40 * is doing the operation call GenericWakeupFunc upon completion.
41 * 2. DAG execution functions should check the status in the DAG header
42 * and NOP out their operations if the status is not "enable". However,
43 * execution functions that release resources must be sure to release
44 * them even when they NOP out the function that would use them.
45 * Functions that acquire resources should go ahead and acquire them
46 * even when they NOP, so that a downstream release node will not have
47 * to check to find out whether or not the acquire was suppressed.
48 */
49
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: rf_dagfuncs.c,v 1.18 2004/01/10 17:04:44 oster Exp $");
52
53 #include <sys/param.h>
54 #include <sys/ioctl.h>
55
56 #include "rf_archs.h"
57 #include "rf_raid.h"
58 #include "rf_dag.h"
59 #include "rf_layout.h"
60 #include "rf_etimer.h"
61 #include "rf_acctrace.h"
62 #include "rf_diskqueue.h"
63 #include "rf_dagfuncs.h"
64 #include "rf_general.h"
65 #include "rf_engine.h"
66 #include "rf_dagutils.h"
67
68 #include "rf_kintf.h"
69
70 #if RF_INCLUDE_PARITYLOGGING > 0
71 #include "rf_paritylog.h"
72 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
73
74 int (*rf_DiskReadFunc) (RF_DagNode_t *);
75 int (*rf_DiskWriteFunc) (RF_DagNode_t *);
76 int (*rf_DiskReadUndoFunc) (RF_DagNode_t *);
77 int (*rf_DiskWriteUndoFunc) (RF_DagNode_t *);
78 int (*rf_DiskUnlockFunc) (RF_DagNode_t *);
79 int (*rf_DiskUnlockUndoFunc) (RF_DagNode_t *);
80 int (*rf_RegularXorUndoFunc) (RF_DagNode_t *);
81 int (*rf_SimpleXorUndoFunc) (RF_DagNode_t *);
82 int (*rf_RecoveryXorUndoFunc) (RF_DagNode_t *);
83
84 /*****************************************************************************
85 * main (only) configuration routine for this module
86 ****************************************************************************/
87 int
88 rf_ConfigureDAGFuncs(RF_ShutdownList_t **listp)
89 {
90 RF_ASSERT(((sizeof(long) == 8) && RF_LONGSHIFT == 3) ||
91 ((sizeof(long) == 4) && RF_LONGSHIFT == 2));
92 rf_DiskReadFunc = rf_DiskReadFuncForThreads;
93 rf_DiskReadUndoFunc = rf_DiskUndoFunc;
94 rf_DiskWriteFunc = rf_DiskWriteFuncForThreads;
95 rf_DiskWriteUndoFunc = rf_DiskUndoFunc;
96 rf_DiskUnlockFunc = rf_DiskUnlockFuncForThreads;
97 rf_DiskUnlockUndoFunc = rf_NullNodeUndoFunc;
98 rf_RegularXorUndoFunc = rf_NullNodeUndoFunc;
99 rf_SimpleXorUndoFunc = rf_NullNodeUndoFunc;
100 rf_RecoveryXorUndoFunc = rf_NullNodeUndoFunc;
101 return (0);
102 }
103
104
105
106 /*****************************************************************************
107 * the execution function associated with a terminate node
108 ****************************************************************************/
109 int
110 rf_TerminateFunc(RF_DagNode_t *node)
111 {
112 RF_ASSERT(node->dagHdr->numCommits == node->dagHdr->numCommitNodes);
113 node->status = rf_good;
114 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
115 }
116
117 int
118 rf_TerminateUndoFunc(RF_DagNode_t *node)
119 {
120 return (0);
121 }
122
123
124 /*****************************************************************************
125 * execution functions associated with a mirror node
126 *
127 * parameters:
128 *
129 * 0 - physical disk addres of data
130 * 1 - buffer for holding read data
131 * 2 - parity stripe ID
132 * 3 - flags
133 * 4 - physical disk address of mirror (parity)
134 *
135 ****************************************************************************/
136
137 int
138 rf_DiskReadMirrorIdleFunc(RF_DagNode_t *node)
139 {
140 /* select the mirror copy with the shortest queue and fill in node
141 * parameters with physical disk address */
142
143 rf_SelectMirrorDiskIdle(node);
144 return (rf_DiskReadFunc(node));
145 }
146
147 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0) || (RF_DEBUG_VALIDATE_DAG > 0)
148 int
149 rf_DiskReadMirrorPartitionFunc(RF_DagNode_t *node)
150 {
151 /* select the mirror copy with the shortest queue and fill in node
152 * parameters with physical disk address */
153
154 rf_SelectMirrorDiskPartition(node);
155 return (rf_DiskReadFunc(node));
156 }
157 #endif
158
159 int
160 rf_DiskReadMirrorUndoFunc(RF_DagNode_t *node)
161 {
162 return (0);
163 }
164
165
166
167 #if RF_INCLUDE_PARITYLOGGING > 0
168 /*****************************************************************************
169 * the execution function associated with a parity log update node
170 ****************************************************************************/
171 int
172 rf_ParityLogUpdateFunc(RF_DagNode_t *node)
173 {
174 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
175 caddr_t buf = (caddr_t) node->params[1].p;
176 RF_ParityLogData_t *logData;
177 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
178 RF_Etimer_t timer;
179
180 if (node->dagHdr->status == rf_enable) {
181 RF_ETIMER_START(timer);
182 logData = rf_CreateParityLogData(RF_UPDATE, pda, buf,
183 (RF_Raid_t *) (node->dagHdr->raidPtr),
184 node->wakeFunc, (void *) node,
185 node->dagHdr->tracerec, timer);
186 if (logData)
187 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
188 else {
189 RF_ETIMER_STOP(timer);
190 RF_ETIMER_EVAL(timer);
191 tracerec->plog_us += RF_ETIMER_VAL_US(timer);
192 (node->wakeFunc) (node, ENOMEM);
193 }
194 }
195 return (0);
196 }
197
198
199 /*****************************************************************************
200 * the execution function associated with a parity log overwrite node
201 ****************************************************************************/
202 int
203 rf_ParityLogOverwriteFunc(RF_DagNode_t *node)
204 {
205 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
206 caddr_t buf = (caddr_t) node->params[1].p;
207 RF_ParityLogData_t *logData;
208 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
209 RF_Etimer_t timer;
210
211 if (node->dagHdr->status == rf_enable) {
212 RF_ETIMER_START(timer);
213 logData = rf_CreateParityLogData(RF_OVERWRITE, pda, buf,
214 (RF_Raid_t *) (node->dagHdr->raidPtr),
215 node->wakeFunc, (void *) node, node->dagHdr->tracerec, timer);
216 if (logData)
217 rf_ParityLogAppend(logData, RF_FALSE, NULL, RF_FALSE);
218 else {
219 RF_ETIMER_STOP(timer);
220 RF_ETIMER_EVAL(timer);
221 tracerec->plog_us += RF_ETIMER_VAL_US(timer);
222 (node->wakeFunc) (node, ENOMEM);
223 }
224 }
225 return (0);
226 }
227
228 int
229 rf_ParityLogUpdateUndoFunc(RF_DagNode_t *node)
230 {
231 return (0);
232 }
233
234 int
235 rf_ParityLogOverwriteUndoFunc(RF_DagNode_t *node)
236 {
237 return (0);
238 }
239 #endif /* RF_INCLUDE_PARITYLOGGING > 0 */
240
241 /*****************************************************************************
242 * the execution function associated with a NOP node
243 ****************************************************************************/
244 int
245 rf_NullNodeFunc(RF_DagNode_t *node)
246 {
247 node->status = rf_good;
248 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
249 }
250
251 int
252 rf_NullNodeUndoFunc(RF_DagNode_t *node)
253 {
254 node->status = rf_undone;
255 return (rf_FinishNode(node, RF_THREAD_CONTEXT));
256 }
257
258
259 /*****************************************************************************
260 * the execution function associated with a disk-read node
261 ****************************************************************************/
262 int
263 rf_DiskReadFuncForThreads(RF_DagNode_t *node)
264 {
265 RF_DiskQueueData_t *req;
266 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
267 caddr_t buf = (caddr_t) node->params[1].p;
268 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
269 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
270 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
271 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_READ : RF_IO_TYPE_NOP;
272 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
273 void *b_proc = NULL;
274
275 if (node->dagHdr->bp)
276 b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
277
278 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
279 buf, parityStripeID, which_ru,
280 (int (*) (void *, int)) node->wakeFunc,
281 node, NULL, node->dagHdr->tracerec,
282 (void *) (node->dagHdr->raidPtr), 0, b_proc);
283 if (!req) {
284 (node->wakeFunc) (node, ENOMEM);
285 } else {
286 node->dagFuncData = (void *) req;
287 rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
288 }
289 return (0);
290 }
291
292
293 /*****************************************************************************
294 * the execution function associated with a disk-write node
295 ****************************************************************************/
296 int
297 rf_DiskWriteFuncForThreads(RF_DagNode_t *node)
298 {
299 RF_DiskQueueData_t *req;
300 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
301 caddr_t buf = (caddr_t) node->params[1].p;
302 RF_StripeNum_t parityStripeID = (RF_StripeNum_t) node->params[2].v;
303 unsigned priority = RF_EXTRACT_PRIORITY(node->params[3].v);
304 unsigned which_ru = RF_EXTRACT_RU(node->params[3].v);
305 RF_IoType_t iotype = (node->dagHdr->status == rf_enable) ? RF_IO_TYPE_WRITE : RF_IO_TYPE_NOP;
306 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
307 void *b_proc = NULL;
308
309 if (node->dagHdr->bp)
310 b_proc = (void *) ((struct buf *) node->dagHdr->bp)->b_proc;
311
312 /* normal processing (rollaway or forward recovery) begins here */
313 req = rf_CreateDiskQueueData(iotype, pda->startSector, pda->numSector,
314 buf, parityStripeID, which_ru,
315 (int (*) (void *, int)) node->wakeFunc,
316 (void *) node, NULL,
317 node->dagHdr->tracerec,
318 (void *) (node->dagHdr->raidPtr),
319 0, b_proc);
320
321 if (!req) {
322 (node->wakeFunc) (node, ENOMEM);
323 } else {
324 node->dagFuncData = (void *) req;
325 rf_DiskIOEnqueue(&(dqs[pda->col]), req, priority);
326 }
327
328 return (0);
329 }
330 /*****************************************************************************
331 * the undo function for disk nodes
332 * Note: this is not a proper undo of a write node, only locks are released.
333 * old data is not restored to disk!
334 ****************************************************************************/
335 int
336 rf_DiskUndoFunc(RF_DagNode_t *node)
337 {
338 RF_DiskQueueData_t *req;
339 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
340 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
341
342 req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
343 0L, 0, NULL, 0L, 0,
344 (int (*) (void *, int)) node->wakeFunc,
345 (void *) node,
346 NULL, node->dagHdr->tracerec,
347 (void *) (node->dagHdr->raidPtr),
348 RF_UNLOCK_DISK_QUEUE, NULL);
349 if (!req)
350 (node->wakeFunc) (node, ENOMEM);
351 else {
352 node->dagFuncData = (void *) req;
353 rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
354 }
355
356 return (0);
357 }
358 /*****************************************************************************
359 * the execution function associated with an "unlock disk queue" node
360 ****************************************************************************/
361 int
362 rf_DiskUnlockFuncForThreads(RF_DagNode_t *node)
363 {
364 RF_DiskQueueData_t *req;
365 RF_PhysDiskAddr_t *pda = (RF_PhysDiskAddr_t *) node->params[0].p;
366 RF_DiskQueue_t *dqs = ((RF_Raid_t *) (node->dagHdr->raidPtr))->Queues;
367
368 req = rf_CreateDiskQueueData(RF_IO_TYPE_NOP,
369 0L, 0, NULL, 0L, 0,
370 (int (*) (void *, int)) node->wakeFunc,
371 (void *) node,
372 NULL, node->dagHdr->tracerec,
373 (void *) (node->dagHdr->raidPtr),
374 RF_UNLOCK_DISK_QUEUE, NULL);
375 if (!req)
376 (node->wakeFunc) (node, ENOMEM);
377 else {
378 node->dagFuncData = (void *) req;
379 rf_DiskIOEnqueue(&(dqs[pda->col]), req, RF_IO_NORMAL_PRIORITY);
380 }
381
382 return (0);
383 }
384 /*****************************************************************************
385 * Callback routine for DiskRead and DiskWrite nodes. When the disk
386 * op completes, the routine is called to set the node status and
387 * inform the execution engine that the node has fired.
388 ****************************************************************************/
389 int
390 rf_GenericWakeupFunc(RF_DagNode_t *node, int status)
391 {
392
393 switch (node->status) {
394 case rf_bwd1:
395 node->status = rf_bwd2;
396 if (node->dagFuncData)
397 rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
398 return (rf_DiskWriteFuncForThreads(node));
399 case rf_fired:
400 if (status)
401 node->status = rf_bad;
402 else
403 node->status = rf_good;
404 break;
405 case rf_recover:
406 /* probably should never reach this case */
407 if (status)
408 node->status = rf_panic;
409 else
410 node->status = rf_undone;
411 break;
412 default:
413 printf("rf_GenericWakeupFunc:");
414 printf("node->status is %d,", node->status);
415 printf("status is %d \n", status);
416 RF_PANIC();
417 break;
418 }
419 if (node->dagFuncData)
420 rf_FreeDiskQueueData((RF_DiskQueueData_t *) node->dagFuncData);
421 return (rf_FinishNode(node, RF_INTR_CONTEXT));
422 }
423
424
425 /*****************************************************************************
426 * there are three distinct types of xor nodes:
427
428 * A "regular xor" is used in the fault-free case where the access
429 * spans a complete stripe unit. It assumes that the result buffer is
430 * one full stripe unit in size, and uses the stripe-unit-offset
431 * values that it computes from the PDAs to determine where within the
432 * stripe unit to XOR each argument buffer.
433 *
434 * A "simple xor" is used in the fault-free case where the access
435 * touches only a portion of one (or two, in some cases) stripe
436 * unit(s). It assumes that all the argument buffers are of the same
437 * size and have the same stripe unit offset.
438 *
439 * A "recovery xor" is used in the degraded-mode case. It's similar
440 * to the regular xor function except that it takes the failed PDA as
441 * an additional parameter, and uses it to determine what portions of
442 * the argument buffers need to be xor'd into the result buffer, and
443 * where in the result buffer they should go.
444 ****************************************************************************/
445
446 /* xor the params together and store the result in the result field.
447 * assume the result field points to a buffer that is the size of one
448 * SU, and use the pda params to determine where within the buffer to
449 * XOR the input buffers. */
450 int
451 rf_RegularXorFunc(RF_DagNode_t *node)
452 {
453 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
454 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
455 RF_Etimer_t timer;
456 int i, retcode;
457
458 retcode = 0;
459 if (node->dagHdr->status == rf_enable) {
460 /* don't do the XOR if the input is the same as the output */
461 RF_ETIMER_START(timer);
462 for (i = 0; i < node->numParams - 1; i += 2)
463 if (node->params[i + 1].p != node->results[0]) {
464 retcode = rf_XorIntoBuffer(raidPtr, (RF_PhysDiskAddr_t *) node->params[i].p,
465 (char *) node->params[i + 1].p, (char *) node->results[0]);
466 }
467 RF_ETIMER_STOP(timer);
468 RF_ETIMER_EVAL(timer);
469 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
470 }
471 return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
472 * explicitly since no
473 * I/O in this node */
474 }
475 /* xor the inputs into the result buffer, ignoring placement issues */
476 int
477 rf_SimpleXorFunc(RF_DagNode_t *node)
478 {
479 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
480 int i, retcode = 0;
481 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
482 RF_Etimer_t timer;
483
484 if (node->dagHdr->status == rf_enable) {
485 RF_ETIMER_START(timer);
486 /* don't do the XOR if the input is the same as the output */
487 for (i = 0; i < node->numParams - 1; i += 2)
488 if (node->params[i + 1].p != node->results[0]) {
489 retcode = rf_bxor((char *) node->params[i + 1].p, (char *) node->results[0],
490 rf_RaidAddressToByte(raidPtr, ((RF_PhysDiskAddr_t *) node->params[i].p)->numSector));
491 }
492 RF_ETIMER_STOP(timer);
493 RF_ETIMER_EVAL(timer);
494 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
495 }
496 return (rf_GenericWakeupFunc(node, retcode)); /* call wake func
497 * explicitly since no
498 * I/O in this node */
499 }
500 /* this xor is used by the degraded-mode dag functions to recover lost
501 * data. the second-to-last parameter is the PDA for the failed
502 * portion of the access. the code here looks at this PDA and assumes
503 * that the xor target buffer is equal in size to the number of
504 * sectors in the failed PDA. It then uses the other PDAs in the
505 * parameter list to determine where within the target buffer the
506 * corresponding data should be xored. */
507 int
508 rf_RecoveryXorFunc(RF_DagNode_t *node)
509 {
510 RF_Raid_t *raidPtr = (RF_Raid_t *) node->params[node->numParams - 1].p;
511 RF_RaidLayout_t *layoutPtr = (RF_RaidLayout_t *) & raidPtr->Layout;
512 RF_PhysDiskAddr_t *failedPDA = (RF_PhysDiskAddr_t *) node->params[node->numParams - 2].p;
513 int i, retcode = 0;
514 RF_PhysDiskAddr_t *pda;
515 int suoffset, failedSUOffset = rf_StripeUnitOffset(layoutPtr, failedPDA->startSector);
516 char *srcbuf, *destbuf;
517 RF_AccTraceEntry_t *tracerec = node->dagHdr->tracerec;
518 RF_Etimer_t timer;
519
520 if (node->dagHdr->status == rf_enable) {
521 RF_ETIMER_START(timer);
522 for (i = 0; i < node->numParams - 2; i += 2)
523 if (node->params[i + 1].p != node->results[0]) {
524 pda = (RF_PhysDiskAddr_t *) node->params[i].p;
525 srcbuf = (char *) node->params[i + 1].p;
526 suoffset = rf_StripeUnitOffset(layoutPtr, pda->startSector);
527 destbuf = ((char *) node->results[0]) + rf_RaidAddressToByte(raidPtr, suoffset - failedSUOffset);
528 retcode = rf_bxor(srcbuf, destbuf, rf_RaidAddressToByte(raidPtr, pda->numSector));
529 }
530 RF_ETIMER_STOP(timer);
531 RF_ETIMER_EVAL(timer);
532 tracerec->xor_us += RF_ETIMER_VAL_US(timer);
533 }
534 return (rf_GenericWakeupFunc(node, retcode));
535 }
536 /*****************************************************************************
537 * The next three functions are utilities used by the above
538 * xor-execution functions.
539 ****************************************************************************/
540
541
542 /*
543 * this is just a glorified buffer xor. targbuf points to a buffer
544 * that is one full stripe unit in size. srcbuf points to a buffer
545 * that may be less than 1 SU, but never more. When the access
546 * described by pda is one SU in size (which by implication means it's
547 * SU-aligned), all that happens is (targbuf) <- (srcbuf ^ targbuf).
548 * When the access is less than one SU in size the XOR occurs on only
549 * the portion of targbuf identified in the pda. */
550
551 int
552 rf_XorIntoBuffer(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda,
553 char *srcbuf, char *targbuf)
554 {
555 char *targptr;
556 int sectPerSU = raidPtr->Layout.sectorsPerStripeUnit;
557 int SUOffset = pda->startSector % sectPerSU;
558 int length, retcode = 0;
559
560 RF_ASSERT(pda->numSector <= sectPerSU);
561
562 targptr = targbuf + rf_RaidAddressToByte(raidPtr, SUOffset);
563 length = rf_RaidAddressToByte(raidPtr, pda->numSector);
564 retcode = rf_bxor(srcbuf, targptr, length);
565 return (retcode);
566 }
567 /* it really should be the case that the buffer pointers (returned by
568 * malloc) are aligned to the natural word size of the machine, so
569 * this is the only case we optimize for. The length should always be
570 * a multiple of the sector size, so there should be no problem with
571 * leftover bytes at the end. */
572 int
573 rf_bxor(char *src, char *dest, int len)
574 {
575 unsigned mask = sizeof(long) - 1, retcode = 0;
576
577 if (!(((unsigned long) src) & mask) &&
578 !(((unsigned long) dest) & mask) && !(len & mask)) {
579 retcode = rf_longword_bxor((unsigned long *) src,
580 (unsigned long *) dest,
581 len >> RF_LONGSHIFT);
582 } else {
583 RF_ASSERT(0);
584 }
585 return (retcode);
586 }
587
588 /* When XORing in kernel mode, we need to map each user page to kernel
589 * space before we can access it. We don't want to assume anything
590 * about which input buffers are in kernel/user space, nor about their
591 * alignment, so in each loop we compute the maximum number of bytes
592 * that we can xor without crossing any page boundaries, and do only
593 * this many bytes before the next remap.
594 *
595 * len - is in longwords
596 */
597 int
598 rf_longword_bxor(unsigned long *src, unsigned long *dest, int len)
599 {
600 unsigned long *end = src + len;
601 unsigned long d0, d1, d2, d3, s0, s1, s2, s3; /* temps */
602 unsigned long *pg_src, *pg_dest; /* per-page source/dest pointers */
603 int longs_this_time;/* # longwords to xor in the current iteration */
604
605 pg_src = src;
606 pg_dest = dest;
607 if (!pg_src || !pg_dest)
608 return (EFAULT);
609
610 while (len >= 4) {
611 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(pg_src), RF_BLIP(pg_dest)) >> RF_LONGSHIFT); /* note len in longwords */
612 src += longs_this_time;
613 dest += longs_this_time;
614 len -= longs_this_time;
615 while (longs_this_time >= 4) {
616 d0 = pg_dest[0];
617 d1 = pg_dest[1];
618 d2 = pg_dest[2];
619 d3 = pg_dest[3];
620 s0 = pg_src[0];
621 s1 = pg_src[1];
622 s2 = pg_src[2];
623 s3 = pg_src[3];
624 pg_dest[0] = d0 ^ s0;
625 pg_dest[1] = d1 ^ s1;
626 pg_dest[2] = d2 ^ s2;
627 pg_dest[3] = d3 ^ s3;
628 pg_src += 4;
629 pg_dest += 4;
630 longs_this_time -= 4;
631 }
632 while (longs_this_time > 0) { /* cannot cross any page
633 * boundaries here */
634 *pg_dest++ ^= *pg_src++;
635 longs_this_time--;
636 }
637
638 /* either we're done, or we've reached a page boundary on one
639 * (or possibly both) of the pointers */
640 if (len) {
641 if (RF_PAGE_ALIGNED(src))
642 pg_src = src;
643 if (RF_PAGE_ALIGNED(dest))
644 pg_dest = dest;
645 if (!pg_src || !pg_dest)
646 return (EFAULT);
647 }
648 }
649 while (src < end) {
650 *pg_dest++ ^= *pg_src++;
651 src++;
652 dest++;
653 len--;
654 if (RF_PAGE_ALIGNED(src))
655 pg_src = src;
656 if (RF_PAGE_ALIGNED(dest))
657 pg_dest = dest;
658 }
659 RF_ASSERT(len == 0);
660 return (0);
661 }
662
663 #if 0
664 /*
665 dst = a ^ b ^ c;
666 a may equal dst
667 see comment above longword_bxor
668 len is length in longwords
669 */
670 int
671 rf_longword_bxor3(unsigned long *dst, unsigned long *a, unsigned long *b,
672 unsigned long *c, int len, void *bp)
673 {
674 unsigned long a0, a1, a2, a3, b0, b1, b2, b3;
675 unsigned long *pg_a, *pg_b, *pg_c, *pg_dst; /* per-page source/dest
676 * pointers */
677 int longs_this_time;/* # longs to xor in the current iteration */
678 char dst_is_a = 0;
679
680 pg_a = a;
681 pg_b = b;
682 pg_c = c;
683 if (a == dst) {
684 pg_dst = pg_a;
685 dst_is_a = 1;
686 } else {
687 pg_dst = dst;
688 }
689
690 /* align dest to cache line. Can't cross a pg boundary on dst here. */
691 while ((((unsigned long) pg_dst) & 0x1f)) {
692 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
693 dst++;
694 a++;
695 b++;
696 c++;
697 if (RF_PAGE_ALIGNED(a)) {
698 pg_a = a;
699 if (!pg_a)
700 return (EFAULT);
701 }
702 if (RF_PAGE_ALIGNED(b)) {
703 pg_b = a;
704 if (!pg_b)
705 return (EFAULT);
706 }
707 if (RF_PAGE_ALIGNED(c)) {
708 pg_c = a;
709 if (!pg_c)
710 return (EFAULT);
711 }
712 len--;
713 }
714
715 while (len > 4) {
716 longs_this_time = RF_MIN(len, RF_MIN(RF_BLIP(a), RF_MIN(RF_BLIP(b), RF_MIN(RF_BLIP(c), RF_BLIP(dst)))) >> RF_LONGSHIFT);
717 a += longs_this_time;
718 b += longs_this_time;
719 c += longs_this_time;
720 dst += longs_this_time;
721 len -= longs_this_time;
722 while (longs_this_time >= 4) {
723 a0 = pg_a[0];
724 longs_this_time -= 4;
725
726 a1 = pg_a[1];
727 a2 = pg_a[2];
728
729 a3 = pg_a[3];
730 pg_a += 4;
731
732 b0 = pg_b[0];
733 b1 = pg_b[1];
734
735 b2 = pg_b[2];
736 b3 = pg_b[3];
737 /* start dual issue */
738 a0 ^= b0;
739 b0 = pg_c[0];
740
741 pg_b += 4;
742 a1 ^= b1;
743
744 a2 ^= b2;
745 a3 ^= b3;
746
747 b1 = pg_c[1];
748 a0 ^= b0;
749
750 b2 = pg_c[2];
751 a1 ^= b1;
752
753 b3 = pg_c[3];
754 a2 ^= b2;
755
756 pg_dst[0] = a0;
757 a3 ^= b3;
758 pg_dst[1] = a1;
759 pg_c += 4;
760 pg_dst[2] = a2;
761 pg_dst[3] = a3;
762 pg_dst += 4;
763 }
764 while (longs_this_time > 0) { /* cannot cross any page
765 * boundaries here */
766 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
767 longs_this_time--;
768 }
769
770 if (len) {
771 if (RF_PAGE_ALIGNED(a)) {
772 pg_a = a;
773 if (!pg_a)
774 return (EFAULT);
775 if (dst_is_a)
776 pg_dst = pg_a;
777 }
778 if (RF_PAGE_ALIGNED(b)) {
779 pg_b = b;
780 if (!pg_b)
781 return (EFAULT);
782 }
783 if (RF_PAGE_ALIGNED(c)) {
784 pg_c = c;
785 if (!pg_c)
786 return (EFAULT);
787 }
788 if (!dst_is_a)
789 if (RF_PAGE_ALIGNED(dst)) {
790 pg_dst = dst;
791 if (!pg_dst)
792 return (EFAULT);
793 }
794 }
795 }
796 while (len) {
797 *pg_dst++ = *pg_a++ ^ *pg_b++ ^ *pg_c++;
798 dst++;
799 a++;
800 b++;
801 c++;
802 if (RF_PAGE_ALIGNED(a)) {
803 pg_a = a;
804 if (!pg_a)
805 return (EFAULT);
806 if (dst_is_a)
807 pg_dst = pg_a;
808 }
809 if (RF_PAGE_ALIGNED(b)) {
810 pg_b = b;
811 if (!pg_b)
812 return (EFAULT);
813 }
814 if (RF_PAGE_ALIGNED(c)) {
815 pg_c = c;
816 if (!pg_c)
817 return (EFAULT);
818 }
819 if (!dst_is_a)
820 if (RF_PAGE_ALIGNED(dst)) {
821 pg_dst = dst;
822 if (!pg_dst)
823 return (EFAULT);
824 }
825 len--;
826 }
827 return (0);
828 }
829
830 int
831 rf_bxor3(unsigned char *dst, unsigned char *a, unsigned char *b,
832 unsigned char *c, unsigned long len, void *bp)
833 {
834 RF_ASSERT(((RF_UL(dst) | RF_UL(a) | RF_UL(b) | RF_UL(c) | len) & 0x7) == 0);
835
836 return (rf_longword_bxor3((unsigned long *) dst, (unsigned long *) a,
837 (unsigned long *) b, (unsigned long *) c, len >> RF_LONGSHIFT, bp));
838 }
839 #endif
840